1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
|
/* Operations with long integers.
Copyright (C) 2006-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
#include "tree.h"
static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
bool);
#define add_double(l1,h1,l2,h2,lv,hv) \
add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT, HOST_WIDE_INT,
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
bool);
#define mul_double(l1,h1,l2,h2,lv,hv) \
mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
HOST_WIDE_INT, unsigned HOST_WIDE_INT,
HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
HOST_WIDE_INT *);
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
and SUM1. Then this yields nonzero if overflow occurred during the
addition.
Overflow occurs if A and B have the same sign, but A and SUM differ in
sign. Use `^' to test whether signs differ, and `< 0' to isolate the
sign. */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
We do that by representing the two-word integer in 4 words, with only
HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
number. The value of the word is LOWPART + HIGHPART * BASE. */
#define LOWPART(x) \
((x) & ((HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
#define HIGHPART(x) \
((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
#define BASE (HOST_WIDE_INT_1U << HOST_BITS_PER_WIDE_INT / 2)
/* Unpack a two-word integer into 4 words.
LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
WORDS points to the array of HOST_WIDE_INTs. */
static void
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
{
words[0] = LOWPART (low);
words[1] = HIGHPART (low);
words[2] = LOWPART (hi);
words[3] = HIGHPART (hi);
}
/* Pack an array of 4 words into a two-word integer.
WORDS points to the array of words.
The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
static void
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
HOST_WIDE_INT *hi)
{
*low = words[0] + words[1] * BASE;
*hi = words[2] + words[3] * BASE;
}
/* Add two doubleword integers with doubleword result.
Return nonzero if the operation overflows according to UNSIGNED_P.
Each argument is given as two `HOST_WIDE_INT' pieces.
One argument is L1 and H1; the other, L2 and H2.
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
static int
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
bool unsigned_p)
{
unsigned HOST_WIDE_INT l;
HOST_WIDE_INT h;
l = l1 + l2;
h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
+ (unsigned HOST_WIDE_INT) h2
+ (l < l1));
*lv = l;
*hv = h;
if (unsigned_p)
return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
|| (h == h1
&& l < l1));
else
return OVERFLOW_SUM_SIGN (h1, h2, h);
}
/* Negate a doubleword integer with doubleword result.
Return nonzero if the operation overflows, assuming it's signed.
The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
static int
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
if (l1 == 0)
{
*lv = 0;
*hv = - (unsigned HOST_WIDE_INT) h1;
return (*hv & h1) < 0;
}
else
{
*lv = -l1;
*hv = ~h1;
return 0;
}
}
/* Multiply two doubleword integers with quadword result.
Return nonzero if the operation overflows according to UNSIGNED_P.
Each argument is given as two `HOST_WIDE_INT' pieces.
One argument is L1 and H1; the other, L2 and H2.
The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
*LW and *HW.
If lw is NULL then only the low part and no overflow is computed. */
static int
mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
bool unsigned_p)
{
HOST_WIDE_INT arg1[4];
HOST_WIDE_INT arg2[4];
HOST_WIDE_INT prod[4 * 2];
unsigned HOST_WIDE_INT carry;
int i, j, k;
unsigned HOST_WIDE_INT neglow;
HOST_WIDE_INT neghigh;
encode (arg1, l1, h1);
encode (arg2, l2, h2);
memset (prod, 0, sizeof prod);
for (i = 0; i < 4; i++)
{
carry = 0;
for (j = 0; j < 4; j++)
{
k = i + j;
/* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
/* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
carry += prod[k];
prod[k] = LOWPART (carry);
carry = HIGHPART (carry);
}
prod[i + 4] = carry;
}
decode (prod, lv, hv);
/* We are not interested in the wide part nor in overflow. */
if (lw == NULL)
return 0;
decode (prod + 4, lw, hw);
/* Unsigned overflow is immediate. */
if (unsigned_p)
return (*lw | *hw) != 0;
/* Check for signed overflow by calculating the signed representation of the
top half of the result; it should agree with the low half's sign bit. */
if (h1 < 0)
{
neg_double (l2, h2, &neglow, &neghigh);
add_double (neglow, neghigh, *lw, *hw, lw, hw);
}
if (h2 < 0)
{
neg_double (l1, h1, &neglow, &neghigh);
add_double (neglow, neghigh, *lw, *hw, lw, hw);
}
return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
}
/* Shift the doubleword integer in L1, H1 right by COUNT places
keeping only PREC bits of result. ARITH nonzero specifies
arithmetic shifting; otherwise use logical shift.
