1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
/* Callgraph transformations to handle inlining
Copyright (C) 2003-2018 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The inline decisions are stored in callgraph in "inline plan" and
applied later.
To mark given call inline, use inline_call function.
The function marks the edge inlinable and, if necessary, produces
virtual clone in the callgraph representing the new copy of callee's
function body.
The inline plan is applied on given function body by inline_transform. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "function.h"
#include "tree.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "symbol-summary.h"
#include "tree-vrp.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "ipa-inline.h"
#include "tree-inline.h"
#include "function.h"
#include "cfg.h"
#include "basic-block.h"
int ncalls_inlined;
int nfunctions_inlined;
/* Scale counts of NODE edges by NUM/DEN. */
static void
update_noncloned_counts (struct cgraph_node *node,
profile_count num, profile_count den)
{
struct cgraph_edge *e;
profile_count::adjust_for_ipa_scaling (&num, &den);
for (e = node->callees; e; e = e->next_callee)
{
if (!e->inline_failed)
update_noncloned_counts (e->callee, num, den);
e->count = e->count.apply_scale (num, den);
}
for (e = node->indirect_calls; e; e = e->next_callee)
e->count = e->count.apply_scale (num, den);
node->count = node->count.apply_scale (num, den);
}
/* We removed or are going to remove the last call to NODE.
Return true if we can and want proactively remove the NODE now.
This is important to do, since we want inliner to know when offline
copy of function was removed. */
static bool
can_remove_node_now_p_1 (struct cgraph_node *node, struct cgraph_edge *e)
{
ipa_ref *ref;
FOR_EACH_ALIAS (node, ref)
{
cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
if ((alias->callers && alias->callers != e)
|| !can_remove_node_now_p_1 (alias, e))
return false;
}
/* FIXME: When address is taken of DECL_EXTERNAL function we still
can remove its offline copy, but we would need to keep unanalyzed node in
the callgraph so references can point to it.
Also for comdat group we can ignore references inside a group as we
want to prove the group as a whole to be dead. */
return (!node->address_taken
&& node->can_remove_if_no_direct_calls_and_refs_p ()
/* Inlining might enable more devirtualizing, so we want to remove
those only after all devirtualizable virtual calls are processed.
Lacking may edges in callgraph we just preserve them post
inlining. */
&& (!DECL_VIRTUAL_P (node->decl)
|| !opt_for_fn (node->decl, flag_devirtualize))
/* During early inlining some unanalyzed cgraph nodes might be in the
callgraph and they might reffer the function in question. */
&& !cgraph_new_nodes.exists ());
}
/* We are going to eliminate last direct call to NODE (or alias of it) via edge E.
Verify that the NODE can be removed from unit and if it is contained in comdat
group that the whole comdat group is removable. */
static bool
can_remove_node_now_p (struct cgraph_node *node, struct cgraph_edge *e)
{
struct cgraph_node *next;
if (!can_remove_node_now_p_1 (node, e))
return false;
/* When we see same comdat group, we need to be sure that all
items can be removed. */
if (!node->same_comdat_group || !node->externally_visible)
return true;
for (next = dyn_cast<cgraph_node *> (node->same_comdat_group);
next != node; next = dyn_cast<cgraph_node *> (next->same_comdat_group))
{
if (next->alias)
continue;
if ((next->callers && next->callers != e)
|| !can_remove_node_now_p_1 (next, e))
return false;
}
return true;
}
/* Return true if NODE is a master clone with non-inline clones. */
static bool
master_clone_with_noninline_clones_p (struct cgraph_node *node)
{
if (node->clone_of)
return false;
for (struct cgraph_node *n = node->clones; n; n = n->next_sibling_clone)
if (n->decl != node->decl)
return true;
return false;
}
/* E is expected to be an edge being inlined. Clone destination node of
the edge and redirect it to the new clone.
DUPLICATE is used for bookkeeping on whether we are actually creating new
clones or re-using node originally representing out-of-line function call.
By default the offline copy is removed, when it appears dead after inlining.
UPDATE_ORIGINAL prevents this transformation.
If OVERALL_SIZE is non-NULL, the size is updated to reflect the
transformation. */
void
clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
bool update_original, int *overall_size)
{
struct cgraph_node *inlining_into;
struct cgraph_edge *next;
if (e->caller->global.inlined_to)
inlining_into = e->caller->global.inlined_to;
else
inlining_into = e->caller;
if (duplicate)
{
/* We may eliminate the need for out-of-line copy to be output.
