1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
|
/* Inlining decision heuristics.
Copyright (C) 2003-2018 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Inlining decision heuristics
The implementation of inliner is organized as follows:
inlining heuristics limits
can_inline_edge_p allow to check that particular inlining is allowed
by the limits specified by user (allowed function growth, growth and so
on).
Functions are inlined when it is obvious the result is profitable (such
as functions called once or when inlining reduce code size).
In addition to that we perform inlining of small functions and recursive
inlining.
inlining heuristics
The inliner itself is split into two passes:
pass_early_inlining
Simple local inlining pass inlining callees into current function.
This pass makes no use of whole unit analysis and thus it can do only
very simple decisions based on local properties.
The strength of the pass is that it is run in topological order
(reverse postorder) on the callgraph. Functions are converted into SSA
form just before this pass and optimized subsequently. As a result, the
callees of the function seen by the early inliner was already optimized
and results of early inlining adds a lot of optimization opportunities
for the local optimization.
The pass handle the obvious inlining decisions within the compilation
unit - inlining auto inline functions, inlining for size and
flattening.
main strength of the pass is the ability to eliminate abstraction
penalty in C++ code (via combination of inlining and early
optimization) and thus improve quality of analysis done by real IPA
optimizers.
Because of lack of whole unit knowledge, the pass can not really make
good code size/performance tradeoffs. It however does very simple
speculative inlining allowing code size to grow by
EARLY_INLINING_INSNS when callee is leaf function. In this case the
optimizations performed later are very likely to eliminate the cost.
pass_ipa_inline
This is the real inliner able to handle inlining with whole program
knowledge. It performs following steps:
1) inlining of small functions. This is implemented by greedy
algorithm ordering all inlinable cgraph edges by their badness and
inlining them in this order as long as inline limits allows doing so.
This heuristics is not very good on inlining recursive calls. Recursive
calls can be inlined with results similar to loop unrolling. To do so,
special purpose recursive inliner is executed on function when
recursive edge is met as viable candidate.
2) Unreachable functions are removed from callgraph. Inlining leads
to devirtualization and other modification of callgraph so functions
may become unreachable during the process. Also functions declared as
extern inline or virtual functions are removed, since after inlining
we no longer need the offline bodies.
3) Functions called once and not exported from the unit are inlined.
This should almost always lead to reduction of code size by eliminating
the need for offline copy of the function. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "gimple-ssa.h"
#include "cgraph.h"
#include "lto-streamer.h"
#include "trans-mem.h"
#include "calls.h"
#include "tree-inline.h"
#include "params.h"
#include "profile.h"
#include "symbol-summary.h"
#include "tree-vrp.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "ipa-inline.h"
#include "ipa-utils.h"
#include "sreal.h"
#include "auto-profile.h"
#include "builtins.h"
#include "fibonacci_heap.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
/* Statistics we collect about inlining algorithm. */
static int overall_size;
static profile_count max_count;
static profile_count spec_rem;
/* Return false when inlining edge E would lead to violating
limits on function unit growth or stack usage growth.
The relative function body growth limit is present generally
to avoid problems with non-linear behavior of the compiler.
To allow inlining huge functions into tiny wrapper, the limit
is always based on the bigger of the two functions considered.
For stack growth limits we always base the growth in stack usage
of the callers. We want to prevent applications from segfaulting
on stack overflow when functions with huge stack frames gets
inlined. */
static bool
caller_growth_limits (struct cgraph_edge *e)
{
struct cgraph_node *to = e->caller;
struct cgraph_node *what = e->callee->ultimate_alias_target ();
int newsize;
int limit = 0;
HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
ipa_fn_summary *info, *what_info, *outer_info = ipa_fn_summaries->get (to);
/* Look for function e->caller is inlined to. While doing
so work out the largest function body on the way. As
described above, we want to base our function growth
limits based on that. Not on the self size of the
outer function, not on the self size of inline code
we immediately inline to. This is the most relaxed
interpretation of the rule "do not grow large functions
too much in order to prevent compiler from exploding". */
while (true)
{
info = ipa_fn_summaries->get (to);
if (limit < info->self_size)
limit = info->self_size;
if (stack_size_limit < info->estimated_self_stack_size)
stack_size_limit = info->estimated_self_stack_size;
if (to->global.inlined_to)
to = to->callers->caller;
else
break;
}
what_info = ipa_fn_summaries->get (what);
if (limit < what_info->self_size)
limit = what_info->self_size;
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
/* Check the size after inlining against the function limits. But allow
the function to shrink if it went over the limits by forced inlining. */
newsize = estimate_size_after_inlining (to, e);
if (newsize >= info->size
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
&& newsize > limit)
{
e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
return false;
}
if (!what_info->estimated_stack_size)
return true;
/* FIXME: Stack size limit often prevents inlining in Fortran programs
due to large i/o datastructures used by the Fortran front-end.
We ought to ignore this limit when we know that the edge is executed
on every invocation of the caller (i.e. its call statement dominates
exit block). We do not track this information, yet. */
stack_size_limit += ((gcov_type)stack_size_limit
* PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
inlined_stack = (outer_info->stack_frame_offset
+ outer_info->estimated_self_stack_size
+ what_info->estimated_stack_size);
/* Check new stack consumption with stack consumption at the place
stack is used. */
if (inlined_stack > stack_size_limit
/* If function already has large stack usage from sibling
inline call, we can inline, too.
This bit overoptimistically assume that we are good at stack
packing. */
&& inlined_stack > info->estimated_stack_size
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
{
e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
return false;
}
return true;
}
/* Dump info about why inlining has failed. */
static void
report_inline_failed_reason (struct cgraph_edge *e)
{
if (dump_file)
{
fprintf (dump_file, " not inlinable: %s -> %s, %s\n",
e->caller->dump_name (),
e->callee->dump_name (),
cgraph_inline_failed_string (e->inline_failed));
if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
|| e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
&& e->caller->lto_file_data
&& e->callee->ultimate_alias_target ()->lto_file_data)
{
fprintf (dump_file, " LTO objects: %s, %s\n",
e->caller->lto_file_data->file_name,
e->callee->ultimate_alias_target ()->lto_file_data->file_name);
}
if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
cl_target_option_print_diff
(dump_file, 2, target_opts_for_fn (e->caller->decl),
target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
cl_optimization_print_diff
(dump_file, 2, opts_for_fn (e->caller->decl),
opts_for_fn (e->callee->ultimate_alias_target ()->decl));
}
}
/* Decide whether sanitizer-related attributes allow inlining. */
static bool
sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
{
if (!caller || !callee)
return true;
/* Allow inlining always_inline functions into no_sanitize_address
functions. */
if (!sanitize_flags_p (SANITIZE_ADDRESS, caller)
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (callee)))
return true;
return ((sanitize_flags_p (SANITIZE_ADDRESS, caller)
== sanitize_flags_p (SANITIZE_ADDRESS, callee))
&& (sanitize_flags_p (SANITIZE_POINTER_COMPARE, caller)
== sanitize_flags_p (SANITIZE_POINTER_COMPARE, callee))
&& (sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, caller)
== sanitize_flags_p (SANITIZE_POINTER_SUBTRACT, callee)));
}
/* Used for flags where it is safe to inline when caller's value is
grater than callee's. */
#define check_maybe_up(flag) \
(opts_for_fn (caller->decl)->x_##flag \
!= opts_for_fn (callee->decl)->x_##flag \
&& (!always_inline \
|| opts_for_fn (caller->decl)->x_##flag \
< opts_for_fn (callee->decl)->x_##flag))
/* Used for flags where it is safe to inline when caller's value is
smaller than callee's. */
#define check_maybe_down(flag) \
(opts_for_fn (caller->decl)->x_##flag \
!= opts_for_fn (callee->decl)->x_##flag \
&& (!always_inline \
|| opts_for_fn (caller->decl)->x_##flag \
> opts_for_fn (callee->decl)->x_##flag))
/* Used for flags where exact match is needed for correctness. */
#define check_match(flag) \
(opts_for_fn (caller->decl)->x_##flag \
!= opts_for_fn (callee->decl)->x_##flag)
/* Decide if we can inline the edge and possibly update
inline_failed reason.
We check whether inlining is possible at all and whether
caller growth limits allow doing so.
if REPORT is true, output reason to the dump file. */
static bool
can_inline_edge_p (struct cgraph_edge *e, bool report,
bool early = false)
{
gcc_checking_assert (e->inline_failed);
if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
{
if (report)
report_inline_failed_reason (e);
return false;
}
bool inlinable = true;
enum availability avail;
cgraph_node *caller = e->caller->global.inlined_to
? e->caller->global.inlined_to : e->caller;
cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
if (!callee->definition)
{
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
inlinable = false;
}
if (!early && (!opt_for_fn (callee->decl, optimize)
|| !opt_for_fn (caller->decl, optimize)))
{
e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
inlinable = false;
}
else if (callee->calls_comdat_local)
{
e->inline_failed = CIF_USES_COMDAT_LOCAL;
inlinable = false;
}
else if (avail <= AVAIL_INTERPOSABLE)
{
e->inline_failed = CIF_OVERWRITABLE;
inlinable = false;
}
/* All edges with call_stmt_cannot_inline_p should have inline_failed
initialized to one of FINAL_ERROR reasons. */
else if (e->call_stmt_cannot_inline_p)
gcc_unreachable ();
/* Don't inline if the functions have different EH personalities. */
else if (DECL_FUNCTION_PERSONALITY (caller->decl)
&& DECL_FUNCTION_PERSONALITY (callee->decl)
&& (DECL_FUNCTION_PERSONALITY (caller->decl)
!= DECL_FUNCTION_PERSONALITY (callee->decl)))
{
e->inline_failed = CIF_EH_PERSONALITY;
inlinable = false;
}
/* TM pure functions should not be inlined into non-TM_pure
functions. */
else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
{
e->inline_failed = CIF_UNSPECIFIED;
inlinable = false;
}
/* Check compatibility of target optimization options. */
else if (!targetm.target_option.can_inline_p (caller->decl,
callee->decl))
{
e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
inlinable = false;
}
else if (!ipa_fn_summaries->get (callee)->inlinable)
{
e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
inlinable = false;
}
/* Don't inline a function with mismatched sanitization attributes. */
else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
{
e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
inlinable = false;
}
if (!inlinable && report)
report_inline_failed_reason (e);
return inlinable;
}
/* Decide if we can inline the edge and possibly update
inline_failed reason.
