1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
|
// expressions.h -- Go frontend expression handling. -*- C++ -*-
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef GO_EXPRESSIONS_H
#define GO_EXPRESSIONS_H
#include <mpfr.h>
#include <mpc.h>
#include "operator.h"
#include "runtime.h"
class Gogo;
class Translate_context;
class Traverse;
class Statement_inserter;
class Type;
class Method;
struct Type_context;
class Integer_type;
class Float_type;
class Complex_type;
class Function_type;
class Map_type;
class Struct_type;
class Struct_field;
class Expression_list;
class Var_expression;
class Enclosed_var_expression;
class Temporary_reference_expression;
class Set_and_use_temporary_expression;
class String_expression;
class Type_conversion_expression;
class Unsafe_type_conversion_expression;
class Unary_expression;
class Binary_expression;
class String_concat_expression;
class Call_expression;
class Builtin_call_expression;
class Call_result_expression;
class Func_expression;
class Func_descriptor_expression;
class Unknown_expression;
class Index_expression;
class Array_index_expression;
class String_index_expression;
class Map_index_expression;
class Bound_method_expression;
class Field_reference_expression;
class Interface_field_reference_expression;
class Allocation_expression;
class Composite_literal_expression;
class Struct_construction_expression;
class Array_construction_expression;
class Fixed_array_construction_expression;
class Slice_construction_expression;
class Map_construction_expression;
class Type_guard_expression;
class Heap_expression;
class Receive_expression;
class Conditional_expression;
class Compound_expression;
class Numeric_constant;
class Named_object;
class Export;
class Import;
class Temporary_statement;
class Label;
class Ast_dump_context;
class String_dump;
// The precision to use for complex values represented as an mpc_t.
const int mpc_precision = 256;
// The base class for all expressions.
class Expression
{
public:
// The types of expressions.
enum Expression_classification
{
EXPRESSION_ERROR,
EXPRESSION_TYPE,
EXPRESSION_UNARY,
EXPRESSION_BINARY,
EXPRESSION_STRING_CONCAT,
EXPRESSION_CONST_REFERENCE,
EXPRESSION_VAR_REFERENCE,
EXPRESSION_ENCLOSED_VAR_REFERENCE,
EXPRESSION_TEMPORARY_REFERENCE,
EXPRESSION_SET_AND_USE_TEMPORARY,
EXPRESSION_SINK,
EXPRESSION_FUNC_REFERENCE,
EXPRESSION_FUNC_DESCRIPTOR,
EXPRESSION_FUNC_CODE_REFERENCE,
EXPRESSION_UNKNOWN_REFERENCE,
EXPRESSION_BOOLEAN,
EXPRESSION_STRING,
EXPRESSION_STRING_INFO,
EXPRESSION_INTEGER,
EXPRESSION_FLOAT,
EXPRESSION_COMPLEX,
EXPRESSION_NIL,
EXPRESSION_IOTA,
EXPRESSION_CALL,
EXPRESSION_CALL_RESULT,
EXPRESSION_BOUND_METHOD,
EXPRESSION_INDEX,
EXPRESSION_ARRAY_INDEX,
EXPRESSION_STRING_INDEX,
EXPRESSION_MAP_INDEX,
EXPRESSION_SELECTOR,
EXPRESSION_FIELD_REFERENCE,
EXPRESSION_INTERFACE_FIELD_REFERENCE,
EXPRESSION_ALLOCATION,
EXPRESSION_TYPE_GUARD,
EXPRESSION_CONVERSION,
EXPRESSION_UNSAFE_CONVERSION,
EXPRESSION_STRUCT_CONSTRUCTION,
EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
EXPRESSION_SLICE_CONSTRUCTION,
EXPRESSION_MAP_CONSTRUCTION,
EXPRESSION_COMPOSITE_LITERAL,
EXPRESSION_HEAP,
EXPRESSION_RECEIVE,
EXPRESSION_TYPE_DESCRIPTOR,
EXPRESSION_GC_SYMBOL,
EXPRESSION_PTRMASK_SYMBOL,
EXPRESSION_TYPE_INFO,
EXPRESSION_SLICE_INFO,
EXPRESSION_SLICE_VALUE,
EXPRESSION_INTERFACE_INFO,
EXPRESSION_INTERFACE_VALUE,
EXPRESSION_INTERFACE_MTABLE,
EXPRESSION_STRUCT_FIELD_OFFSET,
EXPRESSION_LABEL_ADDR,
EXPRESSION_CONDITIONAL,
EXPRESSION_COMPOUND,
EXPRESSION_BACKEND
};
Expression(Expression_classification, Location);
virtual ~Expression();
// Make an error expression. This is used when a parse error occurs
// to prevent cascading errors.
static Expression*
make_error(Location);
// Make an expression which is really a type. This is used during
// parsing.
static Expression*
make_type(Type*, Location);
// Make a unary expression.
static Expression*
make_unary(Operator, Expression*, Location);
// Make a binary expression.
static Expression*
make_binary(Operator, Expression*, Expression*, Location);
// Make a string concatenation expression.
static Expression*
make_string_concat(Expression_list*);
// Make a reference to a constant in an expression.
static Expression*
make_const_reference(Named_object*, Location);
// Make a reference to a variable in an expression.
static Expression*
make_var_reference(Named_object*, Location);
// Make a reference to a variable within an enclosing function.
static Expression*
make_enclosing_var_reference(Expression*, Named_object*, Location);
// Make a reference to a temporary variable. Temporary variables
// are always created by a single statement, which is what we use to
// refer to them.
static Temporary_reference_expression*
make_temporary_reference(Temporary_statement*, Location);
// Make an expressions which sets a temporary variable and then
// evaluates to a reference to that temporary variable. This is
// used to set a temporary variable while retaining the order of
// evaluation.
static Set_and_use_temporary_expression*
make_set_and_use_temporary(Temporary_statement*, Expression*, Location);
// Make a sink expression--a reference to the blank identifier _.
static Expression*
make_sink(Location);
// Make a reference to a function in an expression. This returns a
// pointer to the struct holding the address of the function
// followed by any closed-over variables.
static Expression*
make_func_reference(Named_object*, Expression* closure, Location);
// Make a function descriptor, an immutable struct with a single
// field that points to the function code. This may only be used
// with functions that do not have closures. FN is the function for
// which we are making the descriptor.
static Func_descriptor_expression*
make_func_descriptor(Named_object* fn);
// Make a reference to the code of a function. This is used to set
// descriptor and closure fields.
static Expression*
make_func_code_reference(Named_object*, Location);
// Make a reference to an unknown name. In a correct program this
// will always be lowered to a real const/var/func reference.
static Unknown_expression*
make_unknown_reference(Named_object*, Location);
// Make a constant bool expression.
static Expression*
make_boolean(bool val, Location);
// Make a constant string expression.
static Expression*
make_string(const std::string&, Location);
// Make an expression that evaluates to some characteristic of an string.
// For simplicity, the enum values must match the field indexes in the
// underlying struct.
enum String_info
{
// The underlying data in the string.
STRING_INFO_DATA,
// The length of the string.
STRING_INFO_LENGTH
};
static Expression*
make_string_info(Expression* string, String_info, Location);
// Make a character constant expression. TYPE should be NULL for an
// abstract type.
static Expression*
make_character(const mpz_t*, Type*, Location);
// Make a constant integer expression from a multi-precision
// integer. TYPE should be NULL for an abstract type.
static Expression*
make_integer_z(const mpz_t*, Type*, Location);
// Make a constant integer expression from an unsigned long. TYPE
// should be NULL for an abstract type.
static Expression*
make_integer_ul(unsigned long, Type*, Location);
// Make a constant integer expression from a signed long. TYPE
// should be NULL for an abstract type.
static Expression*
make_integer_sl(long, Type*, Location);
// Make a constant integer expression from an int64_t. TYPE should
// be NULL for an abstract type.
static Expression*
make_integer_int64(int64_t, Type*, Location);
// Make a constant float expression. TYPE should be NULL for an
// abstract type.
static Expression*
make_float(const mpfr_t*, Type*, Location);
// Make a constant complex expression. TYPE should be NULL for an
// abstract type.
static Expression*
make_complex(const mpc_t*, Type*, Location);
// Make a nil expression.
static Expression*
make_nil(Location);
// Make an iota expression. This is used for the predeclared
// constant iota.
static Expression*
make_iota();
// Make a call expression.
static Call_expression*
make_call(Expression* func, Expression_list* args, bool is_varargs,
Location);
// Make a reference to a specific result of a call expression which
// returns a tuple.
static Expression*
make_call_result(Call_expression*, unsigned int index);
// Make an expression which is a method bound to its first
// parameter. METHOD is the method being called, FUNCTION is the
// function to call.
static Bound_method_expression*
make_bound_method(Expression* object, const Method* method,
Named_object* function, Location);
// Make an index or slice expression. This is a parser expression
// which represents LEFT[START:END:CAP]. END may be NULL, meaning an
// index rather than a slice. CAP may be NULL, meaning we use the default
// capacity of LEFT. At parse time we may not know the type of LEFT.
// After parsing this is lowered to an array index, a string index,
// or a map index.
static Expression*
make_index(Expression* left, Expression* start, Expression* end,
Expression* cap, Location);
// Make an array index expression. END may be NULL, in which case
// this is an lvalue. CAP may be NULL, in which case it defaults
// to cap(ARRAY).
static Expression*
make_array_index(Expression* array, Expression* start, Expression* end,
Expression* cap, Location);
// Make a string index expression. END may be NULL. This is never
// an lvalue.
static Expression*
make_string_index(Expression* string, Expression* start, Expression* end,
Location);
// Make a map index expression. This is an lvalue.
static Map_index_expression*
make_map_index(Expression* map, Expression* val, Location);
// Make a selector. This is a parser expression which represents
// LEFT.NAME. At parse time we may not know the type of the left
// hand side.
static Expression*
make_selector(Expression* left, const std::string& name, Location);
// Make a reference to a field in a struct.
static Field_reference_expression*
make_field_reference(Expression*, unsigned int field_index, Location);
// Make a reference to a field of an interface, with an associated
// object.
static Expression*
make_interface_field_reference(Expression*, const std::string&,
Location);
// Make an allocation expression.
static Expression*
make_allocation(Type*, Location);
// Make a type guard expression.
static Expression*
make_type_guard(Expression*, Type*, Location);
// Make a type cast expression.
static Expression*
make_cast(Type*, Expression*, Location);
// Make an unsafe type cast expression. This is only used when
// passing parameter to builtin functions that are part of the Go
// runtime.
static Expression*
make_unsafe_cast(Type*, Expression*, Location);
// Make a composite literal. The DEPTH parameter is how far down we
// are in a list of composite literals with omitted types. HAS_KEYS
// is true if the expression list has keys alternating with values.
