1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
|
/* LRA (local register allocator) driver and LRA utilities.
Copyright (C) 2010-2018 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Local Register Allocator (LRA) is a replacement of former
reload pass. It is focused to simplify code solving the reload
pass tasks, to make the code maintenance easier, and to implement new
perspective optimizations.
The major LRA design solutions are:
o division small manageable, separated sub-tasks
o reflection of all transformations and decisions in RTL as more
as possible
o insn constraints as a primary source of the info (minimizing
number of target-depended macros/hooks)
In brief LRA works by iterative insn process with the final goal is
to satisfy all insn and address constraints:
o New reload insns (in brief reloads) and reload pseudos might be
generated;
o Some pseudos might be spilled to assign hard registers to
new reload pseudos;
o Recalculating spilled pseudo values (rematerialization);
o Changing spilled pseudos to stack memory or their equivalences;
o Allocation stack memory changes the address displacement and
new iteration is needed.
Here is block diagram of LRA passes:
------------------------
--------------- | Undo inheritance for | ---------------
| Memory-memory | | spilled pseudos, | | New (and old) |
| move coalesce |<---| splits for pseudos got |<-- | pseudos |
--------------- | the same hard regs, | | assignment |
Start | | and optional reloads | ---------------
| | ------------------------ ^
V | ---------------- |
----------- V | Update virtual | |
| Remove |----> ------------>| register | |
| scratches | ^ | displacements | |
----------- | ---------------- |
| | |
| V New |
| ------------ pseudos -------------------
| |Constraints:| or insns | Inheritance/split |
| | RTL |--------->| transformations |
| | transfor- | | in EBB scope |
| substi- | mations | -------------------
| tutions ------------
| | No change
---------------- V
| Spilled pseudo | -------------------
| to memory |<----| Rematerialization |
| substitution | -------------------
----------------
| No susbtitions
V
-------------------------
| Hard regs substitution, |
| devirtalization, and |------> Finish
| restoring scratches got |
| memory |
-------------------------
To speed up the process:
o We process only insns affected by changes on previous
iterations;
o We don't use DFA-infrastructure because it results in much slower
compiler speed than a special IR described below does;
o We use a special insn representation for quick access to insn
info which is always *synchronized* with the current RTL;
o Insn IR is minimized by memory. It is divided on three parts:
o one specific for each insn in RTL (only operand locations);
o one common for all insns in RTL with the same insn code
(different operand attributes from machine descriptions);
o one oriented for maintenance of live info (list of pseudos).
o Pseudo data:
o all insns where the pseudo is referenced;
o live info (conflicting hard regs, live ranges, # of
references etc);
o data used for assigning (preferred hard regs, costs etc).
This file contains LRA driver, LRA utility functions and data, and
code for dealing with scratches. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "expr.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "lra.h"
#include "lra-int.h"
#include "print-rtl.h"
/* Dump bitmap SET with TITLE and BB INDEX. */
void
lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
{
unsigned int i;
int count;
bitmap_iterator bi;
static const int max_nums_on_line = 10;
if (bitmap_empty_p (set))
return;
fprintf (lra_dump_file, " %s %d:", title, index);
fprintf (lra_dump_file, "\n");
count = max_nums_on_line + 1;
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
{
if (count > max_nums_on_line)
{
fprintf (lra_dump_file, "\n ");
count = 0;
}
fprintf (lra_dump_file, " %4u", i);
count++;
}
fprintf (lra_dump_file, "\n");
}
/* Hard registers currently not available for allocation. It can
changed after some hard registers become not eliminable. */
HARD_REG_SET lra_no_alloc_regs;
static int get_new_reg_value (void);
static void expand_reg_info (void);
static void invalidate_insn_recog_data (int);
