1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
|
/* Backend support for Fortran 95 basic types and derived types.
Copyright (C) 2002-2018 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
and Steven Bosscher <s.bosscher@student.tudelft.nl>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* trans-types.c -- gfortran backend types */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "tree.h"
#include "gfortran.h"
#include "trans.h"
#include "stringpool.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "langhooks.h" /* For iso-c-bindings.def. */
#include "toplev.h" /* For rest_of_decl_compilation. */
#include "trans-types.h"
#include "trans-const.h"
#include "trans-array.h"
#include "dwarf2out.h" /* For struct array_descr_info. */
#include "attribs.h"
#if (GFC_MAX_DIMENSIONS < 10)
#define GFC_RANK_DIGITS 1
#define GFC_RANK_PRINTF_FORMAT "%01d"
#elif (GFC_MAX_DIMENSIONS < 100)
#define GFC_RANK_DIGITS 2
#define GFC_RANK_PRINTF_FORMAT "%02d"
#else
#error If you really need >99 dimensions, continue the sequence above...
#endif
/* array of structs so we don't have to worry about xmalloc or free */
CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
tree gfc_array_index_type;
tree gfc_array_range_type;
tree gfc_character1_type_node;
tree pvoid_type_node;
tree prvoid_type_node;
tree ppvoid_type_node;
tree pchar_type_node;
tree pfunc_type_node;
tree logical_type_node;
tree logical_true_node;
tree logical_false_node;
tree gfc_charlen_type_node;
tree gfc_float128_type_node = NULL_TREE;
tree gfc_complex_float128_type_node = NULL_TREE;
bool gfc_real16_is_float128 = false;
static GTY(()) tree gfc_desc_dim_type;
static GTY(()) tree gfc_max_array_element_size;
static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
/* Arrays for all integral and real kinds. We'll fill this in at runtime
after the target has a chance to process command-line options. */
#define MAX_INT_KINDS 5
gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
#define MAX_REAL_KINDS 5
gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
#define MAX_CHARACTER_KINDS 2
gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
/* The integer kind to use for array indices. This will be set to the
proper value based on target information from the backend. */
int gfc_index_integer_kind;
/* The default kinds of the various types. */
int gfc_default_integer_kind;
int gfc_max_integer_kind;
int gfc_default_real_kind;
int gfc_default_double_kind;
int gfc_default_character_kind;
int gfc_default_logical_kind;
int gfc_default_complex_kind;
int gfc_c_int_kind;
int gfc_atomic_int_kind;
int gfc_atomic_logical_kind;
/* The kind size used for record offsets. If the target system supports
kind=8, this will be set to 8, otherwise it is set to 4. */
int gfc_intio_kind;
/* The integer kind used to store character lengths. */
int gfc_charlen_int_kind;
/* Kind of internal integer for storing object sizes. */
int gfc_size_kind;
/* The size of the numeric storage unit and character storage unit. */
int gfc_numeric_storage_size;
int gfc_character_storage_size;
tree dtype_type_node = NULL_TREE;
/* Build the dtype_type_node if necessary. */
tree get_dtype_type_node (void)
{
tree field;
tree dtype_node;
tree *dtype_chain = NULL;
if (dtype_type_node == NULL_TREE)
{
dtype_node = make_node (RECORD_TYPE);
TYPE_NAME (dtype_node) = get_identifier ("dtype_type");
TYPE_NAMELESS (dtype_node) = 1;
field = gfc_add_field_to_struct_1 (dtype_node,
get_identifier ("elem_len"),
size_type_node, &dtype_chain);
TREE_NO_WARNING (field) = 1;
field = gfc_add_field_to_struct_1 (dtype_node,
get_identifier ("version"),
integer_type_node, &dtype_chain);
TREE_NO_WARNING (field) = 1;
field = gfc_add_field_to_struct_1 (dtype_node,
get_identifier ("rank"),
signed_char_type_node, &dtype_chain);
TREE_NO_WARNING (field) = 1;
field = gfc_add_field_to_struct_1 (dtype_node,
get_identifier ("type"),
signed_char_type_node, &dtype_chain);
TREE_NO_WARNING (field) = 1;
field = gfc_add_field_to_struct_1 (dtype_node,
get_identifier ("attribute"),
short_integer_type_node, &dtype_chain);
TREE_NO_WARNING (field) = 1;
gfc_finish_type (dtype_node);
TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (dtype_node)) = 1;
dtype_type_node = dtype_node;
}
return dtype_type_node;
}
bool
gfc_check_any_c_kind (gfc_typespec *ts)
{
int i;
for (i = 0; i < ISOCBINDING_NUMBER; i++)
{
/* Check for any C interoperable kind for the given type/kind in ts.
This can be used after verify_c_interop to make sure that the
Fortran kind being used exists in at least some form for C. */
if (c_interop_kinds_table[i].f90_type == ts->type &&
c_interop_kinds_table[i].value == ts->kind)
return true;
}
return false;
}
static int
get_real_kind_from_node (tree type)
{
int i;
for (i = 0; gfc_real_kinds[i].kind != 0; i++)
if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
return gfc_real_kinds[i].kind;
return -4;
}
static int
get_int_kind_from_node (tree type)
{
int i;
if (!type)
return -2;
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
return gfc_integer_kinds[i].kind;
return -1;
}
/* Return a typenode for the "standard" C type with a given name. */
static tree
get_typenode_from_name (const char *name)
{
if (name == NULL || *name == '\0')
return NULL_TREE;
if (strcmp (name, "char") == 0)
return char_type_node;
if (strcmp (name, "unsigned char") == 0)
return unsigned_char_type_node;
if (strcmp (name, "signed char") == 0)
return signed_char_type_node;
if (strcmp (name, "short int") == 0)
return short_integer_type_node;
if (strcmp (name, "short unsigned int") == 0)
return short_unsigned_type_node;
if (strcmp (name, "int") == 0)
return integer_type_node;
if (strcmp (name, "unsigned int") == 0)
return unsigned_type_node;
if (strcmp (name, "long int") == 0)
return long_integer_type_node;
if (strcmp (name, "long unsigned int") == 0)
return long_unsigned_type_node;
if (strcmp (name, "long long int") == 0)
return long_long_integer_type_node;
if (strcmp (name, "long long unsigned int") == 0)
return long_long_unsigned_type_node;
gcc_unreachable ();
}
static int
get_int_kind_from_name (const char *name)
{
return get_int_kind_from_node (get_typenode_from_name (name));
}
/* Get the kind number corresponding to an integer of given size,
following the required return values for ISO_FORTRAN_ENV INT* constants:
-2 is returned if we support a kind of larger size, -1 otherwise. */
int
gfc_get_int_kind_from_width_isofortranenv (int size)
{
int i;
/* Look for a kind with matching storage size. */
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].bit_size == size)
return gfc_integer_kinds[i].kind;
/* Look for a kind with larger storage size. */
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].bit_size > size)
return -2;
return -1;
}
/* Get the kind number corresponding to a real of a given storage size.
If two real's have the same storage size, then choose the real with
the largest precision. If a kind type is unavailable and a real
exists with wider storage, then return -2; otherwise, return -1. */
int
gfc_get_real_kind_from_width_isofortranenv (int size)
{
int digits, i, kind;
size /= 8;
kind = -1;
digits = 0;
/* Look for a kind with matching storage size. */
for (i = 0; gfc_real_kinds[i].kind != 0; i++)
if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
{
if (gfc_real_kinds[i].digits > digits)
{
digits = gfc_real_kinds[i].digits;
kind = gfc_real_kinds[i].kind;
}
}
if (kind != -1)
return kind;
/* Look for a kind with larger storage size. */
for (i = 0; gfc_real_kinds[i].kind != 0; i++)
if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
kind = -2;
return kind;
}
static int
get_int_kind_from_width (int size)
{
int i;
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].bit_size == size)
return gfc_integer_kinds[i].kind;
return -2;
}
static int
get_int_kind_from_minimal_width (int size)
{
int i;
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].bit_size >= size)
return gfc_integer_kinds[i].kind;
return -2;
}
/* Generate the CInteropKind_t objects for the C interoperable
kinds. */
void
gfc_init_c_interop_kinds (void)
{
int i;
/* init all pointers in the list to NULL */
for (i = 0; i < ISOCBINDING_NUMBER; i++)
{
/* Initialize the name and value fields. */
c_interop_kinds_table[i].name[0] = '\0';
c_interop_kinds_table[i].value = -100;
c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
}
#define NAMED_INTCST(a,b,c,d) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_INTEGER; \
c_interop_kinds_table[a].value = c;
#define NAMED_REALCST(a,b,c,d) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_REAL; \
c_interop_kinds_table[a].value = c;
#define NAMED_CMPXCST(a,b,c,d) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
c_interop_kinds_table[a].value = c;
#define NAMED_LOGCST(a,b,c) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
c_interop_kinds_table[a].value = c;
#define NAMED_CHARKNDCST(a,b,c) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
c_interop_kinds_table[a].value = c;
#define NAMED_CHARCST(a,b,c) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
c_interop_kinds_table[a].value = c;
#define DERIVED_TYPE(a,b,c) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_DERIVED; \
c_interop_kinds_table[a].value = c;
#define NAMED_FUNCTION(a,b,c,d) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
c_interop_kinds_table[a].value = c;
#define NAMED_SUBROUTINE(a,b,c,d) \
strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
c_interop_kinds_table[a].value = c;
#include "iso-c-binding.def"
}
/* Query the target to determine which machine modes are available for
computation. Choose KIND numbers for them. */
void
gfc_init_kinds (void)
{
opt_scalar_int_mode int_mode_iter;
opt_scalar_float_mode float_mode_iter;
int i_index, r_index, kind;
bool saw_i4 = false, saw_i8 = false;
bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
i_index = 0;
FOR_EACH_MODE_IN_CLASS (int_mode_iter, MODE_INT)
{
scalar_int_mode mode = int_mode_iter.require ();
int kind, bitsize;
if (!targetm.scalar_mode_supported_p (mode))
continue;
/* The middle end doesn't support constants larger than 2*HWI.
Perhaps the target hook shouldn't have accepted these either,
but just to be safe... */
bitsize = GET_MODE_BITSIZE (mode);
if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
continue;
gcc_assert (i_index != MAX_INT_KINDS);
/* Let the kind equal the bit size divided by 8. This insulates the
programmer from the underlying byte size. */
kind = bitsize / 8;
if (kind == 4)
saw_i4 = true;
if (kind == 8)
saw_i8 = true;
gfc_integer_kinds[i_index].kind = kind;
gfc_integer_kinds[i_index].radix = 2;
gfc_integer_kinds[i_index].digits = bitsize - 1;
gfc_integer_kinds[i_index].bit_size = bitsize;
gfc_logical_kinds[i_index].kind = kind;
gfc_logical_kinds[i_index].bit_size = bitsize;
i_index += 1;
}
/* Set the kind used to match GFC_INT_IO in libgfortran. This is
used for large file access. */
if (saw_i8)
gfc_intio_kind = 8;
else
gfc_intio_kind = 4;
/* If we do not at least have kind = 4, everything is pointless. */
gcc_assert(saw_i4);
/* Set the maximum integer kind. Used with at least BOZ constants. */
gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
r_index = 0;
FOR_EACH_MODE_IN_CLASS (float_mode_iter, MODE_FLOAT)
{
scalar_float_mode mode = float_mode_iter.require ();
const struct real_format *fmt = REAL_MODE_FORMAT (mode);
int kind;
if (fmt == NULL)
continue;
if (!targetm.scalar_mode_supported_p (mode))
continue;
/* Only let float, double, long double and __float128 go through.