In that case just go ahead and re-use it. This is not just an
memory optimization. Making offline copy of fuction disappear
from the program will improve future decisions on inlining. */
if (!e->callee->callers->next_caller
/* Recursive inlining never wants the master clone to
be overwritten. */
&& update_original
&& can_remove_node_now_p (e->callee, e)
/* We cannot overwrite a master clone with non-inline clones
until after these clones are materialized. */
&& !master_clone_with_noninline_clones_p (e->callee))
{
/* TODO: When callee is in a comdat group, we could remove all of it,
including all inline clones inlined into it. That would however
need small function inlining to register edge removal hook to
maintain the priority queue.
For now we keep the ohter functions in the group in program until
cgraph_remove_unreachable_functions gets rid of them. */
gcc_assert (!e->callee->global.inlined_to);
e->callee->remove_from_same_comdat_group ();
if (e->callee->definition
&& inline_account_function_p (e->callee))
{
gcc_assert (!e->callee->alias);
if (overall_size)
*overall_size -= ipa_fn_summaries->get (e->callee)->size;
nfunctions_inlined++;
}
duplicate = false;
e->callee->externally_visible = false;
update_noncloned_counts (e->callee, e->count, e->callee->count);
dump_callgraph_transformation (e->callee, inlining_into,
"inlining to");
}
else
{
struct cgraph_node *n;
n = e->callee->create_clone (e->callee->decl,
e->count,
update_original, vNULL, true,
inlining_into,
NULL);
n->used_as_abstract_origin = e->callee->used_as_abstract_origin;
e->redirect_callee (n);
}
}
else
e->callee->remove_from_same_comdat_group ();
e->callee->global.inlined_to = inlining_into;
/* Recursively clone all bodies. */
for (e = e->callee->callees; e; e = next)
{
next = e->next_callee;
if (!e->inline_failed)
clone_inlined_nodes (e, duplicate, update_original, overall_size);
}
}
/* Check all speculations in N and resolve them if they seems useless. */
static bool
check_speculations (cgraph_node *n)
{
bool speculation_removed = false;
cgraph_edge *next;
for (cgraph_edge *e = n->callees; e; e = next)
{
next = e->next_callee;
if (e->speculative && !speculation_useful_p (e, true))
{
e->resolve_speculation (NULL);
speculation_removed = true;
}
else if (!e->inline_failed)
speculation_removed |= check_speculations (e->callee);
}
return speculation_removed;
}
/* Mark all call graph edges coming out of NODE and all nodes that have been
inlined to it as in_polymorphic_cdtor. */
static void
mark_all_inlined_calls_cdtor (cgraph_node *node)
{
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
{
cs->in_polymorphic_cdtor = true;
if (!cs->inline_failed)
mark_all_inlined_calls_cdtor (cs->callee);
}
for (cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
cs->in_polymorphic_cdtor = true;
}
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
specify whether profile of original function should be updated. If any new
indirect edges are discovered in the process, add them to NEW_EDGES, unless
it is NULL. If UPDATE_OVERALL_SUMMARY is false, do not bother to recompute overall
size of caller after inlining. Caller is required to eventually do it via
ipa_update_overall_fn_summary.
If callee_removed is non-NULL, set it to true if we removed callee node.
