1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
// wb.cc -- Add write barriers as needed.
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go-system.h"
#include "go-c.h"
#include "go-diagnostics.h"
#include "operator.h"
#include "lex.h"
#include "types.h"
#include "expressions.h"
#include "statements.h"
#include "runtime.h"
#include "gogo.h"
// Mark variables whose addresses are taken. This has to be done
// before the write barrier pass and after the escape analysis pass.
// It would be nice to do this elsewhere but there isn't an obvious
// place.
class Mark_address_taken : public Traverse
{
public:
Mark_address_taken(Gogo* gogo)
: Traverse(traverse_expressions),
gogo_(gogo)
{ }
int
expression(Expression**);
private:
Gogo* gogo_;
};
// Mark variable addresses taken.
int
Mark_address_taken::expression(Expression** pexpr)
{
Expression* expr = *pexpr;
Unary_expression* ue = expr->unary_expression();
if (ue != NULL)
ue->check_operand_address_taken(this->gogo_);
Array_index_expression* aie = expr->array_index_expression();
if (aie != NULL
&& aie->end() != NULL
&& !aie->array()->type()->is_slice_type())
{
// Slice of an array. The escape analysis models this with
// a child Node representing the address of the array.
bool escapes = false;
Node* n = Node::make_node(expr);
if (n->child() == NULL
|| (n->child()->encoding() & ESCAPE_MASK) != Node::ESCAPE_NONE)
escapes = true;
aie->array()->address_taken(escapes);
}
if (expr->allocation_expression() != NULL)
{
Node* n = Node::make_node(expr);
if ((n->encoding() & ESCAPE_MASK) == Node::ESCAPE_NONE)
expr->allocation_expression()->set_allocate_on_stack();
}
if (expr->heap_expression() != NULL)
{
Node* n = Node::make_node(expr);
if ((n->encoding() & ESCAPE_MASK) == Node::ESCAPE_NONE)
expr->heap_expression()->set_allocate_on_stack();
}
if (expr->slice_literal() != NULL)
{
Node* n = Node::make_node(expr);
if ((n->encoding() & ESCAPE_MASK) == Node::ESCAPE_NONE)
expr->slice_literal()->set_storage_does_not_escape();
}
// Rewrite non-escaping makeslice with constant size to stack allocation.
Unsafe_type_conversion_expression* uce =
expr->unsafe_conversion_expression();
if (uce != NULL
&& uce->type()->is_slice_type()
&& Node::make_node(uce->expr())->encoding() == Node::ESCAPE_NONE
&& uce->expr()->call_expression() != NULL)
{
Call_expression* call = uce->expr()->call_expression();
if (call->fn()->func_expression() != NULL
&& call->fn()->func_expression()->runtime_code() == Runtime::MAKESLICE)
{
Expression* len_arg = call->args()->at(1);
Expression* cap_arg = call->args()->at(2);
Numeric_constant nclen;
Numeric_constant nccap;
unsigned long vlen;
unsigned long vcap;
if (len_arg->numeric_constant_value(&nclen)
&& cap_arg->numeric_constant_value(&nccap)
&& nclen.to_unsigned_long(&vlen) == Numeric_constant::NC_UL_VALID
&& nccap.to_unsigned_long(&vcap) == Numeric_constant::NC_UL_VALID)
{
// Turn it into a slice expression of an addressable array,
// which is allocated on stack.
Location loc = expr->location();
Type* elmt_type = expr->type()->array_type()->element_type();
Expression* len_expr =
Expression::make_integer_ul(vcap, cap_arg->type(), loc);
Type* array_type = Type::make_array_type(elmt_type, len_expr);
Expression* alloc = Expression::make_allocation(array_type, loc);
alloc->allocation_expression()->set_allocate_on_stack();
Expression* array = Expression::make_unary(OPERATOR_MULT, alloc, loc);
Expression* zero = Expression::make_integer_ul(0, len_arg->type(), loc);
Expression* slice =
Expression::make_array_index(array, zero, len_arg, cap_arg, loc);
*pexpr = slice;
}
}
}
return TRAVERSE_CONTINUE;
}
// Check variables and closures do not escape when compiling runtime.
