1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
/* Graph representation and manipulation functions.
Copyright (C) 2007-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "bitmap.h"
#include "graphds.h"
/* Dumps graph G into F. */
void
dump_graph (FILE *f, struct graph *g)
{
int i;
struct graph_edge *e;
for (i = 0; i < g->n_vertices; i++)
{
if (!g->vertices[i].pred
&& !g->vertices[i].succ)
continue;
fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
for (e = g->vertices[i].pred; e; e = e->pred_next)
fprintf (f, " %d", e->src);
fprintf (f, "\n");
fprintf (f, "\t->");
for (e = g->vertices[i].succ; e; e = e->succ_next)
fprintf (f, " %d", e->dest);
fprintf (f, "\n");
}
}
/* Creates a new graph with N_VERTICES vertices. */
struct graph *
new_graph (int n_vertices)
{
struct graph *g = XNEW (struct graph);
gcc_obstack_init (&g->ob);
g->n_vertices = n_vertices;
g->vertices = XOBNEWVEC (&g->ob, struct vertex, n_vertices);
memset (g->vertices, 0, sizeof (struct vertex) * n_vertices);
return g;
}
/* Adds an edge from F to T to graph G. The new edge is returned. */
struct graph_edge *
add_edge (struct graph *g, int f, int t)
{
struct graph_edge *e = XOBNEW (&g->ob, struct graph_edge);
struct vertex *vf = &g->vertices[f], *vt = &g->vertices[t];
e->src = f;
e->dest = t;
e->pred_next = vt->pred;
vt->pred = e;
e->succ_next = vf->succ;
vf->succ = e;
e->data = NULL;
return e;
}
/* Moves all the edges incident with U to V. */
void
identify_vertices (struct graph *g, int v, int u)
{
struct vertex *vv = &g->vertices[v];
struct vertex *uu = &g->vertices[u];
struct graph_edge *e, *next;
for (e = uu->succ; e; e = next)
{
next = e->succ_next;
e->src = v;
e->succ_next = vv->succ;
vv->succ = e;
}
uu->succ = NULL;
for (e = uu->pred; e; e = next)
{
next = e->pred_next;
e->dest = v;
e->pred_next = vv->pred;
vv->pred = e;
}
uu->pred = NULL;
}
/* Helper function for graphds_dfs. Returns the source vertex of E, in the
direction given by FORWARD. */
static inline int
dfs_edge_src (struct graph_edge *e, bool forward)
{
return forward ? e->src : e->dest;
}
/* Helper function for graphds_dfs. Returns the destination vertex of E, in
the direction given by FORWARD. */
static inline int
dfs_edge_dest (struct graph_edge *e, bool forward)
{
return forward ? e->dest : e->src;
}
/* Helper function for graphds_dfs. Returns the first edge after E (including
E), in the graph direction given by FORWARD, that belongs to SUBGRAPH. If
SKIP_EDGE_P is not NULL, it points to a callback function. Edge E will be
skipped if callback function returns true. */
static inline struct graph_edge *
foll_in_subgraph (struct graph_edge *e, bool forward, bitmap subgraph,
skip_edge_callback skip_edge_p)
{
int d;
if (!e)
return e;
if (!subgraph && (!skip_edge_p || !skip_edge_p (e)))
return e;
while (e)
{
d = dfs_edge_dest (e, forward);
/* Return edge if it belongs to subgraph and shouldn't be skipped. */
if ((!subgraph || bitmap_bit_p (subgraph, d))
&& (!skip_edge_p || !skip_edge_p (e)))
return e;
e = forward ? e->succ_next : e->pred_next;
}
return e;
}
/* Helper function for graphds_dfs. Select the first edge from V in G, in the
direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P is not
NULL, it points to a callback function. Edge E will be skipped if callback
function returns true. */
static inline struct graph_edge *
dfs_fst_edge (struct graph *g, int v, bool forward, bitmap subgraph,
skip_edge_callback skip_edge_p)
{
struct graph_edge *e;
e = (forward ? g->vertices[v].succ : g->vertices[v].pred);
return foll_in_subgraph (e, forward, subgraph, skip_edge_p);
}
/* Helper function for graphds_dfs. Returns the next edge after E, in the
graph direction given by FORWARD, that belongs to SUBGRAPH. If SKIP_EDGE_P
is not NULL, it points to a callback function. Edge E will be skipped if
callback function returns true. */
static inline struct graph_edge *
dfs_next_edge (struct graph_edge *e, bool forward, bitmap subgraph,
skip_edge_callback skip_edge_p)
{
return foll_in_subgraph (forward ? e->succ_next : e->pred_next,
forward, subgraph, skip_edge_p);
}
/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
The vertices in postorder are stored into QT. If FORWARD is false,
backward dfs is run. If SUBGRAPH is not NULL, it specifies the
subgraph of G to run DFS on. Returns the number of the components
of the graph (number of the restarts of DFS). If SKIP_EDGE_P is not
NULL, it points to a callback function. Edge E will be skipped if
callback function returns true. */
int
graphds_dfs (struct graph *g, int *qs, int nq, vec<int> *qt,
bool forward, bitmap subgraph,
skip_edge_callback skip_edge_p)
{
int i, tick = 0, v, comp = 0, top;
struct graph_edge *e;
struct graph_edge **stack = XNEWVEC (struct graph_edge *, g->n_vertices);
bitmap_iterator bi;
unsigned av;
if (subgraph)
{
EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, av, bi)
{
g->vertices[av].component = -1;
g->vertices[av].post = -1;
}
}
else
{
for (i = 0; i < g->n_vertices; i++)
{
g->vertices[i].component = -1;
g->vertices[i].post = -1;
}
}
for (i = 0; i < nq; i++)
{
v = qs[i];
if (g->vertices[v].post != -1)
continue;
g->vertices[v].component = comp++;
e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
top = 0;
while (1)
{
while (e)
{
if (g->vertices[dfs_edge_dest (e, forward)].component
== -1)
break;
e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
}
if (!e)
{
if (qt)
qt->safe_push (v);
g->vertices[v].post = tick++;
if (!top)
break;
e = stack[--top];
v = dfs_edge_src (e, forward);
e = dfs_next_edge (e, forward, subgraph, skip_edge_p);
continue;
}
stack[top++] = e;
v = dfs_edge_dest (e, forward);
e = dfs_fst_edge (g, v, forward, subgraph, skip_edge_p);
g->vertices[v].component = comp - 1;
}
}
free (stack);
return comp;
}
/* Determines the strongly connected components of G, using the algorithm of
Tarjan -- first determine the postorder dfs numbering in reversed graph,
then run the dfs on the original graph in the order given by decreasing
numbers assigned by the previous pass. If SUBGRAPH is not NULL, it
specifies the subgraph of G whose strongly connected components we want
to determine. If SKIP_EDGE_P is not NULL, it points to a callback function.