Return true iff any new callgraph edges were discovered as a
result of inlining. */
bool
inline_call (struct cgraph_edge *e, bool update_original,
vec<cgraph_edge *> *new_edges,
int *overall_size, bool update_overall_summary,
bool *callee_removed)
{
int old_size = 0, new_size = 0;
struct cgraph_node *to = NULL;
struct cgraph_edge *curr = e;
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
bool new_edges_found = false;
int estimated_growth = 0;
if (! update_overall_summary)
estimated_growth = estimate_edge_growth (e);
/* This is used only for assert bellow. */
#if 0
bool predicated = inline_edge_summary (e)->predicate != NULL;
#endif
/* Don't inline inlined edges. */
gcc_assert (e->inline_failed);
/* Don't even think of inlining inline clone. */
gcc_assert (!callee->global.inlined_to);
to = e->caller;
if (to->global.inlined_to)
to = to->global.inlined_to;
if (to->thunk.thunk_p)
{
struct cgraph_node *target = to->callees->callee;
if (in_lto_p)
to->get_untransformed_body ();
to->expand_thunk (false, true);
/* When thunk is instrumented we may have multiple callees. */
for (e = to->callees; e && e->callee != target; e = e->next_callee)
;
gcc_assert (e);
}
e->inline_failed = CIF_OK;
DECL_POSSIBLY_INLINED (callee->decl) = true;
if (DECL_FUNCTION_PERSONALITY (callee->decl))
DECL_FUNCTION_PERSONALITY (to->decl)
= DECL_FUNCTION_PERSONALITY (callee->decl);
bool reload_optimization_node = false;
if (!opt_for_fn (callee->decl, flag_strict_aliasing)
&& opt_for_fn (to->decl, flag_strict_aliasing))
{
struct gcc_options opts = global_options;
cl_optimization_restore (&opts, opts_for_fn (to->decl));
opts.x_flag_strict_aliasing = false;
if (dump_file)
fprintf (dump_file, "Dropping flag_strict_aliasing on %s\n",
to->dump_name ());
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (to->decl)
= build_optimization_node (&opts);
reload_optimization_node = true;
}
ipa_fn_summary *caller_info = ipa_fn_summaries->get (to);
ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
if (!caller_info->fp_expressions && callee_info->fp_expressions)
{
caller_info->fp_expressions = true;
if (opt_for_fn (callee->decl, flag_rounding_math)
!= opt_for_fn (to->decl, flag_rounding_math)
|| opt_for_fn (callee->decl, flag_trapping_math)
!= opt_for_fn (to->decl, flag_trapping_math)
|| opt_for_fn (callee->decl, flag_unsafe_math_optimizations)
!= opt_for_fn (to->decl, flag_unsafe_math_optimizations)
|| opt_for_fn (callee->decl, flag_finite_math_only)
!= opt_for_fn (to->decl, flag_finite_math_only)
|| opt_for_fn (callee->decl, flag_signaling_nans)
!= opt_for_fn (to->decl, flag_signaling_nans)
|| opt_for_fn (callee->decl, flag_cx_limited_range)
!= opt_for_fn (to->decl, flag_cx_limited_range)
|| opt_for_fn (callee->decl, flag_signed_zeros)
!= opt_for_fn (to->decl, flag_signed_zeros)
|| opt_for_fn (callee->decl, flag_associative_math)
!= opt_for_fn (to->decl, flag_associative_math)
|| opt_for_fn (callee->decl, flag_reciprocal_math)
!= opt_for_fn (to->decl, flag_reciprocal_math)
|| opt_for_fn (callee->decl, flag_fp_int_builtin_inexact)
!= opt_for_fn (to->decl, flag_fp_int_builtin_inexact)
|| opt_for_fn (callee->decl, flag_errno_math)
!= opt_for_fn (to->decl, flag_errno_math))
{
struct gcc_options opts = global_options;
cl_optimization_restore (&opts, opts_for_fn (to->decl));
opts.x_flag_rounding_math
= opt_for_fn (callee->decl, flag_rounding_math);
opts.x_flag_trapping_math
= opt_for_fn (callee->decl, flag_trapping_math);
opts.x_flag_unsafe_math_optimizations
= opt_for_fn (callee->decl, flag_unsafe_math_optimizations);
opts.x_flag_finite_math_only
= opt_for_fn (callee->decl, flag_finite_math_only);
opts.x_flag_signaling_nans
= opt_for_fn (callee->decl, flag_signaling_nans);
opts.x_flag_cx_limited_range
= opt_for_fn (callee->decl, flag_cx_limited_range);
opts.x_flag_signed_zeros
= opt_for_fn (callee->decl, flag_signed_zeros);
opts.x_flag_associative_math
= opt_for_fn (callee->decl, flag_associative_math);
opts.x_flag_reciprocal_math
= opt_for_fn (callee->decl, flag_reciprocal_math);
opts.x_flag_fp_int_builtin_inexact
= opt_for_fn (callee->decl, flag_fp_int_builtin_inexact);
opts.x_flag_errno_math
= opt_for_fn (callee->decl, flag_errno_math);
if (dump_file)
fprintf (dump_file, "Copying FP flags from %s to %s\n",