We check whether inlining is possible at all and whether
caller growth limits allow doing so.
if REPORT is true, output reason to the dump file.
if DISREGARD_LIMITS is true, ignore size limits. */
static bool
can_inline_edge_by_limits_p (struct cgraph_edge *e, bool report,
bool disregard_limits = false, bool early = false)
{
gcc_checking_assert (e->inline_failed);
if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
{
if (report)
report_inline_failed_reason (e);
return false;
}
bool inlinable = true;
enum availability avail;
cgraph_node *caller = e->caller->global.inlined_to
? e->caller->global.inlined_to : e->caller;
cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
tree callee_tree
= callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
/* Check if caller growth allows the inlining. */
if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
&& !disregard_limits
&& !lookup_attribute ("flatten",
DECL_ATTRIBUTES (caller->decl))
&& !caller_growth_limits (e))
inlinable = false;
/* Don't inline a function with a higher optimization level than the
caller. FIXME: this is really just tip of iceberg of handling
optimization attribute. */
else if (caller_tree != callee_tree)
{
bool always_inline =
(DECL_DISREGARD_INLINE_LIMITS (callee->decl)
&& lookup_attribute ("always_inline",
DECL_ATTRIBUTES (callee->decl)));
ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
/* Until GCC 4.9 we did not check the semantics alterning flags
bellow and inline across optimization boundry.
Enabling checks bellow breaks several packages by refusing
to inline library always_inline functions. See PR65873.
Disable the check for early inlining for now until better solution
is found. */
if (always_inline && early)
;
/* There are some options that change IL semantics which means
we cannot inline in these cases for correctness reason.
Not even for always_inline declared functions. */
else if (check_match (flag_wrapv)
|| check_match (flag_trapv)
|| check_match (flag_pcc_struct_return)
/* When caller or callee does FP math, be sure FP codegen flags
compatible. */
|| ((caller_info->fp_expressions && callee_info->fp_expressions)
&& (check_maybe_up (flag_rounding_math)
|| check_maybe_up (flag_trapping_math)
|| check_maybe_down (flag_unsafe_math_optimizations)
|| check_maybe_down (flag_finite_math_only)
|| check_maybe_up (flag_signaling_nans)
|| check_maybe_down (flag_cx_limited_range)
|| check_maybe_up (flag_signed_zeros)
|| check_maybe_down (flag_associative_math)
|| check_maybe_down (flag_reciprocal_math)
|| check_maybe_down (flag_fp_int_builtin_inexact)
/* Strictly speaking only when the callee contains function
calls that may end up setting errno. */
|| check_maybe_up (flag_errno_math)))
/* We do not want to make code compiled with exceptions to be
brought into a non-EH function unless we know that the callee
does not throw.
This is tracked by DECL_FUNCTION_PERSONALITY. */
|| (check_maybe_up (flag_non_call_exceptions)
&& DECL_FUNCTION_PERSONALITY (callee->decl))
|| (check_maybe_up (flag_exceptions)
&& DECL_FUNCTION_PERSONALITY (callee->decl))
/* When devirtualization is diabled for callee, it is not safe
to inline it as we possibly mangled the type info.
Allow early inlining of always inlines. */
|| (!early && check_maybe_down (flag_devirtualize)))
{
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
inlinable = false;
}
/* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
else if (always_inline)
;
/* When user added an attribute to the callee honor it. */
else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
&& opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
{
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
inlinable = false;
}
/* If explicit optimize attribute are not used, the mismatch is caused
by different command line options used to build different units.
Do not care about COMDAT functions - those are intended to be
optimized with the optimization flags of module they are used in.
Also do not care about mixing up size/speed optimization when
DECL_DISREGARD_INLINE_LIMITS is set. */
else if ((callee->merged_comdat
&& !lookup_attribute ("optimize",
DECL_ATTRIBUTES (caller->decl)))
|| DECL_DISREGARD_INLINE_LIMITS (callee->decl))
;
/* If mismatch is caused by merging two LTO units with different
optimizationflags we want to be bit nicer. However never inline
if one of functions is not optimized at all. */
else if (!opt_for_fn (callee->decl, optimize)
|| !opt_for_fn (caller->decl, optimize))
{
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
inlinable = false;
}
/* If callee is optimized for size and caller is not, allow inlining if
code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
is inline (and thus likely an unified comdat). This will allow caller
to run faster. */
else if (opt_for_fn (callee->decl, optimize_size)
> opt_for_fn (caller->decl, optimize_size))
{
int growth = estimate_edge_growth (e);
if (growth > 0
&& (!DECL_DECLARED_INLINE_P (callee->decl)
&& growth >= MAX (MAX_INLINE_INSNS_SINGLE,
MAX_INLINE_INSNS_AUTO)))
{
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
inlinable = false;
}
}
/* If callee is more aggressively optimized for performance than caller,
we generally want to inline only cheap (runtime wise) functions. */
else if (opt_for_fn (callee->decl, optimize_size)
< opt_for_fn (caller->decl, optimize_size)
|| (opt_for_fn (callee->decl, optimize)
> opt_for_fn (caller->decl, optimize)))
{
if (estimate_edge_time (e)
>= 20 + ipa_call_summaries->get (e)->call_stmt_time)
{
e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
inlinable = false;
}
}
}
if (!inlinable && report)
report_inline_failed_reason (e);
return inlinable;
}
/* Return true if the edge E is inlinable during early inlining. */
static bool
can_early_inline_edge_p (struct cgraph_edge *e)
{
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
/* Early inliner might get called at WPA stage when IPA pass adds new
function. In this case we can not really do any of early inlining
because function bodies are missing. */
if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
return false;
if (!gimple_has_body_p (callee->decl))
{
e->inline_failed = CIF_BODY_NOT_AVAILABLE;
return false;
}
/* In early inliner some of callees may not be in SSA form yet
(i.e. the callgraph is cyclic and we did not process
the callee by early inliner, yet). We don't have CIF code for this
case; later we will re-do the decision in the real inliner. */
if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
|| !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
{
if (dump_file)
fprintf (dump_file, " edge not inlinable: not in SSA form\n");
return false;
}
if (!can_inline_edge_p (e, true, true)
|| !can_inline_edge_by_limits_p (e, true, false, true))
return false;
return true;
}
/* Return number of calls in N. Ignore cheap builtins. */
static int
num_calls (struct cgraph_node *n)
{
struct cgraph_edge *e;
int num = 0;
for (e = n->callees; e; e = e->next_callee)
if (!is_inexpensive_builtin (e->callee->decl))
num++;
return num;
}
/* Return true if we are interested in inlining small function. */
static bool
want_early_inline_function_p (struct cgraph_edge *e)
{
bool want_inline = true;
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
;
/* For AutoFDO, we need to make sure that before profile summary, all
hot paths' IR look exactly the same as profiled binary. As a result,
in einliner, we will disregard size limit and inline those callsites
that are:
* inlined in the profiled binary, and
* the cloned callee has enough samples to be considered "hot". */
else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
;
else if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !opt_for_fn (e->caller->decl, flag_inline_small_functions))
{
e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
report_inline_failed_reason (e);
want_inline = false;
}
else
{
int growth = estimate_edge_growth (e);
int n;
if (growth <= 0)
;
else if (!e->maybe_hot_p ()
&& growth > 0)
{
if (dump_file)
fprintf (dump_file, " will not early inline: %s->%s, "
"call is cold and code would grow by %i\n",
e->caller->dump_name (),
callee->dump_name (),
growth);
want_inline = false;
}
else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
{
if (dump_file)
fprintf (dump_file, " will not early inline: %s->%s, "
"growth %i exceeds --param early-inlining-insns\n",
e->caller->dump_name (),
callee->dump_name (),
growth);
want_inline = false;
}
else if ((n = num_calls (callee)) != 0
&& growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
{
if (dump_file)
fprintf (dump_file, " will not early inline: %s->%s, "
"growth %i exceeds --param early-inlining-insns "
"divided by number of calls\n",
e->caller->dump_name (),
callee->dump_name (),
growth);
want_inline = false;
}
}
return want_inline;
}
/* Compute time of the edge->caller + edge->callee execution when inlining
does not happen. */
inline sreal
compute_uninlined_call_time (struct cgraph_edge *edge,
sreal uninlined_call_time)
{
cgraph_node *caller = (edge->caller->global.inlined_to
? edge->caller->global.inlined_to
: edge->caller);
sreal freq = edge->sreal_frequency ();
if (freq > 0)
uninlined_call_time *= freq;
else
uninlined_call_time = uninlined_call_time >> 11;
sreal caller_time = ipa_fn_summaries->get (caller)->time;
return uninlined_call_time + caller_time;
}
/* Same as compute_uinlined_call_time but compute time when inlining
does happen. */
inline sreal
compute_inlined_call_time (struct cgraph_edge *edge,
sreal time)
{
cgraph_node *caller = (edge->caller->global.inlined_to
? edge->caller->global.inlined_to
: edge->caller);
sreal caller_time = ipa_fn_summaries->get (caller)->time;
sreal freq = edge->sreal_frequency ();
if (freq > 0)
time *= freq;
else
time = time >> 11;
/* This calculation should match one in ipa-inline-analysis.c
(estimate_edge_size_and_time). */
time -= (sreal)ipa_call_summaries->get (edge)->call_stmt_time * freq;
time += caller_time;
if (time <= 0)
time = ((sreal) 1) >> 8;
gcc_checking_assert (time >= 0);
return time;
}
/* Return true if the speedup for inlining E is bigger than
PARAM_MAX_INLINE_MIN_SPEEDUP. */
static bool
big_speedup_p (struct cgraph_edge *e)
{
sreal unspec_time;
sreal spec_time = estimate_edge_time (e, &unspec_time);
sreal time = compute_uninlined_call_time (e, unspec_time);
sreal inlined_time = compute_inlined_call_time (e, spec_time);
if ((time - inlined_time) * 100
> (sreal) (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)))
return true;
return false;
}
/* Return true if we are interested in inlining small function.
