1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
/* IPA predicates.
Copyright (C) 2003-2018 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "cgraph.h"
#include "tree-vrp.h"
#include "symbol-summary.h"
#include "alloc-pool.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "real.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "gimple.h"
#include "data-streamer.h"
/* Add clause CLAUSE into the predicate P.
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
is obviously true. This is useful only when NEW_CLAUSE is known to be
sane. */
void
predicate::add_clause (conditions conditions, clause_t new_clause)
{
int i;
int i2;
int insert_here = -1;
int c1, c2;
/* True clause. */
if (!new_clause)
return;
/* False clause makes the whole predicate false. Kill the other variants. */
if (new_clause == (1 << predicate::false_condition))
{
*this = false;
return;
}
if (*this == false)
return;
/* No one should be silly enough to add false into nontrivial clauses. */
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
/* Look where to insert the new_clause. At the same time prune out
new_clauses of P that are implied by the new new_clause and thus
redundant. */
for (i = 0, i2 = 0; i <= max_clauses; i++)
{
m_clause[i2] = m_clause[i];
if (!m_clause[i])
break;
/* If m_clause[i] implies new_clause, there is nothing to add. */
if ((m_clause[i] & new_clause) == m_clause[i])
{
/* We had nothing to add, none of clauses should've become
redundant. */
gcc_checking_assert (i == i2);
return;
}
if (m_clause[i] < new_clause && insert_here < 0)
insert_here = i2;
/* If new_clause implies clause[i], then clause[i] becomes redundant.
Otherwise the clause[i] has to stay. */
if ((m_clause[i] & new_clause) != new_clause)
i2++;
}
/* Look for clauses that are obviously true. I.e.
op0 == 5 || op0 != 5. */
if (conditions)
for (c1 = predicate::first_dynamic_condition;
c1 < num_conditions; c1++)
{
condition *cc1;
if (!(new_clause & (1 << c1)))
continue;
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
/* We have no way to represent !changed and !is_not_constant
and thus there is no point for looking for them. */
if (cc1->code == changed || cc1->code == is_not_constant)
continue;
for (c2 = c1 + 1; c2 < num_conditions; c2++)
if (new_clause & (1 << c2))
{
condition *cc1 =
&(*conditions)[c1 - predicate::first_dynamic_condition];
condition *cc2 =
&(*conditions)[c2 - predicate::first_dynamic_condition];
if (cc1->operand_num == cc2->operand_num
&& cc1->val == cc2->val
&& cc2->code != is_not_constant
&& cc2->code != predicate::changed
&& cc1->code == invert_tree_comparison (cc2->code,
HONOR_NANS (cc1->val)))
return;
}
}
/* We run out of variants. Be conservative in positive direction. */
if (i2 == max_clauses)
return;
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
m_clause[i2 + 1] = 0;
if (insert_here >= 0)
for (; i2 > insert_here; i2--)
m_clause[i2] = m_clause[i2 - 1];
else
insert_here = i2;
m_clause[insert_here] = new_clause;
}
/* Do THIS &= P. */
predicate &
predicate::operator &= (const predicate &p)
{
/* Avoid busy work. */
if (p == false || *this == true)
{
*this = p;
return *this;
}
if (*this == false || p == true || this == &p)
return *this;
int i;
/* See how far predicates match. */
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
}
/* Combine the predicates rest. */
for (; p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
add_clause (NULL, p.m_clause[i]);
}
return *this;
}
/* Return THIS | P2. */
predicate
predicate::or_with (conditions conditions,
const predicate &p) const
{
/* Avoid busy work. */
if (p == false || *this == true || *this == p)
return *this;
if (*this == false || p == true)
return p;
/* OK, combine the predicates. */
predicate out = true;