Runtime support for others is not provided, so they would be
useless. */
if (!targetm.libgcc_floating_mode_supported_p (mode))
continue;
if (mode != TYPE_MODE (float_type_node)
&& (mode != TYPE_MODE (double_type_node))
&& (mode != TYPE_MODE (long_double_type_node))
#if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
&& (mode != TFmode)
#endif
)
continue;
/* Let the kind equal the precision divided by 8, rounding up. Again,
this insulates the programmer from the underlying byte size.
Also, it effectively deals with IEEE extended formats. There, the
total size of the type may equal 16, but it's got 6 bytes of padding
and the increased size can get in the way of a real IEEE quad format
which may also be supported by the target.
We round up so as to handle IA-64 __floatreg (RFmode), which is an
82 bit type. Not to be confused with __float80 (XFmode), which is
an 80 bit type also supported by IA-64. So XFmode should come out
to be kind=10, and RFmode should come out to be kind=11. Egads. */
kind = (GET_MODE_PRECISION (mode) + 7) / 8;
if (kind == 4)
saw_r4 = true;
if (kind == 8)
saw_r8 = true;
if (kind == 10)
saw_r10 = true;
if (kind == 16)
saw_r16 = true;
/* Careful we don't stumble a weird internal mode. */
gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
/* Or have too many modes for the allocated space. */
gcc_assert (r_index != MAX_REAL_KINDS);
gfc_real_kinds[r_index].kind = kind;
gfc_real_kinds[r_index].radix = fmt->b;
gfc_real_kinds[r_index].digits = fmt->p;
gfc_real_kinds[r_index].min_exponent = fmt->emin;
gfc_real_kinds[r_index].max_exponent = fmt->emax;
if (fmt->pnan < fmt->p)
/* This is an IBM extended double format (or the MIPS variant)
made up of two IEEE doubles. The value of the long double is
the sum of the values of the two parts. The most significant
part is required to be the value of the long double rounded
to the nearest double. If we use emax of 1024 then we can't
represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
rounding will make the most significant part overflow. */
gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
r_index += 1;
}
/* Choose the default integer kind. We choose 4 unless the user directs us
otherwise. Even if the user specified that the default integer kind is 8,
the numeric storage size is not 64 bits. In this case, a warning will be
issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
gfc_numeric_storage_size = 4 * 8;
if (flag_default_integer)
{
if (!saw_i8)
gfc_fatal_error ("INTEGER(KIND=8) is not available for "
"%<-fdefault-integer-8%> option");
gfc_default_integer_kind = 8;
}
else if (flag_integer4_kind == 8)
{
if (!saw_i8)
gfc_fatal_error ("INTEGER(KIND=8) is not available for "
"%<-finteger-4-integer-8%> option");
gfc_default_integer_kind = 8;
}
else if (saw_i4)
{
gfc_default_integer_kind = 4;
}
else
{
gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
}
/* Choose the default real kind. Again, we choose 4 when possible. */
if (flag_default_real_8)
{
if (!saw_r8)
gfc_fatal_error ("REAL(KIND=8) is not available for "
"%<-fdefault-real-8%> option");
gfc_default_real_kind = 8;
}
else if (flag_default_real_10)
{
if (!saw_r10)
gfc_fatal_error ("REAL(KIND=10) is not available for "
"%<-fdefault-real-10%> option");
gfc_default_real_kind = 10;
}
else if (flag_default_real_16)
{
if (!saw_r16)
gfc_fatal_error ("REAL(KIND=16) is not available for "
"%<-fdefault-real-16%> option");
gfc_default_real_kind = 16;
}
else if (flag_real4_kind == 8)
{
if (!saw_r8)
gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
"option");
gfc_default_real_kind = 8;
}
else if (flag_real4_kind == 10)
{
if (!saw_r10)
gfc_fatal_error ("REAL(KIND=10) is not available for "
"%<-freal-4-real-10%> option");
gfc_default_real_kind = 10;
}
else if (flag_real4_kind == 16)
{
if (!saw_r16)
gfc_fatal_error ("REAL(KIND=16) is not available for "
"%<-freal-4-real-16%> option");
gfc_default_real_kind = 16;
}
else if (saw_r4)
gfc_default_real_kind = 4;
else
gfc_default_real_kind = gfc_real_kinds[0].kind;
/* Choose the default double kind. If -fdefault-real and -fdefault-double
are specified, we use kind=8, if it's available. If -fdefault-real is
specified without -fdefault-double, we use kind=16, if it's available.
Otherwise we do not change anything. */
if (flag_default_double && saw_r8)
gfc_default_double_kind = 8;
else if (flag_default_real_8 || flag_default_real_10 || flag_default_real_16)
{
/* Use largest available kind. */
if (saw_r16)
gfc_default_double_kind = 16;
else if (saw_r10)
gfc_default_double_kind = 10;
else if (saw_r8)
gfc_default_double_kind = 8;
else
gfc_default_double_kind = gfc_default_real_kind;
}
else if (flag_real8_kind == 4)
{
if (!saw_r4)
gfc_fatal_error ("REAL(KIND=4) is not available for "
"%<-freal-8-real-4%> option");
gfc_default_double_kind = 4;
}
else if (flag_real8_kind == 10 )
{
if (!saw_r10)
gfc_fatal_error ("REAL(KIND=10) is not available for "
"%<-freal-8-real-10%> option");
gfc_default_double_kind = 10;
}
else if (flag_real8_kind == 16 )
{
if (!saw_r16)
gfc_fatal_error ("REAL(KIND=10) is not available for "
"%<-freal-8-real-16%> option");
gfc_default_double_kind = 16;
}
else if (saw_r4 && saw_r8)
gfc_default_double_kind = 8;
else
{
/* F95 14.6.3.1: A nonpointer scalar object of type double precision
real ... occupies two contiguous numeric storage units.
Therefore we must be supplied a kind twice as large as we chose
for single precision. There are loopholes, in that double
precision must *occupy* two storage units, though it doesn't have
to *use* two storage units. Which means that you can make this
kind artificially wide by padding it. But at present there are
no GCC targets for which a two-word type does not exist, so we
just let gfc_validate_kind abort and tell us if something breaks. */
gfc_default_double_kind
= gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
}
/* The default logical kind is constrained to be the same as the
default integer kind. Similarly with complex and real. */
gfc_default_logical_kind = gfc_default_integer_kind;
gfc_default_complex_kind = gfc_default_real_kind;
/* We only have two character kinds: ASCII and UCS-4.
ASCII corresponds to a 8-bit integer type, if one is available.
UCS-4 corresponds to a 32-bit integer type, if one is available. */
i_index = 0;
if ((kind = get_int_kind_from_width (8)) > 0)
{
gfc_character_kinds[i_index].kind = kind;
gfc_character_kinds[i_index].bit_size = 8;
gfc_character_kinds[i_index].name = "ascii";
i_index++;
}
if ((kind = get_int_kind_from_width (32)) > 0)
{
gfc_character_kinds[i_index].kind = kind;
gfc_character_kinds[i_index].bit_size = 32;
gfc_character_kinds[i_index].name = "iso_10646";
i_index++;
}
/* Choose the smallest integer kind for our default character. */
gfc_default_character_kind = gfc_character_kinds[0].kind;
gfc_character_storage_size = gfc_default_character_kind * 8;
gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
/* Pick a kind the same size as the C "int" type. */
gfc_c_int_kind = INT_TYPE_SIZE / 8;
/* Choose atomic kinds to match C's int. */
gfc_atomic_int_kind = gfc_c_int_kind;
gfc_atomic_logical_kind = gfc_c_int_kind;
}
/* Make sure that a valid kind is present. Returns an index into the
associated kinds array, -1 if the kind is not present. */
static int
validate_integer (int kind)
{
int i;
for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
if (gfc_integer_kinds[i].kind == kind)
return i;
return -1;
}
static int
validate_real (int kind)
{
int i;
for (i = 0; gfc_real_kinds[i].kind != 0; i++)
if (gfc_real_kinds[i].kind == kind)
return i;
return -1;
}
static int
validate_logical (int kind)
{
int i;
for (i = 0; gfc_logical_kinds[i].kind; i++)
if (gfc_logical_kinds[i].kind == kind)
return i;
return -1;
}
static int
validate_character (int kind)
{
int i;
for (i = 0; gfc_character_kinds[i].kind; i++)
if (gfc_character_kinds[i].kind == kind)
return i;
return -1;
}
/* Validate a kind given a basic type. The return value is the same
for the child functions, with -1 indicating nonexistence of the
type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
int
gfc_validate_kind (bt type, int kind, bool may_fail)
{
int rc;
switch (type)
{
case BT_REAL: /* Fall through */
case BT_COMPLEX:
rc = validate_real (kind);
break;
case BT_INTEGER:
rc = validate_integer (kind);
break;
case BT_LOGICAL:
rc = validate_logical (kind);
break;
case BT_CHARACTER:
rc = validate_character (kind);
break;
default:
gfc_internal_error ("gfc_validate_kind(): Got bad type");
}
if (rc < 0 && !may_fail)
gfc_internal_error ("gfc_validate_kind(): Got bad kind");
return rc;
}
/* Four subroutines of gfc_init_types. Create type nodes for the given kind.