static int get_insn_freq (rtx_insn *);
static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
rtx_insn *, int);
/* Expand all regno related info needed for LRA. */
static void
expand_reg_data (int old)
{
resize_reg_info ();
expand_reg_info ();
ira_expand_reg_equiv ();
for (int i = (int) max_reg_num () - 1; i >= old; i--)
lra_change_class (i, ALL_REGS, " Set", true);
}
/* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
or of VOIDmode, use MD_MODE for the new reg. Initialize its
register class to RCLASS. Print message about assigning class
RCLASS containing new register name TITLE unless it is NULL. Use
attributes of ORIGINAL if it is a register. The created register
will have unique held value. */
rtx
lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
enum reg_class rclass, const char *title)
{
machine_mode mode;
rtx new_reg;
if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
mode = md_mode;
lra_assert (mode != VOIDmode);
new_reg = gen_reg_rtx (mode);
if (original == NULL_RTX || ! REG_P (original))
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
}
else
{
if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
REG_POINTER (new_reg) = REG_POINTER (original);
REG_ATTRS (new_reg) = REG_ATTRS (original);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
REGNO (new_reg), REGNO (original));
}
if (lra_dump_file != NULL)
{
if (title != NULL)
fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
reg_class_names[rclass], *title == '\0' ? "" : " ",
title, REGNO (new_reg));
fprintf (lra_dump_file, "\n");
}
expand_reg_data (max_reg_num ());
setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
return new_reg;
}
/* Analogous to the previous function but also inherits value of
ORIGINAL. */
rtx
lra_create_new_reg (machine_mode md_mode, rtx original,
enum reg_class rclass, const char *title)
{
rtx new_reg;
new_reg
= lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
if (original != NULL_RTX && REG_P (original))
lra_assign_reg_val (REGNO (original), REGNO (new_reg));
return new_reg;
}
/* Set up for REGNO unique hold value. */
void
lra_set_regno_unique_value (int regno)
{
lra_reg_info[regno].val = get_new_reg_value ();
}
/* Invalidate INSN related info used by LRA. The info should never be
used after that. */
void
lra_invalidate_insn_data (rtx_insn *insn)
{
lra_invalidate_insn_regno_info (insn);
invalidate_insn_recog_data (INSN_UID (insn));
}
/* Mark INSN deleted and invalidate the insn related info used by
LRA. */
void
lra_set_insn_deleted (rtx_insn *insn)
{
lra_invalidate_insn_data (insn);
SET_INSN_DELETED (insn);
}
/* Delete an unneeded INSN and any previous insns who sole purpose is
loading data that is dead in INSN. */
void
lra_delete_dead_insn (rtx_insn *insn)
{
rtx_insn *prev = prev_real_insn (insn);
rtx prev_dest;
/* If the previous insn sets a register that dies in our insn,
delete it too. */
if (prev && GET_CODE (PATTERN (prev)) == SET
&& (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
&& reg_mentioned_p (prev_dest, PATTERN (insn))
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
lra_delete_dead_insn (prev);
lra_set_insn_deleted (insn);
}
/* Emit insn x = y + z. Return NULL if we failed to do it.
Otherwise, return the insn. We don't use gen_add3_insn as it might
clobber CC. */
static rtx_insn *
emit_add3_insn (rtx x, rtx y, rtx z)
{
rtx_insn *last;
last = get_last_insn ();
if (have_addptr3_insn (x, y, z))
{
rtx_insn *insn = gen_addptr3_insn (x, y, z);
/* If the target provides an "addptr" pattern it hopefully does
for a reason. So falling back to the normal add would be
a bug. */
lra_assert (insn != NULL_RTX);
emit_insn (insn);
return insn;
}
rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
y, z)));
if (recog_memoized (insn) < 0)
{
delete_insns_since (last);
insn = NULL;
}
return insn;
}
/* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
last resort. */
static rtx_insn *
emit_add2_insn (rtx x, rtx y)
{
rtx_insn *insn = emit_add3_insn (x, x, y);
if (insn == NULL_RTX)
{
insn = gen_add2_insn (x, y);
if (insn != NULL_RTX)
emit_insn (insn);
}
return insn;
}
/* Target checks operands through operand predicates to recognize an
insn. We should have a special precaution to generate add insns
which are frequent results of elimination.