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
static void
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
unsigned HOST_WIDE_INT count, unsigned int prec,
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
bool arith)
{
unsigned HOST_WIDE_INT signmask;
signmask = (arith
? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
: 0);
if (count >= HOST_BITS_PER_DOUBLE_INT)
{
/* Shifting by the host word size is undefined according to the
ANSI standard, so we must handle this as a special case. */
*hv = 0;
*lv = 0;
}
else if (count >= HOST_BITS_PER_WIDE_INT)
{
*hv = 0;
*lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
}
else
{
*hv = (unsigned HOST_WIDE_INT) h1 >> count;
*lv = ((l1 >> count)
| ((unsigned HOST_WIDE_INT) h1
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
}
/* Zero / sign extend all bits that are beyond the precision. */
if (count >= prec)
{
*hv = signmask;
*lv = signmask;
}
else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
;
else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
{
*hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
*hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
}
else
{
*hv = signmask;
*lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
*lv |= signmask << (prec - count);
}
}
/* Shift the doubleword integer in L1, H1 left by COUNT places
keeping only PREC bits of result.
Shift right if COUNT is negative.
ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
static void
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
unsigned HOST_WIDE_INT count, unsigned int prec,
unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
unsigned HOST_WIDE_INT signmask;
if (count >= HOST_BITS_PER_DOUBLE_INT)
{
/* Shifting by the host word size is undefined according to the
ANSI standard, so we must handle this as a special case. */
*hv = 0;
*lv = 0;
}
else if (count >= HOST_BITS_PER_WIDE_INT)
{
*hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
*lv = 0;
}
else
{
*hv = (((unsigned HOST_WIDE_INT) h1 << count)
| (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
*lv = l1 << count;
}
/* Sign extend all bits that are beyond the precision. */
signmask = -((prec > HOST_BITS_PER_WIDE_INT
? ((unsigned HOST_WIDE_INT) *hv
>> (prec - HOST_BITS_PER_WIDE_INT - 1))
: (*lv >> (prec - 1))) & 1);
if (prec >= HOST_BITS_PER_DOUBLE_INT)
;
else if (prec >= HOST_BITS_PER_WIDE_INT)
{
*hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
*hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
}
else
{
*hv = signmask;
*lv &= ~(HOST_WIDE_INT_M1U << prec);
*lv |= signmask << prec;
}
}
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
CODE is a tree code for a kind of division, one of
TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
or EXACT_DIV_EXPR
It controls how the quotient is rounded to an integer.
Return nonzero if the operation overflows.