Reuse common type nodes where possible. Recognize if the kind matches up
with a C type. This will be used later in determining which routines may
be scarfed from libm. */
static tree
gfc_build_int_type (gfc_integer_info *info)
{
int mode_precision = info->bit_size;
if (mode_precision == CHAR_TYPE_SIZE)
info->c_char = 1;
if (mode_precision == SHORT_TYPE_SIZE)
info->c_short = 1;
if (mode_precision == INT_TYPE_SIZE)
info->c_int = 1;
if (mode_precision == LONG_TYPE_SIZE)
info->c_long = 1;
if (mode_precision == LONG_LONG_TYPE_SIZE)
info->c_long_long = 1;
if (TYPE_PRECISION (intQI_type_node) == mode_precision)
return intQI_type_node;
if (TYPE_PRECISION (intHI_type_node) == mode_precision)
return intHI_type_node;
if (TYPE_PRECISION (intSI_type_node) == mode_precision)
return intSI_type_node;
if (TYPE_PRECISION (intDI_type_node) == mode_precision)
return intDI_type_node;
if (TYPE_PRECISION (intTI_type_node) == mode_precision)
return intTI_type_node;
return make_signed_type (mode_precision);
}
tree
gfc_build_uint_type (int size)
{
if (size == CHAR_TYPE_SIZE)
return unsigned_char_type_node;
if (size == SHORT_TYPE_SIZE)
return short_unsigned_type_node;
if (size == INT_TYPE_SIZE)
return unsigned_type_node;
if (size == LONG_TYPE_SIZE)
return long_unsigned_type_node;
if (size == LONG_LONG_TYPE_SIZE)
return long_long_unsigned_type_node;
return make_unsigned_type (size);
}
static tree
gfc_build_real_type (gfc_real_info *info)
{
int mode_precision = info->mode_precision;
tree new_type;
if (mode_precision == FLOAT_TYPE_SIZE)
info->c_float = 1;
if (mode_precision == DOUBLE_TYPE_SIZE)
info->c_double = 1;
if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
info->c_long_double = 1;
if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
{
info->c_float128 = 1;
gfc_real16_is_float128 = true;
}
if (TYPE_PRECISION (float_type_node) == mode_precision)
return float_type_node;
if (TYPE_PRECISION (double_type_node) == mode_precision)
return double_type_node;
if (TYPE_PRECISION (long_double_type_node) == mode_precision)
return long_double_type_node;
new_type = make_node (REAL_TYPE);
TYPE_PRECISION (new_type) = mode_precision;
layout_type (new_type);
return new_type;
}
static tree
gfc_build_complex_type (tree scalar_type)
{
tree new_type;
if (scalar_type == NULL)
return NULL;
if (scalar_type == float_type_node)
return complex_float_type_node;
if (scalar_type == double_type_node)
return complex_double_type_node;
if (scalar_type == long_double_type_node)
return complex_long_double_type_node;
new_type = make_node (COMPLEX_TYPE);
TREE_TYPE (new_type) = scalar_type;
layout_type (new_type);
return new_type;
}
static tree
gfc_build_logical_type (gfc_logical_info *info)
{
int bit_size = info->bit_size;
tree new_type;
if (bit_size == BOOL_TYPE_SIZE)
{
info->c_bool = 1;
return boolean_type_node;
}
new_type = make_unsigned_type (bit_size);
TREE_SET_CODE (new_type, BOOLEAN_TYPE);
TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
TYPE_PRECISION (new_type) = 1;
return new_type;
}
/* Create the backend type nodes. We map them to their
equivalent C type, at least for now. We also give
names to the types here, and we push them in the
global binding level context.*/
void
gfc_init_types (void)
{
char name_buf[26];
int index;
tree type;
unsigned n;
/* Create and name the types. */
#define PUSH_TYPE(name, node) \
pushdecl (build_decl (input_location, \
TYPE_DECL, get_identifier (name), node))
for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
{
type = gfc_build_int_type (&gfc_integer_kinds[index]);
/* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
if (TYPE_STRING_FLAG (type))
type = make_signed_type (gfc_integer_kinds[index].bit_size);
gfc_integer_types[index] = type;
snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
gfc_integer_kinds[index].kind);
PUSH_TYPE (name_buf, type);
}
for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
{
type = gfc_build_logical_type (&gfc_logical_kinds[index]);
gfc_logical_types[index] = type;
snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
gfc_logical_kinds[index].kind);
PUSH_TYPE (name_buf, type);
}
for (index = 0; gfc_real_kinds[index].kind != 0; index++)
{
type = gfc_build_real_type (&gfc_real_kinds[index]);
gfc_real_types[index] = type;
snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
gfc_real_kinds[index].kind);
PUSH_TYPE (name_buf, type);
if (gfc_real_kinds[index].c_float128)
gfc_float128_type_node = type;
type = gfc_build_complex_type (type);
gfc_complex_types[index] = type;
snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
gfc_real_kinds[index].kind);
PUSH_TYPE (name_buf, type);
if (gfc_real_kinds[index].c_float128)
gfc_complex_float128_type_node = type;
}
for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
{
type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
type = build_qualified_type (type, TYPE_UNQUALIFIED);
snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
gfc_character_kinds[index].kind);
PUSH_TYPE (name_buf, type);
gfc_character_types[index] = type;
gfc_pcharacter_types[index] = build_pointer_type (type);
}
gfc_character1_type_node = gfc_character_types[0];
PUSH_TYPE ("byte", unsigned_char_type_node);
PUSH_TYPE ("void", void_type_node);
/* DBX debugging output gets upset if these aren't set. */
if (!TYPE_NAME (integer_type_node))
PUSH_TYPE ("c_integer", integer_type_node);
if (!TYPE_NAME (char_type_node))
PUSH_TYPE ("c_char", char_type_node);
#undef PUSH_TYPE
pvoid_type_node = build_pointer_type (void_type_node);
prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
ppvoid_type_node = build_pointer_type (pvoid_type_node);
pchar_type_node = build_pointer_type (gfc_character1_type_node);
pfunc_type_node
= build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
/* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
since this function is called before gfc_init_constants. */
gfc_array_range_type
= build_range_type (gfc_array_index_type,
build_int_cst (gfc_array_index_type, 0),
NULL_TREE);
/* The maximum array element size that can be handled is determined
by the number of bits available to store this field in the array
descriptor. */
n = TYPE_PRECISION (size_type_node);
gfc_max_array_element_size
= wide_int_to_tree (size_type_node,
wi::mask (n, UNSIGNED,
TYPE_PRECISION (size_type_node)));
logical_type_node = gfc_get_logical_type (gfc_default_logical_kind);
logical_true_node = build_int_cst (logical_type_node, 1);
logical_false_node = build_int_cst (logical_type_node, 0);
/* Character lengths are of type size_t, except signed. */
gfc_charlen_int_kind = get_int_kind_from_node (size_type_node);
gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
/* Fortran kind number of size_type_node (size_t). This is used for
the _size member in vtables. */
gfc_size_kind = get_int_kind_from_node (size_type_node);
}
/* Get the type node for the given type and kind. */
tree
gfc_get_int_type (int kind)
{
int index = gfc_validate_kind (BT_INTEGER, kind, true);
return index < 0 ? 0 : gfc_integer_types[index];
}
tree
gfc_get_real_type (int kind)
{
int index = gfc_validate_kind (BT_REAL, kind, true);
return index < 0 ? 0 : gfc_real_types[index];
}
tree
gfc_get_complex_type (int kind)
{
int index = gfc_validate_kind (BT_COMPLEX, kind, true);
return index < 0 ? 0 : gfc_complex_types[index];
}
tree
gfc_get_logical_type (int kind)
{
int index = gfc_validate_kind (BT_LOGICAL, kind, true);
return index < 0 ? 0 : gfc_logical_types[index];
}
tree
gfc_get_char_type (int kind)
{
int index = gfc_validate_kind (BT_CHARACTER, kind, true);
return index < 0 ? 0 : gfc_character_types[index];
}
tree
gfc_get_pchar_type (int kind)
{
int index = gfc_validate_kind (BT_CHARACTER, kind, true);
return index < 0 ? 0 : gfc_pcharacter_types[index];
}
/* Create a character type with the given kind and length. */
tree
gfc_get_character_type_len_for_eltype (tree eltype, tree len)
{
tree bounds, type;
bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
type = build_array_type (eltype, bounds);
TYPE_STRING_FLAG (type) = 1;
return type;
}
tree
gfc_get_character_type_len (int kind, tree len)
{
gfc_validate_kind (BT_CHARACTER, kind, false);
return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
}
/* Get a type node for a character kind. */
tree
gfc_get_character_type (int kind, gfc_charlen * cl)
{
tree len;
len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
if (len && POINTER_TYPE_P (TREE_TYPE (len)))
len = build_fold_indirect_ref (len);
return gfc_get_character_type_len (kind, len);
}
/* Convert a basic type. This will be an array for character types. */
tree
gfc_typenode_for_spec (gfc_typespec * spec, int codim)
{
tree basetype;
switch (spec->type)
{
case BT_UNKNOWN:
gcc_unreachable ();
case BT_INTEGER:
/* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
has been resolved. This is done so we can convert C_PTR and
C_FUNPTR to simple variables that get translated to (void *). */
if (spec->f90_type == BT_VOID)
{
if (spec->u.derived
&& spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
basetype = ptr_type_node;
else
basetype = pfunc_type_node;
}
else
basetype = gfc_get_int_type (spec->kind);
break;
case BT_REAL:
basetype = gfc_get_real_type (spec->kind);
break;
case BT_COMPLEX:
basetype = gfc_get_complex_type (spec->kind);
break;
case BT_LOGICAL:
basetype = gfc_get_logical_type (spec->kind);
break;
case BT_CHARACTER:
basetype = gfc_get_character_type (spec->kind, spec->u.cl);
break;
case BT_HOLLERITH:
/* Since this cannot be used, return a length one character. */
basetype = gfc_get_character_type_len (gfc_default_character_kind,
gfc_index_one_node);
break;
case BT_UNION:
basetype = gfc_get_union_type (spec->u.derived);
break;
case BT_DERIVED:
case BT_CLASS:
basetype = gfc_get_derived_type (spec->u.derived, codim);
if (spec->type == BT_CLASS)
GFC_CLASS_TYPE_P (basetype) = 1;
/* If we're dealing with either C_PTR or C_FUNPTR, we modified the
type and kind to fit a (void *) and the basetype returned was a
ptr_type_node. We need to pass up this new information to the
symbol that was declared of type C_PTR or C_FUNPTR. */
if (spec->u.derived->ts.f90_type == BT_VOID)
{
spec->type = BT_INTEGER;
spec->kind = gfc_index_integer_kind;
spec->f90_type = BT_VOID;
}
break;
case BT_VOID:
case BT_ASSUMED:
/* This is for the second arg to c_f_pointer and c_f_procpointer
of the iso_c_binding module, to accept any ptr type. */
basetype = ptr_type_node;
if (spec->f90_type == BT_VOID)
{
if (spec->u.derived
&& spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
basetype = ptr_type_node;
else
basetype = pfunc_type_node;
}
break;
default:
gcc_unreachable ();
}
return basetype;
}
/* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
static tree
gfc_conv_array_bound (gfc_expr * expr)
{
/* If expr is an integer constant, return that. */
if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
/* Otherwise return NULL. */
return NULL_TREE;
}
/* Return the type of an element of the array. Note that scalar coarrays
are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
(with POINTER_TYPE stripped) is returned. */
tree
gfc_get_element_type (tree type)
{
tree element;
if (GFC_ARRAY_TYPE_P (type))
{
if (TREE_CODE (type) == POINTER_TYPE)
type = TREE_TYPE (type);
if (GFC_TYPE_ARRAY_RANK (type) == 0)
{
gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
element = type;
}
else
{
gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
element = TREE_TYPE (type);
}
}
else
{
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
gcc_assert (TREE_CODE (element) == POINTER_TYPE);
element = TREE_TYPE (element);
/* For arrays, which are not scalar coarrays. */
if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
element = TREE_TYPE (element);
}
return element;
}
/* Build an array. This function is called from gfc_sym_type().
Actually returns array descriptor type.
Format of array descriptors is as follows:
struct gfc_array_descriptor
{
array *data;
index offset;
struct dtype_type dtype;
struct descriptor_dimension dimension[N_DIM];
}
struct dtype_type
{
size_t elem_len;
int version;
signed char rank;
signed char type;
signed short attribute;
}
struct descriptor_dimension
{
index stride;
index lbound;
index ubound;
}
Translation code should use gfc_conv_descriptor_* rather than
accessing the descriptor directly. Any changes to the array
descriptor type will require changes in gfc_conv_descriptor_* and
gfc_build_array_initializer.
This is represented internally as a RECORD_TYPE. The index nodes
are gfc_array_index_type and the data node is a pointer to the
data. See below for the handling of character types.
I originally used nested ARRAY_TYPE nodes to represent arrays, but
this generated poor code for assumed/deferred size arrays. These
require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
of the GENERIC grammar. Also, there is no way to explicitly set
the array stride, so all data must be packed(1). I've tried to
mark all the functions which would require modification with a GCC
ARRAYS comment.
The data component points to the first element in the array. The
offset field is the position of the origin of the array (i.e. element
(0, 0 ...)). This may be outside the bounds of the array.
An element is accessed by
data[offset + index0*stride0 + index1*stride1 + index2*stride2]
This gives good performance as the computation does not involve the
bounds of the array. For packed arrays, this is optimized further
by substituting the known strides.
This system has one problem: all array bounds must be within 2^31
elements of the origin (2^63 on 64-bit machines). For example
integer, dimension (80000:90000, 80000:90000, 2) :: array
may not work properly on 32-bit machines because 80000*80000 >
2^31, so the calculation for stride2 would overflow. This may
still work, but I haven't checked, and it relies on the overflow
doing the right thing.