// ALL_ARE_NAMES is true if all the keys could be struct field
// names.
static Expression*
make_composite_literal(Type*, int depth, bool has_keys, Expression_list*,
bool all_are_names, Location);
// Make a struct composite literal.
static Expression*
make_struct_composite_literal(Type*, Expression_list*, Location);
// Make an array composite literal.
static Expression*
make_array_composite_literal(Type*, Expression_list*, Location);
// Make a slice composite literal.
static Slice_construction_expression*
make_slice_composite_literal(Type*, Expression_list*, Location);
// Take an expression and allocate it on the heap.
static Expression*
make_heap_expression(Expression*, Location);
// Make a receive expression. VAL is NULL for a unary receive.
static Receive_expression*
make_receive(Expression* channel, Location);
// Make an expression which evaluates to the address of the type
// descriptor for TYPE.
static Expression*
make_type_descriptor(Type* type, Location);
// Make an expression which evaluates to the address of the gc
// symbol for TYPE.
static Expression*
make_gc_symbol(Type* type);
// Make an expression that evaluates to the address of a ptrmask
// symbol for TYPE. For most types this will be the same as
// make_gc_symbol, but for larger types make_gc_symbol will return a
// gcprog while this will return a ptrmask.
static Expression*
make_ptrmask_symbol(Type* type);
// Make an expression which evaluates to some characteristic of a
// type. These are only used for type descriptors, so there is no
// location parameter.
enum Type_info
{
// The size of a value of the type.
TYPE_INFO_SIZE,
// The required alignment of a value of the type.
TYPE_INFO_ALIGNMENT,
// The required alignment of a value of the type when used as a
// field in a struct.
TYPE_INFO_FIELD_ALIGNMENT,
// The size of the prefix of a value of the type that contains
// all the pointers. This is 0 for a type that contains no
// pointers. It is always <= TYPE_INFO_SIZE.
TYPE_INFO_BACKEND_PTRDATA,
// Like TYPE_INFO_BACKEND_PTRDATA, but the ptrdata value that we
// want to store in a type descriptor. They are the same for
// most types, but can differ for a type that uses a gcprog.
TYPE_INFO_DESCRIPTOR_PTRDATA
};
static Expression*
make_type_info(Type* type, Type_info);
// Make an expression that evaluates to some characteristic of a
// slice. For simplicity, the enum values must match the field indexes
// in the underlying struct.
enum Slice_info
{
// The underlying data of the slice.
SLICE_INFO_VALUE_POINTER,
// The length of the slice.
SLICE_INFO_LENGTH,
// The capacity of the slice.
SLICE_INFO_CAPACITY
};
static Expression*
make_slice_info(Expression* slice, Slice_info, Location);
// Make an expression for a slice value.
static Expression*
make_slice_value(Type*, Expression* valptr, Expression* len, Expression* cap,
Location);
// Make an expression that evaluates to some characteristic of an
// interface. For simplicity, the enum values must match the field indexes
// in the underlying struct.
enum Interface_info
{
// The type descriptor of an empty interface.
INTERFACE_INFO_TYPE_DESCRIPTOR = 0,
// The methods of an interface.
INTERFACE_INFO_METHODS = 0,
// The first argument to pass to an interface method.
INTERFACE_INFO_OBJECT
};
static Expression*
make_interface_info(Expression* iface, Interface_info, Location);
// Make an expression for an interface value.
static Expression*
make_interface_value(Type*, Expression*, Expression*, Location);
// Make an expression that builds a reference to the interface method table
// for TYPE that satisfies interface ITYPE. IS_POINTER is true if this is a
// reference to the interface method table for the pointer receiver type.
static Expression*
make_interface_mtable_ref(Interface_type* itype, Type* type,
bool is_pointer, Location);
// Make an expression which evaluates to the offset of a field in a
// struct. This is only used for type descriptors, so there is no
// location parameter.
static Expression*
make_struct_field_offset(Struct_type*, const Struct_field*);
// Make an expression which evaluates to the address of an unnamed
// label.
static Expression*
make_label_addr(Label*, Location);
// Make a conditional expression.
static Expression*
make_conditional(Expression*, Expression*, Expression*, Location);
// Make a compound expression.
static Expression*
make_compound(Expression*, Expression*, Location);
// Make a backend expression.
static Expression*
make_backend(Bexpression*, Type*, Location);
enum Nil_check_classification
{
// Use the default policy for deciding if this deref needs a check.
NIL_CHECK_DEFAULT,
// An explicit check is required for this dereference operation.
NIL_CHECK_NEEDED,
// No check needed for this dereference operation.
NIL_CHECK_NOT_NEEDED,
// A type error or error construct was encountered when determining
// whether this deref needs an explicit check.
NIL_CHECK_ERROR_ENCOUNTERED
};
// Make a dereference expression.
static Expression*
make_dereference(Expression*, Nil_check_classification, Location);
// Return the expression classification.
Expression_classification
classification() const
{ return this->classification_; }
// Return the location of the expression.
Location
location() const
{ return this->location_; }
// Return whether this is a constant expression.
bool
is_constant() const
{ return this->do_is_constant(); }
// Return whether this expression can be used as a static
// initializer. This is true for an expression that has only
// numbers and pointers to global variables or composite literals
// that do not require runtime initialization. It is false if we
// must generate code to compute this expression when it is used to
// initialize a global variable. This is not a language-level
// concept, but an implementation-level one. If this expression is
// used to initialize a global variable, this is true if we can pass
// an initializer to the backend, false if we must generate code to
// initialize the variable. It is always safe for this method to
// return false, but the resulting code may be less efficient.
bool
is_static_initializer() const
{ return this->do_is_static_initializer(); }
// If this is not a numeric constant, return false. If it is one,
// return true, and set VAL to hold the value.
bool
numeric_constant_value(Numeric_constant* val) const
{ return this->do_numeric_constant_value(val); }
// If this is not a constant expression with string type, return
// false. If it is one, return true, and set VAL to the value.
bool
string_constant_value(std::string* val) const
{ return this->do_string_constant_value(val); }
// This is called if the value of this expression is being
// discarded. This issues warnings about computed values being
// unused. This returns true if all is well, false if it issued an
// error message.
bool
discarding_value()
{ return this->do_discarding_value(); }
// Return whether this is an error expression.
bool
is_error_expression() const
{ return this->classification_ == EXPRESSION_ERROR; }
// Return whether this expression really represents a type.
bool
is_type_expression() const
{ return this->classification_ == EXPRESSION_TYPE; }
// If this is a variable reference, return the Var_expression
// structure. Otherwise, return NULL. This is a controlled dynamic
// cast.
Var_expression*
var_expression()
{ return this->convert<Var_expression, EXPRESSION_VAR_REFERENCE>(); }
const Var_expression*
var_expression() const
{ return this->convert<const Var_expression, EXPRESSION_VAR_REFERENCE>(); }
// If this is a enclosed_variable reference, return the
// Enclosed_var_expression structure. Otherwise, return NULL.
// This is a controlled dynamic cast.
Enclosed_var_expression*
enclosed_var_expression()
{ return this->convert<Enclosed_var_expression,
EXPRESSION_ENCLOSED_VAR_REFERENCE>(); }
const Enclosed_var_expression*
enclosed_var_expression() const
{ return this->convert<const Enclosed_var_expression,
EXPRESSION_ENCLOSED_VAR_REFERENCE>(); }
// If this is a reference to a temporary variable, return the
// Temporary_reference_expression. Otherwise, return NULL.
Temporary_reference_expression*
temporary_reference_expression()
{
return this->convert<Temporary_reference_expression,
EXPRESSION_TEMPORARY_REFERENCE>();
}
// If this is a set-and-use-temporary, return the
// Set_and_use_temporary_expression. Otherwise, return NULL.
Set_and_use_temporary_expression*
set_and_use_temporary_expression()
{
return this->convert<Set_and_use_temporary_expression,
EXPRESSION_SET_AND_USE_TEMPORARY>();
}
// Return whether this is a sink expression.
bool
is_sink_expression() const
{ return this->classification_ == EXPRESSION_SINK; }
// If this is a string expression, return the String_expression
// structure. Otherwise, return NULL.
String_expression*
string_expression()
{ return this->convert<String_expression, EXPRESSION_STRING>(); }
// If this is a conversion expression, return the Type_conversion_expression
// structure. Otherwise, return NULL.
Type_conversion_expression*
conversion_expression()
{ return this->convert<Type_conversion_expression, EXPRESSION_CONVERSION>(); }
// If this is an unsafe conversion expression, return the
// Unsafe_type_conversion_expression structure. Otherwise, return NULL.
Unsafe_type_conversion_expression*
unsafe_conversion_expression()
{
return this->convert<Unsafe_type_conversion_expression,
EXPRESSION_UNSAFE_CONVERSION>();
}
// Return whether this is the expression nil.
bool
is_nil_expression() const
{ return this->classification_ == EXPRESSION_NIL; }
// If this is an indirection through a pointer, return the
// expression being pointed through. Otherwise return this.
Expression*
deref();
// If this is a unary expression, return the Unary_expression
// structure. Otherwise return NULL.
Unary_expression*
unary_expression()
{ return this->convert<Unary_expression, EXPRESSION_UNARY>(); }
// If this is a binary expression, return the Binary_expression
// structure. Otherwise return NULL.
Binary_expression*
binary_expression()
{ return this->convert<Binary_expression, EXPRESSION_BINARY>(); }
// If this is a string concatenation expression, return the
// String_concat_expression structure. Otherwise, return NULL.
String_concat_expression*
string_concat_expression()
{
return this->convert<String_concat_expression, EXPRESSION_STRING_CONCAT>();
}
// If this is a call expression, return the Call_expression
// structure. Otherwise, return NULL. This is a controlled dynamic
// cast.
Call_expression*
call_expression()
{ return this->convert<Call_expression, EXPRESSION_CALL>(); }
// If this is a call_result expression, return the Call_result_expression
// structure. Otherwise, return NULL. This is a controlled dynamic
// cast.
Call_result_expression*
call_result_expression()
{ return this->convert<Call_result_expression, EXPRESSION_CALL_RESULT>(); }
// If this is an expression which refers to a function, return the
// Func_expression structure. Otherwise, return NULL.
Func_expression*
func_expression()
{ return this->convert<Func_expression, EXPRESSION_FUNC_REFERENCE>(); }
const Func_expression*
func_expression() const
{ return this->convert<const Func_expression, EXPRESSION_FUNC_REFERENCE>(); }
// If this is an expression which refers to an unknown name, return
// the Unknown_expression structure. Otherwise, return NULL.
Unknown_expression*
unknown_expression()
{ return this->convert<Unknown_expression, EXPRESSION_UNKNOWN_REFERENCE>(); }
const Unknown_expression*
unknown_expression() const
{
return this->convert<const Unknown_expression,
EXPRESSION_UNKNOWN_REFERENCE>();
}
// If this is an index expression, return the Index_expression
// structure. Otherwise, return NULL.
Index_expression*
index_expression()
{ return this->convert<Index_expression, EXPRESSION_INDEX>(); }
// If this is an expression which refers to indexing in a array,
// return the Array_index_expression structure. Otherwise, return
// NULL.
Array_index_expression*
array_index_expression()
{ return this->convert<Array_index_expression, EXPRESSION_ARRAY_INDEX>(); }
// If this is an expression which refers to indexing in a string,
// return the String_index_expression structure. Otherwise, return
// NULL.
String_index_expression*
string_index_expression()
{ return this->convert<String_index_expression, EXPRESSION_STRING_INDEX>(); }
// If this is an expression which refers to indexing in a map,
// return the Map_index_expression structure. Otherwise, return
// NULL.