UNS nonzero says do unsigned division. */
static int
div_and_round_double (unsigned code, int uns,
/* num == numerator == dividend */
unsigned HOST_WIDE_INT lnum_orig,
HOST_WIDE_INT hnum_orig,
/* den == denominator == divisor */
unsigned HOST_WIDE_INT lden_orig,
HOST_WIDE_INT hden_orig,
unsigned HOST_WIDE_INT *lquo,
HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
HOST_WIDE_INT *hrem)
{
int quo_neg = 0;
HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
HOST_WIDE_INT den[4], quo[4];
int i, j;
unsigned HOST_WIDE_INT work;
unsigned HOST_WIDE_INT carry = 0;
unsigned HOST_WIDE_INT lnum = lnum_orig;
HOST_WIDE_INT hnum = hnum_orig;
unsigned HOST_WIDE_INT lden = lden_orig;
HOST_WIDE_INT hden = hden_orig;
int overflow = 0;
if (hden == 0 && lden == 0)
overflow = 1, lden = 1;
/* Calculate quotient sign and convert operands to unsigned. */
if (!uns)
{
if (hnum < 0)
{
quo_neg = ~ quo_neg;
/* (minimum integer) / (-1) is the only overflow case. */
if (neg_double (lnum, hnum, &lnum, &hnum)
&& ((HOST_WIDE_INT) lden & hden) == -1)
overflow = 1;
}
if (hden < 0)
{
quo_neg = ~ quo_neg;
neg_double (lden, hden, &lden, &hden);
}
}
if (hnum == 0 && hden == 0)
{ /* single precision */
*hquo = *hrem = 0;
/* This unsigned division rounds toward zero. */
*lquo = lnum / lden;
goto finish_up;
}
if (hnum == 0)
{ /* trivial case: dividend < divisor */
/* hden != 0 already checked. */
*hquo = *lquo = 0;
*hrem = hnum;
*lrem = lnum;
goto finish_up;
}
memset (quo, 0, sizeof quo);
memset (num, 0, sizeof num); /* to zero 9th element */
memset (den, 0, sizeof den);
encode (num, lnum, hnum);
encode (den, lden, hden);
/* Special code for when the divisor < BASE. */
if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
{
/* hnum != 0 already checked. */
for (i = 4 - 1; i >= 0; i--)
{
work = num[i] + carry * BASE;
quo[i] = work / lden;
carry = work % lden;
}
}
else
{
/* Full double precision division,
with thanks to Don Knuth's "Seminumerical Algorithms". */
int num_hi_sig, den_hi_sig;
unsigned HOST_WIDE_INT quo_est, scale;
/* Find the highest nonzero divisor digit. */
for (i = 4 - 1;; i--)
if (den[i] != 0)
{
den_hi_sig = i;
break;
}
/* Insure that the first digit of the divisor is at least BASE/2.
This is required by the quotient digit estimation algorithm. */
scale = BASE / (den[den_hi_sig] + 1);
if (scale > 1)
{ /* scale divisor and dividend */
carry = 0;
for (i = 0; i <= 4 - 1; i++)
{
work = (num[i] * scale) + carry;
num[i] = LOWPART (work);
carry = HIGHPART (work);
}
num[4] = carry;
carry = 0;
for (i = 0; i <= 4 - 1; i++)
{
work = (den[i] * scale) + carry;
den[i] = LOWPART (work);
carry = HIGHPART (work);
if (den[i] != 0) den_hi_sig = i;
}
}
num_hi_sig = 4;
/* Main loop */
for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
{
/* Guess the next quotient digit, quo_est, by dividing the first
two remaining dividend digits by the high order quotient digit.
quo_est is never low and is at most 2 high. */
unsigned HOST_WIDE_INT tmp;
num_hi_sig = i + den_hi_sig + 1;
work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
if (num[num_hi_sig] != den[den_hi_sig])
quo_est = work / den[den_hi_sig];
else
quo_est = BASE - 1;
/* Refine quo_est so it's usually correct, and at most one high. */
tmp = work - quo_est * den[den_hi_sig];
if (tmp < BASE
&& (den[den_hi_sig - 1] * quo_est
> (tmp * BASE + num[num_hi_sig - 2])))
quo_est--;
/* Try QUO_EST as the quotient digit, by multiplying the
divisor by QUO_EST and subtracting from the remaining dividend.