The way to fix this problem is to access elements as follows:
data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
Obviously this is much slower. I will make this a compile time
option, something like -fsmall-array-offsets. Mixing code compiled
with and without this switch will work.
(1) This can be worked around by modifying the upper bound of the
previous dimension. This requires extra fields in the descriptor
(both real_ubound and fake_ubound). */
/* Returns true if the array sym does not require a descriptor. */
int
gfc_is_nodesc_array (gfc_symbol * sym)
{
symbol_attribute *array_attr;
gfc_array_spec *as;
bool is_classarray = IS_CLASS_ARRAY (sym);
array_attr = is_classarray ? &CLASS_DATA (sym)->attr : &sym->attr;
as = is_classarray ? CLASS_DATA (sym)->as : sym->as;
gcc_assert (array_attr->dimension || array_attr->codimension);
/* We only want local arrays. */
if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
|| (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
|| array_attr->allocatable)
return 0;
/* We want a descriptor for associate-name arrays that do not have an
explicitly known shape already. */
if (sym->assoc && as->type != AS_EXPLICIT)
return 0;
/* The dummy is stored in sym and not in the component. */
if (sym->attr.dummy)
return as->type != AS_ASSUMED_SHAPE
&& as->type != AS_ASSUMED_RANK;
if (sym->attr.result || sym->attr.function)
return 0;
gcc_assert (as->type == AS_EXPLICIT || as->cp_was_assumed);
return 1;
}
/* Create an array descriptor type. */
static tree
gfc_build_array_type (tree type, gfc_array_spec * as,
enum gfc_array_kind akind, bool restricted,
bool contiguous, int codim)
{
tree lbound[GFC_MAX_DIMENSIONS];
tree ubound[GFC_MAX_DIMENSIONS];
int n, corank;
/* Assumed-shape arrays do not have codimension information stored in the
descriptor. */
corank = MAX (as->corank, codim);
if (as->type == AS_ASSUMED_SHAPE ||
(as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
corank = codim;
if (as->type == AS_ASSUMED_RANK)
for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
{
lbound[n] = NULL_TREE;
ubound[n] = NULL_TREE;
}
for (n = 0; n < as->rank; n++)
{
/* Create expressions for the known bounds of the array. */
if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
lbound[n] = gfc_index_one_node;
else
lbound[n] = gfc_conv_array_bound (as->lower[n]);
ubound[n] = gfc_conv_array_bound (as->upper[n]);
}
for (n = as->rank; n < as->rank + corank; n++)
{
if (as->type != AS_DEFERRED && as->lower[n] == NULL)
lbound[n] = gfc_index_one_node;
else
lbound[n] = gfc_conv_array_bound (as->lower[n]);
if (n < as->rank + corank - 1)
ubound[n] = gfc_conv_array_bound (as->upper[n]);
}
if (as->type == AS_ASSUMED_SHAPE)
akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
: GFC_ARRAY_ASSUMED_SHAPE;
else if (as->type == AS_ASSUMED_RANK)
akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
: GFC_ARRAY_ASSUMED_RANK;
return gfc_get_array_type_bounds (type, as->rank == -1
? GFC_MAX_DIMENSIONS : as->rank,
corank, lbound, ubound, 0, akind,
restricted);
}
/* Returns the struct descriptor_dimension type. */
static tree
gfc_get_desc_dim_type (void)
{
tree type;
tree decl, *chain = NULL;
if (gfc_desc_dim_type)
return gfc_desc_dim_type;
/* Build the type node. */
type = make_node (RECORD_TYPE);
TYPE_NAME (type) = get_identifier ("descriptor_dimension");
TYPE_PACKED (type) = 1;
/* Consists of the stride, lbound and ubound members. */
decl = gfc_add_field_to_struct_1 (type,
get_identifier ("stride"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (decl) = 1;
decl = gfc_add_field_to_struct_1 (type,
get_identifier ("lbound"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (decl) = 1;
decl = gfc_add_field_to_struct_1 (type,
get_identifier ("ubound"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (decl) = 1;
/* Finish off the type. */
gfc_finish_type (type);
TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
gfc_desc_dim_type = type;
return type;
}
/* Return the DTYPE for an array. This describes the type and type parameters
of the array. */
/* TODO: Only call this when the value is actually used, and make all the
unknown cases abort. */
tree
gfc_get_dtype_rank_type (int rank, tree etype)
{
tree size;
int n;
tree tmp;
tree dtype;
tree field;
vec<constructor_elt, va_gc> *v = NULL;
size = TYPE_SIZE_UNIT (etype);
switch (TREE_CODE (etype))
{
case INTEGER_TYPE:
n = BT_INTEGER;
break;
case BOOLEAN_TYPE:
n = BT_LOGICAL;
break;
case REAL_TYPE:
n = BT_REAL;
break;
case COMPLEX_TYPE:
n = BT_COMPLEX;
break;
case RECORD_TYPE:
if (GFC_CLASS_TYPE_P (etype))
n = BT_CLASS;
else
n = BT_DERIVED;
break;
/* We will never have arrays of arrays. */
case ARRAY_TYPE:
n = BT_CHARACTER;
if (size == NULL_TREE)
size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
break;
case POINTER_TYPE:
n = BT_ASSUMED;
if (TREE_CODE (TREE_TYPE (etype)) != VOID_TYPE)
size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
else
size = build_int_cst (size_type_node, 0);
break;
default:
/* TODO: Don't do dtype for temporary descriptorless arrays. */
/* We can encounter strange array types for temporary arrays. */
return gfc_index_zero_node;
}
tmp = get_dtype_type_node ();
field = gfc_advance_chain (TYPE_FIELDS (tmp),
GFC_DTYPE_ELEM_LEN);
CONSTRUCTOR_APPEND_ELT (v, field,
fold_convert (TREE_TYPE (field), size));
field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
GFC_DTYPE_RANK);
CONSTRUCTOR_APPEND_ELT (v, field,
build_int_cst (TREE_TYPE (field), rank));
field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
GFC_DTYPE_TYPE);
CONSTRUCTOR_APPEND_ELT (v, field,
build_int_cst (TREE_TYPE (field), n));
dtype = build_constructor (tmp, v);
return dtype;
}
tree
gfc_get_dtype (tree type)
{
tree dtype;
tree etype;
int rank;
gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
rank = GFC_TYPE_ARRAY_RANK (type);
etype = gfc_get_element_type (type);
dtype = gfc_get_dtype_rank_type (rank, etype);
GFC_TYPE_ARRAY_DTYPE (type) = dtype;
return dtype;
}
/* Build an array type for use without a descriptor, packed according
to the value of PACKED. */
tree
gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
bool restricted)
{
tree range;
tree type;
tree tmp;
int n;
int known_stride;
int known_offset;
mpz_t offset;
mpz_t stride;
mpz_t delta;
gfc_expr *expr;
mpz_init_set_ui (offset, 0);
mpz_init_set_ui (stride, 1);
mpz_init (delta);
/* We don't use build_array_type because this does not include include
lang-specific information (i.e. the bounds of the array) when checking
for duplicates. */
if (as->rank)
type = make_node (ARRAY_TYPE);
else
type = build_variant_type_copy (etype);
GFC_ARRAY_TYPE_P (type) = 1;
TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
known_stride = (packed != PACKED_NO);
known_offset = 1;
for (n = 0; n < as->rank; n++)
{
/* Fill in the stride and bound components of the type. */
if (known_stride)
tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
else
tmp = NULL_TREE;
GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
expr = as->lower[n];
if (expr->expr_type == EXPR_CONSTANT)
{
tmp = gfc_conv_mpz_to_tree (expr->value.integer,
gfc_index_integer_kind);
}
else
{
known_stride = 0;
tmp = NULL_TREE;
}
GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
if (known_stride)
{
/* Calculate the offset. */
mpz_mul (delta, stride, as->lower[n]->value.integer);
mpz_sub (offset, offset, delta);
}
else
known_offset = 0;
expr = as->upper[n];
if (expr && expr->expr_type == EXPR_CONSTANT)
{
tmp = gfc_conv_mpz_to_tree (expr->value.integer,
gfc_index_integer_kind);
}
else
{
tmp = NULL_TREE;
known_stride = 0;
}
GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
if (known_stride)
{
/* Calculate the stride. */
mpz_sub (delta, as->upper[n]->value.integer,
as->lower[n]->value.integer);
mpz_add_ui (delta, delta, 1);
mpz_mul (stride, stride, delta);
}
/* Only the first stride is known for partial packed arrays. */
if (packed == PACKED_NO || packed == PACKED_PARTIAL)
known_stride = 0;
}
for (n = as->rank; n < as->rank + as->corank; n++)
{
expr = as->lower[n];
if (expr->expr_type == EXPR_CONSTANT)
tmp = gfc_conv_mpz_to_tree (expr->value.integer,
gfc_index_integer_kind);
else
tmp = NULL_TREE;
GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
expr = as->upper[n];
if (expr && expr->expr_type == EXPR_CONSTANT)
tmp = gfc_conv_mpz_to_tree (expr->value.integer,
gfc_index_integer_kind);
else
tmp = NULL_TREE;
if (n < as->rank + as->corank - 1)
GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
}
if (known_offset)
{
GFC_TYPE_ARRAY_OFFSET (type) =
gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
}
else
GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
if (known_stride)
{
GFC_TYPE_ARRAY_SIZE (type) =
gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
}
else
GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
GFC_TYPE_ARRAY_RANK (type) = as->rank;
GFC_TYPE_ARRAY_CORANK (type) = as->corank;
GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
NULL_TREE);
/* TODO: use main type if it is unbounded. */
GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
build_pointer_type (build_array_type (etype, range));
if (restricted)
GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
TYPE_QUAL_RESTRICT);
if (as->rank == 0)
{
if (packed != PACKED_STATIC || flag_coarray == GFC_FCOARRAY_LIB)
{
type = build_pointer_type (type);
if (restricted)
type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
GFC_ARRAY_TYPE_P (type) = 1;
TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
}
return type;
}
if (known_stride)
{
mpz_sub_ui (stride, stride, 1);
range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
}
else
range = NULL_TREE;
range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
TYPE_DOMAIN (type) = range;
build_pointer_type (etype);
TREE_TYPE (type) = etype;
layout_type (type);
mpz_clear (offset);
mpz_clear (stride);
mpz_clear (delta);
/* Represent packed arrays as multi-dimensional if they have rank >
1 and with proper bounds, instead of flat arrays. This makes for
better debug info. */
if (known_offset)
{
tree gtype = etype, rtype, type_decl;
for (n = as->rank - 1; n >= 0; n--)
{
rtype = build_range_type (gfc_array_index_type,
GFC_TYPE_ARRAY_LBOUND (type, n),
GFC_TYPE_ARRAY_UBOUND (type, n));
gtype = build_array_type (gtype, rtype);
}
TYPE_NAME (type) = type_decl = build_decl (input_location,
TYPE_DECL, NULL, gtype);
DECL_ORIGINAL_TYPE (type_decl) = gtype;
}
if (packed != PACKED_STATIC || !known_stride
|| (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
{
/* For dummy arrays and automatic (heap allocated) arrays we
want a pointer to the array. */
type = build_pointer_type (type);
if (restricted)
type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
GFC_ARRAY_TYPE_P (type) = 1;
TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
}
return type;
}
/* Return or create the base type for an array descriptor. */
static tree
gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
{
tree fat_type, decl, arraytype, *chain = NULL;
char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
int idx;
/* Assumed-rank array. */
if (dimen == -1)
dimen = GFC_MAX_DIMENSIONS;
idx = 2 * (codimen + dimen) + restricted;
gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
{
if (gfc_array_descriptor_base_caf[idx])
return gfc_array_descriptor_base_caf[idx];
}
else if (gfc_array_descriptor_base[idx])
return gfc_array_descriptor_base[idx];
/* Build the type node. */
fat_type = make_node (RECORD_TYPE);
sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
TYPE_NAME (fat_type) = get_identifier (name);
TYPE_NAMELESS (fat_type) = 1;
/* Add the data member as the first element of the descriptor. */
decl = gfc_add_field_to_struct_1 (fat_type,
get_identifier ("data"),
(restricted
? prvoid_type_node
: ptr_type_node), &chain);
/* Add the base component. */