When REPORT is true, report reason to dump file. */
static bool
want_inline_small_function_p (struct cgraph_edge *e, bool report)
{
bool want_inline = true;
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
/* Allow this function to be called before can_inline_edge_p,
since it's usually cheaper. */
if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
want_inline = false;
else if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
;
else if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !opt_for_fn (e->caller->decl, flag_inline_small_functions))
{
e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
want_inline = false;
}
/* Do fast and conservative check if the function can be good
inline candidate. At the moment we allow inline hints to
promote non-inline functions to inline and we increase
MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
else if ((!DECL_DECLARED_INLINE_P (callee->decl)
&& (!e->count.ipa ().initialized_p () || !e->maybe_hot_p ()))
&& ipa_fn_summaries->get (callee)->min_size
- ipa_call_summaries->get (e)->call_stmt_size
> MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
{
e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
want_inline = false;
}
else if ((DECL_DECLARED_INLINE_P (callee->decl)
|| e->count.ipa ().nonzero_p ())
&& ipa_fn_summaries->get (callee)->min_size
- ipa_call_summaries->get (e)->call_stmt_size
> 16 * MAX_INLINE_INSNS_SINGLE)
{
e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
: CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
want_inline = false;
}
else
{
int growth = estimate_edge_growth (e);
ipa_hints hints = estimate_edge_hints (e);
bool big_speedup = big_speedup_p (e);
if (growth <= 0)
;
/* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
hints suggests that inlining given function is very profitable. */
else if (DECL_DECLARED_INLINE_P (callee->decl)
&& growth >= MAX_INLINE_INSNS_SINGLE
&& ((!big_speedup
&& !(hints & (INLINE_HINT_indirect_call
| INLINE_HINT_known_hot
| INLINE_HINT_loop_iterations
| INLINE_HINT_array_index
| INLINE_HINT_loop_stride)))
|| growth >= MAX_INLINE_INSNS_SINGLE * 16))
{
e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
want_inline = false;
}
else if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !opt_for_fn (e->caller->decl, flag_inline_functions))
{
/* growth_likely_positive is expensive, always test it last. */
if (growth >= MAX_INLINE_INSNS_SINGLE
|| growth_likely_positive (callee, growth))
{
e->inline_failed = CIF_NOT_DECLARED_INLINED;
want_inline = false;
}
}
/* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
inlining given function is very profitable. */
else if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !big_speedup
&& !(hints & INLINE_HINT_known_hot)
&& growth >= ((hints & (INLINE_HINT_indirect_call
| INLINE_HINT_loop_iterations
| INLINE_HINT_array_index
| INLINE_HINT_loop_stride))
? MAX (MAX_INLINE_INSNS_AUTO,
MAX_INLINE_INSNS_SINGLE)
: MAX_INLINE_INSNS_AUTO))
{
/* growth_likely_positive is expensive, always test it last. */
if (growth >= MAX_INLINE_INSNS_SINGLE
|| growth_likely_positive (callee, growth))
{
e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
want_inline = false;
}
}
/* If call is cold, do not inline when function body would grow. */
else if (!e->maybe_hot_p ()
&& (growth >= MAX_INLINE_INSNS_SINGLE
|| growth_likely_positive (callee, growth)))
{
e->inline_failed = CIF_UNLIKELY_CALL;
want_inline = false;
}
}
if (!want_inline && report)
report_inline_failed_reason (e);
return want_inline;
}
/* EDGE is self recursive edge.
We hand two cases - when function A is inlining into itself
or when function A is being inlined into another inliner copy of function
A within function B.
In first case OUTER_NODE points to the toplevel copy of A, while
in the second case OUTER_NODE points to the outermost copy of A in B.
In both cases we want to be extra selective since
inlining the call will just introduce new recursive calls to appear. */
static bool
want_inline_self_recursive_call_p (struct cgraph_edge *edge,
struct cgraph_node *outer_node,
bool peeling,
int depth)
{
char const *reason = NULL;
bool want_inline = true;
sreal caller_freq = 1;
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
if (DECL_DECLARED_INLINE_P (edge->caller->decl))
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
if (!edge->maybe_hot_p ())
{
reason = "recursive call is cold";
want_inline = false;
}
else if (depth > max_depth)
{
reason = "--param max-inline-recursive-depth exceeded.";
want_inline = false;
}
else if (outer_node->global.inlined_to
&& (caller_freq = outer_node->callers->sreal_frequency ()) == 0)
{
reason = "caller frequency is 0";
want_inline = false;
}
if (!want_inline)
;
/* Inlining of self recursive function into copy of itself within other
function is transformation similar to loop peeling.
Peeling is profitable if we can inline enough copies to make probability
of actual call to the self recursive function very small. Be sure that
the probability of recursion is small.
We ensure that the frequency of recursing is at most 1 - (1/max_depth).
This way the expected number of recursion is at most max_depth. */
else if (peeling)
{
sreal max_prob = (sreal)1 - ((sreal)1 / (sreal)max_depth);
int i;
for (i = 1; i < depth; i++)
max_prob = max_prob * max_prob;
if (edge->sreal_frequency () >= max_prob * caller_freq)
{
reason = "frequency of recursive call is too large";
want_inline = false;
}
}
/* Recursive inlining, i.e. equivalent of unrolling, is profitable if
recursion depth is large. We reduce function call overhead and increase
chances that things fit in hardware return predictor.
Recursive inlining might however increase cost of stack frame setup
actually slowing down functions whose recursion tree is wide rather than
deep.
Deciding reliably on when to do recursive inlining without profile feedback
is tricky. For now we disable recursive inlining when probability of self
recursion is low.
Recursive inlining of self recursive call within loop also results in
large loop depths that generally optimize badly. We may want to throttle
down inlining in those cases. In particular this seems to happen in one
of libstdc++ rb tree methods. */
else
{
if (edge->sreal_frequency () * 100
<= caller_freq
* PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))
{
reason = "frequency of recursive call is too small";
want_inline = false;
}
}
if (!want_inline && dump_file)
fprintf (dump_file, " not inlining recursively: %s\n", reason);
return want_inline;
}
/* Return true when NODE has uninlinable caller;
set HAS_HOT_CALL if it has hot call.
Worker for cgraph_for_node_and_aliases. */
static bool
check_callers (struct cgraph_node *node, void *has_hot_call)
{
struct cgraph_edge *e;
for (e = node->callers; e; e = e->next_caller)
{
if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once)
|| !opt_for_fn (e->caller->decl, optimize))
return true;
if (!can_inline_edge_p (e, true))
return true;
if (e->recursive_p ())
return true;
if (!can_inline_edge_by_limits_p (e, true))
return true;
if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
*(bool *)has_hot_call = true;
}
return false;
}
/* If NODE has a caller, return true. */
static bool
has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
{
if (node->callers)
return true;
return false;
}
/* Decide if inlining NODE would reduce unit size by eliminating
the offline copy of function.
When COLD is true the cold calls are considered, too. */
static bool
want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
{
bool has_hot_call = false;
/* Aliases gets inlined along with the function they alias. */
if (node->alias)
return false;
/* Already inlined? */
if (node->global.inlined_to)
return false;
/* Does it have callers? */
if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
return false;
/* Inlining into all callers would increase size? */
if (estimate_growth (node) > 0)
return false;
/* All inlines must be possible. */
if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
true))
return false;
if (!cold && !has_hot_call)
return false;
return true;
}
/* A cost model driving the inlining heuristics in a way so the edges with
smallest badness are inlined first. After each inlining is performed
the costs of all caller edges of nodes affected are recomputed so the
metrics may accurately depend on values such as number of inlinable callers
of the function or function body size. */
static sreal
edge_badness (struct cgraph_edge *edge, bool dump)
{
sreal badness;
int growth;
sreal edge_time, unspec_edge_time;
struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
struct ipa_fn_summary *callee_info = ipa_fn_summaries->get (callee);
ipa_hints hints;
cgraph_node *caller = (edge->caller->global.inlined_to
? edge->caller->global.inlined_to
: edge->caller);
growth = estimate_edge_growth (edge);
edge_time = estimate_edge_time (edge, &unspec_edge_time);
hints = estimate_edge_hints (edge);
gcc_checking_assert (edge_time >= 0);
/* Check that inlined time is better, but tolerate some roundoff issues.
FIXME: When callee profile drops to 0 we account calls more. This
should be fixed by never doing that. */
gcc_checking_assert ((edge_time * 100
- callee_info->time * 101).to_int () <= 0
|| callee->count.ipa ().initialized_p ());
gcc_checking_assert (growth <= callee_info->size);
if (dump)
{
fprintf (dump_file, " Badness calculation for %s -> %s\n",
edge->caller->dump_name (),
edge->callee->dump_name ());
fprintf (dump_file, " size growth %i, time %f unspec %f ",
growth,
edge_time.to_double (),
unspec_edge_time.to_double ());
ipa_dump_hints (dump_file, hints);
if (big_speedup_p (edge))
fprintf (dump_file, " big_speedup");
fprintf (dump_file, "\n");
}
/* Always prefer inlining saving code size. */
if (growth <= 0)
{
badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
if (dump)
fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
growth);
}
/* Inlining into EXTERNAL functions is not going to change anything unless
they are themselves inlined. */
else if (DECL_EXTERNAL (caller->decl))
{
if (dump)
fprintf (dump_file, " max: function is external\n");
return sreal::max ();
}
/* When profile is available. Compute badness as:
time_saved * caller_count
goodness = -------------------------------------------------
growth_of_caller * overall_growth * combined_size
badness = - goodness
Again use negative value to make calls with profile appear hotter
then calls without.