for (int i = 0; m_clause[i]; i++)
for (int j = 0; p.m_clause[j]; j++)
{
gcc_checking_assert (i < max_clauses && j < max_clauses);
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
}
return out;
}
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
if predicate P is known to be false. */
bool
predicate::evaluate (clause_t possible_truths) const
{
int i;
/* True remains true. */
if (*this == true)
return true;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return false;
}
return true;
}
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
instruction will be recomputed per invocation of the inlined call. */
int
predicate::probability (conditions conds,
clause_t possible_truths,
vec<inline_param_summary> inline_param_summary) const
{
int i;
int combined_prob = REG_BR_PROB_BASE;
/* True remains true. */
if (*this == true)
return REG_BR_PROB_BASE;
if (*this == false)
return 0;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return 0;
else
{
int this_prob = 0;
int i2;
if (!inline_param_summary.exists ())
return REG_BR_PROB_BASE;
for (i2 = 0; i2 < num_conditions; i2++)
if ((m_clause[i] & possible_truths) & (1 << i2))
{
if (i2 >= predicate::first_dynamic_condition)
{
condition *c =
&(*conds)[i2 - predicate::first_dynamic_condition];
if (c->code == predicate::changed
&& (c->operand_num <
(int) inline_param_summary.length ()))
{
int iprob =
inline_param_summary[c->operand_num].change_prob;
this_prob = MAX (this_prob, iprob);
}
else
this_prob = REG_BR_PROB_BASE;
}
else
this_prob = REG_BR_PROB_BASE;
}
combined_prob = MIN (this_prob, combined_prob);
if (!combined_prob)
return 0;
}
}
return combined_prob;
}
/* Dump conditional COND. */
void
dump_condition (FILE *f, conditions conditions, int cond)
{
condition *c;
if (cond == predicate::false_condition)
fprintf (f, "false");
else if (cond == predicate::not_inlined_condition)
fprintf (f, "not inlined");
else
{
c = &(*conditions)[cond - predicate::first_dynamic_condition];
fprintf (f, "op%i", c->operand_num);
if (c->agg_contents)
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
c->by_ref ? "ref " : "", c->offset);
if (c->code == predicate::is_not_constant)
{
fprintf (f, " not constant");
return;
}
if (c->code == predicate::changed)
{
fprintf (f, " changed");
return;
}
fprintf (f, " %s ", op_symbol_code (c->code));
print_generic_expr (f, c->val);
}
}
/* Dump clause CLAUSE. */
static void
dump_clause (FILE *f, conditions conds, clause_t clause)
{
int i;
bool found = false;
fprintf (f, "(");
if (!clause)
fprintf (f, "true");
for (i = 0; i < predicate::num_conditions; i++)
if (clause & (1 << i))
{
if (found)
fprintf (f, " || ");
found = true;
dump_condition (f, conds, i);
}
fprintf (f, ")");
}
/* Dump THIS to F. CONDS a vector of conditions used when evauating
predicats. When NL is true new line is output at the end of dump. */
void
predicate::dump (FILE *f, conditions conds, bool nl) const
{
int i;
if (*this == true)
dump_clause (f, conds, 0);
else
for (i = 0; m_clause[i]; i++)
{
if (i)
fprintf (f, " && ");
dump_clause (f, conds, m_clause[i]);
}
if (nl)
fprintf (f, "\n");
}
void
predicate::debug (conditions conds) const
{
dump (stderr, conds);
}
/* Remap predicate THIS of former function to be predicate of duplicated function.
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
INFO is inline summary of the duplicated node. */
predicate
predicate::remap_after_duplication (clause_t possible_truths)
{
int j;
predicate out = true;
for (j = 0; m_clause[j]; j++)
if (!(possible_truths & m_clause[j]))
return false;
else
out.add_clause (NULL, possible_truths & m_clause[j]);
return out;
}
/* Translate all conditions from callee representation into caller
representation and symbolically evaluate predicate THIS into new predicate.