Emit insns for x = y + z. X can be used to store intermediate
values and should be not in Y and Z when we use X to store an
intermediate value. Y + Z should form [base] [+ index[ * scale]] [
+ disp] where base and index are registers, disp and scale are
constants. Y should contain base if it is present, Z should
contain disp if any. index[*scale] can be part of Y or Z. */
void
lra_emit_add (rtx x, rtx y, rtx z)
{
int old;
rtx_insn *last;
rtx a1, a2, base, index, disp, scale, index_scale;
bool ok_p;
rtx_insn *add3_insn = emit_add3_insn (x, y, z);
old = max_reg_num ();
if (add3_insn != NULL)
;
else
{
disp = a2 = NULL_RTX;
if (GET_CODE (y) == PLUS)
{
a1 = XEXP (y, 0);
a2 = XEXP (y, 1);
disp = z;
}
else
{
a1 = y;
if (CONSTANT_P (z))
disp = z;
else
a2 = z;
}
index_scale = scale = NULL_RTX;
if (GET_CODE (a1) == MULT)
{
index_scale = a1;
index = XEXP (a1, 0);
scale = XEXP (a1, 1);
base = a2;
}
else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
{
index_scale = a2;
index = XEXP (a2, 0);
scale = XEXP (a2, 1);
base = a1;
}
else
{
base = a1;
index = a2;
}
if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
|| (index != NULL_RTX
&& ! (REG_P (index) || GET_CODE (index) == SUBREG))
|| (disp != NULL_RTX && ! CONSTANT_P (disp))
|| (scale != NULL_RTX && ! CONSTANT_P (scale)))
{
/* Probably we have no 3 op add. Last chance is to use 2-op
add insn. To succeed, don't move Z to X as an address
segment always comes in Y. Otherwise, we might fail when
adding the address segment to register. */
lra_assert (x != y && x != z);
emit_move_insn (x, y);
rtx_insn *insn = emit_add2_insn (x, z);
lra_assert (insn != NULL_RTX);
}
else
{
if (index_scale == NULL_RTX)
index_scale = index;
if (disp == NULL_RTX)
{
/* Generate x = index_scale; x = x + base. */
lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
emit_move_insn (x, index_scale);
rtx_insn *insn = emit_add2_insn (x, base);
lra_assert (insn != NULL_RTX);
}
else if (scale == NULL_RTX)
{
/* Try x = base + disp. */
lra_assert (base != NULL_RTX);
last = get_last_insn ();
rtx_insn *move_insn =
emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
if (recog_memoized (move_insn) < 0)
{
delete_insns_since (last);
/* Generate x = disp; x = x + base. */
emit_move_insn (x, disp);
rtx_insn *add2_insn = emit_add2_insn (x, base);
lra_assert (add2_insn != NULL_RTX);
}
/* Generate x = x + index. */
if (index != NULL_RTX)
{
rtx_insn *insn = emit_add2_insn (x, index);
lra_assert (insn != NULL_RTX);
}
}
else
{
/* Try x = index_scale; x = x + disp; x = x + base. */
last = get_last_insn ();
rtx_insn *move_insn = emit_move_insn (x, index_scale);
ok_p = false;
if (recog_memoized (move_insn) >= 0)
{
rtx_insn *insn = emit_add2_insn (x, disp);
if (insn != NULL_RTX)
{
if (base == NULL_RTX)
ok_p = true;
else
{
insn = emit_add2_insn (x, base);
if (insn != NULL_RTX)
ok_p = true;
}
}
}
if (! ok_p)
{
rtx_insn *insn;
delete_insns_since (last);
/* Generate x = disp; x = x + base; x = x + index_scale. */
emit_move_insn (x, disp);
if (base != NULL_RTX)
{
insn = emit_add2_insn (x, base);
lra_assert (insn != NULL_RTX);
}
insn = emit_add2_insn (x, index_scale);
lra_assert (insn != NULL_RTX);
}
}
}
}
/* Functions emit_... can create pseudos -- so expand the pseudo
data. */
if (old != max_reg_num ())
expand_reg_data (old);
}
/* The number of emitted reload insns so far. */
int lra_curr_reload_num;
/* Emit x := y, processing special case when y = u + v or y = u + v *
scale + w through emit_add (Y can be an address which is base +
index reg * scale + displacement in general case). X may be used
as intermediate result therefore it should be not in Y. */