decl = gfc_add_field_to_struct_1 (fat_type,
get_identifier ("offset"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (decl) = 1;
/* Add the dtype component. */
decl = gfc_add_field_to_struct_1 (fat_type,
get_identifier ("dtype"),
get_dtype_type_node (), &chain);
TREE_NO_WARNING (decl) = 1;
/* Add the span component. */
decl = gfc_add_field_to_struct_1 (fat_type,
get_identifier ("span"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (decl) = 1;
/* Build the array type for the stride and bound components. */
if (dimen + codimen > 0)
{
arraytype =
build_array_type (gfc_get_desc_dim_type (),
build_range_type (gfc_array_index_type,
gfc_index_zero_node,
gfc_rank_cst[codimen + dimen - 1]));
decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
arraytype, &chain);
TREE_NO_WARNING (decl) = 1;
}
if (flag_coarray == GFC_FCOARRAY_LIB)
{
decl = gfc_add_field_to_struct_1 (fat_type,
get_identifier ("token"),
prvoid_type_node, &chain);
TREE_NO_WARNING (decl) = 1;
}
/* Finish off the type. */
gfc_finish_type (fat_type);
TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
gfc_array_descriptor_base_caf[idx] = fat_type;
else
gfc_array_descriptor_base[idx] = fat_type;
return fat_type;
}
/* Build an array (descriptor) type with given bounds. */
tree
gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
tree * ubound, int packed,
enum gfc_array_kind akind, bool restricted)
{
char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
const char *type_name;
int n;
base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
fat_type = build_distinct_type_copy (base_type);
/* Make sure that nontarget and target array type have the same canonical
type (and same stub decl for debug info). */
base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
TYPE_CANONICAL (fat_type) = base_type;
TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
tmp = TYPE_NAME (etype);
if (tmp && TREE_CODE (tmp) == TYPE_DECL)
tmp = DECL_NAME (tmp);
if (tmp)
type_name = IDENTIFIER_POINTER (tmp);
else
type_name = "unknown";
sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
GFC_MAX_SYMBOL_LEN, type_name);
TYPE_NAME (fat_type) = get_identifier (name);
TYPE_NAMELESS (fat_type) = 1;
GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
/* Build an array descriptor record type. */
if (packed != 0)
stride = gfc_index_one_node;
else
stride = NULL_TREE;
for (n = 0; n < dimen + codimen; n++)
{
if (n < dimen)
GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
if (lbound)
lower = lbound[n];
else
lower = NULL_TREE;
if (lower != NULL_TREE)
{
if (INTEGER_CST_P (lower))
GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
else
lower = NULL_TREE;
}
if (codimen && n == dimen + codimen - 1)
break;
upper = ubound[n];
if (upper != NULL_TREE)
{
if (INTEGER_CST_P (upper))
GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
else
upper = NULL_TREE;
}
if (n >= dimen)
continue;
if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
{
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, upper, lower);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, tmp,
gfc_index_one_node);
stride = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, tmp, stride);
/* Check the folding worked. */
gcc_assert (INTEGER_CST_P (stride));
}
else
stride = NULL_TREE;
}
GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
/* TODO: known offsets for descriptors. */
GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
if (dimen == 0)
{
arraytype = build_pointer_type (etype);
if (restricted)
arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
return fat_type;
}
/* We define data as an array with the correct size if possible.
Much better than doing pointer arithmetic. */
if (stride)
rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
int_const_binop (MINUS_EXPR, stride,
build_int_cst (TREE_TYPE (stride), 1)));
else
rtype = gfc_array_range_type;
arraytype = build_array_type (etype, rtype);
arraytype = build_pointer_type (arraytype);
if (restricted)
arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
/* This will generate the base declarations we need to emit debug
information for this type. FIXME: there must be a better way to
avoid divergence between compilations with and without debug
information. */
{
struct array_descr_info info;
gfc_get_array_descr_info (fat_type, &info);
gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
}
return fat_type;
}
/* Build a pointer type. This function is called from gfc_sym_type(). */
static tree
gfc_build_pointer_type (gfc_symbol * sym, tree type)
{
/* Array pointer types aren't actually pointers. */
if (sym->attr.dimension)
return type;
else
return build_pointer_type (type);
}
static tree gfc_nonrestricted_type (tree t);
/* Given two record or union type nodes TO and FROM, ensure
that all fields in FROM have a corresponding field in TO,
their type being nonrestrict variants. This accepts a TO
node that already has a prefix of the fields in FROM. */
static void
mirror_fields (tree to, tree from)
{
tree fto, ffrom;
tree *chain;
/* Forward to the end of TOs fields. */
fto = TYPE_FIELDS (to);
ffrom = TYPE_FIELDS (from);
chain = &TYPE_FIELDS (to);
while (fto)
{
gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
chain = &DECL_CHAIN (fto);
fto = DECL_CHAIN (fto);
ffrom = DECL_CHAIN (ffrom);
}
/* Now add all fields remaining in FROM (starting with ffrom). */
for (; ffrom; ffrom = DECL_CHAIN (ffrom))
{
tree newfield = copy_node (ffrom);
DECL_CONTEXT (newfield) = to;
/* The store to DECL_CHAIN might seem redundant with the
stores to *chain, but not clearing it here would mean
leaving a chain into the old fields. If ever
our called functions would look at them confusion
will arise. */
DECL_CHAIN (newfield) = NULL_TREE;
*chain = newfield;
chain = &DECL_CHAIN (newfield);
if (TREE_CODE (ffrom) == FIELD_DECL)
{
tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
TREE_TYPE (newfield) = elemtype;
}
}
*chain = NULL_TREE;
}
/* Given a type T, returns a different type of the same structure,
except that all types it refers to (recursively) are always
non-restrict qualified types. */
static tree
gfc_nonrestricted_type (tree t)
{
tree ret = t;
/* If the type isn't laid out yet, don't copy it. If something
needs it for real it should wait until the type got finished. */
if (!TYPE_SIZE (t))
return t;
if (!TYPE_LANG_SPECIFIC (t))
TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
/* If we're dealing with this very node already further up
the call chain (recursion via pointers and struct members)
we haven't yet determined if we really need a new type node.
Assume we don't, return T itself. */
if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
return t;
/* If we have calculated this all already, just return it. */
if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
/* Mark this type. */
TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
switch (TREE_CODE (t))
{
default:
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
{
tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
if (totype == TREE_TYPE (t))
ret = t;
else if (TREE_CODE (t) == POINTER_TYPE)
ret = build_pointer_type (totype);
else
ret = build_reference_type (totype);
ret = build_qualified_type (ret,
TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
}
break;
case ARRAY_TYPE:
{
tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
if (elemtype == TREE_TYPE (t))
ret = t;
else
{
ret = build_variant_type_copy (t);
TREE_TYPE (ret) = elemtype;
if (TYPE_LANG_SPECIFIC (t)
&& GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
{
tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
dataptr_type = gfc_nonrestricted_type (dataptr_type);
if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
{
TYPE_LANG_SPECIFIC (ret)
= ggc_cleared_alloc<struct lang_type> ();
*TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
}
}
}
}
break;
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree field;
/* First determine if we need a new type at all.
Careful, the two calls to gfc_nonrestricted_type per field
might return different values. That happens exactly when
one of the fields reaches back to this very record type
(via pointers). The first calls will assume that we don't
need to copy T (see the error_mark_node marking). If there
are any reasons for copying T apart from having to copy T,
we'll indeed copy it, and the second calls to
gfc_nonrestricted_type will use that new node if they
reach back to T. */
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL)
{
tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
if (elemtype != TREE_TYPE (field))
break;
}
if (!field)
break;
ret = build_variant_type_copy (t);
TYPE_FIELDS (ret) = NULL_TREE;
/* Here we make sure that as soon as we know we have to copy
T, that also fields reaching back to us will use the new
copy. It's okay if that copy still contains the old fields,
we won't look at them. */
TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
mirror_fields (ret, t);
}
break;
}
TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
return ret;
}
/* Return the type for a symbol. Special handling is required for character
types to get the correct level of indirection.
For functions return the return type.
For subroutines return void_type_node.
Calling this multiple times for the same symbol should be avoided,
especially for character and array types. */
tree
gfc_sym_type (gfc_symbol * sym)
{
tree type;
int byref;
bool restricted;
/* Procedure Pointers inside COMMON blocks. */
if (sym->attr.proc_pointer && sym->attr.in_common)
{
/* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
sym->attr.proc_pointer = 0;
type = build_pointer_type (gfc_get_function_type (sym));
sym->attr.proc_pointer = 1;
return type;
}
if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
return void_type_node;
/* In the case of a function the fake result variable may have a
type different from the function type, so don't return early in
that case. */
if (sym->backend_decl && !sym->attr.function)
return TREE_TYPE (sym->backend_decl);
if (sym->attr.result
&& sym->ts.type == BT_CHARACTER
&& sym->ts.u.cl->backend_decl == NULL_TREE
&& sym->ns->proc_name
&& sym->ns->proc_name->ts.u.cl
&& sym->ns->proc_name->ts.u.cl->backend_decl != NULL_TREE)
sym->ts.u.cl->backend_decl = sym->ns->proc_name->ts.u.cl->backend_decl;
if (sym->ts.type == BT_CHARACTER
&& ((sym->attr.function && sym->attr.is_bind_c)
|| (sym->attr.result
&& sym->ns->proc_name
&& sym->ns->proc_name->attr.is_bind_c)
|| (sym->ts.deferred && (!sym->ts.u.cl
|| !sym->ts.u.cl->backend_decl))))
type = gfc_character1_type_node;
else
type = gfc_typenode_for_spec (&sym->ts, sym->attr.codimension);
if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
byref = 1;
else
byref = 0;
restricted = !sym->attr.target && !sym->attr.pointer
&& !sym->attr.proc_pointer && !sym->attr.cray_pointee;
if (!restricted)
type = gfc_nonrestricted_type (type);
if (sym->attr.dimension || sym->attr.codimension)
{
if (gfc_is_nodesc_array (sym))
{
/* If this is a character argument of unknown length, just use the
base type. */
if (sym->ts.type != BT_CHARACTER
|| !(sym->attr.dummy || sym->attr.function)
|| sym->ts.u.cl->backend_decl)
{
type = gfc_get_nodesc_array_type (type, sym->as,
byref ? PACKED_FULL
: PACKED_STATIC,
restricted);
byref = 0;
}
}
else
{
enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
if (sym->attr.pointer)
akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
: GFC_ARRAY_POINTER;
else if (sym->attr.allocatable)
akind = GFC_ARRAY_ALLOCATABLE;
type = gfc_build_array_type (type, sym->as, akind, restricted,
sym->attr.contiguous, false);
}
}
else
{
if (sym->attr.allocatable || sym->attr.pointer
|| gfc_is_associate_pointer (sym))
type = gfc_build_pointer_type (sym, type);
}
/* We currently pass all parameters by reference.