*/
else if (opt_for_fn (caller->decl, flag_guess_branch_prob)
|| caller->count.ipa ().nonzero_p ())
{
sreal numerator, denominator;
int overall_growth;
sreal inlined_time = compute_inlined_call_time (edge, edge_time);
numerator = (compute_uninlined_call_time (edge, unspec_edge_time)
- inlined_time);
if (numerator <= 0)
numerator = ((sreal) 1 >> 8);
if (caller->count.ipa ().nonzero_p ())
numerator *= caller->count.ipa ().to_gcov_type ();
else if (caller->count.ipa ().initialized_p ())
numerator = numerator >> 11;
denominator = growth;
overall_growth = callee_info->growth;
/* Look for inliner wrappers of the form:
inline_caller ()
{
do_fast_job...
if (need_more_work)
noninline_callee ();
}
Withhout panilizing this case, we usually inline noninline_callee
into the inline_caller because overall_growth is small preventing
further inlining of inline_caller.
Penalize only callgraph edges to functions with small overall
growth ...
*/
if (growth > overall_growth
/* ... and having only one caller which is not inlined ... */
&& callee_info->single_caller
&& !edge->caller->global.inlined_to
/* ... and edges executed only conditionally ... */
&& edge->sreal_frequency () < 1
/* ... consider case where callee is not inline but caller is ... */
&& ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
&& DECL_DECLARED_INLINE_P (caller->decl))
/* ... or when early optimizers decided to split and edge
frequency still indicates splitting is a win ... */
|| (callee->split_part && !caller->split_part
&& edge->sreal_frequency () * 100
< PARAM_VALUE
(PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY)
/* ... and do not overwrite user specified hints. */
&& (!DECL_DECLARED_INLINE_P (edge->callee->decl)
|| DECL_DECLARED_INLINE_P (caller->decl)))))
{
struct ipa_fn_summary *caller_info = ipa_fn_summaries->get (caller);
int caller_growth = caller_info->growth;
/* Only apply the penalty when caller looks like inline candidate,
and it is not called once and. */
if (!caller_info->single_caller && overall_growth < caller_growth
&& caller_info->inlinable
&& caller_info->size
< (DECL_DECLARED_INLINE_P (caller->decl)
? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
{
if (dump)
fprintf (dump_file,
" Wrapper penalty. Increasing growth %i to %i\n",
overall_growth, caller_growth);
overall_growth = caller_growth;
}
}
if (overall_growth > 0)
{
/* Strongly preffer functions with few callers that can be inlined
fully. The square root here leads to smaller binaries at average.
Watch however for extreme cases and return to linear function
when growth is large. */
if (overall_growth < 256)
overall_growth *= overall_growth;
else
overall_growth += 256 * 256 - 256;
denominator *= overall_growth;
}
denominator *= ipa_fn_summaries->get (caller)->self_size + growth;
badness = - numerator / denominator;
if (dump)
{
fprintf (dump_file,
" %f: guessed profile. frequency %f, count %" PRId64
" caller count %" PRId64
" time w/o inlining %f, time with inlining %f"
" overall growth %i (current) %i (original)"
" %i (compensated)\n",
badness.to_double (),
edge->sreal_frequency ().to_double (),
edge->count.ipa ().initialized_p () ? edge->count.ipa ().to_gcov_type () : -1,
caller->count.ipa ().initialized_p () ? caller->count.ipa ().to_gcov_type () : -1,
compute_uninlined_call_time (edge,
unspec_edge_time).to_double (),
inlined_time.to_double (),
estimate_growth (callee),
callee_info->growth, overall_growth);
}
}
/* When function local profile is not available or it does not give
useful information (ie frequency is zero), base the cost on
loop nest and overall size growth, so we optimize for overall number
of functions fully inlined in program. */
else
{
int nest = MIN (ipa_call_summaries->get (edge)->loop_depth, 8);
badness = growth;
/* Decrease badness if call is nested. */
if (badness > 0)
badness = badness >> nest;
else
badness = badness << nest;
if (dump)
fprintf (dump_file, " %f: no profile. nest %i\n",
badness.to_double (), nest);
}
gcc_checking_assert (badness != 0);
if (edge->recursive_p ())
badness = badness.shift (badness > 0 ? 4 : -4);
if ((hints & (INLINE_HINT_indirect_call
| INLINE_HINT_loop_iterations
| INLINE_HINT_array_index
| INLINE_HINT_loop_stride))
|| callee_info->growth <= 0)
badness = badness.shift (badness > 0 ? -2 : 2);
if (hints & (INLINE_HINT_same_scc))
badness = badness.shift (badness > 0 ? 3 : -3);
else if (hints & (INLINE_HINT_in_scc))
badness = badness.shift (badness > 0 ? 2 : -2);
else if (hints & (INLINE_HINT_cross_module))
badness = badness.shift (badness > 0 ? 1 : -1);
if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
badness = badness.shift (badness > 0 ? -4 : 4);
else if ((hints & INLINE_HINT_declared_inline))
badness = badness.shift (badness > 0 ? -3 : 3);
if (dump)
fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
return badness;
}
/* Recompute badness of EDGE and update its key in HEAP if needed. */
static inline void
update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
{
sreal badness = edge_badness (edge, false);
if (edge->aux)
{
edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
gcc_checking_assert (n->get_data () == edge);
/* fibonacci_heap::replace_key does busy updating of the
heap that is unnecesarily expensive.
We do lazy increases: after extracting minimum if the key
turns out to be out of date, it is re-inserted into heap
with correct value. */
if (badness < n->get_key ())
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
" decreasing badness %s -> %s, %f to %f\n",
edge->caller->dump_name (),
edge->callee->dump_name (),
n->get_key ().to_double (),
badness.to_double ());
}
heap->decrease_key (n, badness);
}
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
" enqueuing call %s -> %s, badness %f\n",
edge->caller->dump_name (),
edge->callee->dump_name (),
badness.to_double ());
}
edge->aux = heap->insert (badness, edge);
}
}
/* NODE was inlined.
All caller edges needs to be resetted because
size estimates change. Similarly callees needs reset
because better context may be known. */
static void
reset_edge_caches (struct cgraph_node *node)
{
struct cgraph_edge *edge;
struct cgraph_edge *e = node->callees;
struct cgraph_node *where = node;
struct ipa_ref *ref;
if (where->global.inlined_to)
where = where->global.inlined_to;
for (edge = where->callers; edge; edge = edge->next_caller)
if (edge->inline_failed)
reset_edge_growth_cache (edge);
FOR_EACH_ALIAS (where, ref)
reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
if (!e)
return;
while (true)
if (!e->inline_failed && e->callee->callees)
e = e->callee->callees;
else
{
if (e->inline_failed)
reset_edge_growth_cache (e);
if (e->next_callee)
e = e->next_callee;
else
{
do
{
if (e->caller == node)
return;
e = e->caller->callers;
}
while (!e->next_callee);
e = e->next_callee;
}
}
}
/* Recompute HEAP nodes for each of caller of NODE.
UPDATED_NODES track nodes we already visited, to avoid redundant work.
When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
it is inlinable. Otherwise check all edges. */
static void
update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
bitmap updated_nodes,
struct cgraph_edge *check_inlinablity_for)
{
struct cgraph_edge *edge;
struct ipa_ref *ref;
if ((!node->alias && !ipa_fn_summaries->get (node)->inlinable)
|| node->global.inlined_to)
return;
if (!bitmap_set_bit (updated_nodes, node->uid))
return;
FOR_EACH_ALIAS (node, ref)
{
struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
}
for (edge = node->callers; edge; edge = edge->next_caller)
if (edge->inline_failed)
{
if (!check_inlinablity_for
|| check_inlinablity_for == edge)
{
if (can_inline_edge_p (edge, false)
&& want_inline_small_function_p (edge, false)
&& can_inline_edge_by_limits_p (edge, false))
update_edge_key (heap, edge);
else if (edge->aux)
{
report_inline_failed_reason (edge);
heap->delete_node ((edge_heap_node_t *) edge->aux);
edge->aux = NULL;
}
}
else if (edge->aux)
update_edge_key (heap, edge);
}
}
/* Recompute HEAP nodes for each uninlined call in NODE.