void
lra_emit_move (rtx x, rtx y)
{
int old;
if (GET_CODE (y) != PLUS)
{
if (rtx_equal_p (x, y))
return;
old = max_reg_num ();
emit_move_insn (x, y);
if (REG_P (x))
lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
/* Function emit_move can create pseudos -- so expand the pseudo
data. */
if (old != max_reg_num ())
expand_reg_data (old);
return;
}
lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
}
/* Update insn operands which are duplication of operands whose
numbers are in array of NOPS (with end marker -1). The insn is
represented by its LRA internal representation ID. */
void
lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
{
int i, j, nop;
struct lra_static_insn_data *static_id = id->insn_static_data;
for (i = 0; i < static_id->n_dups; i++)
for (j = 0; (nop = nops[j]) >= 0; j++)
if (static_id->dup_num[i] == nop)
*id->dup_loc[i] = *id->operand_loc[nop];
}
/* This page contains code dealing with info about registers in the
insns. */
/* Pools for insn reg info. */
object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
/* Create LRA insn related info about a reference to REGNO in INSN
with TYPE (in/out/inout), biggest reference mode MODE, flag that it
is reference through subreg (SUBREG_P), flag that is early
clobbered in the insn (EARLY_CLOBBER), and reference to the next
insn reg info (NEXT). If REGNO can be early clobbered,
alternatives in which it can be early clobbered are given by
EARLY_CLOBBER_ALTS. */
static struct lra_insn_reg *
new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
machine_mode mode,
bool subreg_p, bool early_clobber,
alternative_mask early_clobber_alts,
struct lra_insn_reg *next)
{
lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
ir->type = type;
ir->biggest_mode = mode;
if (NONDEBUG_INSN_P (insn)
&& partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
lra_reg_info[regno].biggest_mode = mode;
ir->subreg_p = subreg_p;
ir->early_clobber = early_clobber;
ir->early_clobber_alts = early_clobber_alts;
ir->regno = regno;
ir->next = next;
return ir;
}
/* Free insn reg info list IR. */
static void
free_insn_regs (struct lra_insn_reg *ir)
{
struct lra_insn_reg *next_ir;
for (; ir != NULL; ir = next_ir)
{
next_ir = ir->next;
lra_insn_reg_pool.remove (ir);
}
}
/* Finish pool for insn reg info. */
static void
finish_insn_regs (void)
{
lra_insn_reg_pool.release ();
}
/* This page contains code dealing LRA insn info (or in other words
LRA internal insn representation). */
/* Map INSN_CODE -> the static insn data. This info is valid during
all translation unit. */
struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
/* Debug insns are represented as a special insn with one input
operand which is RTL expression in var_location. */
/* The following data are used as static insn operand data for all
debug insns. If structure lra_operand_data is changed, the
initializer should be changed too. */
static struct lra_operand_data debug_operand_data =
{
NULL, /* alternative */
0, /* early_clobber_alts */
E_VOIDmode, /* We are not interesting in the operand mode. */
OP_IN,
0, 0, 0, 0
};
/* The following data are used as static insn data for all debug
bind insns. If structure lra_static_insn_data is changed, the
initializer should be changed too. */
static struct lra_static_insn_data debug_bind_static_data =
{
&debug_operand_data,
0, /* Duplication operands #. */
-1, /* Commutative operand #. */
1, /* Operands #. There is only one operand which is debug RTL
expression. */
0, /* Duplications #. */
0, /* Alternatives #. We are not interesting in alternatives
because we does not proceed debug_insns for reloads. */