class Check_escape : public Traverse
{
public:
Check_escape(Gogo* gogo)
: Traverse(traverse_expressions | traverse_variables),
gogo_(gogo)
{ }
int
expression(Expression**);
int
variable(Named_object*);
private:
Gogo* gogo_;
};
int
Check_escape::variable(Named_object* no)
{
if ((no->is_variable() && no->var_value()->is_in_heap())
|| (no->is_result_variable()
&& no->result_var_value()->is_in_heap()))
go_error_at(no->location(),
"%s escapes to heap, not allowed in runtime",
no->message_name().c_str());
return TRAVERSE_CONTINUE;
}
int
Check_escape::expression(Expression** pexpr)
{
Expression* expr = *pexpr;
Func_expression* fe = expr->func_expression();
if (fe != NULL && fe->closure() != NULL)
{
Node* n = Node::make_node(expr);
if (n->encoding() == Node::ESCAPE_HEAP)
go_error_at(expr->location(),
"heap-allocated closure, not allowed in runtime");
}
return TRAVERSE_CONTINUE;
}
// Add write barriers to the IR. This are required by the concurrent
// garbage collector. A write barrier is needed for any write of a
// pointer into memory controlled by the garbage collector. Write
// barriers are not required for writes to local variables that live
// on the stack. Write barriers are only required when the runtime
// enables them, which can be checked using a run time check on
// runtime.writeBarrier.enabled.
//
// Essentially, for each assignment A = B, where A is or contains a
// pointer, and where A is not, or at any rate may not be, a stack
// variable, we rewrite it into
// if runtime.writeBarrier.enabled {
// typedmemmove(typeof(A), &A, &B)
// } else {
// A = B
// }
//
// The test of runtime.writeBarrier.Enabled is implemented by treating
// the variable as a *uint32, and testing *runtime.writeBarrier != 0.
// This is compatible with the definition in the runtime package.
//
// For types that are pointer shared (pointers, maps, chans, funcs),
// we replaced the call to typedmemmove with writebarrierptr(&A, B).
// As far as the GC is concerned, all pointers are the same, so it
// doesn't need the type descriptor.
//
// There are possible optimizations that are not implemented.
//
// runtime.writeBarrier can only change when the goroutine is
// preempted, which in practice means when a call is made into the
// runtime package, so we could optimize by only testing it once
// between function calls.
//
// A slice could be handled with a call to writebarrierptr plus two
// integer moves.
// Traverse the IR adding write barriers.
class Write_barriers : public Traverse
{
public:
Write_barriers(Gogo* gogo)
: Traverse(traverse_functions | traverse_variables | traverse_statements),
gogo_(gogo), function_(NULL)
{ }
int
function(Named_object*);
int
variable(Named_object*);
int
statement(Block*, size_t* pindex, Statement*);
private:
// General IR.
Gogo* gogo_;
// Current function.
Function* function_;
};
// Traverse a function. Just record it for later.
int
Write_barriers::function(Named_object* no)
{
go_assert(this->function_ == NULL);
this->function_ = no->func_value();
int t = this->function_->traverse(this);
this->function_ = NULL;
if (t == TRAVERSE_EXIT)
return t;
return TRAVERSE_SKIP_COMPONENTS;
}
// Insert write barriers for a global variable: ensure that variable
// initialization is handled correctly. This is rarely needed, since
// we currently don't enable background GC until after all global
// variables are initialized. But we do need this if an init function
// calls runtime.GC.
int
Write_barriers::variable(Named_object* no)
{
// We handle local variables in the variable declaration statement.
// We only have to handle global variables here.
if (!no->is_variable())
return TRAVERSE_CONTINUE;
Variable* var = no->var_value();
if (!var->is_global())
return TRAVERSE_CONTINUE;
// Nothing to do if there is no initializer.
Expression* init = var->init();
if (init == NULL)
return TRAVERSE_CONTINUE;
// Nothing to do for variables that do not contain any pointers.
if (!var->type()->has_pointer())
return TRAVERSE_CONTINUE;
// Nothing to do if the initializer is static.
init = Expression::make_cast(var->type(), init, var->location());
if (!var->has_pre_init() && init->is_static_initializer())
return TRAVERSE_CONTINUE;
// Nothing to do for a type that can not be in the heap, or a
// pointer to a type that can not be in the heap.
if (!var->type()->in_heap())
return TRAVERSE_CONTINUE;
if (var->type()->points_to() != NULL && !var->type()->points_to()->in_heap())
return TRAVERSE_CONTINUE;
// Otherwise change the initializer into a pre_init assignment
// statement with a write barrier.
// We can't check for a dependency of the variable on itself after
// we make this change, because the preinit statement will always
// depend on the variable (since it assigns to it). So check for a
// self-dependency now.
this->gogo_->check_self_dep(no);
// Replace the initializer.
Location loc = init->location();
Expression* ref = Expression::make_var_reference(no, loc);
Statement_inserter inserter(this->gogo_, var);
Statement* s = this->gogo_->assign_with_write_barrier(NULL, NULL, &inserter,
ref, init, loc);
var->add_preinit_statement(this->gogo_, s);
var->clear_init();
return TRAVERSE_CONTINUE;
}
// Insert write barriers for statements.
int
Write_barriers::statement(Block* block, size_t* pindex, Statement* s)
{
switch (s->classification())
{
default:
break;
case Statement::STATEMENT_VARIABLE_DECLARATION:
{
Variable_declaration_statement* vds =
s->variable_declaration_statement();
Named_object* no = vds->var();
Variable* var = no->var_value();
// We may need to emit a write barrier for the initialization
// of the variable.