INFO is ipa_fn_summary of function we are adding predicate into, CALLEE_INFO
is summary of function predicate P is from. OPERAND_MAP is array giving
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
predicate under which callee is executed. OFFSET_MAP is an array of of
offsets that need to be added to conditions, negative offset means that
conditions relying on values passed by reference have to be discarded
because they might not be preserved (and should be considered offset zero
for other purposes). */
predicate
predicate::remap_after_inlining (struct ipa_fn_summary *info,
struct ipa_fn_summary *callee_info,
vec<int> operand_map,
vec<int> offset_map,
clause_t possible_truths,
const predicate &toplev_predicate)
{
int i;
predicate out = true;
/* True predicate is easy. */
if (*this == true)
return toplev_predicate;
for (i = 0; m_clause[i]; i++)
{
clause_t clause = m_clause[i];
int cond;
predicate clause_predicate = false;
gcc_assert (i < max_clauses);
for (cond = 0; cond < num_conditions; cond++)
/* Do we have condition we can't disprove? */
if (clause & possible_truths & (1 << cond))
{
predicate cond_predicate;
/* Work out if the condition can translate to predicate in the
inlined function. */
if (cond >= predicate::first_dynamic_condition)
{
struct condition *c;
c = &(*callee_info->conds)[cond
-
predicate::first_dynamic_condition];
/* See if we can remap condition operand to caller's operand.
Otherwise give up. */
if (!operand_map.exists ()
|| (int) operand_map.length () <= c->operand_num
|| operand_map[c->operand_num] == -1
/* TODO: For non-aggregate conditions, adding an offset is
basically an arithmetic jump function processing which
we should support in future. */
|| ((!c->agg_contents || !c->by_ref)
&& offset_map[c->operand_num] > 0)
|| (c->agg_contents && c->by_ref
&& offset_map[c->operand_num] < 0))
cond_predicate = true;
else
{
struct agg_position_info ap;
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
if (offset_delta < 0)
{
gcc_checking_assert (!c->agg_contents || !c->by_ref);
offset_delta = 0;
}
gcc_assert (!c->agg_contents
|| c->by_ref || offset_delta == 0);
ap.offset = c->offset + offset_delta;
ap.agg_contents = c->agg_contents;
ap.by_ref = c->by_ref;
cond_predicate = add_condition (info,
operand_map[c->operand_num],
c->size, &ap, c->code,
c->val);
}
}
/* Fixed conditions remains same, construct single
condition predicate. */
else
cond_predicate = predicate::predicate_testing_cond (cond);
clause_predicate = clause_predicate.or_with (info->conds,
cond_predicate);
}
out &= clause_predicate;
}
out &= toplev_predicate;
return out;
}
/* Read predicate from IB. */
void
predicate::stream_in (struct lto_input_block *ib)
{
clause_t clause;
int k = 0;
do
{
gcc_assert (k <= max_clauses);
clause = m_clause[k++] = streamer_read_uhwi (ib);
}
while (clause);
/* Zero-initialize the remaining clauses in OUT. */
while (k <= max_clauses)
m_clause[k++] = 0;
}
/* Write predicate P to OB. */
void
predicate::stream_out (struct output_block *ob)
{
int j;
for (j = 0; m_clause[j]; j++)
{
gcc_assert (j < max_clauses);
streamer_write_uhwi (ob, m_clause[j]);
}
streamer_write_uhwi (ob, 0);
}
/* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
correspond to fields of condition structure. AGGPOS describes whether the
used operand is loaded from an aggregate and where in the aggregate it is.
It can be NULL, which means this not a load from an aggregate. */
predicate
add_condition (struct ipa_fn_summary *summary, int operand_num,
HOST_WIDE_INT size, struct agg_position_info *aggpos,
enum tree_code code, tree val)
{
int i;
struct condition *c;
struct condition new_cond;
HOST_WIDE_INT offset;
bool agg_contents, by_ref;
if (aggpos)
{
offset = aggpos->offset;
agg_contents = aggpos->agg_contents;
by_ref = aggpos->by_ref;
}
else
{
offset = 0;
agg_contents = false;
by_ref = false;
}
gcc_checking_assert (operand_num >= 0);
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
{
if (c->operand_num == operand_num
&& c->size == size
&& c->code == code
&& c->val == val
&& c->agg_contents == agg_contents
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
return predicate::predicate_testing_cond (i);
}
/* Too many conditions. Give up and return constant true. */
if (i == predicate::num_conditions - predicate::first_dynamic_condition)
return true;
new_cond.operand_num = operand_num;
new_cond.code = code;
new_cond.val = val;
new_cond.agg_contents = agg_contents;
new_cond.by_ref = by_ref;
new_cond.offset = offset;
new_cond.size = size;
vec_safe_push (summary->conds, new_cond);
return predicate::predicate_testing_cond (i);
}
|