See f95_get_function_decl. For dummy function parameters return the
function type. */
if (byref)
{
/* We must use pointer types for potentially absent variables. The
optimizers assume a reference type argument is never NULL. */
if (sym->attr.optional
|| (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
type = build_pointer_type (type);
else
{
type = build_reference_type (type);
if (restricted)
type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
}
}
return (type);
}
/* Layout and output debug info for a record type. */
void
gfc_finish_type (tree type)
{
tree decl;
decl = build_decl (input_location,
TYPE_DECL, NULL_TREE, type);
TYPE_STUB_DECL (type) = decl;
layout_type (type);
rest_of_type_compilation (type, 1);
rest_of_decl_compilation (decl, 1, 0);
}
/* Add a field of given NAME and TYPE to the context of a UNION_TYPE
or RECORD_TYPE pointed to by CONTEXT. The new field is chained
to the end of the field list pointed to by *CHAIN.
Returns a pointer to the new field. */
static tree
gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
{
tree decl = build_decl (input_location, FIELD_DECL, name, type);
DECL_CONTEXT (decl) = context;
DECL_CHAIN (decl) = NULL_TREE;
if (TYPE_FIELDS (context) == NULL_TREE)
TYPE_FIELDS (context) = decl;
if (chain != NULL)
{
if (*chain != NULL)
**chain = decl;
*chain = &DECL_CHAIN (decl);
}
return decl;
}
/* Like `gfc_add_field_to_struct_1', but adds alignment
information. */
tree
gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
{
tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
DECL_INITIAL (decl) = 0;
SET_DECL_ALIGN (decl, 0);
DECL_USER_ALIGN (decl) = 0;
return decl;
}
/* Copy the backend_decl and component backend_decls if
the two derived type symbols are "equal", as described
in 4.4.2 and resolved by gfc_compare_derived_types. */
int
gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
bool from_gsym)
{
gfc_component *to_cm;
gfc_component *from_cm;
if (from == to)
return 1;
if (from->backend_decl == NULL
|| !gfc_compare_derived_types (from, to))
return 0;
to->backend_decl = from->backend_decl;
to_cm = to->components;
from_cm = from->components;
/* Copy the component declarations. If a component is itself
a derived type, we need a copy of its component declarations.
This is done by recursing into gfc_get_derived_type and
ensures that the component's component declarations have
been built. If it is a character, we need the character
length, as well. */
for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
{
to_cm->backend_decl = from_cm->backend_decl;
to_cm->caf_token = from_cm->caf_token;
if (from_cm->ts.type == BT_UNION)
gfc_get_union_type (to_cm->ts.u.derived);
else if (from_cm->ts.type == BT_DERIVED
&& (!from_cm->attr.pointer || from_gsym))
gfc_get_derived_type (to_cm->ts.u.derived);
else if (from_cm->ts.type == BT_CLASS
&& (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
gfc_get_derived_type (to_cm->ts.u.derived);
else if (from_cm->ts.type == BT_CHARACTER)
to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
}
return 1;
}
/* Build a tree node for a procedure pointer component. */
tree
gfc_get_ppc_type (gfc_component* c)
{
tree t;
/* Explicit interface. */
if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
return build_pointer_type (gfc_get_function_type (c->ts.interface));
/* Implicit interface (only return value may be known). */
if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
t = gfc_typenode_for_spec (&c->ts);
else
t = void_type_node;
return build_pointer_type (build_function_type_list (t, NULL_TREE));
}
/* Build a tree node for a union type. Requires building each map
structure which is an element of the union. */
tree
gfc_get_union_type (gfc_symbol *un)
{
gfc_component *map = NULL;
tree typenode = NULL, map_type = NULL, map_field = NULL;
tree *chain = NULL;
if (un->backend_decl)
{
if (TYPE_FIELDS (un->backend_decl) || un->attr.proc_pointer_comp)
return un->backend_decl;
else
typenode = un->backend_decl;
}
else
{
typenode = make_node (UNION_TYPE);
TYPE_NAME (typenode) = get_identifier (un->name);
}
/* Add each contained MAP as a field. */
for (map = un->components; map; map = map->next)
{
gcc_assert (map->ts.type == BT_DERIVED);
/* The map's type node, which is defined within this union's context. */
map_type = gfc_get_derived_type (map->ts.u.derived);
TYPE_CONTEXT (map_type) = typenode;
/* The map field's declaration. */
map_field = gfc_add_field_to_struct(typenode, get_identifier(map->name),
map_type, &chain);
if (map->loc.lb)
gfc_set_decl_location (map_field, &map->loc);
else if (un->declared_at.lb)
gfc_set_decl_location (map_field, &un->declared_at);
DECL_PACKED (map_field) |= TYPE_PACKED (typenode);
DECL_NAMELESS(map_field) = true;
/* We should never clobber another backend declaration for this map,
because each map component is unique. */
if (!map->backend_decl)
map->backend_decl = map_field;
}
un->backend_decl = typenode;
gfc_finish_type (typenode);
return typenode;
}
/* Build a tree node for a derived type. If there are equal
derived types, with different local names, these are built
at the same time. If an equal derived type has been built
in a parent namespace, this is used. */
tree
gfc_get_derived_type (gfc_symbol * derived, int codimen)
{
tree typenode = NULL, field = NULL, field_type = NULL;
tree canonical = NULL_TREE;
tree *chain = NULL;
bool got_canonical = false;
bool unlimited_entity = false;
gfc_component *c;
gfc_dt_list *dt;
gfc_namespace *ns;
tree tmp;
bool coarray_flag;
coarray_flag = flag_coarray == GFC_FCOARRAY_LIB
&& derived->module && !derived->attr.vtype;
gcc_assert (!derived->attr.pdt_template);
if (derived->attr.unlimited_polymorphic
|| (flag_coarray == GFC_FCOARRAY_LIB
&& derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& (derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE
|| derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
|| derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE)))
return ptr_type_node;
if (flag_coarray != GFC_FCOARRAY_LIB
&& derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
&& (derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
|| derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE))
return gfc_get_int_type (gfc_default_integer_kind);
if (derived && derived->attr.flavor == FL_PROCEDURE
&& derived->attr.generic)
derived = gfc_find_dt_in_generic (derived);
/* See if it's one of the iso_c_binding derived types. */
if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
{
if (derived->backend_decl)
return derived->backend_decl;
if (derived->intmod_sym_id == ISOCBINDING_PTR)
derived->backend_decl = ptr_type_node;
else
derived->backend_decl = pfunc_type_node;
derived->ts.kind = gfc_index_integer_kind;
derived->ts.type = BT_INTEGER;
/* Set the f90_type to BT_VOID as a way to recognize something of type
BT_INTEGER that needs to fit a void * for the purpose of the
iso_c_binding derived types. */
derived->ts.f90_type = BT_VOID;
return derived->backend_decl;
}
/* If use associated, use the module type for this one. */
if (derived->backend_decl == NULL
&& derived->attr.use_assoc
&& derived->module
&& gfc_get_module_backend_decl (derived))
goto copy_derived_types;
/* The derived types from an earlier namespace can be used as the
canonical type. */
if (derived->backend_decl == NULL && !derived->attr.use_assoc
&& gfc_global_ns_list)
{
for (ns = gfc_global_ns_list;
ns->translated && !got_canonical;
ns = ns->sibling)
{
dt = ns->derived_types;
for (; dt && !canonical; dt = dt->next)
{
gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
if (derived->backend_decl)
got_canonical = true;
}
}
}
/* Store up the canonical type to be added to this one. */
if (got_canonical)
{
if (TYPE_CANONICAL (derived->backend_decl))
canonical = TYPE_CANONICAL (derived->backend_decl);
else
canonical = derived->backend_decl;
derived->backend_decl = NULL_TREE;
}
/* derived->backend_decl != 0 means we saw it before, but its
components' backend_decl may have not been built. */
if (derived->backend_decl)
{
/* Its components' backend_decl have been built or we are
seeing recursion through the formal arglist of a procedure
pointer component. */
if (TYPE_FIELDS (derived->backend_decl))
return derived->backend_decl;
else if (derived->attr.abstract
&& derived->attr.proc_pointer_comp)
{
/* If an abstract derived type with procedure pointer
components has no other type of component, return the
backend_decl. Otherwise build the components if any of the
non-procedure pointer components have no backend_decl. */
for (c = derived->components; c; c = c->next)
{
bool same_alloc_type = c->attr.allocatable
&& derived == c->ts.u.derived;
if (!c->attr.proc_pointer
&& !same_alloc_type
&& c->backend_decl == NULL)
break;
else if (c->next == NULL)
return derived->backend_decl;
}
typenode = derived->backend_decl;
}
else
typenode = derived->backend_decl;
}
else
{
/* We see this derived type first time, so build the type node. */
typenode = make_node (RECORD_TYPE);
TYPE_NAME (typenode) = get_identifier (derived->name);
TYPE_PACKED (typenode) = flag_pack_derived;
derived->backend_decl = typenode;
}
if (derived->components
&& derived->components->ts.type == BT_DERIVED
&& strcmp (derived->components->name, "_data") == 0
&& derived->components->ts.u.derived->attr.unlimited_polymorphic)
unlimited_entity = true;
/* Go through the derived type components, building them as
necessary. The reason for doing this now is that it is
possible to recurse back to this derived type through a
pointer component (PR24092). If this happens, the fields
will be built and so we can return the type. */
for (c = derived->components; c; c = c->next)
{
bool same_alloc_type = c->attr.allocatable
&& derived == c->ts.u.derived;
if (c->ts.type == BT_UNION && c->ts.u.derived->backend_decl == NULL)
c->ts.u.derived->backend_decl = gfc_get_union_type (c->ts.u.derived);
if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
continue;
if ((!c->attr.pointer && !c->attr.proc_pointer
&& !same_alloc_type)
|| c->ts.u.derived->backend_decl == NULL)
{
int local_codim = c->attr.codimension ? c->as->corank: codimen;
c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived,
local_codim);
}
if (c->ts.u.derived->attr.is_iso_c)
{
/* Need to copy the modified ts from the derived type. The
typespec was modified because C_PTR/C_FUNPTR are translated
into (void *) from derived types. */
c->ts.type = c->ts.u.derived->ts.type;
c->ts.kind = c->ts.u.derived->ts.kind;