// Nothing to do for a variable with no initializer.
Expression* init = var->init();
if (init == NULL)
break;
// Nothing to do if the variable is not in the heap. Only
// local variables get declaration statements, and local
// variables on the stack do not require write barriers.
if (!var->is_in_heap())
break;
// Nothing to do if the variable does not contain any pointers.
if (!var->type()->has_pointer())
break;
// Nothing to do for a type that can not be in the heap, or a
// pointer to a type that can not be in the heap.
if (!var->type()->in_heap())
break;
if (var->type()->points_to() != NULL
&& !var->type()->points_to()->in_heap())
break;
// Otherwise initialize the variable with a write barrier.
Function* function = this->function_;
Location loc = init->location();
Statement_inserter inserter(block, pindex);
// Insert the variable declaration statement with no
// initializer, so that the variable exists.
var->clear_init();
inserter.insert(s);
// Create a statement that initializes the variable with a
// write barrier.
Expression* ref = Expression::make_var_reference(no, loc);
Statement* assign = this->gogo_->assign_with_write_barrier(function,
block,
&inserter,
ref, init,
loc);
// Replace the old variable declaration statement with the new
// initialization.
block->replace_statement(*pindex, assign);
}
break;
case Statement::STATEMENT_ASSIGNMENT:
{
Assignment_statement* as = s->assignment_statement();
Expression* lhs = as->lhs();
Expression* rhs = as->rhs();
// We may need to emit a write barrier for the assignment.
if (!this->gogo_->assign_needs_write_barrier(lhs))
break;
// Change the assignment to use a write barrier.
Function* function = this->function_;
Location loc = as->location();
Statement_inserter inserter = Statement_inserter(block, pindex);
Statement* assign = this->gogo_->assign_with_write_barrier(function,
block,
&inserter,
lhs, rhs,
loc);
block->replace_statement(*pindex, assign);
}
break;
}
return TRAVERSE_CONTINUE;
}
// The write barrier pass.
void
Gogo::add_write_barriers()
{
if (saw_errors())
return;
Mark_address_taken mat(this);
this->traverse(&mat);
if (this->compiling_runtime() && this->package_name() == "runtime")
{
Check_escape chk(this);
this->traverse(&chk);
}
Write_barriers wb(this);
this->traverse(&wb);
}
// Return the runtime.writeBarrier variable.
Named_object*
Gogo::write_barrier_variable()
{
static Named_object* write_barrier_var;
if (write_barrier_var == NULL)
{
Location bloc = Linemap::predeclared_location();
// We pretend that writeBarrier is a uint32, so that we do a
// 32-bit load. That is what the gc toolchain does.
Type* uint32_type = Type::lookup_integer_type("uint32");
Variable* var = new Variable(uint32_type, NULL, true, false, false,
bloc);
bool add_to_globals;
Package* package = this->add_imported_package("runtime", "_", false,
"runtime", "runtime",
bloc, &add_to_globals);
write_barrier_var = Named_object::make_variable("writeBarrier",
package, var);
}
return write_barrier_var;
}
// Return whether an assignment that sets LHS needs a write barrier.
bool
Gogo::assign_needs_write_barrier(Expression* lhs)
{
// Nothing to do if the variable does not contain any pointers.
if (!lhs->type()->has_pointer())
return false;
// An assignment to a field is handled like an assignment to the
// struct.
while (true)
{
// Nothing to do for a type that can not be in the heap, or a
// pointer to a type that can not be in the heap. We check this
// at each level of a struct.
if (!lhs->type()->in_heap())
return false;
if (lhs->type()->points_to() != NULL
&& !lhs->type()->points_to()->in_heap())
return false;
Field_reference_expression* fre = lhs->field_reference_expression();
if (fre == NULL)
break;
lhs = fre->expr();
}
// Nothing to do for an assignment to a temporary.
if (lhs->temporary_reference_expression() != NULL)
return false;
// Nothing to do for an assignment to a sink.
if (lhs->is_sink_expression())
return false;
// Nothing to do for an assignment to a local variable that is not
// on the heap.
Var_expression* ve = lhs->var_expression();
if (ve != NULL)
{
Named_object* no = ve->named_object();
if (no->is_variable())
{
Variable* var = no->var_value();
if (!var->is_global() && !var->is_in_heap())
return false;
}
else if (no->is_result_variable())
{
Result_variable* rvar = no->result_var_value();
if (!rvar->is_in_heap())
return false;
}
}
// For a struct assignment, we don't need a write barrier if all the
// pointer types can not be in the heap.