Keep in mind that QUO_EST is the I - 1st digit. */
carry = 0;
for (j = 0; j <= den_hi_sig; j++)
{
work = quo_est * den[j] + carry;
carry = HIGHPART (work);
work = num[i + j] - LOWPART (work);
num[i + j] = LOWPART (work);
carry += HIGHPART (work) != 0;
}
/* If quo_est was high by one, then num[i] went negative and
we need to correct things. */
if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
{
quo_est--;
carry = 0; /* add divisor back in */
for (j = 0; j <= den_hi_sig; j++)
{
work = num[i + j] + den[j] + carry;
carry = HIGHPART (work);
num[i + j] = LOWPART (work);
}
num [num_hi_sig] += carry;
}
/* Store the quotient digit. */
quo[i] = quo_est;
}
}
decode (quo, lquo, hquo);
finish_up:
/* If result is negative, make it so. */
if (quo_neg)
neg_double (*lquo, *hquo, lquo, hquo);
/* Compute trial remainder: rem = num - (quo * den) */
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
neg_double (*lrem, *hrem, lrem, hrem);
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
switch (code)
{
case TRUNC_DIV_EXPR:
case TRUNC_MOD_EXPR: /* round toward zero */
case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
return overflow;
case FLOOR_DIV_EXPR:
case FLOOR_MOD_EXPR: /* round toward negative infinity */
if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
{
/* quo = quo - 1; */
add_double (*lquo, *hquo, HOST_WIDE_INT_M1, HOST_WIDE_INT_M1,
lquo, hquo);
}
else
return overflow;
break;
case CEIL_DIV_EXPR:
case CEIL_MOD_EXPR: /* round toward positive infinity */
if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
{
add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
lquo, hquo);
}
else
return overflow;
break;
case ROUND_DIV_EXPR:
case ROUND_MOD_EXPR: /* round to closest integer */
{
unsigned HOST_WIDE_INT labs_rem = *lrem;
HOST_WIDE_INT habs_rem = *hrem;
unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
/* Get absolute values. */
if (!uns && *hrem < 0)
neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
if (!uns && hden < 0)
neg_double (lden, hden, &labs_den, &habs_den);
/* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
&ldiff, &hdiff);
if (((unsigned HOST_WIDE_INT) habs_rem
> (unsigned HOST_WIDE_INT) hdiff)
|| (habs_rem == hdiff && labs_rem >= ldiff))
{
if (quo_neg)
/* quo = quo - 1; */
add_double (*lquo, *hquo,
HOST_WIDE_INT_M1, HOST_WIDE_INT_M1, lquo, hquo);
else
/* quo = quo + 1; */
add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
lquo, hquo);
}
else
return overflow;
}
break;
default:
gcc_unreachable ();
}
/* Compute true remainder: rem = num - (quo * den) */
mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
neg_double (*lrem, *hrem, lrem, hrem);
add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
return overflow;
}
/* Construct from a buffer of length LEN. BUFFER will be read according
to byte endianness and word endianness. Only the lower LEN bytes
of the result are set; the remaining high bytes are cleared. */
double_int
double_int::from_buffer (const unsigned char *buffer, int len)
{
double_int result = double_int_zero;
int words = len / UNITS_PER_WORD;
gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
for (int byte = 0; byte < len; byte++)
{
int offset;
int bitpos = byte * BITS_PER_UNIT;
unsigned HOST_WIDE_INT value;
if (len > UNITS_PER_WORD)
{
int word = byte / UNITS_PER_WORD;
if (WORDS_BIG_ENDIAN)
word = (words - 1) - word;
offset = word * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
else
offset += byte % UNITS_PER_WORD;
}
else
offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
value = (unsigned HOST_WIDE_INT) buffer[offset];
if (bitpos < HOST_BITS_PER_WIDE_INT)
result.low |= value << bitpos;
else
result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
}
return result;
}
/* Returns mask for PREC bits. */
double_int
double_int::mask (unsigned prec)
{
unsigned HOST_WIDE_INT m;
double_int mask;
if (prec > HOST_BITS_PER_WIDE_INT)
{
prec -= HOST_BITS_PER_WIDE_INT;
m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
mask.high = (HOST_WIDE_INT) m;
mask.low = ALL_ONES;
}
else
{
mask.high = 0;
mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
}
return mask;
}
/* Returns a maximum value for signed or unsigned integer
of precision PREC. */
double_int
double_int::max_value (unsigned int prec, bool uns)
{
return double_int::mask (prec - (uns ? 0 : 1));
}
/* Returns a minimum value for signed or unsigned integer
of precision PREC. */
double_int
double_int::min_value (unsigned int prec, bool uns)
{
if (uns)
return double_int_zero;
return double_int_one.lshift (prec - 1, prec, false);
}
/* Clears the bits of CST over the precision PREC. If UNS is false, the bits
outside of the precision are set to the sign bit (i.e., the PREC-th one),
otherwise they are set to zero.