Map_index_expression*
map_index_expression()
{ return this->convert<Map_index_expression, EXPRESSION_MAP_INDEX>(); }
// If this is a bound method expression, return the
// Bound_method_expression structure. Otherwise, return NULL.
Bound_method_expression*
bound_method_expression()
{ return this->convert<Bound_method_expression, EXPRESSION_BOUND_METHOD>(); }
// If this is a reference to a field in a struct, return the
// Field_reference_expression structure. Otherwise, return NULL.
Field_reference_expression*
field_reference_expression()
{
return this->convert<Field_reference_expression,
EXPRESSION_FIELD_REFERENCE>();
}
// If this is a reference to a field in an interface, return the
// Interface_field_reference_expression structure. Otherwise,
// return NULL.
Interface_field_reference_expression*
interface_field_reference_expression()
{
return this->convert<Interface_field_reference_expression,
EXPRESSION_INTERFACE_FIELD_REFERENCE>();
}
// If this is an allocation expression, return the Allocation_expression
// structure. Otherwise, return NULL.
Allocation_expression*
allocation_expression()
{ return this->convert<Allocation_expression, EXPRESSION_ALLOCATION>(); }
// If this is a general composite literal, return the
// Composite_literal_expression structure. Otherwise, return NULL.
Composite_literal_expression*
complit()
{
return this->convert<Composite_literal_expression,
EXPRESSION_COMPOSITE_LITERAL>();
}
// If this is a struct composite literal, return the
// Struct_construction_expression structure. Otherwise, return NULL.
Struct_construction_expression*
struct_literal()
{
return this->convert<Struct_construction_expression,
EXPRESSION_STRUCT_CONSTRUCTION>();
}
// If this is a array composite literal, return the
// Array_construction_expression structure. Otherwise, return NULL.
Fixed_array_construction_expression*
array_literal()
{
return this->convert<Fixed_array_construction_expression,
EXPRESSION_FIXED_ARRAY_CONSTRUCTION>();
}
// If this is a slice composite literal, return the
// Slice_construction_expression structure. Otherwise, return NULL.
Slice_construction_expression*
slice_literal()
{
return this->convert<Slice_construction_expression,
EXPRESSION_SLICE_CONSTRUCTION>();
}
// If this is a map composite literal, return the
// Map_construction_expression structure. Otherwise, return NULL.
Map_construction_expression*
map_literal()
{
return this->convert<Map_construction_expression,
EXPRESSION_MAP_CONSTRUCTION>();
}
// If this is a type guard expression, return the
// Type_guard_expression structure. Otherwise, return NULL.
Type_guard_expression*
type_guard_expression()
{ return this->convert<Type_guard_expression, EXPRESSION_TYPE_GUARD>(); }
// If this is a heap expression, returhn the Heap_expression structure.
// Otherwise, return NULL.
Heap_expression*
heap_expression()
{ return this->convert<Heap_expression, EXPRESSION_HEAP>(); }
// If this is a receive expression, return the Receive_expression
// structure. Otherwise, return NULL.
Receive_expression*
receive_expression()
{ return this->convert<Receive_expression, EXPRESSION_RECEIVE>(); }
// If this is a conditional expression, return the Conditional_expression
// structure. Otherwise, return NULL.
Conditional_expression*
conditional_expression()
{ return this->convert<Conditional_expression, EXPRESSION_CONDITIONAL>(); }
// If this is a compound expression, return the Compound_expression structure.
// Otherwise, return NULL.
Compound_expression*
compound_expression()
{ return this->convert<Compound_expression, EXPRESSION_COMPOUND>(); }
// Return true if this is a composite literal.
bool
is_composite_literal() const;
// Return true if this is a composite literal which is not constant.
bool
is_nonconstant_composite_literal() const;
// Return true if this is a variable or temporary variable.
bool
is_variable() const;
// Return true if this is a reference to a local variable.
bool
is_local_variable() const;
// Make the builtin function descriptor type, so that it can be
// converted.
static void
make_func_descriptor_type();
// Traverse an expression.
static int
traverse(Expression**, Traverse*);
// Traverse subexpressions of this expression.
int
traverse_subexpressions(Traverse*);
// Lower an expression. This is called immediately after parsing.
// FUNCTION is the function we are in; it will be NULL for an
// expression initializing a global variable. INSERTER may be used
// to insert statements before the statement or initializer
// containing this expression; it is normally used to create
// temporary variables. IOTA_VALUE is the value that we should give
// to any iota expressions. This function must resolve expressions
// which could not be fully parsed into their final form. It
// returns the same Expression or a new one.
Expression*
lower(Gogo* gogo, Named_object* function, Statement_inserter* inserter,
int iota_value)
{ return this->do_lower(gogo, function, inserter, iota_value); }
// Flatten an expression. This is called after order_evaluation.
// FUNCTION is the function we are in; it will be NULL for an
// expression initializing a global variable. INSERTER may be used
// to insert statements before the statement or initializer
// containing this expression; it is normally used to create
// temporary variables. This function must resolve expressions
// which could not be fully parsed into their final form. It
// returns the same Expression or a new one.
Expression*
flatten(Gogo* gogo, Named_object* function, Statement_inserter* inserter)
{ return this->do_flatten(gogo, function, inserter); }
// Determine the real type of an expression with abstract integer,
// floating point, or complex type. TYPE_CONTEXT describes the
// expected type.
void
determine_type(const Type_context*);
// Check types in an expression.
void
check_types(Gogo* gogo)
{ this->do_check_types(gogo); }
// Determine the type when there is no context.
void
determine_type_no_context();
// Return the current type of the expression. This may be changed
// by determine_type.
Type*
type()
{ return this->do_type(); }
// Return a copy of an expression.
Expression*
copy()
{ return this->do_copy(); }
// Return whether the expression is addressable--something which may
// be used as the operand of the unary & operator.
bool
is_addressable() const
{ return this->do_is_addressable(); }
// Note that we are taking the address of this expression. ESCAPES
// is true if this address escapes the current function.
void
address_taken(bool escapes)
{ this->do_address_taken(escapes); }
// Note that a nil check must be issued for this expression.
void
issue_nil_check()
{ this->do_issue_nil_check(); }
// Return whether this expression must be evaluated in order
// according to the order of evaluation rules. This is basically
// true of all expressions with side-effects.
bool
must_eval_in_order() const
{ return this->do_must_eval_in_order(); }
// Return whether subexpressions of this expression must be
// evaluated in order. This is true of index expressions and
// pointer indirections. This sets *SKIP to the number of
// subexpressions to skip during traversing, as index expressions
// only requiring moving the index, not the array.
bool
must_eval_subexpressions_in_order(int* skip) const
{
*skip = 0;
return this->do_must_eval_subexpressions_in_order(skip);
}
// Return the backend representation for this expression.
Bexpression*
get_backend(Translate_context*);
// Return an expression handling any conversions which must be done during
// assignment.
static Expression*
convert_for_assignment(Gogo*, Type* lhs_type, Expression* rhs,
Location location);
// Return an expression converting a value of one interface type to another
// interface type. If FOR_TYPE_GUARD is true this is for a type
// assertion.
static Expression*
convert_interface_to_interface(Type* lhs_type,
Expression* rhs, bool for_type_guard,
Location);
// Return a backend expression implementing the comparison LEFT OP RIGHT.
// TYPE is the type of both sides.
static Bexpression*
comparison(Translate_context*, Type* result_type, Operator op,
Expression* left, Expression* right, Location);
// Return the backend expression for the numeric constant VAL.
static Bexpression*
backend_numeric_constant_expression(Translate_context*,
Numeric_constant* val);
// Export the expression. This is only used for constants. It will
// be used for things like values of named constants and sizes of
// arrays.
void
export_expression(Export* exp) const
{ this->do_export(exp); }
// Import an expression.
static Expression*
import_expression(Import*);
// Return an expression which checks that VAL, of arbitrary integer type,
// is non-negative and is not more than the maximum integer value.
static Expression*
check_bounds(Expression* val, Location);
// Dump an expression to a dump constext.
void
dump_expression(Ast_dump_context*) const;
protected:
// May be implemented by child class: traverse the expressions.
virtual int
do_traverse(Traverse*);
// Return a lowered expression.
virtual Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int)
{ return this; }
// Return a flattened expression.
virtual Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*)
{ return this; }
// Return whether this is a constant expression.
virtual bool
do_is_constant() const
{ return false; }
// Return whether this expression can be used as a constant
// initializer.
virtual bool
do_is_static_initializer() const
{ return false; }
// Return whether this is a constant expression of numeric type, and
// set the Numeric_constant to the value.
virtual bool
do_numeric_constant_value(Numeric_constant*) const
{ return false; }
// Return whether this is a constant expression of string type, and
// set VAL to the value.
virtual bool
do_string_constant_value(std::string*) const
{ return false; }
// Called by the parser if the value is being discarded.
virtual bool
do_discarding_value();
// Child class holds type.
virtual Type*
do_type() = 0;
// Child class implements determining type information.
virtual void
do_determine_type(const Type_context*) = 0;
// Child class implements type checking if needed.
virtual void
do_check_types(Gogo*)
{ }
// Child class implements copying.
virtual Expression*
do_copy() = 0;
// Child class implements whether the expression is addressable.
virtual bool
do_is_addressable() const
{ return false; }
// Child class implements taking the address of an expression.
virtual void
do_address_taken(bool)
{ }
// Child class implements issuing a nil check if the address is taken.
virtual void
do_issue_nil_check()
{ }
// Child class implements whether this expression must be evaluated
// in order.
virtual bool
do_must_eval_in_order() const
{ return false; }
// Child class implements whether this expressions requires that
// subexpressions be evaluated in order. The child implementation
// may set *SKIP if it should be non-zero.
virtual bool
do_must_eval_subexpressions_in_order(int* /* skip */) const
{ return false; }
// Child class implements conversion to backend representation.
virtual Bexpression*
do_get_backend(Translate_context*) = 0;
// Child class implements export.
virtual void
do_export(Export*) const;
// For children to call to give an error for an unused value.
void
unused_value_error();
// For children to call when they detect that they are in error.
void
set_is_error();
// For children to call to report an error conveniently.
void
report_error(const char*);
// Child class implements dumping to a dump context.
virtual void
do_dump_expression(Ast_dump_context*) const = 0;
// Varargs lowering creates a slice object (unnamed compiler temp)
// to contain the variable length collection of values. The enum
// below tells the lowering routine whether it can mark that temp
// as non-escaping or not. For general varargs calls it is not always
// safe to stack-allocated the storage, but for specific cases (ex:
// call to append()) it is legal.
enum Slice_storage_escape_disp
{
SLICE_STORAGE_MAY_ESCAPE,
SLICE_STORAGE_DOES_NOT_ESCAPE
};
private:
// Convert to the desired statement classification, or return NULL.