Edge E will be skipped if callback function returns true.
After running this function, v->component is the number of the strongly
connected component for each vertex of G. Returns the number of the
sccs of G. */
int
graphds_scc (struct graph *g, bitmap subgraph,
skip_edge_callback skip_edge_p)
{
int *queue = XNEWVEC (int, g->n_vertices);
vec<int> postorder = vNULL;
int nq, i, comp;
unsigned v;
bitmap_iterator bi;
if (subgraph)
{
nq = 0;
EXECUTE_IF_SET_IN_BITMAP (subgraph, 0, v, bi)
{
queue[nq++] = v;
}
}
else
{
for (i = 0; i < g->n_vertices; i++)
queue[i] = i;
nq = g->n_vertices;
}
graphds_dfs (g, queue, nq, &postorder, false, subgraph, skip_edge_p);
gcc_assert (postorder.length () == (unsigned) nq);
for (i = 0; i < nq; i++)
queue[i] = postorder[nq - i - 1];
comp = graphds_dfs (g, queue, nq, NULL, true, subgraph, skip_edge_p);
free (queue);
postorder.release ();
return comp;
}
/* Runs CALLBACK for all edges in G. DATA is private data for CALLBACK. */
void
for_each_edge (struct graph *g, graphds_edge_callback callback, void *data)
{
struct graph_edge *e;
int i;
for (i = 0; i < g->n_vertices; i++)
for (e = g->vertices[i].succ; e; e = e->succ_next)
callback (g, e, data);
}
/* Releases the memory occupied by G. */
void
free_graph (struct graph *g)
{
obstack_free (&g->ob, NULL);
free (g);
}
/* Returns the nearest common ancestor of X and Y in tree whose parent
links are given by PARENT. MARKS is the array used to mark the
vertices of the tree, and MARK is the number currently used as a mark. */
static int
tree_nca (int x, int y, int *parent, int *marks, int mark)
{
if (x == -1 || x == y)
return y;
/* We climb with X and Y up the tree, marking the visited nodes. When
we first arrive to a marked node, it is the common ancestor. */
marks[x] = mark;
marks[y] = mark;
while (1)
{
x = parent[x];
if (x == -1)
break;
if (marks[x] == mark)
return x;
marks[x] = mark;
y = parent[y];
if (y == -1)
break;
if (marks[y] == mark)
return y;
marks[y] = mark;
}
/* If we reached the root with one of the vertices, continue
with the other one till we reach the marked part of the
tree. */
if (x == -1)
{
for (y = parent[y]; marks[y] != mark; y = parent[y])
continue;
return y;
}
else
{
for (x = parent[x]; marks[x] != mark; x = parent[x])
continue;
return x;
}
}
/* Determines the dominance tree of G (stored in the PARENT, SON and BROTHER
arrays), where the entry node is ENTRY. */
void
graphds_domtree (struct graph *g, int entry,
int *parent, int *son, int *brother)
{
vec<int> postorder = vNULL;
int *marks = XCNEWVEC (int, g->n_vertices);
int mark = 1, i, v, idom;
bool changed = true;
struct graph_edge *e;
/* We use a slight modification of the standard iterative algorithm, as
described in
K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
Algorithm
sort vertices in reverse postorder
foreach v
dom(v) = everything
dom(entry) = entry;
while (anything changes)
foreach v
dom(v) = {v} union (intersection of dom(p) over all predecessors of v)
The sets dom(v) are represented by the parent links in the current version
of the dominance tree. */
for (i = 0; i < g->n_vertices; i++)
{
parent[i] = -1;
son[i] = -1;
brother[i] = -1;
}
graphds_dfs (g, &entry, 1, &postorder, true, NULL);
gcc_assert (postorder.length () == (unsigned) g->n_vertices);
gcc_assert (postorder[g->n_vertices - 1] == entry);
while (changed)
{
changed = false;
for (i = g->n_vertices - 2; i >= 0; i--)
{
v = postorder[i];
idom = -1;
for (e = g->vertices[v].pred; e; e = e->pred_next)
{
if (e->src != entry
&& parent[e->src] == -1)
continue;
idom = tree_nca (idom, e->src, parent, marks, mark++);
}
if (idom != parent[v])
{
parent[v] = idom;
changed = true;
}
}
}
free (marks);
postorder.release ();
for (i = 0; i < g->n_vertices; i++)
if (parent[i] != -1)
{
brother[i] = son[parent[i]];
son[parent[i]] = i;
}
}
|