NULL, /* Hard registers referenced in machine description. */
NULL /* Descriptions of operands in alternatives. */
};
/* The following data are used as static insn data for all debug
marker insns. If structure lra_static_insn_data is changed, the
initializer should be changed too. */
static struct lra_static_insn_data debug_marker_static_data =
{
&debug_operand_data,
0, /* Duplication operands #. */
-1, /* Commutative operand #. */
0, /* Operands #. There isn't any operand. */
0, /* Duplications #. */
0, /* Alternatives #. We are not interesting in alternatives
because we does not proceed debug_insns for reloads. */
NULL, /* Hard registers referenced in machine description. */
NULL /* Descriptions of operands in alternatives. */
};
/* Called once per compiler work to initialize some LRA data related
to insns. */
static void
init_insn_code_data_once (void)
{
memset (insn_code_data, 0, sizeof (insn_code_data));
}
/* Called once per compiler work to finalize some LRA data related to
insns. */
static void
finish_insn_code_data_once (void)
{
for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
{
if (insn_code_data[i] != NULL)
free (insn_code_data[i]);
}
}
/* Return static insn data, allocate and setup if necessary. Although
dup_num is static data (it depends only on icode), to set it up we
need to extract insn first. So recog_data should be valid for
normal insn (ICODE >= 0) before the call. */
static struct lra_static_insn_data *
get_static_insn_data (int icode, int nop, int ndup, int nalt)
{
struct lra_static_insn_data *data;
size_t n_bytes;
lra_assert (icode < (int) NUM_INSN_CODES);
if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
return data;
lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
n_bytes = sizeof (struct lra_static_insn_data)
+ sizeof (struct lra_operand_data) * nop
+ sizeof (int) * ndup;
data = XNEWVAR (struct lra_static_insn_data, n_bytes);
data->operand_alternative = NULL;
data->n_operands = nop;
data->n_dups = ndup;
data->n_alternatives = nalt;
data->operand = ((struct lra_operand_data *)
((char *) data + sizeof (struct lra_static_insn_data)));
data->dup_num = ((int *) ((char *) data->operand
+ sizeof (struct lra_operand_data) * nop));
if (icode >= 0)
{
int i;
insn_code_data[icode] = data;
for (i = 0; i < nop; i++)
{
data->operand[i].constraint
= insn_data[icode].operand[i].constraint;
data->operand[i].mode = insn_data[icode].operand[i].mode;
data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
data->operand[i].is_operator
= insn_data[icode].operand[i].is_operator;
data->operand[i].type
= (data->operand[i].constraint[0] == '=' ? OP_OUT
: data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN);
data->operand[i].is_address = false;
}
for (i = 0; i < ndup; i++)
data->dup_num[i] = recog_data.dup_num[i];
}
return data;
}
/* The current length of the following array. */
int lra_insn_recog_data_len;
/* Map INSN_UID -> the insn recog data (NULL if unknown). */
lra_insn_recog_data_t *lra_insn_recog_data;
/* Initialize LRA data about insns. */
static void
init_insn_recog_data (void)
{
lra_insn_recog_data_len = 0;
lra_insn_recog_data = NULL;
}
/* Expand, if necessary, LRA data about insns. */
static void
check_and_expand_insn_recog_data (int index)
{
int i, old;
if (lra_insn_recog_data_len > index)
return;
old = lra_insn_recog_data_len;
lra_insn_recog_data_len = index * 3 / 2 + 1;
lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
lra_insn_recog_data,
lra_insn_recog_data_len);
for (i = old; i < lra_insn_recog_data_len; i++)
lra_insn_recog_data[i] = NULL;
}
/* Finish LRA DATA about insn. */
static void