// This is a controlled dynamic cast.
template<typename Expression_class,
Expression_classification expr_classification>
Expression_class*
convert()
{
return (this->classification_ == expr_classification
? static_cast<Expression_class*>(this)
: NULL);
}
template<typename Expression_class,
Expression_classification expr_classification>
const Expression_class*
convert() const
{
return (this->classification_ == expr_classification
? static_cast<const Expression_class*>(this)
: NULL);
}
static Expression*
convert_type_to_interface(Type*, Expression*, Location);
static Expression*
get_interface_type_descriptor(Expression*);
static Expression*
convert_interface_to_type(Type*, Expression*, Location);
// The expression classification.
Expression_classification classification_;
// The location in the input file.
Location location_;
};
// A list of Expressions.
class Expression_list
{
public:
Expression_list()
: entries_()
{ }
// Return whether the list is empty.
bool
empty() const
{ return this->entries_.empty(); }
// Return the number of entries in the list.
size_t
size() const
{ return this->entries_.size(); }
// Add an entry to the end of the list.
void
push_back(Expression* expr)
{ this->entries_.push_back(expr); }
void
append(Expression_list* add)
{ this->entries_.insert(this->entries_.end(), add->begin(), add->end()); }
// Reserve space in the list.
void
reserve(size_t size)
{ this->entries_.reserve(size); }
// Traverse the expressions in the list.
int
traverse(Traverse*);
// Copy the list.
Expression_list*
copy();
// Return true if the list contains an error expression.
bool
contains_error() const;
// Retrieve an element by index.
Expression*&
at(size_t i)
{ return this->entries_.at(i); }
// Return the first and last elements.
Expression*&
front()
{ return this->entries_.front(); }
Expression*
front() const
{ return this->entries_.front(); }
Expression*&
back()
{ return this->entries_.back(); }
Expression*
back() const
{ return this->entries_.back(); }
// Iterators.
typedef std::vector<Expression*>::iterator iterator;
typedef std::vector<Expression*>::const_iterator const_iterator;
iterator
begin()
{ return this->entries_.begin(); }
const_iterator
begin() const
{ return this->entries_.begin(); }
iterator
end()
{ return this->entries_.end(); }
const_iterator
end() const
{ return this->entries_.end(); }
// Erase an entry.
void
erase(iterator p)
{ this->entries_.erase(p); }
private:
std::vector<Expression*> entries_;
};
// An abstract base class for an expression which is only used by the
// parser, and is lowered in the lowering pass.
class Parser_expression : public Expression
{
public:
Parser_expression(Expression_classification classification,
Location location)
: Expression(classification, location)
{ }
protected:
virtual Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int) = 0;
Type*
do_type();
void
do_determine_type(const Type_context*)
{ go_unreachable(); }
void
do_check_types(Gogo*)
{ go_unreachable(); }
Bexpression*
do_get_backend(Translate_context*)
{ go_unreachable(); }
};
// An expression which is simply a variable.
class Var_expression : public Expression
{
public:
Var_expression(Named_object* variable, Location location)
: Expression(EXPRESSION_VAR_REFERENCE, location),
variable_(variable)
{ }
// Return the variable.
Named_object*
named_object() const
{ return this->variable_; }
protected:
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Type*
do_type();
void
do_determine_type(const Type_context*);
Expression*
do_copy()
{ return this; }
bool
do_is_addressable() const
{ return true; }
void
do_address_taken(bool);
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The variable we are referencing.
Named_object* variable_;
};
// A reference to a variable within an enclosing function.
class Enclosed_var_expression : public Expression
{
public:
Enclosed_var_expression(Expression* reference, Named_object* variable,
Location location)
: Expression(EXPRESSION_ENCLOSED_VAR_REFERENCE, location),
reference_(reference), variable_(variable)
{ }
// The reference to the enclosed variable. This will be an indirection of the
// the field stored within closure variable.
Expression*
reference() const
{ return this->reference_; }
// The variable being enclosed and referenced.
Named_object*
variable() const
{ return this->variable_; }
protected:
int
do_traverse(Traverse*);
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type()
{ return this->reference_->type(); }
void
do_determine_type(const Type_context* context)
{ return this->reference_->determine_type(context); }
Expression*
do_copy()
{ return this; }
bool
do_is_addressable() const
{ return this->reference_->is_addressable(); }
void
do_address_taken(bool escapes);
Bexpression*
do_get_backend(Translate_context* context)
{ return this->reference_->get_backend(context); }
void
do_dump_expression(Ast_dump_context*) const;
private:
// The reference to the enclosed variable.
Expression* reference_;
// The variable being enclosed.
Named_object* variable_;
};
// A reference to a temporary variable.
class Temporary_reference_expression : public Expression
{
public:
Temporary_reference_expression(Temporary_statement* statement,
Location location)
: Expression(EXPRESSION_TEMPORARY_REFERENCE, location),
statement_(statement), is_lvalue_(false)
{ }
// The temporary that this expression refers to.
Temporary_statement*
statement() const
{ return this->statement_; }
// Indicate that this reference appears on the left hand side of an
// assignment statement.
void
set_is_lvalue()
{ this->is_lvalue_ = true; }
protected:
Type*
do_type();
void
do_determine_type(const Type_context*)
{ }
Expression*
do_copy()
{ return make_temporary_reference(this->statement_, this->location()); }
bool
do_is_addressable() const
{ return true; }
void
do_address_taken(bool);
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The statement where the temporary variable is defined.
Temporary_statement* statement_;
// Whether this reference appears on the left hand side of an
// assignment statement.
bool is_lvalue_;
};
// Set and use a temporary variable.
class Set_and_use_temporary_expression : public Expression
{
public:
Set_and_use_temporary_expression(Temporary_statement* statement,
Expression* expr, Location location)
: Expression(EXPRESSION_SET_AND_USE_TEMPORARY, location),
statement_(statement), expr_(expr)
{ }
// Return the temporary.
Temporary_statement*
temporary() const
{ return this->statement_; }
// Return the expression.
Expression*
expression() const
{ return this->expr_; }
protected:
int
do_traverse(Traverse* traverse)
{ return Expression::traverse(&this->expr_, traverse); }
Type*
do_type();
void
do_determine_type(const Type_context*);
Expression*
do_copy()
{
return make_set_and_use_temporary(this->statement_, this->expr_,
this->location());
}
bool
do_is_addressable() const
{ return true; }
void
do_address_taken(bool);
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The statement where the temporary variable is defined.
Temporary_statement* statement_;
// The expression to assign to the temporary.
Expression* expr_;
};
// A string expression.
class String_expression : public Expression
{
public:
String_expression(const std::string& val, Location location)
: Expression(EXPRESSION_STRING, location),
val_(val), type_(NULL)
{ }
const std::string&
val() const
{ return this->val_; }
static Expression*
do_import(Import*);
protected:
bool
do_is_constant() const
{ return true; }
bool
do_is_static_initializer() const
{ return true; }
bool
do_string_constant_value(std::string* val) const
{
*val = this->val_;
return true;
}
Type*
do_type();
void
do_determine_type(const Type_context*);
Expression*
do_copy()
{ return this; }
Bexpression*
do_get_backend(Translate_context*);
// Write string literal to a string dump.
static void
export_string(String_dump* exp, const String_expression* str);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
private:
// The string value. This is immutable.
const std::string val_;
// The type as determined by context.
Type* type_;
};
// A type conversion expression.
class Type_conversion_expression : public Expression
{
public:
Type_conversion_expression(Type* type, Expression* expr,
Location location)
: Expression(EXPRESSION_CONVERSION, location),
type_(type), expr_(expr), may_convert_function_types_(false)
{ }
// Return the type to which we are converting.
Type*
type() const
{ return this->type_; }
// Return the expression which we are converting.
Expression*
expr() const
{ return this->expr_; }
// Permit converting from one function type to another. This is
// used internally for method expressions.
void
set_may_convert_function_types()
{
this->may_convert_function_types_ = true;
}
// Import a type conversion expression.
static Expression*
do_import(Import*);
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_is_constant() const;
bool
do_is_static_initializer() const;
bool
do_numeric_constant_value(Numeric_constant*) const;
bool
do_string_constant_value(std::string*) const;
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context* context);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
private:
// The type to convert to.
Type* type_;
// The expression to convert.
Expression* expr_;
// True if this is permitted to convert function types. This is
// used internally for method expressions.
bool may_convert_function_types_;
};
// An unsafe type conversion, used to pass values to builtin functions.
class Unsafe_type_conversion_expression : public Expression
{
public:
Unsafe_type_conversion_expression(Type* type, Expression* expr,
Location location)
: Expression(EXPRESSION_UNSAFE_CONVERSION, location),
type_(type), expr_(expr)
{ }
Expression*
expr() const
{ return this->expr_; }
protected:
int
do_traverse(Traverse* traverse);
bool
do_is_static_initializer() const;
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*)
{ this->expr_->determine_type_no_context(); }
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The type to convert to.
Type* type_;
// The expression to convert.
Expression* expr_;
};
// A Unary expression.
class Unary_expression : public Expression
{
public:
Unary_expression(Operator op, Expression* expr, Location location)
: Expression(EXPRESSION_UNARY, location),
op_(op), escapes_(true), create_temp_(false), is_gc_root_(false),
is_slice_init_(false), expr_(expr),
issue_nil_check_(NIL_CHECK_DEFAULT)
{ }
// Return the operator.
Operator
op() const
{ return this->op_; }
// Return the operand.
Expression*
operand() const
{ return this->expr_; }
// Record that an address expression does not escape.
void
set_does_not_escape()
{
go_assert(this->op_ == OPERATOR_AND);
this->escapes_ = false;
}
// Record that this is an address expression which should create a
// temporary variable if necessary. This is used for method calls.
void
set_create_temp()
{
go_assert(this->op_ == OPERATOR_AND);
this->create_temp_ = true;
}
// Record that this is an address expression of a GC root, which is a
// mutable composite literal. This used for registering GC variables.
void
set_is_gc_root()
{
go_assert(this->op_ == OPERATOR_AND);
this->is_gc_root_ = true;
}
// Record that this is an address expression of a slice value initializer,
// which is mutable if the values are not copied to the heap.
void
set_is_slice_init()
{
go_assert(this->op_ == OPERATOR_AND);
this->is_slice_init_ = true;
}
// Call the address_taken method on the operand if necessary.
void
check_operand_address_taken(Gogo*);
// Apply unary opcode OP to UNC, setting NC. Return true if this
// could be done, false if not. On overflow, issues an error and
// sets *ISSUED_ERROR.
static bool
eval_constant(Operator op, const Numeric_constant* unc,
Location, Numeric_constant* nc, bool *issued_error);
static Expression*
do_import(Import*);
// Declare that this deref does or does not require an explicit nil check.
void
set_requires_nil_check(bool needed)
{
go_assert(this->op_ == OPERATOR_MULT);
if (needed)
this->issue_nil_check_ = NIL_CHECK_NEEDED;
else
this->issue_nil_check_ = NIL_CHECK_NOT_NEEDED;
}
protected:
int
do_traverse(Traverse* traverse)
{ return Expression::traverse(&this->expr_, traverse); }
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_is_constant() const;
bool
do_is_static_initializer() const;
bool
do_numeric_constant_value(Numeric_constant*) const;
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_unary(this->op_, this->expr_->copy(),
this->location());
}
bool
do_must_eval_subexpressions_in_order(int*) const
{ return this->op_ == OPERATOR_MULT; }
bool
do_is_addressable() const
{ return this->op_ == OPERATOR_MULT; }
Bexpression*
do_get_backend(Translate_context*);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
void
do_issue_nil_check()
{
if (this->op_ == OPERATOR_MULT)
this->set_requires_nil_check(true);
}
private:
static bool
base_is_static_initializer(Expression*);
// Return a determination as to whether this dereference expression
// requires a nil check.