Struct_type* st = lhs->type()->struct_type();
if (st != NULL)
{
bool in_heap = false;
const Struct_field_list* fields = st->fields();
for (Struct_field_list::const_iterator p = fields->begin();
p != fields->end();
p++)
{
Type* ft = p->type();
if (!ft->has_pointer())
continue;
if (!ft->in_heap())
continue;
if (ft->points_to() != NULL && !ft->points_to()->in_heap())
continue;
in_heap = true;
break;
}
if (!in_heap)
return false;
}
// Write barrier needed in other cases.
return true;
}
// Return a statement that sets LHS to RHS using a write barrier.
// ENCLOSING is the enclosing block.
Statement*
Gogo::assign_with_write_barrier(Function* function, Block* enclosing,
Statement_inserter* inserter, Expression* lhs,
Expression* rhs, Location loc)
{
if (function != NULL
&& ((function->pragmas() & GOPRAGMA_NOWRITEBARRIER) != 0
|| (function->pragmas() & GOPRAGMA_NOWRITEBARRIERREC) != 0))
go_error_at(loc, "write barrier prohibited");
Type* type = lhs->type();
go_assert(type->has_pointer());
Expression* addr;
if (lhs->unary_expression() != NULL
&& lhs->unary_expression()->op() == OPERATOR_MULT)
addr = lhs->unary_expression()->operand();
else
{
addr = Expression::make_unary(OPERATOR_AND, lhs, loc);
addr->unary_expression()->set_does_not_escape();
}
Temporary_statement* lhs_temp = Statement::make_temporary(NULL, addr, loc);
inserter->insert(lhs_temp);
lhs = Expression::make_temporary_reference(lhs_temp, loc);
if (!Type::are_identical(type, rhs->type(), false, NULL)
&& rhs->type()->interface_type() != NULL
&& !rhs->is_variable())
{
// May need a temporary for interface conversion.
Temporary_statement* temp = Statement::make_temporary(NULL, rhs, loc);
inserter->insert(temp);
rhs = Expression::make_temporary_reference(temp, loc);
}
rhs = Expression::convert_for_assignment(this, type, rhs, loc);
Temporary_statement* rhs_temp = NULL;
if (!rhs->is_variable() && !rhs->is_constant())
{
rhs_temp = Statement::make_temporary(NULL, rhs, loc);
inserter->insert(rhs_temp);
rhs = Expression::make_temporary_reference(rhs_temp, loc);
}
Expression* indir =
Expression::make_dereference(lhs, Expression::NIL_CHECK_DEFAULT, loc);
Statement* assign = Statement::make_assignment(indir, rhs, loc);
lhs = Expression::make_temporary_reference(lhs_temp, loc);
if (rhs_temp != NULL)
rhs = Expression::make_temporary_reference(rhs_temp, loc);
Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type());
lhs = Expression::make_unsafe_cast(unsafe_ptr_type, lhs, loc);
Expression* call;
switch (type->base()->classification())
{
default:
go_unreachable();
case Type::TYPE_ERROR:
return assign;
case Type::TYPE_POINTER:
case Type::TYPE_FUNCTION:
case Type::TYPE_MAP:
case Type::TYPE_CHANNEL:
// These types are all represented by a single pointer.
call = Runtime::make_call(Runtime::WRITEBARRIERPTR, loc, 2, lhs, rhs);
break;
case Type::TYPE_STRING:
case Type::TYPE_STRUCT:
case Type::TYPE_ARRAY:
case Type::TYPE_INTERFACE:
{
rhs = Expression::make_unary(OPERATOR_AND, rhs, loc);
rhs->unary_expression()->set_does_not_escape();
call = Runtime::make_call(Runtime::TYPEDMEMMOVE, loc, 3,
Expression::make_type_descriptor(type, loc),
lhs, rhs);
}
break;
}
return this->check_write_barrier(enclosing, assign,
Statement::make_statement(call, false));
}
// Return a statement that tests whether write barriers are enabled
// and executes either the efficient code or the write barrier
// function call, depending.
Statement*
Gogo::check_write_barrier(Block* enclosing, Statement* without,
Statement* with)
{
Location loc = without->location();
Named_object* wb = this->write_barrier_variable();
Expression* ref = Expression::make_var_reference(wb, loc);
Expression* zero = Expression::make_integer_ul(0, ref->type(), loc);
Expression* cond = Expression::make_binary(OPERATOR_EQEQ, ref, zero, loc);
Block* then_block = new Block(enclosing, loc);
then_block->add_statement(without);
Block* else_block = new Block(enclosing, loc);
else_block->add_statement(with);
return Statement::make_if_statement(cond, then_block, else_block, loc);
}
|