This is used when we know that edge badnesses are going only to increase
(we introduced new call site) and thus all we need is to insert newly
created edges into heap. */
static void
update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
bitmap updated_nodes)
{
struct cgraph_edge *e = node->callees;
if (!e)
return;
while (true)
if (!e->inline_failed && e->callee->callees)
e = e->callee->callees;
else
{
enum availability avail;
struct cgraph_node *callee;
/* We do not reset callee growth cache here. Since we added a new call,
growth chould have just increased and consequentely badness metric
don't need updating. */
if (e->inline_failed
&& (callee = e->callee->ultimate_alias_target (&avail, e->caller))
&& ipa_fn_summaries->get (callee)->inlinable
&& avail >= AVAIL_AVAILABLE
&& !bitmap_bit_p (updated_nodes, callee->uid))
{
if (can_inline_edge_p (e, false)
&& want_inline_small_function_p (e, false)
&& can_inline_edge_by_limits_p (e, false))
update_edge_key (heap, e);
else if (e->aux)
{
report_inline_failed_reason (e);
heap->delete_node ((edge_heap_node_t *) e->aux);
e->aux = NULL;
}
}
if (e->next_callee)
e = e->next_callee;
else
{
do
{
if (e->caller == node)
return;
e = e->caller->callers;
}
while (!e->next_callee);
e = e->next_callee;
}
}
}
/* Enqueue all recursive calls from NODE into priority queue depending on
how likely we want to recursively inline the call. */
static void
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
edge_heap_t *heap)
{
struct cgraph_edge *e;
enum availability avail;
for (e = where->callees; e; e = e->next_callee)
if (e->callee == node
|| (e->callee->ultimate_alias_target (&avail, e->caller) == node
&& avail > AVAIL_INTERPOSABLE))
heap->insert (-e->sreal_frequency (), e);
for (e = where->callees; e; e = e->next_callee)
if (!e->inline_failed)
lookup_recursive_calls (node, e->callee, heap);
}
/* Decide on recursive inlining: in the case function has recursive calls,
inline until body size reaches given argument. If any new indirect edges
are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
is NULL. */
static bool
recursive_inlining (struct cgraph_edge *edge,
vec<cgraph_edge *> *new_edges)
{
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
edge_heap_t heap (sreal::min ());
struct cgraph_node *node;
struct cgraph_edge *e;
struct cgraph_node *master_clone = NULL, *next;
int depth = 0;
int n = 0;
node = edge->caller;
if (node->global.inlined_to)
node = node->global.inlined_to;
if (DECL_DECLARED_INLINE_P (node->decl))
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
/* Make sure that function is small enough to be considered for inlining. */
if (estimate_size_after_inlining (node, edge) >= limit)
return false;
lookup_recursive_calls (node, node, &heap);
if (heap.empty ())
return false;
if (dump_file)
fprintf (dump_file,
" Performing recursive inlining on %s\n",
node->name ());
/* Do the inlining and update list of recursive call during process. */
while (!heap.empty ())
{
struct cgraph_edge *curr = heap.extract_min ();
struct cgraph_node *cnode, *dest = curr->callee;
if (!can_inline_edge_p (curr, true)
|| can_inline_edge_by_limits_p (curr, true))
continue;
/* MASTER_CLONE is produced in the case we already started modified
the function. Be sure to redirect edge to the original body before
estimating growths otherwise we will be seeing growths after inlining
the already modified body. */
if (master_clone)
{
curr->redirect_callee (master_clone);
reset_edge_growth_cache (curr);
}
if (estimate_size_after_inlining (node, curr) > limit)
{
curr->redirect_callee (dest);
reset_edge_growth_cache (curr);
break;
}
depth = 1;
for (cnode = curr->caller;
cnode->global.inlined_to; cnode = cnode->callers->caller)
if (node->decl
== curr->callee->ultimate_alias_target ()->decl)
depth++;
if (!want_inline_self_recursive_call_p (curr, node, false, depth))
{
curr->redirect_callee (dest);
reset_edge_growth_cache (curr);
continue;
}
if (dump_file)
{
fprintf (dump_file,
" Inlining call of depth %i", depth);
if (node->count.nonzero_p ())
{
fprintf (dump_file, " called approx. %.2f times per call",
(double)curr->count.to_gcov_type ()
/ node->count.to_gcov_type ());
}
fprintf (dump_file, "\n");
}
if (!master_clone)
{
/* We need original clone to copy around. */
master_clone = node->create_clone (node->decl, node->count,
false, vNULL, true, NULL, NULL);
for (e = master_clone->callees; e; e = e->next_callee)
if (!e->inline_failed)
clone_inlined_nodes (e, true, false, NULL);
curr->redirect_callee (master_clone);
reset_edge_growth_cache (curr);
}
inline_call (curr, false, new_edges, &overall_size, true);
lookup_recursive_calls (node, curr->callee, &heap);
n++;
}
if (!heap.empty () && dump_file)
fprintf (dump_file, " Recursive inlining growth limit met.\n");
if (!master_clone)
return false;
if (dump_file)
fprintf (dump_file,
"\n Inlined %i times, "
"body grown from size %i to %i, time %f to %f\n", n,
ipa_fn_summaries->get (master_clone)->size,
ipa_fn_summaries->get (node)->size,
ipa_fn_summaries->get (master_clone)->time.to_double (),
ipa_fn_summaries->get (node)->time.to_double ());
/* Remove master clone we used for inlining. We rely that clones inlined
into master clone gets queued just before master clone so we don't
need recursion. */
for (node = symtab->first_function (); node != master_clone;
node = next)
{
next = symtab->next_function (node);
if (node->global.inlined_to == master_clone)
node->remove ();
}
master_clone->remove ();
return true;
}
/* Given whole compilation unit estimate of INSNS, compute how large we can
allow the unit to grow. */
static int
compute_max_insns (int insns)
{
int max_insns = insns;
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
return ((int64_t) max_insns
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
}
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
static void
add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
{
while (new_edges.length () > 0)
{
struct cgraph_edge *edge = new_edges.pop ();
gcc_assert (!edge->aux);
if (edge->inline_failed
&& can_inline_edge_p (edge, true)
&& want_inline_small_function_p (edge, true)
&& can_inline_edge_by_limits_p (edge, true))
edge->aux = heap->insert (edge_badness (edge, false), edge);
}
}
/* Remove EDGE from the fibheap. */
static void
heap_edge_removal_hook (struct cgraph_edge *e, void *data)
{
if (e->aux)
{
((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
e->aux = NULL;
}
}
/* Return true if speculation of edge E seems useful.
If ANTICIPATE_INLINING is true, be conservative and hope that E
may get inlined. */
bool
speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
{
enum availability avail;
struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
e->caller);
struct cgraph_edge *direct, *indirect;
struct ipa_ref *ref;
gcc_assert (e->speculative && !e->indirect_unknown_callee);
if (!e->maybe_hot_p ())
return false;
/* See if IP optimizations found something potentially useful about the
function. For now we look only for CONST/PURE flags. Almost everything
else we propagate is useless. */
if (avail >= AVAIL_AVAILABLE)
{
int ecf_flags = flags_from_decl_or_type (target->decl);
if (ecf_flags & ECF_CONST)
{
e->speculative_call_info (direct, indirect, ref);
if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
return true;
}
else if (ecf_flags & ECF_PURE)
{
e->speculative_call_info (direct, indirect, ref);
if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
return true;
}
}
/* If we did not managed to inline the function nor redirect
to an ipa-cp clone (that are seen by having local flag set),
it is probably pointless to inline it unless hardware is missing
indirect call predictor. */
if (!anticipate_inlining && e->inline_failed && !target->local.local)
return false;
/* For overwritable targets there is not much to do. */
if (e->inline_failed
&& (!can_inline_edge_p (e, false)
|| !can_inline_edge_by_limits_p (e, false, true)))
return false;
/* OK, speculation seems interesting. */
return true;
}
/* We know that EDGE is not going to be inlined.
See if we can remove speculation. */
static void
resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
{
if (edge->speculative && !speculation_useful_p (edge, false))
{
struct cgraph_node *node = edge->caller;
struct cgraph_node *where = node->global.inlined_to
? node->global.inlined_to : node;
auto_bitmap updated_nodes;
if (edge->count.ipa ().initialized_p ())
spec_rem += edge->count.ipa ();
edge->resolve_speculation ();
reset_edge_caches (where);
ipa_update_overall_fn_summary (where);
update_caller_keys (edge_heap, where,
updated_nodes, NULL);
update_callee_keys (edge_heap, where,
updated_nodes);
}
}
/* Return true if NODE should be accounted for overall size estimate.
Skip all nodes optimized for size so we can measure the growth of hot
part of program no matter of the padding. */
bool
inline_account_function_p (struct cgraph_node *node)
{
return (!DECL_EXTERNAL (node->decl)
&& !opt_for_fn (node->decl, optimize_size)
&& node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
}
/* Count number of callers of NODE and store it into DATA (that
points to int. Worker for cgraph_for_node_and_aliases. */
static bool
sum_callers (struct cgraph_node *node, void *data)
{
struct cgraph_edge *e;
int *num_calls = (int *)data;
for (e = node->callers; e; e = e->next_caller)
(*num_calls)++;
return false;
}
/* We use greedy algorithm for inlining of small functions:
All inline candidates are put into prioritized heap ordered in
increasing badness.
The inlining of small functions is bounded by unit growth parameters. */
static void
inline_small_functions (void)
{
struct cgraph_node *node;
struct cgraph_edge *edge;
edge_heap_t edge_heap (sreal::min ());
auto_bitmap updated_nodes;
int min_size, max_size;
auto_vec<cgraph_edge *> new_indirect_edges;
int initial_size = 0;
struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
struct cgraph_edge_hook_list *edge_removal_hook_holder;
new_indirect_edges.create (8);
edge_removal_hook_holder
= symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
/* Compute overall unit size and other global parameters used by badness
metrics. */
max_count = profile_count::uninitialized ();
ipa_reduced_postorder (order, true, NULL);
free (order);
FOR_EACH_DEFINED_FUNCTION (node)
if (!node->global.inlined_to)
{
if (!node->alias && node->analyzed
&& (node->has_gimple_body_p () || node->thunk.thunk_p)
&& opt_for_fn (node->decl, optimize))
{
struct ipa_fn_summary *info = ipa_fn_summaries->get (node);
struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
/* Do not account external functions, they will be optimized out
if not inlined. Also only count the non-cold portion of program. */
if (inline_account_function_p (node))
initial_size += info->size;
info->growth = estimate_growth (node);
int num_calls = 0;
node->call_for_symbol_and_aliases (sum_callers, &num_calls,
true);
if (num_calls == 1)
info->single_caller = true;
if (dfs && dfs->next_cycle)
{
struct cgraph_node *n2;
int id = dfs->scc_no + 1;
for (n2 = node; n2;
n2 = ((struct ipa_dfs_info *) n2->aux)->next_cycle)
if (opt_for_fn (n2->decl, optimize))
{
struct ipa_fn_summary *info2 = ipa_fn_summaries->get (n2);
if (info2->scc_no)
break;
info2->scc_no = id;
}
}
}
for (edge = node->callers; edge; edge = edge->next_caller)
max_count = max_count.max (edge->count.ipa ());
}
ipa_free_postorder_info ();
initialize_growth_caches ();
if (dump_file)
fprintf (dump_file,
"\nDeciding on inlining of small functions. Starting with size %i.\n",
initial_size);
overall_size = initial_size;
max_size = compute_max_insns (overall_size);
min_size = overall_size;
/* Populate the heap with all edges we might inline. */
FOR_EACH_DEFINED_FUNCTION (node)
{
bool update = false;
struct cgraph_edge *next = NULL;
bool has_speculative = false;
if (!opt_for_fn (node->decl, optimize))
continue;
if (dump_file)
fprintf (dump_file, "Enqueueing calls in %s.\n", node->dump_name ());
for (edge = node->callees; edge; edge = next)
{
next = edge->next_callee;
if (edge->inline_failed
&& !edge->aux
&& can_inline_edge_p (edge, true)
&& want_inline_small_function_p (edge, true)
&& can_inline_edge_by_limits_p (edge, true)
&& edge->inline_failed)
{
gcc_assert (!edge->aux);
update_edge_key (&edge_heap, edge);
}
if (edge->speculative)
has_speculative = true;
}
if (has_speculative)
for (edge = node->callees; edge; edge = next)
if (edge->speculative && !speculation_useful_p (edge,
edge->aux != NULL))
{
edge->resolve_speculation ();
update = true;
}
if (update)
{
struct cgraph_node *where = node->global.inlined_to
? node->global.inlined_to : node;
ipa_update_overall_fn_summary (where);
reset_edge_caches (where);
update_caller_keys (&edge_heap, where,
updated_nodes, NULL);
update_callee_keys (&edge_heap, where,
updated_nodes);
bitmap_clear (updated_nodes);
}
}
gcc_assert (in_lto_p
|| !(max_count > 0)
|| (profile_info && flag_branch_probabilities));
while (!edge_heap.empty ())
{
int old_size = overall_size;
struct cgraph_node *where, *callee;
sreal badness = edge_heap.min_key ();
sreal current_badness;
int growth;
edge = edge_heap.extract_min ();
gcc_assert (edge->aux);
edge->aux = NULL;
if (!edge->inline_failed || !edge->callee->analyzed)
continue;
#if CHECKING_P
/* Be sure that caches are maintained consistent.