Nil_check_classification
requires_nil_check(Gogo*);
// The unary operator to apply.
Operator op_;
// Normally true. False if this is an address expression which does
// not escape the current function.
bool escapes_;
// True if this is an address expression which should create a
// temporary variable if necessary.
bool create_temp_;
// True if this is an address expression for a GC root. A GC root is a
// special struct composite literal that is mutable when addressed, meaning
// it cannot be represented as an immutable_struct in the backend.
bool is_gc_root_;
// True if this is an address expression for a slice value with an immutable
// initializer. The initializer for a slice's value pointer has an array
// type, meaning it cannot be represented as an immutable_struct in the
// backend.
bool is_slice_init_;
// The operand.
Expression* expr_;
// Whether or not to issue a nil check for this expression if its address
// is being taken.
Nil_check_classification issue_nil_check_;
};
// A binary expression.
class Binary_expression : public Expression
{
public:
Binary_expression(Operator op, Expression* left, Expression* right,
Location location)
: Expression(EXPRESSION_BINARY, location),
op_(op), left_(left), right_(right), type_(NULL)
{ }
// Return the operator.
Operator
op()
{ return this->op_; }
// Return the left hand expression.
Expression*
left()
{ return this->left_; }
// Return the right hand expression.
Expression*
right()
{ return this->right_; }
// Apply binary opcode OP to LEFT_NC and RIGHT_NC, setting NC.
// Return true if this could be done, false if not. Issue errors at
// LOCATION as appropriate, and sets *ISSUED_ERROR if it did.
static bool
eval_constant(Operator op, Numeric_constant* left_nc,
Numeric_constant* right_nc, Location location,
Numeric_constant* nc, bool* issued_error);
// Compare constants LEFT_NC and RIGHT_NC according to OP, setting
// *RESULT. Return true if this could be done, false if not. Issue
// errors at LOCATION as appropriate.
static bool
compare_constant(Operator op, Numeric_constant* left_nc,
Numeric_constant* right_nc, Location location,
bool* result);
static Expression*
do_import(Import*);
// Report an error if OP can not be applied to TYPE. Return whether
// it can. OTYPE is the type of the other operand.
static bool
check_operator_type(Operator op, Type* type, Type* otype, Location);
// Set *RESULT_TYPE to the resulting type when OP is applied to
// operands of type LEFT_TYPE and RIGHT_TYPE. Return true on
// success, false on failure.
static bool
operation_type(Operator op, Type* left_type, Type* right_type,
Type** result_type);
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_is_constant() const
{ return this->left_->is_constant() && this->right_->is_constant(); }
bool
do_is_static_initializer() const;
bool
do_numeric_constant_value(Numeric_constant*) const;
bool
do_discarding_value();
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_binary(this->op_, this->left_->copy(),
this->right_->copy(), this->location());
}
Bexpression*
do_get_backend(Translate_context*);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
private:
static bool
cmp_to_bool(Operator op, int cmp);
static bool
eval_integer(Operator op, const Numeric_constant*, const Numeric_constant*,
Location, Numeric_constant*);
static bool
eval_float(Operator op, const Numeric_constant*, const Numeric_constant*,
Location, Numeric_constant*);
static bool
eval_complex(Operator op, const Numeric_constant*, const Numeric_constant*,
Location, Numeric_constant*);
static bool
compare_integer(const Numeric_constant*, const Numeric_constant*, int*);
static bool
compare_float(const Numeric_constant*, const Numeric_constant *, int*);
static bool
compare_complex(const Numeric_constant*, const Numeric_constant*, int*);
Expression*
lower_struct_comparison(Gogo*, Statement_inserter*);
Expression*
lower_array_comparison(Gogo*, Statement_inserter*);
Expression*
lower_interface_value_comparison(Gogo*, Statement_inserter*);
Expression*
lower_compare_to_memcmp(Gogo*, Statement_inserter*);
Expression*
operand_address(Statement_inserter*, Expression*);
// The binary operator to apply.
Operator op_;
// The left hand side operand.
Expression* left_;
// The right hand side operand.
Expression* right_;
// The type of a comparison operation.
Type* type_;
};
// A string concatenation expression. This is a sequence of strings
// added together. It is created when lowering Binary_expression.
class String_concat_expression : public Expression
{
public:
String_concat_expression(Expression_list* exprs)
: Expression(EXPRESSION_STRING_CONCAT, exprs->front()->location()),
exprs_(exprs)
{ }
// Return the list of string expressions to be concatenated.
Expression_list*
exprs()
{ return this->exprs_; }
protected:
int
do_traverse(Traverse* traverse)
{ return this->exprs_->traverse(traverse); }
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int)
{ return this; }
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_is_constant() const;
bool
do_is_static_initializer() const;
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{ return Expression::make_string_concat(this->exprs_->copy()); }
Bexpression*
do_get_backend(Translate_context*)
{ go_unreachable(); }
void
do_export(Export*) const
{ go_unreachable(); }
void
do_dump_expression(Ast_dump_context*) const;
private:
// The string expressions to concatenate.
Expression_list* exprs_;
};
// A call expression. The go statement needs to dig inside this.
class Call_expression : public Expression
{
public:
Call_expression(Expression* fn, Expression_list* args, bool is_varargs,
Location location)
: Expression(EXPRESSION_CALL, location),
fn_(fn), args_(args), type_(NULL), call_(NULL), call_temp_(NULL)
, expected_result_count_(0), is_varargs_(is_varargs),
varargs_are_lowered_(false), types_are_determined_(false),
is_deferred_(false), is_concurrent_(false), issued_error_(false),
is_multi_value_arg_(false), is_flattened_(false)
{ }
// The function to call.
Expression*
fn() const
{ return this->fn_; }
// The arguments.
Expression_list*
args()
{ return this->args_; }
const Expression_list*
args() const
{ return this->args_; }
// Get the function type.
Function_type*
get_function_type() const;
// Return the number of values this call will return.
size_t
result_count() const;
// Return the temporary variable that holds the results. This is
// only valid after the expression has been lowered, and is only
// valid for calls which return multiple results.
Temporary_statement*
results() const;
// Set the number of results expected from this call. This is used
// when the call appears in a context that expects multiple results,
// such as a, b = f().
void
set_expected_result_count(size_t);
// Return whether this is a call to the predeclared function
// recover.
bool
is_recover_call() const;
// Set the argument for a call to recover.
void
set_recover_arg(Expression*);
// Whether the last argument is a varargs argument (f(a...)).
bool
is_varargs() const
{ return this->is_varargs_; }
// Return whether varargs have already been lowered.
bool
varargs_are_lowered() const
{ return this->varargs_are_lowered_; }
// Note that varargs have already been lowered.
void
set_varargs_are_lowered()
{ this->varargs_are_lowered_ = true; }
// Whether this call is being deferred.
bool
is_deferred() const
{ return this->is_deferred_; }
// Note that the call is being deferred.
void
set_is_deferred()
{ this->is_deferred_ = true; }
// Whether this call is concurrently executed.
bool
is_concurrent() const
{ return this->is_concurrent_; }
// Note that the call is concurrently executed.
void
set_is_concurrent()
{ this->is_concurrent_ = true; }
// We have found an error with this call expression; return true if
// we should report it.
bool
issue_error();
// Whether or not this call contains errors, either in the call or the
// arguments to the call.
bool
is_erroneous_call();
// Whether this call returns multiple results that are used as an
// multi-valued argument.
bool
is_multi_value_arg() const
{ return this->is_multi_value_arg_; }
// Note this call is used as a multi-valued argument.
void
set_is_multi_value_arg()
{ this->is_multi_value_arg_ = true; }
// Whether this is a call to builtin function.
virtual bool
is_builtin()
{ return false; }
// Convert to a Builtin_call_expression, or return NULL.
inline Builtin_call_expression*
builtin_call_expression();
protected:
int
do_traverse(Traverse*);
virtual Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
virtual Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_discarding_value()
{ return true; }
virtual Type*
do_type();
virtual void
do_determine_type(const Type_context*);
virtual void
do_check_types(Gogo*);
Expression*
do_copy();
bool
do_must_eval_in_order() const;
virtual Bexpression*
do_get_backend(Translate_context*);
virtual bool
do_is_recover_call() const;
virtual void
do_set_recover_arg(Expression*);
// Let a builtin expression change the argument list.
void
set_args(Expression_list* args)
{ this->args_ = args; }
// Let a builtin expression lower varargs.
void
lower_varargs(Gogo*, Named_object* function, Statement_inserter* inserter,
Type* varargs_type, size_t param_count,
Slice_storage_escape_disp escape_disp);
// Let a builtin expression check whether types have been
// determined.
bool
determining_types();
void
do_dump_expression(Ast_dump_context*) const;
private:
bool
check_argument_type(int, const Type*, const Type*, Location, bool);
Expression*
lower_to_builtin(Named_object**, const char*, int);
Expression*
interface_method_function(Interface_field_reference_expression*,
Expression**, Location);
Bexpression*
set_results(Translate_context*);
// The function to call.
Expression* fn_;
// The arguments to pass. This may be NULL if there are no
// arguments.
Expression_list* args_;
// The type of the expression, to avoid recomputing it.
Type* type_;
// The backend expression for the call, used for a call which returns a tuple.
Bexpression* call_;
// A temporary variable to store this call if the function returns a tuple.
Temporary_statement* call_temp_;
// If not 0, the number of results expected from this call, when
// used in a context that expects multiple values.
size_t expected_result_count_;
// True if the last argument is a varargs argument (f(a...)).
bool is_varargs_;
// True if varargs have already been lowered.
bool varargs_are_lowered_;
// True if types have been determined.
bool types_are_determined_;
// True if the call is an argument to a defer statement.
bool is_deferred_;
// True if the call is an argument to a go statement.
bool is_concurrent_;
// True if we reported an error about a mismatch between call
// results and uses. This is to avoid producing multiple errors
// when there are multiple Call_result_expressions.
bool issued_error_;
// True if this call is used as an argument that returns multiple results.
bool is_multi_value_arg_;
// True if this expression has already been flattened.
bool is_flattened_;
};
// A call expression to a builtin function.
class Builtin_call_expression : public Call_expression
{
public:
Builtin_call_expression(Gogo* gogo, Expression* fn, Expression_list* args,
bool is_varargs, Location location);
// The builtin functions.
enum Builtin_function_code
{
BUILTIN_INVALID,
// Predeclared builtin functions.
BUILTIN_APPEND,
BUILTIN_CAP,
BUILTIN_CLOSE,
BUILTIN_COMPLEX,
BUILTIN_COPY,
BUILTIN_DELETE,
BUILTIN_IMAG,
BUILTIN_LEN,
BUILTIN_MAKE,
BUILTIN_NEW,
BUILTIN_PANIC,
BUILTIN_PRINT,
BUILTIN_PRINTLN,
BUILTIN_REAL,
BUILTIN_RECOVER,
// Builtin functions from the unsafe package.