free_insn_recog_data (lra_insn_recog_data_t data)
{
if (data->operand_loc != NULL)
free (data->operand_loc);
if (data->dup_loc != NULL)
free (data->dup_loc);
if (data->arg_hard_regs != NULL)
free (data->arg_hard_regs);
if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
{
if (data->insn_static_data->operand_alternative != NULL)
free (const_cast <operand_alternative *>
(data->insn_static_data->operand_alternative));
free_insn_regs (data->insn_static_data->hard_regs);
free (data->insn_static_data);
}
free_insn_regs (data->regs);
data->regs = NULL;
free (data);
}
/* Pools for copies. */
static object_allocator<lra_copy> lra_copy_pool ("lra copies");
/* Finish LRA data about all insns. */
static void
finish_insn_recog_data (void)
{
int i;
lra_insn_recog_data_t data;
for (i = 0; i < lra_insn_recog_data_len; i++)
if ((data = lra_insn_recog_data[i]) != NULL)
free_insn_recog_data (data);
finish_insn_regs ();
lra_copy_pool.release ();
lra_insn_reg_pool.release ();
free (lra_insn_recog_data);
}
/* Setup info about operands in alternatives of LRA DATA of insn. */
static void
setup_operand_alternative (lra_insn_recog_data_t data,
const operand_alternative *op_alt)
{
int i, j, nop, nalt;
int icode = data->icode;
struct lra_static_insn_data *static_data = data->insn_static_data;
static_data->commutative = -1;
nop = static_data->n_operands;
nalt = static_data->n_alternatives;
static_data->operand_alternative = op_alt;
for (i = 0; i < nop; i++)
{
static_data->operand[i].early_clobber_alts = 0;
static_data->operand[i].early_clobber = false;
static_data->operand[i].is_address = false;
if (static_data->operand[i].constraint[0] == '%')
{
/* We currently only support one commutative pair of operands. */
if (static_data->commutative < 0)
static_data->commutative = i;
else
lra_assert (icode < 0); /* Asm */
/* The last operand should not be marked commutative. */
lra_assert (i != nop - 1);
}
}
for (j = 0; j < nalt; j++)
for (i = 0; i < nop; i++, op_alt++)
{
static_data->operand[i].early_clobber |= op_alt->earlyclobber;
if (op_alt->earlyclobber)
static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
static_data->operand[i].is_address |= op_alt->is_address;
}
}
/* Recursively process X and collect info about registers, which are
not the insn operands, in X with TYPE (in/out/inout) and flag that
it is early clobbered in the insn (EARLY_CLOBBER) and add the info
to LIST. X is a part of insn given by DATA. Return the result
list. */
static struct lra_insn_reg *
collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
lra_insn_recog_data_t data,
struct lra_insn_reg *list,
enum op_type type, bool early_clobber)
{
int i, j, regno, last;
bool subreg_p;
machine_mode mode;
struct lra_insn_reg *curr;
rtx op = *x;
enum rtx_code code = GET_CODE (op);
const char *fmt = GET_RTX_FORMAT (code);
for (i = 0; i < data->insn_static_data->n_operands; i++)
if (! data->insn_static_data->operand[i].is_operator
&& x == data->operand_loc[i])
/* It is an operand loc. Stop here. */
return list;
for (i = 0; i < data->insn_static_data->n_dups; i++)
if (x == data->dup_loc[i])
/* It is a dup loc. Stop here. */
return list;
mode = GET_MODE (op);
subreg_p = false;
if (code == SUBREG)
{
mode = wider_subreg_mode (op);
if (read_modify_subreg_p (op))
subreg_p = true;
op = SUBREG_REG (op);
code = GET_CODE (op);
}
if (REG_P (op))
{
if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
return list;
/* Process all regs even unallocatable ones as we need info
about all regs for rematerialization pass. */
for (last = end_hard_regno (mode, regno); regno < last; regno++)
{
for (curr = list; curr != NULL; curr = curr->next)