c->ts.f90_type = c->ts.u.derived->ts.f90_type;
if (c->initializer)
{
c->initializer->ts.type = c->ts.type;
c->initializer->ts.kind = c->ts.kind;
c->initializer->ts.f90_type = c->ts.f90_type;
c->initializer->expr_type = EXPR_NULL;
}
}
}
if (TYPE_FIELDS (derived->backend_decl))
return derived->backend_decl;
/* Build the type member list. Install the newly created RECORD_TYPE
node as DECL_CONTEXT of each FIELD_DECL. In this case we must go
through only the top-level linked list of components so we correctly
build UNION_TYPE nodes for BT_UNION components. MAPs and other nested
types are built as part of gfc_get_union_type. */
for (c = derived->components; c; c = c->next)
{
bool same_alloc_type = c->attr.allocatable
&& derived == c->ts.u.derived;
/* Prevent infinite recursion, when the procedure pointer type is
the same as derived, by forcing the procedure pointer component to
be built as if the explicit interface does not exist. */
if (c->attr.proc_pointer
&& (c->ts.type != BT_DERIVED || (c->ts.u.derived
&& !gfc_compare_derived_types (derived, c->ts.u.derived)))
&& (c->ts.type != BT_CLASS || (CLASS_DATA (c)->ts.u.derived
&& !gfc_compare_derived_types (derived, CLASS_DATA (c)->ts.u.derived))))
field_type = gfc_get_ppc_type (c);
else if (c->attr.proc_pointer && derived->backend_decl)
{
tmp = build_function_type_list (derived->backend_decl, NULL_TREE);
field_type = build_pointer_type (tmp);
}
else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
field_type = c->ts.u.derived->backend_decl;
else if (c->attr.caf_token)
field_type = pvoid_type_node;
else
{
if (c->ts.type == BT_CHARACTER
&& !c->ts.deferred && !c->attr.pdt_string)
{
/* Evaluate the string length. */
gfc_conv_const_charlen (c->ts.u.cl);
gcc_assert (c->ts.u.cl->backend_decl);
}
else if (c->ts.type == BT_CHARACTER)
c->ts.u.cl->backend_decl
= build_int_cst (gfc_charlen_type_node, 0);
field_type = gfc_typenode_for_spec (&c->ts, codimen);
}
/* This returns an array descriptor type. Initialization may be
required. */
if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
{
if (c->attr.pointer || c->attr.allocatable || c->attr.pdt_array)
{
enum gfc_array_kind akind;
if (c->attr.pointer)
akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
: GFC_ARRAY_POINTER;
else
akind = GFC_ARRAY_ALLOCATABLE;
/* Pointers to arrays aren't actually pointer types. The
descriptors are separate, but the data is common. */
field_type = gfc_build_array_type (field_type, c->as, akind,
!c->attr.target
&& !c->attr.pointer,
c->attr.contiguous,
codimen);
}
else
field_type = gfc_get_nodesc_array_type (field_type, c->as,
PACKED_STATIC,
!c->attr.target);
}
else if ((c->attr.pointer || c->attr.allocatable || c->attr.pdt_string)
&& !c->attr.proc_pointer
&& !(unlimited_entity && c == derived->components))
field_type = build_pointer_type (field_type);
if (c->attr.pointer || same_alloc_type)
field_type = gfc_nonrestricted_type (field_type);
/* vtype fields can point to different types to the base type. */
if (c->ts.type == BT_DERIVED
&& c->ts.u.derived && c->ts.u.derived->attr.vtype)
field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
ptr_mode, true);
/* Ensure that the CLASS language specific flag is set. */
if (c->ts.type == BT_CLASS)
{
if (POINTER_TYPE_P (field_type))
GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
else
GFC_CLASS_TYPE_P (field_type) = 1;
}
field = gfc_add_field_to_struct (typenode,
get_identifier (c->name),
field_type, &chain);
if (c->loc.lb)
gfc_set_decl_location (field, &c->loc);
else if (derived->declared_at.lb)
gfc_set_decl_location (field, &derived->declared_at);
gfc_finish_decl_attrs (field, &c->attr);
DECL_PACKED (field) |= TYPE_PACKED (typenode);
gcc_assert (field);
if (!c->backend_decl)
c->backend_decl = field;
if (c->attr.pointer && c->attr.dimension
&& !(c->ts.type == BT_DERIVED
&& strcmp (c->name, "_data") == 0))
GFC_DECL_PTR_ARRAY_P (c->backend_decl) = 1;
}
/* Now lay out the derived type, including the fields. */
if (canonical)
TYPE_CANONICAL (typenode) = canonical;
gfc_finish_type (typenode);
gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
if (derived->module && derived->ns->proc_name
&& derived->ns->proc_name->attr.flavor == FL_MODULE)
{
if (derived->ns->proc_name->backend_decl
&& TREE_CODE (derived->ns->proc_name->backend_decl)
== NAMESPACE_DECL)
{
TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
DECL_CONTEXT (TYPE_STUB_DECL (typenode))
= derived->ns->proc_name->backend_decl;
}
}
derived->backend_decl = typenode;
copy_derived_types:
for (c = derived->components; c; c = c->next)
{
/* Do not add a caf_token field for class container components. */
if ((codimen || coarray_flag)
&& !c->attr.dimension && !c->attr.codimension
&& (c->attr.allocatable || c->attr.pointer)
&& !derived->attr.is_class)
{
char caf_name[GFC_MAX_SYMBOL_LEN];
gfc_component *token;
snprintf (caf_name, GFC_MAX_SYMBOL_LEN, "_caf_%s", c->name);
token = gfc_find_component (derived, caf_name, true, true, NULL);
gcc_assert (token);
c->caf_token = token->backend_decl;
TREE_NO_WARNING (c->caf_token) = 1;
}
}
for (dt = gfc_derived_types; dt; dt = dt->next)
gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
return derived->backend_decl;
}
int
gfc_return_by_reference (gfc_symbol * sym)
{
if (!sym->attr.function)
return 0;
if (sym->attr.dimension)
return 1;
if (sym->ts.type == BT_CHARACTER
&& !sym->attr.is_bind_c
&& (!sym->attr.result
|| !sym->ns->proc_name
|| !sym->ns->proc_name->attr.is_bind_c))
return 1;
/* Possibly return complex numbers by reference for g77 compatibility.
We don't do this for calls to intrinsics (as the library uses the
-fno-f2c calling convention), nor for calls to functions which always
require an explicit interface, as no compatibility problems can
arise there. */
if (flag_f2c && sym->ts.type == BT_COMPLEX
&& !sym->attr.intrinsic && !sym->attr.always_explicit)
return 1;
return 0;
}
static tree
gfc_get_mixed_entry_union (gfc_namespace *ns)
{
tree type;
tree *chain = NULL;
char name[GFC_MAX_SYMBOL_LEN + 1];
gfc_entry_list *el, *el2;
gcc_assert (ns->proc_name->attr.mixed_entry_master);
gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
/* Build the type node. */
type = make_node (UNION_TYPE);
TYPE_NAME (type) = get_identifier (name);
for (el = ns->entries; el; el = el->next)
{
/* Search for duplicates. */
for (el2 = ns->entries; el2 != el; el2 = el2->next)
if (el2->sym->result == el->sym->result)
break;
if (el == el2)
gfc_add_field_to_struct_1 (type,
get_identifier (el->sym->result->name),
gfc_sym_type (el->sym->result), &chain);
}
/* Finish off the type. */
gfc_finish_type (type);
TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
return type;
}
/* Create a "fn spec" based on the formal arguments;
cf. create_function_arglist. */
static tree
create_fn_spec (gfc_symbol *sym, tree fntype)
{
char spec[150];
size_t spec_len;
gfc_formal_arglist *f;
tree tmp;
memset (&spec, 0, sizeof (spec));
spec[0] = '.';
spec_len = 1;
if (sym->attr.entry_master)
spec[spec_len++] = 'R';
if (gfc_return_by_reference (sym))
{
gfc_symbol *result = sym->result ? sym->result : sym;
if (result->attr.pointer || sym->attr.proc_pointer)
spec[spec_len++] = '.';
else
spec[spec_len++] = 'w';
if (sym->ts.type == BT_CHARACTER)
spec[spec_len++] = 'R';
}
for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
if (spec_len < sizeof (spec))
{
if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
|| f->sym->attr.external || f->sym->attr.cray_pointer
|| (f->sym->ts.type == BT_DERIVED
&& (f->sym->ts.u.derived->attr.proc_pointer_comp
|| f->sym->ts.u.derived->attr.pointer_comp))
|| (f->sym->ts.type == BT_CLASS
&& (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
|| CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
spec[spec_len++] = '.';
else if (f->sym->attr.intent == INTENT_IN)
spec[spec_len++] = 'r';
else if (f->sym)
spec[spec_len++] = 'w';
}
tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
return build_type_attribute_variant (fntype, tmp);
}
tree
gfc_get_function_type (gfc_symbol * sym)
{
tree type;
vec<tree, va_gc> *typelist = NULL;
gfc_formal_arglist *f;
gfc_symbol *arg;
int alternate_return = 0;
bool is_varargs = true;
/* Make sure this symbol is a function, a subroutine or the main
program. */
gcc_assert (sym->attr.flavor == FL_PROCEDURE
|| sym->attr.flavor == FL_PROGRAM);
/* To avoid recursing infinitely on recursive types, we use error_mark_node
so that they can be detected here and handled further down. */
if (sym->backend_decl == NULL)
sym->backend_decl = error_mark_node;
else if (sym->backend_decl == error_mark_node)
goto arg_type_list_done;
else if (sym->attr.proc_pointer)
return TREE_TYPE (TREE_TYPE (sym->backend_decl));
else
return TREE_TYPE (sym->backend_decl);
if (sym->attr.entry_master)
/* Additional parameter for selecting an entry point. */
vec_safe_push (typelist, gfc_array_index_type);
if (sym->result)
arg = sym->result;
else
arg = sym;
if (arg->ts.type == BT_CHARACTER)
gfc_conv_const_charlen (arg->ts.u.cl);
/* Some functions we use an extra parameter for the return value. */
if (gfc_return_by_reference (sym))
{
type = gfc_sym_type (arg);
if (arg->ts.type == BT_COMPLEX
|| arg->attr.dimension
|| arg->ts.type == BT_CHARACTER)
type = build_reference_type (type);
vec_safe_push (typelist, type);
if (arg->ts.type == BT_CHARACTER)
{
if (!arg->ts.deferred)
/* Transfer by value. */
vec_safe_push (typelist, gfc_charlen_type_node);
else
/* Deferred character lengths are transferred by reference
so that the value can be returned. */
vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
}
}
/* Build the argument types for the function. */
for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
{
arg = f->sym;
if (arg)
{
/* Evaluate constant character lengths here so that they can be
included in the type. */
if (arg->ts.type == BT_CHARACTER)
gfc_conv_const_charlen (arg->ts.u.cl);
if (arg->attr.flavor == FL_PROCEDURE)
{
type = gfc_get_function_type (arg);
type = build_pointer_type (type);
}
else
type = gfc_sym_type (arg);
/* Parameter Passing Convention
We currently pass all parameters by reference.
Parameters with INTENT(IN) could be passed by value.
The problem arises if a function is called via an implicit
prototype. In this situation the INTENT is not known.
For this reason all parameters to global functions must be
passed by reference. Passing by value would potentially
generate bad code. Worse there would be no way of telling that
this code was bad, except that it would give incorrect results.