BUILTIN_ALIGNOF,
BUILTIN_OFFSETOF,
BUILTIN_SIZEOF
};
Builtin_function_code
code()
{ return this->code_; }
// This overrides Call_expression::is_builtin.
bool
is_builtin()
{ return true; }
// Return whether EXPR, of array type, is a constant if passed to
// len or cap.
static bool
array_len_is_constant(Expression* expr);
protected:
// This overrides Call_expression::do_lower.
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
bool
do_is_constant() const;
bool
do_numeric_constant_value(Numeric_constant*) const;
bool
do_discarding_value();
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
do_export(Export*) const;
virtual bool
do_is_recover_call() const;
virtual void
do_set_recover_arg(Expression*);
private:
Expression*
one_arg() const;
bool
check_one_arg();
static Type*
real_imag_type(Type*);
static Type*
complex_type(Type*);
Expression*
lower_make(Statement_inserter*);
Expression* flatten_append(Gogo*, Named_object*, Statement_inserter*);
bool
check_int_value(Expression*, bool is_length, bool* small);
// A pointer back to the general IR structure. This avoids a global
// variable, or passing it around everywhere.
Gogo* gogo_;
// The builtin function being called.
Builtin_function_code code_;
// Used to stop endless loops when the length of an array uses len
// or cap of the array itself.
mutable bool seen_;
// Whether the argument is set for calls to BUILTIN_RECOVER.
bool recover_arg_is_set_;
};
inline Builtin_call_expression*
Call_expression::builtin_call_expression()
{
return (this->is_builtin()
? static_cast<Builtin_call_expression*>(this)
: NULL);
}
// A single result from a call which returns multiple results.
class Call_result_expression : public Expression
{
public:
Call_result_expression(Call_expression* call, unsigned int index)
: Expression(EXPRESSION_CALL_RESULT, call->location()),
call_(call), index_(index)
{ }
Expression*
call() const
{ return this->call_; }
unsigned int
index() const
{ return this->index_; }
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return new Call_result_expression(this->call_->call_expression(),
this->index_);
}
bool
do_must_eval_in_order() const
{ return true; }
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The underlying call expression.
Expression* call_;
// Which result we want.
unsigned int index_;
};
// An expression which represents a pointer to a function.
class Func_expression : public Expression
{
public:
Func_expression(Named_object* function, Expression* closure,
Location location)
: Expression(EXPRESSION_FUNC_REFERENCE, location),
function_(function), closure_(closure),
runtime_code_(Runtime::NUMBER_OF_FUNCTIONS)
{ }
// Return the object associated with the function.
Named_object*
named_object() const
{ return this->function_; }
// Return the closure for this function. This will return NULL if
// the function has no closure, which is the normal case.
Expression*
closure()
{ return this->closure_; }
// Return whether this is a reference to a runtime function.
bool
is_runtime_function() const
{ return this->runtime_code_ != Runtime::NUMBER_OF_FUNCTIONS; }
// Return the runtime code for this function expression.
// Returns Runtime::NUMBER_OF_FUNCTIONS if this is not a reference to a
// runtime function.
Runtime::Function
runtime_code() const
{ return this->runtime_code_; }
// Set the runtime code for this function expression.
void
set_runtime_code(Runtime::Function code)
{ this->runtime_code_ = code; }
// Return a backend expression for the code of a function.
static Bexpression*
get_code_pointer(Gogo*, Named_object* function, Location loc);
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*)
{
if (this->closure_ != NULL)
this->closure_->determine_type_no_context();
}
Expression*
do_copy()
{
return Expression::make_func_reference(this->function_,
(this->closure_ == NULL
? NULL
: this->closure_->copy()),
this->location());
}
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The function itself.
Named_object* function_;
// A closure. This is normally NULL. For a nested function, it may
// be a struct holding pointers to all the variables referenced by
// this function and defined in enclosing functions.
Expression* closure_;
// The runtime code for the referenced function.
Runtime::Function runtime_code_;
};
// A function descriptor. A function descriptor is a struct with a
// single field pointing to the function code. This is used for
// functions without closures.
class Func_descriptor_expression : public Expression
{
public:
Func_descriptor_expression(Named_object* fn);
// Make the function descriptor type, so that it can be converted.
static void
make_func_descriptor_type();
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*)
{ }
Expression*
do_copy()
{ return Expression::make_func_descriptor(this->fn_); }
bool
do_is_addressable() const
{ return true; }
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context* context) const;
private:
// The type of all function descriptors.
static Type* descriptor_type;
// The function for which this is the descriptor.
Named_object* fn_;
// The descriptor variable.
Bvariable* dvar_;
};
// A reference to an unknown name.
class Unknown_expression : public Parser_expression
{
public:
Unknown_expression(Named_object* named_object, Location location)
: Parser_expression(EXPRESSION_UNKNOWN_REFERENCE, location),
named_object_(named_object), no_error_message_(false),
is_composite_literal_key_(false)
{ }
// The associated named object.
Named_object*
named_object() const
{ return this->named_object_; }
// The name of the identifier which was unknown.
const std::string&
name() const;
// Call this to indicate that we should not give an error if this
// name is never defined. This is used to avoid knock-on errors
// during an erroneous parse.
void
set_no_error_message()
{ this->no_error_message_ = true; }
// Note that this expression is being used as the key in a composite
// literal, so it may be OK if it is not resolved.
void
set_is_composite_literal_key()
{ this->is_composite_literal_key_ = true; }
// Note that this expression should no longer be treated as a
// composite literal key.
void
clear_is_composite_literal_key()
{ this->is_composite_literal_key_ = false; }
protected:
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_copy()
{ return new Unknown_expression(this->named_object_, this->location()); }
void
do_dump_expression(Ast_dump_context*) const;
private:
// The unknown name.
Named_object* named_object_;
// True if we should not give errors if this is undefined. This is
// used if there was a parse failure.
bool no_error_message_;
// True if this is the key in a composite literal.
bool is_composite_literal_key_;
};
// An index expression. This is lowered to an array index, a string
// index, or a map index.
class Index_expression : public Parser_expression
{
public:
Index_expression(Expression* left, Expression* start, Expression* end,
Expression* cap, Location location)
: Parser_expression(EXPRESSION_INDEX, location),
left_(left), start_(start), end_(end), cap_(cap)
{ }
// Dump an index expression, i.e. an expression of the form
// expr[expr], expr[expr:expr], or expr[expr:expr:expr] to a dump context.
static void
dump_index_expression(Ast_dump_context*, const Expression* expr,
const Expression* start, const Expression* end,
const Expression* cap);
protected:
int
do_traverse(Traverse*);
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_copy()
{
return new Index_expression(this->left_->copy(), this->start_->copy(),
(this->end_ == NULL
? NULL
: this->end_->copy()),
(this->cap_ == NULL
? NULL
: this->cap_->copy()),
this->location());
}
bool
do_must_eval_subexpressions_in_order(int* skip) const
{
*skip = 1;
return true;
}
void
do_dump_expression(Ast_dump_context*) const;
void
do_issue_nil_check()
{ this->left_->issue_nil_check(); }
private:
// The expression being indexed.
Expression* left_;
// The first index.
Expression* start_;
// The second index. This is NULL for an index, non-NULL for a
// slice.
Expression* end_;
// The capacity argument. This is NULL for indices and slices that use the
// default capacity, non-NULL for indices and slices that specify the
// capacity.
Expression* cap_;
};
// An array index. This is used for both indexing and slicing.
class Array_index_expression : public Expression
{
public:
Array_index_expression(Expression* array, Expression* start,
Expression* end, Expression* cap, Location location)
: Expression(EXPRESSION_ARRAY_INDEX, location),
array_(array), start_(start), end_(end), cap_(cap), type_(NULL),
is_lvalue_(false)
{ }
// Return the array.
Expression*
array()
{ return this->array_; }
const Expression*
array() const
{ return this->array_; }
// Return the index of a simple index expression, or the start index
// of a slice expression.
Expression*
start()
{ return this->start_; }
const Expression*
start() const
{ return this->start_; }
// Return the end index of a slice expression. This is NULL for a
// simple index expression.
Expression*
end()
{ return this->end_; }
const Expression*
end() const
{ return this->end_; }
// Return whether this array index expression appears in an lvalue
// (left hand side of assignment) context.
bool
is_lvalue() const
{ return this->is_lvalue_; }
// Update this array index expression to indicate that it appears
// in a left-hand-side or lvalue context.
void
set_is_lvalue()
{ this->is_lvalue_ = true; }
protected:
int
do_traverse(Traverse*);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_array_index(this->array_->copy(),
this->start_->copy(),
(this->end_ == NULL
? NULL
: this->end_->copy()),
(this->cap_ == NULL
? NULL
: this->cap_->copy()),
this->location());
}
bool
do_must_eval_subexpressions_in_order(int* skip) const
{
*skip = 1;
return true;
}
bool
do_is_addressable() const;
void
do_address_taken(bool escapes);
void
do_issue_nil_check()
{ this->array_->issue_nil_check(); }
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The array we are getting a value from.
Expression* array_;
// The start or only index.
Expression* start_;
// The end index of a slice. This may be NULL for a simple array
// index, or it may be a nil expression for the length of the array.
Expression* end_;
// The capacity argument of a slice. This may be NULL for an array index or
// slice.
Expression* cap_;
// The type of the expression.
Type* type_;
// Whether expr appears in an lvalue context.
bool is_lvalue_;
};
// A string index. This is used for both indexing and slicing.
class String_index_expression : public Expression
{
public:
String_index_expression(Expression* string, Expression* start,
Expression* end, Location location)
: Expression(EXPRESSION_STRING_INDEX, location),
string_(string), start_(start), end_(end)
{ }
// Return the string being indexed.
Expression*
string() const
{ return this->string_; }
protected:
int
do_traverse(Traverse*);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_string_index(this->string_->copy(),
this->start_->copy(),
(this->end_ == NULL
? NULL
: this->end_->copy()),
this->location());
}
bool
do_must_eval_subexpressions_in_order(int* skip) const
{
*skip = 1;
return true;
}
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The string we are getting a value from.
Expression* string_;
// The start or only index.
Expression* start_;
// The end index of a slice. This may be NULL for a single index,
// or it may be a nil expression for the length of the string.
Expression* end_;
};
// An index into a map.
class Map_index_expression : public Expression
{
public:
Map_index_expression(Expression* map, Expression* index,
Location location)
: Expression(EXPRESSION_MAP_INDEX, location),
map_(map), index_(index), value_pointer_(NULL)
{ }
// Return the map.
Expression*
map()
{ return this->map_; }
const Expression*
map() const
{ return this->map_; }
// Return the index.
Expression*
index()
{ return this->index_; }
const Expression*
index() const
{ return this->index_; }
// Get the type of the map being indexed.
Map_type*
get_map_type() const;
// Return an expression for the map index. This returns an
// expression that evaluates to a pointer to a value in the map. If
// the key is not present in the map, this will return a pointer to
// the zero value.