This check is affected by scaling roundoff errors when compiling for
IPA this we skip it in that case. */
if (!edge->callee->count.ipa_p ()
&& (!max_count.initialized_p () || !max_count.nonzero_p ()))
{
sreal cached_badness = edge_badness (edge, false);
int old_size_est = estimate_edge_size (edge);
sreal old_time_est = estimate_edge_time (edge);
int old_hints_est = estimate_edge_hints (edge);
reset_edge_growth_cache (edge);
gcc_assert (old_size_est == estimate_edge_size (edge));
gcc_assert (old_time_est == estimate_edge_time (edge));
/* FIXME:
gcc_assert (old_hints_est == estimate_edge_hints (edge));
fails with profile feedback because some hints depends on
maybe_hot_edge_p predicate and because callee gets inlined to other
calls, the edge may become cold.
This ought to be fixed by computing relative probabilities
for given invocation but that will be better done once whole
code is converted to sreals. Disable for now and revert to "wrong"
value so enable/disable checking paths agree. */
edge_growth_cache[edge->uid].hints = old_hints_est + 1;
/* When updating the edge costs, we only decrease badness in the keys.
Increases of badness are handled lazilly; when we see key with out
of date value on it, we re-insert it now. */
current_badness = edge_badness (edge, false);
gcc_assert (cached_badness == current_badness);
gcc_assert (current_badness >= badness);
}
else
current_badness = edge_badness (edge, false);
#else
current_badness = edge_badness (edge, false);
#endif
if (current_badness != badness)
{
if (edge_heap.min () && current_badness > edge_heap.min_key ())
{
edge->aux = edge_heap.insert (current_badness, edge);
continue;
}
else
badness = current_badness;
}
if (!can_inline_edge_p (edge, true)
|| !can_inline_edge_by_limits_p (edge, true))
{
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
callee = edge->callee->ultimate_alias_target ();
growth = estimate_edge_growth (edge);
if (dump_file)
{
fprintf (dump_file,
"\nConsidering %s with %i size\n",
callee->dump_name (),
ipa_fn_summaries->get (callee)->size);
fprintf (dump_file,
" to be inlined into %s in %s:%i\n"
" Estimated badness is %f, frequency %.2f.\n",
edge->caller->dump_name (),
edge->call_stmt
&& (LOCATION_LOCUS (gimple_location ((const gimple *)
edge->call_stmt))
> BUILTINS_LOCATION)
? gimple_filename ((const gimple *) edge->call_stmt)
: "unknown",
edge->call_stmt
? gimple_lineno ((const gimple *) edge->call_stmt)
: -1,
badness.to_double (),
edge->sreal_frequency ().to_double ());
if (edge->count.ipa ().initialized_p ())
{
fprintf (dump_file, " Called ");
edge->count.ipa ().dump (dump_file);
fprintf (dump_file, " times\n");
}
if (dump_flags & TDF_DETAILS)
edge_badness (edge, true);
}
if (overall_size + growth > max_size
&& !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
{
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
report_inline_failed_reason (edge);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
if (!want_inline_small_function_p (edge, true))
{
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
/* Heuristics for inlining small functions work poorly for
recursive calls where we do effects similar to loop unrolling.
When inlining such edge seems profitable, leave decision on
specific inliner. */
if (edge->recursive_p ())
{
where = edge->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
if (!recursive_inlining (edge,
opt_for_fn (edge->caller->decl,
flag_indirect_inlining)
? &new_indirect_edges : NULL))
{
edge->inline_failed = CIF_RECURSIVE_INLINING;
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
reset_edge_caches (where);
/* Recursive inliner inlines all recursive calls of the function
at once. Consequently we need to update all callee keys. */
if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
update_callee_keys (&edge_heap, where, updated_nodes);
bitmap_clear (updated_nodes);
}
else
{
struct cgraph_node *outer_node = NULL;
int depth = 0;
/* Consider the case where self recursive function A is inlined
into B. This is desired optimization in some cases, since it
leads to effect similar of loop peeling and we might completely
optimize out the recursive call. However we must be extra
selective. */
where = edge->caller;
while (where->global.inlined_to)
{
if (where->decl == callee->decl)
outer_node = where, depth++;
where = where->callers->caller;
}
if (outer_node
&& !want_inline_self_recursive_call_p (edge, outer_node,
true, depth))
{
edge->inline_failed
= (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
resolve_noninline_speculation (&edge_heap, edge);
continue;
}
else if (depth && dump_file)
fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
gcc_checking_assert (!callee->global.inlined_to);
inline_call (edge, true, &new_indirect_edges, &overall_size, true);
add_new_edges_to_heap (&edge_heap, new_indirect_edges);
reset_edge_caches (edge->callee);
update_callee_keys (&edge_heap, where, updated_nodes);
}
where = edge->caller;
if (where->global.inlined_to)
where = where->global.inlined_to;
/* Our profitability metric can depend on local properties
such as number of inlinable calls and size of the function body.
After inlining these properties might change for the function we
inlined into (since it's body size changed) and for the functions
called by function we inlined (since number of it inlinable callers
might change). */
update_caller_keys (&edge_heap, where, updated_nodes, NULL);
/* Offline copy count has possibly changed, recompute if profile is
available. */
struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
if (n != edge->callee && n->analyzed && n->count.ipa ().initialized_p ())
update_callee_keys (&edge_heap, n, updated_nodes);
bitmap_clear (updated_nodes);
if (dump_file)
{
fprintf (dump_file,
" Inlined %s into %s which now has time %f and size %i, "
"net change of %+i.\n",
xstrdup_for_dump (edge->callee->name ()),
xstrdup_for_dump (edge->caller->name ()),
ipa_fn_summaries->get (edge->caller)->time.to_double (),
ipa_fn_summaries->get (edge->caller)->size,
overall_size - old_size);
}
if (min_size > overall_size)
{
min_size = overall_size;
max_size = compute_max_insns (min_size);
if (dump_file)
fprintf (dump_file, "New minimal size reached: %i\n", min_size);
}
}
free_growth_caches ();
if (dump_file)
fprintf (dump_file,
"Unit growth for small function inlining: %i->%i (%i%%)\n",
initial_size, overall_size,
initial_size ? overall_size * 100 / (initial_size) - 100: 0);
symtab->remove_edge_removal_hook (edge_removal_hook_holder);
}
/* Flatten NODE. Performed both during early inlining and
at IPA inlining time. */
static void
flatten_function (struct cgraph_node *node, bool early)
{
struct cgraph_edge *e;
/* We shouldn't be called recursively when we are being processed. */
gcc_assert (node->aux == NULL);
node->aux = (void *) node;
for (e = node->callees; e; e = e->next_callee)
{
struct cgraph_node *orig_callee;
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
/* We've hit cycle? It is time to give up. */
if (callee->aux)
{
if (dump_file)
fprintf (dump_file,
"Not inlining %s into %s to avoid cycle.\n",
xstrdup_for_dump (callee->name ()),
xstrdup_for_dump (e->caller->name ()));
if (cgraph_inline_failed_type (e->inline_failed) != CIF_FINAL_ERROR)
e->inline_failed = CIF_RECURSIVE_INLINING;
continue;
}
/* When the edge is already inlined, we just need to recurse into
it in order to fully flatten the leaves. */
if (!e->inline_failed)
{
flatten_function (callee, early);
continue;
}
/* Flatten attribute needs to be processed during late inlining. For
extra code quality we however do flattening during early optimization,
too. */
if (!early
? !can_inline_edge_p (e, true)
&& !can_inline_edge_by_limits_p (e, true)
: !can_early_inline_edge_p (e))
continue;
if (e->recursive_p ())
{
if (dump_file)
fprintf (dump_file, "Not inlining: recursive call.\n");
continue;
}
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
{
if (dump_file)
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
continue;
}
/* Inline the edge and flatten the inline clone. Avoid
recursing through the original node if the node was cloned. */
if (dump_file)
fprintf (dump_file, " Inlining %s into %s.\n",
xstrdup_for_dump (callee->name ()),
xstrdup_for_dump (e->caller->name ()));
orig_callee = callee;
inline_call (e, true, NULL, NULL, false);
if (e->callee != orig_callee)
orig_callee->aux = (void *) node;
flatten_function (e->callee, early);
if (e->callee != orig_callee)
orig_callee->aux = NULL;
}
node->aux = NULL;
if (!node->global.inlined_to)
ipa_update_overall_fn_summary (node);
}
/* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
DATA points to number of calls originally found so we avoid infinite
recursion. */
static bool
inline_to_all_callers_1 (struct cgraph_node *node, void *data,
hash_set<cgraph_node *> *callers)
{
int *num_calls = (int *)data;
bool callee_removed = false;
while (node->callers && !node->global.inlined_to)
{
struct cgraph_node *caller = node->callers->caller;
if (!can_inline_edge_p (node->callers, true)