Contained procedures could pass by value as these are never
used without an explicit interface, and cannot be passed as
actual parameters for a dummy procedure. */
vec_safe_push (typelist, type);
}
else
{
if (sym->attr.subroutine)
alternate_return = 1;
}
}
/* Add hidden string length parameters. */
for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
{
arg = f->sym;
if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
{
if (!arg->ts.deferred)
/* Transfer by value. */
type = gfc_charlen_type_node;
else
/* Deferred character lengths are transferred by reference
so that the value can be returned. */
type = build_pointer_type (gfc_charlen_type_node);
vec_safe_push (typelist, type);
}
}
if (!vec_safe_is_empty (typelist)
|| sym->attr.is_main_program
|| sym->attr.if_source != IFSRC_UNKNOWN)
is_varargs = false;
if (sym->backend_decl == error_mark_node)
sym->backend_decl = NULL_TREE;
arg_type_list_done:
if (alternate_return)
type = integer_type_node;
else if (!sym->attr.function || gfc_return_by_reference (sym))
type = void_type_node;
else if (sym->attr.mixed_entry_master)
type = gfc_get_mixed_entry_union (sym->ns);
else if (flag_f2c && sym->ts.type == BT_REAL
&& sym->ts.kind == gfc_default_real_kind
&& !sym->attr.always_explicit)
{
/* Special case: f2c calling conventions require that (scalar)
default REAL functions return the C type double instead. f2c
compatibility is only an issue with functions that don't
require an explicit interface, as only these could be
implemented in Fortran 77. */
sym->ts.kind = gfc_default_double_kind;
type = gfc_typenode_for_spec (&sym->ts);
sym->ts.kind = gfc_default_real_kind;
}
else if (sym->result && sym->result->attr.proc_pointer)
/* Procedure pointer return values. */
{
if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
{
/* Unset proc_pointer as gfc_get_function_type
is called recursively. */
sym->result->attr.proc_pointer = 0;
type = build_pointer_type (gfc_get_function_type (sym->result));
sym->result->attr.proc_pointer = 1;
}
else
type = gfc_sym_type (sym->result);
}
else
type = gfc_sym_type (sym);
if (is_varargs)
type = build_varargs_function_type_vec (type, typelist);
else
type = build_function_type_vec (type, typelist);
type = create_fn_spec (sym, type);
return type;
}
/* Language hooks for middle-end access to type nodes. */
/* Return an integer type with BITS bits of precision,
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
tree
gfc_type_for_size (unsigned bits, int unsignedp)
{
if (!unsignedp)
{
int i;
for (i = 0; i <= MAX_INT_KINDS; ++i)
{
tree type = gfc_integer_types[i];
if (type && bits == TYPE_PRECISION (type))
return type;
}
/* Handle TImode as a special case because it is used by some backends
(e.g. ARM) even though it is not available for normal use. */
#if HOST_BITS_PER_WIDE_INT >= 64
if (bits == TYPE_PRECISION (intTI_type_node))
return intTI_type_node;
#endif
if (bits <= TYPE_PRECISION (intQI_type_node))
return intQI_type_node;
if (bits <= TYPE_PRECISION (intHI_type_node))
return intHI_type_node;
if (bits <= TYPE_PRECISION (intSI_type_node))
return intSI_type_node;
if (bits <= TYPE_PRECISION (intDI_type_node))
return intDI_type_node;
if (bits <= TYPE_PRECISION (intTI_type_node))
return intTI_type_node;
}
else
{
if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
return unsigned_intQI_type_node;
if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
return unsigned_intHI_type_node;
if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
return unsigned_intSI_type_node;
if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
return unsigned_intDI_type_node;
if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
return unsigned_intTI_type_node;
}
return NULL_TREE;
}
/* Return a data type that has machine mode MODE. If the mode is an
integer, then UNSIGNEDP selects between signed and unsigned types. */
tree
gfc_type_for_mode (machine_mode mode, int unsignedp)
{
int i;
tree *base;
scalar_int_mode int_mode;
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
base = gfc_real_types;
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
base = gfc_complex_types;
else if (is_a <scalar_int_mode> (mode, &int_mode))
{
tree type = gfc_type_for_size (GET_MODE_PRECISION (int_mode), unsignedp);
return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
}
else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
&& valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
{
unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
GET_MODE_NUNITS (mode));
tree bool_type = build_nonstandard_boolean_type (elem_bits);
return build_vector_type_for_mode (bool_type, mode);
}
else if (VECTOR_MODE_P (mode)
&& valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
{
machine_mode inner_mode = GET_MODE_INNER (mode);
tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
if (inner_type != NULL_TREE)
return build_vector_type_for_mode (inner_type, mode);
return NULL_TREE;
}
else
return NULL_TREE;
for (i = 0; i <= MAX_REAL_KINDS; ++i)
{
tree type = base[i];
if (type && mode == TYPE_MODE (type))
return type;
}
return NULL_TREE;
}
/* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
in that case. */
bool
gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
{
int rank, dim;
bool indirect = false;
tree etype, ptype, t, base_decl;
tree data_off, dim_off, dtype_off, dim_size, elem_size;
tree lower_suboff, upper_suboff, stride_suboff;
tree dtype, field, rank_off;
if (! GFC_DESCRIPTOR_TYPE_P (type))
{
if (! POINTER_TYPE_P (type))
return false;
type = TREE_TYPE (type);
if (! GFC_DESCRIPTOR_TYPE_P (type))
return false;
indirect = true;
}
rank = GFC_TYPE_ARRAY_RANK (type);
if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
return false;
etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
gcc_assert (POINTER_TYPE_P (etype));
etype = TREE_TYPE (etype);
/* If the type is not a scalar coarray. */
if (TREE_CODE (etype) == ARRAY_TYPE)
etype = TREE_TYPE (etype);
/* Can't handle variable sized elements yet. */
if (int_size_in_bytes (etype) <= 0)
return false;
/* Nor non-constant lower bounds in assumed shape arrays. */
if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
|| GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
{
for (dim = 0; dim < rank; dim++)
if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
|| TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
return false;
}
memset (info, '\0', sizeof (*info));
info->ndimensions = rank;
info->ordering = array_descr_ordering_column_major;
info->element_type = etype;
ptype = build_pointer_type (gfc_array_index_type);
base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
if (!base_decl)
{
base_decl = make_node (DEBUG_EXPR_DECL);
DECL_ARTIFICIAL (base_decl) = 1;
TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
SET_DECL_MODE (base_decl, TYPE_MODE (TREE_TYPE (base_decl)));
GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
}
info->base_decl = base_decl;
if (indirect)
base_decl = build1 (INDIRECT_REF, ptype, base_decl);
elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
gfc_get_descriptor_offsets_for_info (type, &data_off, &dtype_off, &dim_off,
&dim_size, &stride_suboff,
&lower_suboff, &upper_suboff);
t = base_decl;
if (!integer_zerop (data_off))
t = fold_build_pointer_plus (t, data_off);
t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
info->allocated = build2 (NE_EXPR, logical_type_node,
info->data_location, null_pointer_node);
else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
|| GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
info->associated = build2 (NE_EXPR, logical_type_node,
info->data_location, null_pointer_node);
if ((GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK
|| GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT)
&& dwarf_version >= 5)
{
rank = 1;
info->ndimensions = 1;
t = base_decl;
if (!integer_zerop (dtype_off))
t = fold_build_pointer_plus (t, dtype_off);
dtype = TYPE_MAIN_VARIANT (get_dtype_type_node ());
field = gfc_advance_chain (TYPE_FIELDS (dtype), GFC_DTYPE_RANK);
rank_off = byte_position (field);
if (!integer_zerop (dtype_off))
t = fold_build_pointer_plus (t, rank_off);
t = build1 (NOP_EXPR, build_pointer_type (gfc_array_index_type), t);
t = build1 (INDIRECT_REF, gfc_array_index_type, t);
info->rank = t;
t = build0 (PLACEHOLDER_EXPR, TREE_TYPE (dim_off));
t = size_binop (MULT_EXPR, t, dim_size);
dim_off = build2 (PLUS_EXPR, TREE_TYPE (dim_off), t, dim_off);
}
for (dim = 0; dim < rank; dim++)
{
t = fold_build_pointer_plus (base_decl,
size_binop (PLUS_EXPR,
dim_off, lower_suboff));
t = build1 (INDIRECT_REF, gfc_array_index_type, t);
info->dimen[dim].lower_bound = t;
t = fold_build_pointer_plus (base_decl,
size_binop (PLUS_EXPR,
dim_off, upper_suboff));
t = build1 (INDIRECT_REF, gfc_array_index_type, t);
info->dimen[dim].upper_bound = t;
if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
|| GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
{
/* Assumed shape arrays have known lower bounds. */
info->dimen[dim].upper_bound
= build2 (MINUS_EXPR, gfc_array_index_type,
info->dimen[dim].upper_bound,
info->dimen[dim].lower_bound);
info->dimen[dim].lower_bound
= fold_convert (gfc_array_index_type,
GFC_TYPE_ARRAY_LBOUND (type, dim));
info->dimen[dim].upper_bound
= build2 (PLUS_EXPR, gfc_array_index_type,
info->dimen[dim].lower_bound,
info->dimen[dim].upper_bound);
}
t = fold_build_pointer_plus (base_decl,
size_binop (PLUS_EXPR,
dim_off, stride_suboff));
t = build1 (INDIRECT_REF, gfc_array_index_type, t);
t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
info->dimen[dim].stride = t;
if (dim + 1 < rank)
dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
}
return true;
}
/* Create a type to handle vector subscripts for coarray library calls. It
has the form:
struct caf_vector_t {
size_t nvec; // size of the vector
union {
struct {
void *vector;
int kind;
} v;
struct {
ptrdiff_t lower_bound;
ptrdiff_t upper_bound;
ptrdiff_t stride;
} triplet;
} u;
}
where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
tree
gfc_get_caf_vector_type (int dim)
{
static tree vector_types[GFC_MAX_DIMENSIONS];
static tree vec_type = NULL_TREE;
tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
if (vector_types[dim-1] != NULL_TREE)
return vector_types[dim-1];
if (vec_type == NULL_TREE)
{
chain = 0;
vect_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (vect_struct_type,
get_identifier ("vector"),
pvoid_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (vect_struct_type,
get_identifier ("kind"),
integer_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (vect_struct_type);
chain = 0;
triplet_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
get_identifier ("lower_bound"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
get_identifier ("upper_bound"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (triplet_struct_type);
chain = 0;
union_type = make_node (UNION_TYPE);
tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
vect_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
triplet_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (union_type);
chain = 0;
vec_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
size_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
union_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (vec_type);
TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
}
tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
gfc_rank_cst[dim-1]);
vector_types[dim-1] = build_array_type (vec_type, tmp);
return vector_types[dim-1];
}
tree
gfc_get_caf_reference_type ()
{
static tree reference_type = NULL_TREE;
tree c_struct_type, s_struct_type, v_struct_type, union_type, dim_union_type,
a_struct_type, u_union_type, tmp, *chain;
if (reference_type != NULL_TREE)
return reference_type;
chain = 0;
c_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (c_struct_type,
get_identifier ("offset"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (c_struct_type,
get_identifier ("caf_token_offset"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (c_struct_type);
chain = 0;
s_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (s_struct_type,
get_identifier ("start"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (s_struct_type,
get_identifier ("end"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (s_struct_type,
get_identifier ("stride"),
gfc_array_index_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (s_struct_type);
chain = 0;
v_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (v_struct_type,
get_identifier ("vector"),
pvoid_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (v_struct_type,
get_identifier ("nvec"),
size_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (v_struct_type,
get_identifier ("kind"),
integer_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (v_struct_type);
chain = 0;
union_type = make_node (UNION_TYPE);
tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("s"),
s_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
v_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (union_type);
tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
gfc_rank_cst[GFC_MAX_DIMENSIONS - 1]);
dim_union_type = build_array_type (union_type, tmp);
chain = 0;
a_struct_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("mode"),
build_array_type (unsigned_char_type_node,
build_range_type (gfc_array_index_type,
gfc_index_zero_node,
gfc_rank_cst[GFC_MAX_DIMENSIONS - 1])),
&chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (a_struct_type,
get_identifier ("static_array_type"),
integer_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("dim"),
dim_union_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (a_struct_type);
chain = 0;
u_union_type = make_node (UNION_TYPE);
tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("c"),
c_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("a"),
a_struct_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (u_union_type);
chain = 0;
reference_type = make_node (RECORD_TYPE);
tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("next"),
build_pointer_type (reference_type), &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("type"),
integer_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("item_size"),
size_type_node, &chain);
TREE_NO_WARNING (tmp) = 1;
tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("u"),
u_union_type, &chain);
TREE_NO_WARNING (tmp) = 1;
gfc_finish_type (reference_type);
TYPE_NAME (reference_type) = get_identifier ("caf_reference_t");
return reference_type;
}
#include "gt-fortran-trans-types.h"
|