Expression*
get_value_pointer(Gogo*);
protected:
int
do_traverse(Traverse*);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_map_index(this->map_->copy(),
this->index_->copy(),
this->location());
}
bool
do_must_eval_subexpressions_in_order(int* skip) const
{
*skip = 1;
return true;
}
// A map index expression is an lvalue but it is not addressable.
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The map we are looking into.
Expression* map_;
// The index.
Expression* index_;
// A pointer to the value at this index.
Expression* value_pointer_;
};
// An expression which represents a method bound to its first
// argument.
class Bound_method_expression : public Expression
{
public:
Bound_method_expression(Expression* expr, const Method *method,
Named_object* function, Location location)
: Expression(EXPRESSION_BOUND_METHOD, location),
expr_(expr), expr_type_(NULL), method_(method), function_(function)
{ }
// Return the object which is the first argument.
Expression*
first_argument()
{ return this->expr_; }
// Return the implicit type of the first argument. This will be
// non-NULL when using a method from an anonymous field without
// using an explicit stub.
Type*
first_argument_type() const
{ return this->expr_type_; }
// Return the method.
const Method*
method() const
{ return this->method_; }
// Return the function to call.
Named_object*
function() const
{ return this->function_; }
// Set the implicit type of the expression.
void
set_first_argument_type(Type* type)
{ this->expr_type_ = type; }
// Create a thunk to call FUNCTION, for METHOD, when it is used as
// part of a method value.
static Named_object*
create_thunk(Gogo*, const Method* method, Named_object* function);
protected:
int
do_traverse(Traverse*);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return new Bound_method_expression(this->expr_->copy(), this->method_,
this->function_, this->location());
}
Bexpression*
do_get_backend(Translate_context*)
{ go_unreachable(); }
void
do_dump_expression(Ast_dump_context*) const;
private:
// A mapping from method functions to the thunks we have created for
// them.
typedef Unordered_map(Named_object*, Named_object*) Method_value_thunks;
static Method_value_thunks method_value_thunks;
// The object used to find the method. This is passed to the method
// as the first argument.
Expression* expr_;
// The implicit type of the object to pass to the method. This is
// NULL in the normal case, non-NULL when using a method from an
// anonymous field which does not require a stub.
Type* expr_type_;
// The method.
const Method* method_;
// The function to call. This is not the same as
// method_->named_object() when the method has a stub. This will be
// the real function rather than the stub.
Named_object* function_;
};
// A reference to a field in a struct.
class Field_reference_expression : public Expression
{
public:
Field_reference_expression(Expression* expr, unsigned int field_index,
Location location)
: Expression(EXPRESSION_FIELD_REFERENCE, location),
expr_(expr), field_index_(field_index), implicit_(false), called_fieldtrack_(false)
{ }
// Return the struct expression.
Expression*
expr() const
{ return this->expr_; }
// Return the field index.
unsigned int
field_index() const
{ return this->field_index_; }
// Return whether this node was implied by an anonymous field.
bool
implicit() const
{ return this->implicit_; }
void
set_implicit(bool implicit)
{ this->implicit_ = implicit; }
// Set the struct expression. This is used when parsing.
void
set_struct_expression(Expression* expr)
{
go_assert(this->expr_ == NULL);
this->expr_ = expr;
}
protected:
int
do_traverse(Traverse* traverse)
{ return Expression::traverse(&this->expr_, traverse); }
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Type*
do_type();
void
do_determine_type(const Type_context*)
{ this->expr_->determine_type_no_context(); }
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_field_reference(this->expr_->copy(),
this->field_index_,
this->location());
}
bool
do_is_addressable() const
{ return this->expr_->is_addressable(); }
void
do_address_taken(bool escapes)
{ this->expr_->address_taken(escapes); }
void
do_issue_nil_check()
{ this->expr_->issue_nil_check(); }
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The expression we are looking into. This should have a type of
// struct.
Expression* expr_;
// The zero-based index of the field we are retrieving.
unsigned int field_index_;
// Whether this node was emitted implicitly for an embedded field,
// that is, expr_ is not the expr_ of the original user node.
bool implicit_;
// Whether we have already emitted a fieldtrack call.
bool called_fieldtrack_;
};
// A reference to a field of an interface.
class Interface_field_reference_expression : public Expression
{
public:
Interface_field_reference_expression(Expression* expr,
const std::string& name,
Location location)
: Expression(EXPRESSION_INTERFACE_FIELD_REFERENCE, location),
expr_(expr), name_(name)
{ }
// Return the expression for the interface object.
Expression*
expr()
{ return this->expr_; }
// Return the name of the method to call.
const std::string&
name() const
{ return this->name_; }
// Create a thunk to call the method NAME in TYPE when it is used as
// part of a method value.
static Named_object*
create_thunk(Gogo*, Interface_type* type, const std::string& name);
// Return an expression for the pointer to the function to call.
Expression*
get_function();
// Return an expression for the first argument to pass to the interface
// function. This is the real object associated with the interface object.
Expression*
get_underlying_object();
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type();
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_interface_field_reference(this->expr_->copy(),
this->name_,
this->location());
}
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// A mapping from interface types to a list of thunks we have
// created for methods.
typedef std::vector<std::pair<std::string, Named_object*> > Method_thunks;
typedef Unordered_map(Interface_type*, Method_thunks*)
Interface_method_thunks;
static Interface_method_thunks interface_method_thunks;
// The expression for the interface object. This should have a type
// of interface or pointer to interface.
Expression* expr_;
// The field we are retrieving--the name of the method.
std::string name_;
};
// Implement the builtin function new.
class Allocation_expression : public Expression
{
public:
Allocation_expression(Type* type, Location location)
: Expression(EXPRESSION_ALLOCATION, location),
type_(type), allocate_on_stack_(false)
{ }
void
set_allocate_on_stack()
{ this->allocate_on_stack_ = true; }
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*)
{ }
void
do_check_types(Gogo*);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The type we are allocating.
Type* type_;
// Whether or not this is a stack allocation.
bool allocate_on_stack_;
};
// A general composite literal. This is lowered to a type specific
// version.
class Composite_literal_expression : public Parser_expression
{
public:
Composite_literal_expression(Type* type, int depth, bool has_keys,
Expression_list* vals, bool all_are_names,
Location location)
: Parser_expression(EXPRESSION_COMPOSITE_LITERAL, location),
type_(type), depth_(depth), vals_(vals), has_keys_(has_keys),
all_are_names_(all_are_names), key_path_(std::vector<bool>(depth))
{}
// Mark the DEPTH entry of KEY_PATH as containing a key.
void
update_key_path(size_t depth)
{
go_assert(depth < this->key_path_.size());
this->key_path_[depth] = true;
}
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
Expression*
do_copy();
void
do_dump_expression(Ast_dump_context*) const;
private:
Expression*
lower_struct(Gogo*, Type*);
Expression*
lower_array(Type*);
Expression*
make_array(Type*, const std::vector<unsigned long>*, Expression_list*);
Expression*
lower_map(Gogo*, Named_object*, Statement_inserter*, Type*);
// The type of the composite literal.
Type* type_;
// The depth within a list of composite literals within a composite
// literal, when the type is omitted.
int depth_;
// The values to put in the composite literal.
Expression_list* vals_;
// If this is true, then VALS_ is a list of pairs: a key and a
// value. In an array initializer, a missing key will be NULL.
bool has_keys_;
// If this is true, then HAS_KEYS_ is true, and every key is a
// simple identifier.
bool all_are_names_;
// A complement to DEPTH that indicates for each level starting from 0 to
// DEPTH-1 whether or not this composite literal is nested inside of key or
// a value. This is used to decide which type to use when given a map literal
// with omitted key types.
std::vector<bool> key_path_;
};
// Helper/mixin class for struct and array construction expressions;
// encapsulates a list of values plus an optional traversal order
// recording the order in which the values should be visited.
class Ordered_value_list
{
public:
Ordered_value_list(Expression_list* vals)
: vals_(vals), traverse_order_(NULL)
{ }
Expression_list*
vals() const
{ return this->vals_; }
int
traverse_vals(Traverse* traverse);
// Get the traversal order (may be NULL)
std::vector<unsigned long>*
traverse_order()
{ return traverse_order_; }
// Set the traversal order, used to ensure that we implement the
// order of evaluation rules. Takes ownership of the argument.
void
set_traverse_order(std::vector<unsigned long>* traverse_order)
{ this->traverse_order_ = traverse_order; }
private:
// The list of values, in order of the fields in the struct or in
// order of indices in an array. A NULL value of vals_ means that
// all fields/slots should be zero-initialized; a single NULL entry
// in the list means that the corresponding field or array slot
// should be zero-initialized.
Expression_list* vals_;
// If not NULL, the order in which to traverse vals_. This is used
// so that we implement the order of evaluation rules correctly.
std::vector<unsigned long>* traverse_order_;
};
// Construct a struct.
class Struct_construction_expression : public Expression,
public Ordered_value_list
{
public:
Struct_construction_expression(Type* type, Expression_list* vals,
Location location)
: Expression(EXPRESSION_STRUCT_CONSTRUCTION, location),
Ordered_value_list(vals),
type_(type)
{ }
// Return whether this is a constant initializer.
bool
is_constant_struct() const;
protected:
int
do_traverse(Traverse* traverse);
bool
do_is_static_initializer() const;
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy();
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Bexpression*
do_get_backend(Translate_context*);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
private:
// The type of the struct to construct.
Type* type_;
};
// Construct an array. This class is not used directly; instead we
// use the child classes, Fixed_array_construction_expression and
// Slice_construction_expression.
class Array_construction_expression : public Expression,
public Ordered_value_list
{
protected:
Array_construction_expression(Expression_classification classification,
Type* type,
const std::vector<unsigned long>* indexes,
Expression_list* vals, Location location)
: Expression(classification, location),
Ordered_value_list(vals),
type_(type), indexes_(indexes)
{ go_assert(indexes == NULL || indexes->size() == vals->size()); }
public:
// Return whether this is a constant initializer.
bool
is_constant_array() const;
// Return the number of elements.
size_t
element_count() const
{ return this->vals() == NULL ? 0 : this->vals()->size(); }
protected:
virtual int
do_traverse(Traverse* traverse);
bool
do_is_static_initializer() const;
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
void
do_export(Export*) const;
// The indexes.
const std::vector<unsigned long>*
indexes()
{ return this->indexes_; }
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
// Get the backend constructor for the array values.
Bexpression*
get_constructor(Translate_context* context, Btype* btype);
void
do_dump_expression(Ast_dump_context*) const;
virtual void
dump_slice_storage_expression(Ast_dump_context*) const { }
private:
// The type of the array to construct.
Type* type_;
// The list of indexes into the array, one for each value. This may
// be NULL, in which case the indexes start at zero and increment.
const std::vector<unsigned long>* indexes_;
};
// Construct a fixed array.
class Fixed_array_construction_expression :
public Array_construction_expression
{
public:
Fixed_array_construction_expression(Type* type,
const std::vector<unsigned long>* indexes,
Expression_list* vals, Location location);
protected:
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
};
// Construct a slice.
class Slice_construction_expression : public Array_construction_expression
{
public:
Slice_construction_expression(Type* type,
const std::vector<unsigned long>* indexes,
Expression_list* vals, Location location);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
// Record that the storage for this slice (e.g. vals) cannot escape,
// hence it can be stack-allocated.
void
set_storage_does_not_escape()
{
this->storage_escapes_ = false;
}
protected:
// Note that taking the address of a slice literal is invalid.
int
do_traverse(Traverse* traverse);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
dump_slice_storage_expression(Ast_dump_context* ast_dump_context) const;
// Create an array value for the constructed slice. Invoked during
// flattening if slice storage does not escape, otherwise invoked
// later on during do_get_backend().