|| !can_inline_edge_by_limits_p (node->callers, true)
|| node->callers->recursive_p ())
{
if (dump_file)
fprintf (dump_file, "Uninlinable call found; giving up.\n");
*num_calls = 0;
return false;
}
if (dump_file)
{
fprintf (dump_file,
"\nInlining %s size %i.\n",
node->name (),
ipa_fn_summaries->get (node)->size);
fprintf (dump_file,
" Called once from %s %i insns.\n",
node->callers->caller->name (),
ipa_fn_summaries->get (node->callers->caller)->size);
}
/* Remember which callers we inlined to, delaying updating the
overall summary. */
callers->add (node->callers->caller);
inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
if (dump_file)
fprintf (dump_file,
" Inlined into %s which now has %i size\n",
caller->name (),
ipa_fn_summaries->get (caller)->size);
if (!(*num_calls)--)
{
if (dump_file)
fprintf (dump_file, "New calls found; giving up.\n");
return callee_removed;
}
if (callee_removed)
return true;
}
return false;
}
/* Wrapper around inline_to_all_callers_1 doing delayed overall summary
update. */
static bool
inline_to_all_callers (struct cgraph_node *node, void *data)
{
hash_set<cgraph_node *> callers;
bool res = inline_to_all_callers_1 (node, data, &callers);
/* Perform the delayed update of the overall summary of all callers
processed. This avoids quadratic behavior in the cases where
we have a lot of calls to the same function. */
for (hash_set<cgraph_node *>::iterator i = callers.begin ();
i != callers.end (); ++i)
ipa_update_overall_fn_summary (*i);
return res;
}
/* Output overall time estimate. */
static void
dump_overall_stats (void)
{
sreal sum_weighted = 0, sum = 0;
struct cgraph_node *node;
FOR_EACH_DEFINED_FUNCTION (node)
if (!node->global.inlined_to
&& !node->alias)
{
sreal time = ipa_fn_summaries->get (node)->time;
sum += time;
if (node->count.ipa ().initialized_p ())
sum_weighted += time * node->count.ipa ().to_gcov_type ();
}
fprintf (dump_file, "Overall time estimate: "
"%f weighted by profile: "
"%f\n", sum.to_double (), sum_weighted.to_double ());
}
/* Output some useful stats about inlining. */
static void
dump_inline_stats (void)
{
int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
int64_t reason[CIF_N_REASONS][2];
sreal reason_freq[CIF_N_REASONS];
int i;
struct cgraph_node *node;
memset (reason, 0, sizeof (reason));
for (i=0; i < CIF_N_REASONS; i++)
reason_freq[i] = 0;
FOR_EACH_DEFINED_FUNCTION (node)
{
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
{
if (e->inline_failed)
{
if (e->count.ipa ().initialized_p ())
reason[(int) e->inline_failed][0] += e->count.ipa ().to_gcov_type ();
reason_freq[(int) e->inline_failed] += e->sreal_frequency ();
reason[(int) e->inline_failed][1] ++;
if (DECL_VIRTUAL_P (e->callee->decl)
&& e->count.ipa ().initialized_p ())
{
if (e->indirect_inlining_edge)
noninlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
else
noninlined_virt_cnt += e->count.ipa ().to_gcov_type ();
}
else if (e->count.ipa ().initialized_p ())
{
if (e->indirect_inlining_edge)
noninlined_indir_cnt += e->count.ipa ().to_gcov_type ();
else
noninlined_cnt += e->count.ipa ().to_gcov_type ();
}
}
else if (e->count.ipa ().initialized_p ())
{
if (e->speculative)
{
if (DECL_VIRTUAL_P (e->callee->decl))
inlined_speculative_ply += e->count.ipa ().to_gcov_type ();
else
inlined_speculative += e->count.ipa ().to_gcov_type ();
}
else if (DECL_VIRTUAL_P (e->callee->decl))
{
if (e->indirect_inlining_edge)
inlined_virt_indir_cnt += e->count.ipa ().to_gcov_type ();
else
inlined_virt_cnt += e->count.ipa ().to_gcov_type ();
}
else
{
if (e->indirect_inlining_edge)
inlined_indir_cnt += e->count.ipa ().to_gcov_type ();
else
inlined_cnt += e->count.ipa ().to_gcov_type ();
}
}
}
for (e = node->indirect_calls; e; e = e->next_callee)
if (e->indirect_info->polymorphic
& e->count.ipa ().initialized_p ())
indirect_poly_cnt += e->count.ipa ().to_gcov_type ();
else if (e->count.ipa ().initialized_p ())
indirect_cnt += e->count.ipa ().to_gcov_type ();
}
if (max_count.initialized_p ())
{
fprintf (dump_file,
"Inlined %" PRId64 " + speculative "
"%" PRId64 " + speculative polymorphic "
"%" PRId64 " + previously indirect "
"%" PRId64 " + virtual "
"%" PRId64 " + virtual and previously indirect "
"%" PRId64 "\n" "Not inlined "
"%" PRId64 " + previously indirect "
"%" PRId64 " + virtual "
"%" PRId64 " + virtual and previously indirect "
"%" PRId64 " + stil indirect "
"%" PRId64 " + still indirect polymorphic "
"%" PRId64 "\n", inlined_cnt,
inlined_speculative, inlined_speculative_ply,
inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
fprintf (dump_file, "Removed speculations ");
spec_rem.dump (dump_file);
fprintf (dump_file, "\n");
}
dump_overall_stats ();
fprintf (dump_file, "\nWhy inlining failed?\n");
for (i = 0; i < CIF_N_REASONS; i++)
if (reason[i][1])
fprintf (dump_file, "%-50s: %8i calls, %8f freq, %" PRId64" count\n",
cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
(int) reason[i][1], reason_freq[i].to_double (), reason[i][0]);
}
/* Called when node is removed. */
static void
flatten_remove_node_hook (struct cgraph_node *node, void *data)
{
if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) == NULL)
return;
hash_set<struct cgraph_node *> *removed
= (hash_set<struct cgraph_node *> *) data;
removed->add (node);
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static unsigned int
ipa_inline (void)
{
struct cgraph_node *node;
int nnodes;
struct cgraph_node **order;
int i, j;
int cold;
bool remove_functions = false;
order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
if (dump_file)
ipa_dump_fn_summaries (dump_file);
nnodes = ipa_reverse_postorder (order);
spec_rem = profile_count::zero ();
FOR_EACH_FUNCTION (node)
{
node->aux = 0;
/* Recompute the default reasons for inlining because they may have
changed during merging. */
if (in_lto_p)
{
for (cgraph_edge *e = node->callees; e; e = e->next_callee)
{
gcc_assert (e->inline_failed);
initialize_inline_failed (e);
}
for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
initialize_inline_failed (e);
}
}
if (dump_file)
fprintf (dump_file, "\nFlattening functions:\n");
/* First shrink order array, so that it only contains nodes with
flatten attribute. */
for (i = nnodes - 1, j = i; i >= 0; i--)
{
node = order[i];
if (lookup_attribute ("flatten",
DECL_ATTRIBUTES (node->decl)) != NULL)
order[j--] = order[i];
}
/* After the above loop, order[j + 1] ... order[nnodes - 1] contain
nodes with flatten attribute. If there is more than one such
node, we need to register a node removal hook, as flatten_function
could remove other nodes with flatten attribute. See PR82801. */
struct cgraph_node_hook_list *node_removal_hook_holder = NULL;
hash_set<struct cgraph_node *> *flatten_removed_nodes = NULL;
if (j < nnodes - 2)
{
flatten_removed_nodes = new hash_set<struct cgraph_node *>;
node_removal_hook_holder
= symtab->add_cgraph_removal_hook (&flatten_remove_node_hook,
flatten_removed_nodes);
}
/* In the first pass handle functions to be flattened. Do this with
a priority so none of our later choices will make this impossible. */
for (i = nnodes - 1; i > j; i--)
{
node = order[i];
if (flatten_removed_nodes
&& flatten_removed_nodes->contains (node))
continue;
/* Handle nodes to be flattened.
Ideally when processing callees we stop inlining at the
entry of cycles, possibly cloning that entry point and
try to flatten itself turning it into a self-recursive
function. */
if (dump_file)
fprintf (dump_file, "Flattening %s\n", node->name ());
flatten_function (node, false);
}
if (j < nnodes - 2)
{
symtab->remove_cgraph_removal_hook (node_removal_hook_holder);
delete flatten_removed_nodes;
}
free (order);
if (dump_file)
dump_overall_stats ();
inline_small_functions ();
gcc_assert (symtab->state == IPA_SSA);
symtab->state = IPA_SSA_AFTER_INLINING;
/* Do first after-inlining removal. We want to remove all "stale" extern
inline functions and virtual functions so we really know what is called
once. */
symtab->remove_unreachable_nodes (dump_file);
/* Inline functions with a property that after inlining into all callers the
code size will shrink because the out-of-line copy is eliminated.
We do this regardless on the callee size as long as function growth limits
are met. */
if (dump_file)
fprintf (dump_file,
"\nDeciding on functions to be inlined into all callers and "
"removing useless speculations:\n");
/* Inlining one function called once has good chance of preventing
inlining other function into the same callee. Ideally we should
work in priority order, but probably inlining hot functions first
is good cut without the extra pain of maintaining the queue.
??? this is not really fitting the bill perfectly: inlining function
into callee often leads to better optimization of callee due to
increased context for optimization.
For example if main() function calls a function that outputs help
and then function that does the main optmization, we should inline
the second with priority even if both calls are cold by themselves.