callee->dump_name (), to->dump_name ());
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (to->decl)
= build_optimization_node (&opts);
reload_optimization_node = true;
}
}
/* Reload global optimization flags. */
if (reload_optimization_node && DECL_STRUCT_FUNCTION (to->decl) == cfun)
set_cfun (cfun, true);
/* If aliases are involved, redirect edge to the actual destination and
possibly remove the aliases. */
if (e->callee != callee)
{
struct cgraph_node *alias = e->callee, *next_alias;
e->redirect_callee (callee);
while (alias && alias != callee)
{
if (!alias->callers
&& can_remove_node_now_p (alias,
!e->next_caller && !e->prev_caller ? e : NULL))
{
next_alias = alias->get_alias_target ();
alias->remove ();
if (callee_removed)
*callee_removed = true;
alias = next_alias;
}
else
break;
}
}
clone_inlined_nodes (e, true, update_original, overall_size);
gcc_assert (curr->callee->global.inlined_to == to);
old_size = ipa_fn_summaries->get (to)->size;
ipa_merge_fn_summary_after_inlining (e);
if (e->in_polymorphic_cdtor)
mark_all_inlined_calls_cdtor (e->callee);
if (opt_for_fn (e->caller->decl, optimize))
new_edges_found = ipa_propagate_indirect_call_infos (curr, new_edges);
check_speculations (e->callee);
if (update_overall_summary)
ipa_update_overall_fn_summary (to);
else
/* Update self size by the estimate so overall function growth limits
work for further inlining into this function. Before inlining
the function we inlined to again we expect the caller to update
the overall summary. */
ipa_fn_summaries->get (to)->size += estimated_growth;
new_size = ipa_fn_summaries->get (to)->size;
if (callee->calls_comdat_local)
to->calls_comdat_local = true;
else if (to->calls_comdat_local && callee->comdat_local_p ())
{
struct cgraph_edge *se = to->callees;
for (; se; se = se->next_callee)
if (se->inline_failed && se->callee->comdat_local_p ())
break;
if (se == NULL)
to->calls_comdat_local = false;
}
/* FIXME: This assert suffers from roundoff errors, disable it for GCC 5
and revisit it after conversion to sreals in GCC 6.
See PR 65654. */
#if 0
/* Verify that estimated growth match real growth. Allow off-by-one
error due to ipa_fn_summary::size_scale roudoff errors. */
gcc_assert (!update_overall_summary || !overall_size || new_edges_found
|| abs (estimated_growth - (new_size - old_size)) <= 1
|| speculation_removed
/* FIXME: a hack. Edges with false predicate are accounted
wrong, we should remove them from callgraph. */
|| predicated);
#endif
/* Account the change of overall unit size; external functions will be
removed and are thus not accounted. */
if (overall_size && inline_account_function_p (to))
*overall_size += new_size - old_size;
ncalls_inlined++;
/* This must happen after ipa_merge_fn_summary_after_inlining that rely on jump
functions of callee to not be updated. */
return new_edges_found;
}
/* Copy function body of NODE and redirect all inline clones to it.
This is done before inline plan is applied to NODE when there are
still some inline clones if it.
This is necessary because inline decisions are not really transitive
and the other inline clones may have different bodies. */
static struct cgraph_node *
save_inline_function_body (struct cgraph_node *node)
{
struct cgraph_node *first_clone, *n;
if (dump_file)
fprintf (dump_file, "\nSaving body of %s for later reuse\n",
node->name ());
gcc_assert (node == cgraph_node::get (node->decl));
/* first_clone will be turned into real function. */
first_clone = node->clones;
/* Arrange first clone to not be thunk as those do not have bodies. */
if (first_clone->thunk.thunk_p)
{
while (first_clone->thunk.thunk_p)
first_clone = first_clone->next_sibling_clone;
first_clone->prev_sibling_clone->next_sibling_clone
= first_clone->next_sibling_clone;
if (first_clone->next_sibling_clone)
first_clone->next_sibling_clone->prev_sibling_clone
= first_clone->prev_sibling_clone;
first_clone->next_sibling_clone = node->clones;
first_clone->prev_sibling_clone = NULL;
node->clones->prev_sibling_clone = first_clone;
node->clones = first_clone;
}
first_clone->decl = copy_node (node->decl);
first_clone->decl->decl_with_vis.symtab_node = first_clone;
gcc_assert (first_clone == cgraph_node::get (first_clone->decl));
/* Now reshape the clone tree, so all other clones descends from