Expression*
create_array_val();
private:
// The type of the values in this slice.
Type* valtype_;
// Array value expression, optionally filled in during flattening.
Expression* array_val_;
// Slice storage expression, optionally filled in during flattening.
Expression* slice_storage_;
// Normally true. Can be set to false if we know that the resulting
// storage for the slice cannot escape.
bool storage_escapes_;
};
// Construct a map.
class Map_construction_expression : public Expression
{
public:
Map_construction_expression(Type* type, Expression_list* vals,
Location location)
: Expression(EXPRESSION_MAP_CONSTRUCTION, location),
type_(type), vals_(vals), element_type_(NULL), constructor_temp_(NULL)
{ go_assert(vals == NULL || vals->size() % 2 == 0); }
Expression_list*
vals() const
{ return this->vals_; }
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*);
void
do_check_types(Gogo*);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
do_export(Export*) const;
void
do_dump_expression(Ast_dump_context*) const;
private:
// The type of the map to construct.
Type* type_;
// The list of values.
Expression_list* vals_;
// The type of the key-value pair struct for each map element.
Struct_type* element_type_;
// A temporary reference to the variable storing the constructor initializer.
Temporary_statement* constructor_temp_;
};
// A type guard expression.
class Type_guard_expression : public Expression
{
public:
Type_guard_expression(Expression* expr, Type* type, Location location)
: Expression(EXPRESSION_TYPE_GUARD, location),
expr_(expr), type_(type)
{ }
// Return the expression to convert.
Expression*
expr()
{ return this->expr_; }
// Return the type to which to convert.
Type*
type()
{ return this->type_; }
protected:
int
do_traverse(Traverse* traverse);
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*)
{ this->expr_->determine_type_no_context(); }
void
do_check_types(Gogo*);
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The expression to convert.
Expression* expr_;
// The type to which to convert.
Type* type_;
};
// Class Heap_expression.
// When you take the address of an escaping expression, it is allocated
// on the heap. This class implements that.
class Heap_expression : public Expression
{
public:
Heap_expression(Expression* expr, Location location)
: Expression(EXPRESSION_HEAP, location),
expr_(expr), allocate_on_stack_(false)
{ }
Expression*
expr() const
{ return this->expr_; }
void
set_allocate_on_stack()
{ this->allocate_on_stack_ = true; }
protected:
int
do_traverse(Traverse* traverse)
{ return Expression::traverse(&this->expr_, traverse); }
Type*
do_type();
void
do_determine_type(const Type_context*)
{ this->expr_->determine_type_no_context(); }
Expression*
do_copy()
{
return Expression::make_heap_expression(this->expr_->copy(),
this->location());
}
Bexpression*
do_get_backend(Translate_context*);
// We only export global objects, and the parser does not generate
// this in global scope.
void
do_export(Export*) const
{ go_unreachable(); }
void
do_dump_expression(Ast_dump_context*) const;
private:
// The expression which is being put on the heap.
Expression* expr_;
// Whether or not this is a stack allocation.
bool allocate_on_stack_;
};
// A receive expression.
class Receive_expression : public Expression
{
public:
Receive_expression(Expression* channel, Location location)
: Expression(EXPRESSION_RECEIVE, location),
channel_(channel), temp_receiver_(NULL)
{ }
// Return the channel.
Expression*
channel()
{ return this->channel_; }
protected:
int
do_traverse(Traverse* traverse)
{ return Expression::traverse(&this->channel_, traverse); }
bool
do_discarding_value()
{ return true; }
Type*
do_type();
Expression*
do_flatten(Gogo*, Named_object*, Statement_inserter*);
void
do_determine_type(const Type_context*)
{ this->channel_->determine_type_no_context(); }
void
do_check_types(Gogo*);
Expression*
do_copy()
{
return Expression::make_receive(this->channel_->copy(), this->location());
}
bool
do_must_eval_in_order() const
{ return true; }
Bexpression*
do_get_backend(Translate_context*);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The channel from which we are receiving.
Expression* channel_;
// A temporary reference to the variable storing the received data.
Temporary_statement* temp_receiver_;
};
// Conditional expressions.
class Conditional_expression : public Expression
{
public:
Conditional_expression(Expression* cond, Expression* then_expr,
Expression* else_expr, Location location)
: Expression(EXPRESSION_CONDITIONAL, location),
cond_(cond), then_(then_expr), else_(else_expr)
{}
Expression*
condition() const
{ return this->cond_; }
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*);
Expression*
do_copy()
{
return new Conditional_expression(this->cond_->copy(), this->then_->copy(),
this->else_->copy(), this->location());
}
Bexpression*
do_get_backend(Translate_context* context);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The condition to be checked.
Expression* cond_;
// The expression to execute if the condition is true.
Expression* then_;
// The expression to execute if the condition is false.
Expression* else_;
};
// Compound expressions.
class Compound_expression : public Expression
{
public:
Compound_expression(Expression* init, Expression* expr, Location location)
: Expression(EXPRESSION_COMPOUND, location), init_(init), expr_(expr)
{}
Expression*
init() const
{ return this->init_; }
protected:
int
do_traverse(Traverse*);
Type*
do_type();
void
do_determine_type(const Type_context*);
Expression*
do_copy()
{
return new Compound_expression(this->init_->copy(), this->expr_->copy(),
this->location());
}
Bexpression*
do_get_backend(Translate_context* context);
void
do_dump_expression(Ast_dump_context*) const;
private:
// The expression that is evaluated first and discarded.
Expression* init_;
// The expression that is evaluated and returned.
Expression* expr_;
};
// A backend expression. This is a backend expression wrapped in an
// Expression, for convenience during backend generation.
class Backend_expression : public Expression
{
public:
Backend_expression(Bexpression* bexpr, Type* type, Location location)
: Expression(EXPRESSION_BACKEND, location), bexpr_(bexpr), type_(type)
{}
protected:
int
do_traverse(Traverse*);
// For now these are always valid static initializers. If that
// changes we can change this.
bool
do_is_static_initializer() const
{ return true; }
Type*
do_type()
{ return this->type_; }
void
do_determine_type(const Type_context*)
{ }
Expression*
do_copy();
Bexpression*
do_get_backend(Translate_context*)
{ return this->bexpr_; }
void
do_dump_expression(Ast_dump_context*) const;
private:
// The backend expression we are wrapping.
Bexpression* bexpr_;
// The type of the expression;
Type* type_;
};
// A numeric constant. This is used both for untyped constants and
// for constants that have a type.
class Numeric_constant
{
public:
Numeric_constant()
: classification_(NC_INVALID), type_(NULL)
{ }
~Numeric_constant();
Numeric_constant(const Numeric_constant&);
Numeric_constant& operator=(const Numeric_constant&);
// Set to an unsigned long value.
void
set_unsigned_long(Type*, unsigned long);
// Set to an integer value.
void
set_int(Type*, const mpz_t);
// Set to a rune value.
void
set_rune(Type*, const mpz_t);
// Set to a floating point value.
void
set_float(Type*, const mpfr_t);
// Set to a complex value.
void
set_complex(Type*, const mpc_t);
// Mark numeric constant as invalid.
void
set_invalid()
{ this->classification_ = NC_INVALID; }
// Classifiers.
bool
is_int() const
{ return this->classification_ == Numeric_constant::NC_INT; }
bool
is_rune() const
{ return this->classification_ == Numeric_constant::NC_RUNE; }
bool
is_float() const
{ return this->classification_ == Numeric_constant::NC_FLOAT; }
bool
is_complex() const
{ return this->classification_ == Numeric_constant::NC_COMPLEX; }
bool
is_invalid() const
{ return this->classification_ == Numeric_constant::NC_INVALID; }
// Value retrievers. These will initialize the values as well as
// set them. GET_INT is only valid if IS_INT returns true, and
// likewise respectively.
void
get_int(mpz_t*) const;
void
get_rune(mpz_t*) const;
void
get_float(mpfr_t*) const;
void
get_complex(mpc_t*) const;
// Codes returned by to_unsigned_long.
enum To_unsigned_long
{
// Value is integer and fits in unsigned long.
NC_UL_VALID,
// Value is not integer.
NC_UL_NOTINT,
// Value is integer but is negative.
NC_UL_NEGATIVE,
// Value is non-negative integer but does not fit in unsigned
// long.
NC_UL_BIG
};
// If the value can be expressed as an integer that fits in an
// unsigned long, set *VAL and return NC_UL_VALID. Otherwise return
// one of the other To_unsigned_long codes.
To_unsigned_long
to_unsigned_long(unsigned long* val) const;
// If the value can be expressed as an integer that describes the
// size of an object in memory, set *VAL and return true.
// Otherwise, return false. Currently we use int64_t to represent a
// memory size, as in Type::backend_type_size.
bool
to_memory_size(int64_t* val) const;
// If the value can be expressed as an int, return true and
// initialize and set VAL. This will return false for a value with
// an explicit float or complex type, even if the value is integral.
bool
to_int(mpz_t* val) const;
// If the value can be expressed as a float, return true and
// initialize and set VAL.
bool
to_float(mpfr_t* val) const;
// If the value can be expressed as a complex, return true and
// initialize and set VR and VI.
bool
to_complex(mpc_t* val) const;
// Get the type.
Type*
type() const;
// If the constant can be expressed in TYPE, then set the type of
// the constant to TYPE and return true. Otherwise return false,
// and, if ISSUE_ERROR is true, issue an error message. LOCATION is
// the location to use for the error.
bool
set_type(Type* type, bool issue_error, Location location);
// Return an Expression for this value.
Expression*
expression(Location) const;
private:
void
clear();
To_unsigned_long
mpz_to_unsigned_long(const mpz_t ival, unsigned long *val) const;
To_unsigned_long
mpfr_to_unsigned_long(const mpfr_t fval, unsigned long *val) const;
bool
mpz_to_memory_size(const mpz_t ival, int64_t* val) const;
bool
mpfr_to_memory_size(const mpfr_t fval, int64_t* val) const;
bool
check_int_type(Integer_type*, bool, Location);
bool
check_float_type(Float_type*, bool, Location);
bool
check_complex_type(Complex_type*, bool, Location);
static bool
is_float_neg_zero(const mpfr_t, int bits);
// The kinds of constants.
enum Classification
{
NC_INVALID,
NC_RUNE,
NC_INT,
NC_FLOAT,
NC_COMPLEX
};
// The kind of constant.
Classification classification_;
// The value.
union
{
// If NC_INT or NC_RUNE.
mpz_t int_val;
// If NC_FLOAT.
mpfr_t float_val;
// If NC_COMPLEX.
mpc_t complex_val;
} u_;
// The type if there is one. This will be NULL for an untyped
// constant.
Type* type_;
};
#endif // !defined(GO_EXPRESSIONS_H)
|