This corresponds to returning the value represented by PREC lowermost bits
of CST, with the given signedness. */
double_int
double_int::ext (unsigned prec, bool uns) const
{
if (uns)
return this->zext (prec);
else
return this->sext (prec);
}
/* The same as double_int::ext with UNS = true. */
double_int
double_int::zext (unsigned prec) const
{
const double_int &cst = *this;
double_int mask = double_int::mask (prec);
double_int r;
r.low = cst.low & mask.low;
r.high = cst.high & mask.high;
return r;
}
/* The same as double_int::ext with UNS = false. */
double_int
double_int::sext (unsigned prec) const
{
const double_int &cst = *this;
double_int mask = double_int::mask (prec);
double_int r;
unsigned HOST_WIDE_INT snum;
if (prec <= HOST_BITS_PER_WIDE_INT)
snum = cst.low;
else
{
prec -= HOST_BITS_PER_WIDE_INT;
snum = (unsigned HOST_WIDE_INT) cst.high;
}
if (((snum >> (prec - 1)) & 1) == 1)
{
r.low = cst.low | ~mask.low;
r.high = cst.high | ~mask.high;
}
else
{
r.low = cst.low & mask.low;
r.high = cst.high & mask.high;
}
return r;
}
/* Returns true if CST fits in signed HOST_WIDE_INT. */
bool
double_int::fits_shwi () const
{
const double_int &cst = *this;
if (cst.high == 0)
return (HOST_WIDE_INT) cst.low >= 0;
else if (cst.high == -1)
return (HOST_WIDE_INT) cst.low < 0;
else
return false;
}
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
unsigned HOST_WIDE_INT if UNS is true. */
bool
double_int::fits_hwi (bool uns) const
{
if (uns)
return this->fits_uhwi ();
else
return this->fits_shwi ();
}
/* Returns A * B. */
double_int
double_int::operator * (double_int b) const
{
const double_int &a = *this;
double_int ret;
mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
return ret;
}
/* Multiplies *this with B and returns a reference to *this. */
double_int &
double_int::operator *= (double_int b)
{
mul_double (low, high, b.low, b.high, &low, &high);
return *this;
}
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
*OVERFLOW is set to nonzero. */
double_int
double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
{
const double_int &a = *this;
double_int ret, tem;
*overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
&ret.low, &ret.high,
&tem.low, &tem.high, unsigned_p);
return ret;
}
double_int
double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
double_int *higher, bool *overflow) const
{
double_int lower;
*overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
&lower.low, &lower.high,
&higher->low, &higher->high,
unsigned_p);
return lower;
}
/* Returns A + B. */
double_int
double_int::operator + (double_int b) const
{
const double_int &a = *this;
double_int ret;
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
return ret;
}
/* Adds B to *this and returns a reference to *this. */
double_int &
double_int::operator += (double_int b)
{
add_double (low, high, b.low, b.high, &low, &high);
return *this;
}
/* Returns A + B. If the operation overflows according to UNSIGNED_P,
*OVERFLOW is set to nonzero. */
double_int
double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
{
const double_int &a = *this;
double_int ret;
*overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
&ret.low, &ret.high, unsigned_p);
return ret;
}
/* Returns A - B. */
double_int
double_int::operator - (double_int b) const
{
const double_int &a = *this;
double_int ret;
neg_double (b.low, b.high, &b.low, &b.high);
add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
return ret;
}
/* Subtracts B from *this and returns a reference to *this. */
double_int &
double_int::operator -= (double_int b)
{
neg_double (b.low, b.high, &b.low, &b.high);
add_double (low, high, b.low, b.high, &low, &high);
return *this;
}
/* Returns A - B. If the operation overflows via inconsistent sign bits,
*OVERFLOW is set to nonzero. */
double_int
double_int::sub_with_overflow (double_int b, bool *overflow) const
{
double_int ret;
neg_double (b.low, b.high, &ret.low, &ret.high);
add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
*overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
return ret;
}
/* Returns -A. */
double_int
double_int::operator - () const
{
const double_int &a = *this;
double_int ret;
neg_double (a.low, a.high, &ret.low, &ret.high);
return ret;
}
double_int
double_int::neg_with_overflow (bool *overflow) const
{
double_int ret;
*overflow = neg_double (low, high, &ret.low, &ret.high);