first_clone. */
if (first_clone->next_sibling_clone)
{
for (n = first_clone->next_sibling_clone; n->next_sibling_clone;
n = n->next_sibling_clone)
n->clone_of = first_clone;
n->clone_of = first_clone;
n->next_sibling_clone = first_clone->clones;
if (first_clone->clones)
first_clone->clones->prev_sibling_clone = n;
first_clone->clones = first_clone->next_sibling_clone;
first_clone->next_sibling_clone->prev_sibling_clone = NULL;
first_clone->next_sibling_clone = NULL;
gcc_assert (!first_clone->prev_sibling_clone);
}
first_clone->clone_of = NULL;
/* Now node in question has no clones. */
node->clones = NULL;
/* Inline clones share decl with the function they are cloned
from. Walk the whole clone tree and redirect them all to the
new decl. */
if (first_clone->clones)
for (n = first_clone->clones; n != first_clone;)
{
gcc_assert (n->decl == node->decl);
n->decl = first_clone->decl;
if (n->clones)
n = n->clones;
else if (n->next_sibling_clone)
n = n->next_sibling_clone;
else
{
while (n != first_clone && !n->next_sibling_clone)
n = n->clone_of;
if (n != first_clone)
n = n->next_sibling_clone;
}
}
/* Copy the OLD_VERSION_NODE function tree to the new version. */
tree_function_versioning (node->decl, first_clone->decl,
NULL, true, NULL, false,
NULL, NULL);
/* The function will be short lived and removed after we inline all the clones,
but make it internal so we won't confuse ourself. */
DECL_EXTERNAL (first_clone->decl) = 0;
TREE_PUBLIC (first_clone->decl) = 0;
DECL_COMDAT (first_clone->decl) = 0;
first_clone->ipa_transforms_to_apply.release ();
/* When doing recursive inlining, the clone may become unnecessary.
This is possible i.e. in the case when the recursive function is proved to be
non-throwing and the recursion happens only in the EH landing pad.
We can not remove the clone until we are done with saving the body.
Remove it now. */
if (!first_clone->callers)
{
first_clone->remove_symbol_and_inline_clones ();
first_clone = NULL;
}
else if (flag_checking)
first_clone->verify ();
return first_clone;
}
/* Return true when function body of DECL still needs to be kept around
for later re-use. */
static bool
preserve_function_body_p (struct cgraph_node *node)
{
gcc_assert (symtab->global_info_ready);
gcc_assert (!node->alias && !node->thunk.thunk_p);
/* Look if there is any non-thunk clone around. */
for (node = node->clones; node; node = node->next_sibling_clone)
if (!node->thunk.thunk_p)
return true;
return false;
}
/* Apply inline plan to function. */
unsigned int
inline_transform (struct cgraph_node *node)
{
unsigned int todo = 0;
struct cgraph_edge *e, *next;
bool has_inline = false;
/* FIXME: Currently the pass manager is adding inline transform more than
once to some clones. This needs revisiting after WPA cleanups. */
if (cfun->after_inlining)
return 0;
/* We might need the body of this function so that we can expand
it inline somewhere else. */
if (preserve_function_body_p (node))
save_inline_function_body (node);
for (e = node->callees; e; e = next)
{
if (!e->inline_failed)
has_inline = true;
next = e->next_callee;
e->redirect_call_stmt_to_callee ();
}
node->remove_all_references ();
timevar_push (TV_INTEGRATION);
if (node->callees && (opt_for_fn (node->decl, optimize) || has_inline))
{
profile_count num = node->count;
profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
bool scale = num.initialized_p () && !(num == den);
if (scale)
{
profile_count::adjust_for_ipa_scaling (&num, &den);
if (dump_file)
{
fprintf (dump_file, "Applying count scale ");
num.dump (dump_file);
fprintf (dump_file, "/");
den.dump (dump_file);
fprintf (dump_file, "\n");
}
basic_block bb;
cfun->cfg->count_max = profile_count::uninitialized ();
FOR_ALL_BB_FN (bb, cfun)
{
bb->count = bb->count.apply_scale (num, den);
cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
}
ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
}
todo = optimize_inline_calls (current_function_decl);
}
timevar_pop (TV_INTEGRATION);
cfun->always_inline_functions_inlined = true;
cfun->after_inlining = true;
todo |= execute_fixup_cfg ();
if (!(todo & TODO_update_ssa_any))
/* Redirecting edges might lead to a need for vops to be recomputed. */
todo |= TODO_update_ssa_only_virtuals;
return todo;
}
|