We probably want to implement new predicate replacing our use of
maybe_hot_edge interpreted as maybe_hot_edge || callee is known
to be hot. */
for (cold = 0; cold <= 1; cold ++)
{
FOR_EACH_DEFINED_FUNCTION (node)
{
struct cgraph_edge *edge, *next;
bool update=false;
if (!opt_for_fn (node->decl, optimize)
|| !opt_for_fn (node->decl, flag_inline_functions_called_once))
continue;
for (edge = node->callees; edge; edge = next)
{
next = edge->next_callee;
if (edge->speculative && !speculation_useful_p (edge, false))
{
if (edge->count.ipa ().initialized_p ())
spec_rem += edge->count.ipa ();
edge->resolve_speculation ();
update = true;
remove_functions = true;
}
}
if (update)
{
struct cgraph_node *where = node->global.inlined_to
? node->global.inlined_to : node;
reset_edge_caches (where);
ipa_update_overall_fn_summary (where);
}
if (want_inline_function_to_all_callers_p (node, cold))
{
int num_calls = 0;
node->call_for_symbol_and_aliases (sum_callers, &num_calls,
true);
while (node->call_for_symbol_and_aliases
(inline_to_all_callers, &num_calls, true))
;
remove_functions = true;
}
}
}
/* Free ipa-prop structures if they are no longer needed. */
ipa_free_all_structures_after_iinln ();
if (dump_file)
{
fprintf (dump_file,
"\nInlined %i calls, eliminated %i functions\n\n",
ncalls_inlined, nfunctions_inlined);
dump_inline_stats ();
}
if (dump_file)
ipa_dump_fn_summaries (dump_file);
return remove_functions ? TODO_remove_functions : 0;
}
/* Inline always-inline function calls in NODE. */
static bool
inline_always_inline_functions (struct cgraph_node *node)
{
struct cgraph_edge *e;
bool inlined = false;
for (e = node->callees; e; e = e->next_callee)
{
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
continue;
if (e->recursive_p ())
{
if (dump_file)
fprintf (dump_file, " Not inlining recursive call to %s.\n",
e->callee->name ());
e->inline_failed = CIF_RECURSIVE_INLINING;
continue;
}
if (!can_early_inline_edge_p (e))
{
/* Set inlined to true if the callee is marked "always_inline" but
is not inlinable. This will allow flagging an error later in
expand_call_inline in tree-inline.c. */
if (lookup_attribute ("always_inline",
DECL_ATTRIBUTES (callee->decl)) != NULL)
inlined = true;
continue;
}
if (dump_file)
fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
xstrdup_for_dump (e->callee->name ()),
xstrdup_for_dump (e->caller->name ()));
inline_call (e, true, NULL, NULL, false);
inlined = true;
}
if (inlined)
ipa_update_overall_fn_summary (node);
return inlined;
}
/* Decide on the inlining. We do so in the topological order to avoid
expenses on updating data structures. */
static bool
early_inline_small_functions (struct cgraph_node *node)
{
struct cgraph_edge *e;
bool inlined = false;
for (e = node->callees; e; e = e->next_callee)
{
struct cgraph_node *callee = e->callee->ultimate_alias_target ();
if (!ipa_fn_summaries->get (callee)->inlinable
|| !e->inline_failed)
continue;
/* Do not consider functions not declared inline. */
if (!DECL_DECLARED_INLINE_P (callee->decl)
&& !opt_for_fn (node->decl, flag_inline_small_functions)
&& !opt_for_fn (node->decl, flag_inline_functions))
continue;
if (dump_file)
fprintf (dump_file, "Considering inline candidate %s.\n",
callee->name ());
if (!can_early_inline_edge_p (e))
continue;
if (e->recursive_p ())
{
if (dump_file)
fprintf (dump_file, " Not inlining: recursive call.\n");
continue;
}
if (!want_early_inline_function_p (e))
continue;
if (dump_file)
fprintf (dump_file, " Inlining %s into %s.\n",
xstrdup_for_dump (callee->name ()),
xstrdup_for_dump (e->caller->name ()));
inline_call (e, true, NULL, NULL, false);
inlined = true;
}
if (inlined)
ipa_update_overall_fn_summary (node);
return inlined;
}
unsigned int
early_inliner (function *fun)
{
struct cgraph_node *node = cgraph_node::get (current_function_decl);
struct cgraph_edge *edge;
unsigned int todo = 0;
int iterations = 0;
bool inlined = false;
if (seen_error ())
return 0;
/* Do nothing if datastructures for ipa-inliner are already computed. This
happens when some pass decides to construct new function and
cgraph_add_new_function calls lowering passes and early optimization on
it. This may confuse ourself when early inliner decide to inline call to
function clone, because function clones don't have parameter list in
ipa-prop matching their signature. */
if (ipa_node_params_sum)
return 0;
if (flag_checking)
node->verify ();
node->remove_all_references ();
/* Rebuild this reference because it dosn't depend on
function's body and it's required to pass cgraph_node
verification. */
if (node->instrumented_version
&& !node->instrumentation_clone)
node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
/* Even when not optimizing or not inlining inline always-inline
functions. */
inlined = inline_always_inline_functions (node);
if (!optimize
|| flag_no_inline
|| !flag_early_inlining
/* Never inline regular functions into always-inline functions
during incremental inlining. This sucks as functions calling
always inline functions will get less optimized, but at the
same time inlining of functions calling always inline
function into an always inline function might introduce
cycles of edges to be always inlined in the callgraph.
We might want to be smarter and just avoid this type of inlining. */
|| (DECL_DISREGARD_INLINE_LIMITS (node->decl)
&& lookup_attribute ("always_inline",
DECL_ATTRIBUTES (node->decl))))
;
else if (lookup_attribute ("flatten",
DECL_ATTRIBUTES (node->decl)) != NULL)
{
/* When the function is marked to be flattened, recursively inline
all calls in it. */
if (dump_file)
fprintf (dump_file,
"Flattening %s\n", node->name ());
flatten_function (node, true);
inlined = true;
}
else
{
/* If some always_inline functions was inlined, apply the changes.
This way we will not account always inline into growth limits and
moreover we will inline calls from always inlines that we skipped
previously because of conditional above. */
if (inlined)
{
timevar_push (TV_INTEGRATION);
todo |= optimize_inline_calls (current_function_decl);
/* optimize_inline_calls call above might have introduced new
statements that don't have inline parameters computed. */
for (edge = node->callees; edge; edge = edge->next_callee)
{
struct ipa_call_summary *es = ipa_call_summaries->get (edge);
es->call_stmt_size
= estimate_num_insns (edge->call_stmt, &eni_size_weights);
es->call_stmt_time
= estimate_num_insns (edge->call_stmt, &eni_time_weights);
}
ipa_update_overall_fn_summary (node);
inlined = false;
timevar_pop (TV_INTEGRATION);
}
/* We iterate incremental inlining to get trivial cases of indirect
inlining. */
while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
&& early_inline_small_functions (node))
{
timevar_push (TV_INTEGRATION);
todo |= optimize_inline_calls (current_function_decl);
/* Technically we ought to recompute inline parameters so the new
iteration of early inliner works as expected. We however have
values approximately right and thus we only need to update edge
info that might be cleared out for newly discovered edges. */
for (edge = node->callees; edge; edge = edge->next_callee)
{
/* We have no summary for new bound store calls yet. */
struct ipa_call_summary *es = ipa_call_summaries->get (edge);
es->call_stmt_size
= estimate_num_insns (edge->call_stmt, &eni_size_weights);
es->call_stmt_time
= estimate_num_insns (edge->call_stmt, &eni_time_weights);
if (edge->callee->decl
&& !gimple_check_call_matching_types (
edge->call_stmt, edge->callee->decl, false))
{
edge->inline_failed = CIF_MISMATCHED_ARGUMENTS;
edge->call_stmt_cannot_inline_p = true;
}
}
if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
ipa_update_overall_fn_summary (node);
timevar_pop (TV_INTEGRATION);
iterations++;
inlined = false;
}
if (dump_file)
fprintf (dump_file, "Iterations: %i\n", iterations);
}
if (inlined)
{
timevar_push (TV_INTEGRATION);
todo |= optimize_inline_calls (current_function_decl);
timevar_pop (TV_INTEGRATION);
}
fun->always_inline_functions_inlined = true;
return todo;
}
/* Do inlining of small functions. Doing so early helps profiling and other
passes to be somewhat more effective and avoids some code duplication in
later real inlining pass for testcases with very many function calls. */
namespace {
const pass_data pass_data_early_inline =
{
GIMPLE_PASS, /* type */
"einline", /* name */
OPTGROUP_INLINE, /* optinfo_flags */
TV_EARLY_INLINING, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_early_inline : public gimple_opt_pass
{
public:
pass_early_inline (gcc::context *ctxt)
: gimple_opt_pass (pass_data_early_inline, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_early_inline
unsigned int
pass_early_inline::execute (function *fun)
{
return early_inliner (fun);
}
} // anon namespace
gimple_opt_pass *
make_pass_early_inline (gcc::context *ctxt)
{
return new pass_early_inline (ctxt);
}
namespace {
const pass_data pass_data_ipa_inline =
{
IPA_PASS, /* type */
"inline", /* name */
OPTGROUP_INLINE, /* optinfo_flags */
TV_IPA_INLINING, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_dump_symtab ), /* todo_flags_finish */
};
class pass_ipa_inline : public ipa_opt_pass_d
{
public:
pass_ipa_inline (gcc::context *ctxt)
: ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
NULL, /* generate_summary */
NULL, /* write_summary */
NULL, /* read_summary */
NULL, /* write_optimization_summary */
NULL, /* read_optimization_summary */
NULL, /* stmt_fixup */
0, /* function_transform_todo_flags_start */
inline_transform, /* function_transform */
NULL) /* variable_transform */
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return ipa_inline (); }
}; // class pass_ipa_inline
} // anon namespace
ipa_opt_pass_d *
make_pass_ipa_inline (gcc::context *ctxt)
{
return new pass_ipa_inline (ctxt);
}
|