return ret;
}
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
specified by CODE). CODE is enum tree_code in fact, but double_int.h
must be included before tree.h. The remainder after the division is
stored to MOD. */
double_int
double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
double_int *mod, bool *overflow) const
{
const double_int &a = *this;
double_int ret;
*overflow = div_and_round_double (code, uns, a.low, a.high,
b.low, b.high, &ret.low, &ret.high,
&mod->low, &mod->high);
return ret;
}
double_int
double_int::divmod (double_int b, bool uns, unsigned code,
double_int *mod) const
{
const double_int &a = *this;
double_int ret;
div_and_round_double (code, uns, a.low, a.high,
b.low, b.high, &ret.low, &ret.high,
&mod->low, &mod->high);
return ret;
}
/* The same as double_int::divmod with UNS = false. */
double_int
double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
{
return this->divmod (b, false, code, mod);
}
/* The same as double_int::divmod with UNS = true. */
double_int
double_int::udivmod (double_int b, unsigned code, double_int *mod) const
{
return this->divmod (b, true, code, mod);
}
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
specified by CODE). CODE is enum tree_code in fact, but double_int.h
must be included before tree.h. */
double_int
double_int::div (double_int b, bool uns, unsigned code) const
{
double_int mod;
return this->divmod (b, uns, code, &mod);
}
/* The same as double_int::div with UNS = false. */
double_int
double_int::sdiv (double_int b, unsigned code) const
{
return this->div (b, false, code);
}
/* The same as double_int::div with UNS = true. */
double_int
double_int::udiv (double_int b, unsigned code) const
{
return this->div (b, true, code);
}
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
specified by CODE). CODE is enum tree_code in fact, but double_int.h
must be included before tree.h. */
double_int
double_int::mod (double_int b, bool uns, unsigned code) const
{
double_int mod;
this->divmod (b, uns, code, &mod);
return mod;
}
/* The same as double_int::mod with UNS = false. */
double_int
double_int::smod (double_int b, unsigned code) const
{
return this->mod (b, false, code);
}
/* The same as double_int::mod with UNS = true. */
double_int
double_int::umod (double_int b, unsigned code) const
{
return this->mod (b, true, code);
}
/* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
unchanged. */
bool
double_int::multiple_of (double_int factor,
bool unsigned_p, double_int *multiple) const
{
double_int remainder;
double_int quotient = this->divmod (factor, unsigned_p,
TRUNC_DIV_EXPR, &remainder);
if (remainder.is_zero ())
{
*multiple = quotient;
return true;
}
return false;
}
/* Set BITPOS bit in A. */
double_int
double_int::set_bit (unsigned bitpos) const
{
double_int a = *this;
if (bitpos < HOST_BITS_PER_WIDE_INT)
a.low |= HOST_WIDE_INT_1U << bitpos;
else
a.high |= HOST_WIDE_INT_1 << (bitpos - HOST_BITS_PER_WIDE_INT);
return a;
}
/* Count trailing zeros in A. */
int
double_int::trailing_zeros () const
{
const double_int &a = *this;
unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
if (!w)
return HOST_BITS_PER_DOUBLE_INT;
bits += ctz_hwi (w);
return bits;
}
/* Shift A left by COUNT places. */
double_int
double_int::lshift (HOST_WIDE_INT count) const
{
double_int ret;
gcc_checking_assert (count >= 0);
if (count >= HOST_BITS_PER_DOUBLE_INT)
{
/* Shifting by the host word size is undefined according to the
ANSI standard, so we must handle this as a special case. */
ret.high = 0;
ret.low = 0;
}
else if (count >= HOST_BITS_PER_WIDE_INT)
{
ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
ret.low = 0;
}
else
{
ret.high = (((unsigned HOST_WIDE_INT) high << count)
| (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
ret.low = low << count;
}
return ret;
}
/* Shift A right by COUNT places. */
double_int
double_int::rshift (HOST_WIDE_INT count) const
{
double_int ret;
gcc_checking_assert (count >= 0);
if (count >= HOST_BITS_PER_DOUBLE_INT)
{
/* Shifting by the host word size is undefined according to the
ANSI standard, so we must handle this as a special case. */
ret.high = 0;
ret.low = 0;
}
else if (count >= HOST_BITS_PER_WIDE_INT)
{
ret.high = 0;
ret.low
= (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
}
else
{
ret.high = high >> count;
ret.low = ((low >> count)
| ((unsigned HOST_WIDE_INT) high
<< (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
}
return ret;
}
/* Shift A left by COUNT places keeping only PREC bits of result. Shift
right if COUNT is negative. ARITH true specifies arithmetic shifting;
otherwise use logical shift. */
double_int
double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
{
double_int ret;
if (count > 0)
lshift_double (low, high, count, prec, &ret.low, &ret.high);
else
rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
return ret;
}
/* Shift A right by COUNT places keeping only PREC bits of result. Shift
left if COUNT is negative. ARITH true specifies arithmetic shifting;
otherwise use logical shift. */
double_int
double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
{
double_int ret;
if (count > 0)
rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
else
lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
return ret;
}
/* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
Shift right if COUNT is negative. */
double_int
double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
{
double_int r;
if (count > 0)
lshift_double (low, high, count, prec, &r.low, &r.high);
else
rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
return r;
}
/* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
Shift left if COUNT is negative. */
double_int
double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
{
double_int r;
if (count > 0)
rshift_double (low, high, count, prec, &r.low, &r.high, true);
else
lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
return r;
}
/* Logical shift A left by COUNT places keeping only PREC bits of result.
Shift right if COUNT is negative. */
double_int
double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
{
double_int r;
if (count > 0)
lshift_double (low, high, count, prec, &r.low, &r.high);
else
rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
return r;
}
/* Logical shift A right by COUNT places keeping only PREC bits of result.
Shift left if COUNT is negative. */
double_int
double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
{
double_int r;
if (count > 0)
rshift_double (low, high, count, prec, &r.low, &r.high, false);
else
lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
return r;
}
/* Rotate A left by COUNT places keeping only PREC bits of result.
Rotate right if COUNT is negative. */
double_int
double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
{
double_int t1, t2;
count %= prec;
if (count < 0)
count += prec;
t1 = this->llshift (count, prec);
t2 = this->lrshift (prec - count, prec);
return t1 | t2;
}
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
Rotate right if COUNT is negative. */
double_int
double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
{
double_int t1, t2;
count %= prec;
if (count < 0)
count += prec;
t1 = this->lrshift (count, prec);
t2 = this->llshift (prec - count, prec);
return t1 | t2;
}
/* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
comparison is given by UNS. */
int
double_int::cmp (double_int b, bool uns) const
{
if (uns)
return this->ucmp (b);
else
return this->scmp (b);
}
/* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
and 1 if A > B. */
int
double_int::ucmp (double_int b) const
{
const double_int &a = *this;
if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
return -1;
if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
return 1;
if (a.low < b.low)
return -1;
if (a.low > b.low)
return 1;
return 0;
}
/* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
and 1 if A > B. */
int
double_int::scmp (double_int b) const
{
const double_int &a = *this;
if (a.high < b.high)
return -1;
if (a.high > b.high)
return 1;
if (a.low < b.low)
return -1;
if (a.low > b.low)
return 1;
return 0;
}
/* Compares two unsigned values A and B for less-than. */
bool
double_int::ult (double_int b) const
{
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
return true;
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
return false;
if (low < b.low)
return true;
return false;
}
/* Compares two unsigned values A and B for less-than or equal-to. */
bool
double_int::ule (double_int b) const
{
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
return true;
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
return false;
if (low <= b.low)
return true;
return false;
}
/* Compares two unsigned values A and B for greater-than. */
bool
double_int::ugt (double_int b) const
{
if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
return true;
if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
return false;
if (low > b.low)
return true;
return false;
}
/* Compares two signed values A and B for less-than. */
bool
double_int::slt (double_int b) const
{
if (high < b.high)
return true;
if (high > b.high)
return false;
if (low < b.low)
return true;
return false;
}
/* Compares two signed values A and B for less-than or equal-to. */
bool
double_int::sle (double_int b) const
{
if (high < b.high)
return true;
if (high > b.high)
return false;
if (low <= b.low)
return true;
return false;
}
/* Compares two signed values A and B for greater-than. */
bool
double_int::sgt (double_int b) const
{
if (high > b.high)
return true;
if (high < b.high)
return false;
if (low > b.low)
return true;
return false;
}
/* Compares two values A and B. Returns max value. Signedness of the
comparison is given by UNS. */
double_int
double_int::max (double_int b, bool uns)
{
return (this->cmp (b, uns) == 1) ? *this : b;
}
/* Compares two signed values A and B. Returns max value. */
double_int
double_int::smax (double_int b)
{
return (this->scmp (b) == 1) ? *this : b;
}
/* Compares two unsigned values A and B. Returns max value. */
double_int
double_int::umax (double_int b)
{
return (this->ucmp (b) == 1) ? *this : b;
}
/* Compares two values A and B. Returns mix value. Signedness of the
comparison is given by UNS. */
double_int
double_int::min (double_int b, bool uns)
{
return (this->cmp (b, uns) == -1) ? *this : b;
}
/* Compares two signed values A and B. Returns min value. */
double_int
double_int::smin (double_int b)
{
return (this->scmp (b) == -1) ? *this : b;
}
/* Compares two unsigned values A and B. Returns min value. */
double_int
double_int::umin (double_int b)
{
return (this->ucmp (b) == -1) ? *this : b;
}
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
static unsigned
double_int_split_digit (double_int *cst, unsigned base)
{
unsigned HOST_WIDE_INT resl, reml;
HOST_WIDE_INT resh, remh;
div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
&resl, &resh, &reml, &remh);
cst->high = resh;
cst->low = resl;
return reml;
}
/* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
otherwise it is signed. */
void
dump_double_int (FILE *file, double_int cst, bool uns)
{
unsigned digits[100], n;
int i;
if (cst.is_zero ())
{
fprintf (file, "0");
return;
}
if (!uns && cst.is_negative ())
{
fprintf (file, "-");
cst = -cst;
}
for (n = 0; !cst.is_zero (); n++)
digits[n] = double_int_split_digit (&cst, 10);
for (i = n - 1; i >= 0; i--)
fprintf (file, "%u", digits[i]);
}
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
otherwise. */
void
mpz_set_double_int (mpz_t result, double_int val, bool uns)
{
bool negate = false;
unsigned HOST_WIDE_INT vp[2];
if (!uns && val.is_negative ())
{
negate = true;
val = -val;
}
vp[0] = val.low;
vp[1] = (unsigned HOST_WIDE_INT) val.high;
mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
if (negate)
mpz_neg (result, result);
}
/* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
values of VAL will be wrapped; otherwise, they will be set to the
appropriate minimum or maximum TYPE bound. */
double_int
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
{
unsigned HOST_WIDE_INT *vp;
size_t count, numb;
double_int res;
if (!wrap)
{
mpz_t min, max;
mpz_init (min);
mpz_init (max);
get_type_static_bounds (type, min, max);
if (mpz_cmp (val, min) < 0)
mpz_set (val, min);
else if (mpz_cmp (val, max) > 0)
mpz_set (val, max);
mpz_clear (min);
mpz_clear (max);
}
/* Determine the number of unsigned HOST_WIDE_INT that are required
for representing the value. The code to calculate count is
extracted from the GMP manual, section "Integer Import and Export":
http://gmplib.org/manual/Integer-Import-and-Export.html */
numb = 8 * sizeof (HOST_WIDE_INT);
count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
if (count < 2)
count = 2;
vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
vp[0] = 0;
vp[1] = 0;
mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
gcc_assert (wrap || count <= 2);
res.low = vp[0];
res.high = (HOST_WIDE_INT) vp[1];
res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
if (mpz_sgn (val) < 0)
res = -res;
return res;
}
|