if (curr->regno == regno && curr->subreg_p == subreg_p
&& curr->biggest_mode == mode)
{
if (curr->type != type)
curr->type = OP_INOUT;
if (early_clobber)
{
curr->early_clobber = true;
curr->early_clobber_alts = ALL_ALTERNATIVES;
}
break;
}
if (curr == NULL)
{
/* This is a new hard regno or the info can not be
integrated into the found structure. */
#ifdef STACK_REGS
early_clobber
= (early_clobber
/* This clobber is to inform popping floating
point stack only. */
&& ! (FIRST_STACK_REG <= regno
&& regno <= LAST_STACK_REG));
#endif
list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
early_clobber,
early_clobber ? ALL_ALTERNATIVES : 0, list);
}
}
return list;
}
switch (code)
{
case SET:
list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
list, OP_OUT, false);
list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
list, OP_IN, false);
break;
case CLOBBER:
/* We treat clobber of non-operand hard registers as early clobber. */
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_OUT, true);
break;
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_INOUT, false);
break;
case PRE_MODIFY: case POST_MODIFY:
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_INOUT, false);
list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
list, OP_IN, false);
break;
default:
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
list, OP_IN, false);
else if (fmt[i] == 'E')
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
data, list, OP_IN, false);
}
}
return list;
}
/* Set up and return info about INSN. Set up the info if it is not set up
yet. */
lra_insn_recog_data_t
lra_set_insn_recog_data (rtx_insn *insn)
{
lra_insn_recog_data_t data;
int i, n, icode;
rtx **locs;
unsigned int uid = INSN_UID (insn);
struct lra_static_insn_data *insn_static_data;
check_and_expand_insn_recog_data (uid);
if (DEBUG_INSN_P (insn))
icode = -1;
else
{
icode = INSN_CODE (insn);
if (icode < 0)
/* It might be a new simple insn which is not recognized yet. */
INSN_CODE (insn) = icode = recog_memoized (insn);
}
data = XNEW (struct lra_insn_recog_data);
lra_insn_recog_data[uid] = data;
data->insn = insn;
data->used_insn_alternative = LRA_UNKNOWN_ALT;
data->icode = icode;
data->regs = NULL;
if (DEBUG_INSN_P (insn))
{
data->dup_loc = NULL;
data->arg_hard_regs = NULL;
data->preferred_alternatives = ALL_ALTERNATIVES;
if (DEBUG_BIND_INSN_P (insn))
{
data->insn_static_data = &debug_bind_static_data;
data->operand_loc = XNEWVEC (rtx *, 1);
data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
}
else if (DEBUG_MARKER_INSN_P (insn))
{
data->insn_static_data = &debug_marker_static_data;
data->operand_loc = NULL;
}
return data;
}
if (icode < 0)
{
int nop, nalt;
machine_mode operand_mode[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
nop = asm_noperands (PATTERN (insn));
data->operand_loc = data->dup_loc = NULL;
nalt = 1;
if (nop < 0)
{
/* It is a special insn like USE or CLOBBER. We should
recognize any regular insn otherwise LRA can do nothing
with this insn. */
gcc_assert (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
data->insn_static_data = insn_static_data
= get_static_insn_data (-1, 0, 0, nalt);
}
else
{
/* expand_asm_operands makes sure there aren't too many
operands. */
lra_assert (nop <= MAX_RECOG_OPERANDS);
if (nop != 0)
data->operand_loc = XNEWVEC (rtx *, nop);
/* Now get the operand values and constraints out of the
insn. */
decode_asm_operands (PATTERN (insn), NULL,
data->operand_loc,
constraints, operand_mode, NULL);
if (nop > 0)
{
const char *p = recog_data.constraints[0];
for (p = constraints[0]; *p; p++)
nalt += *p == ',';
}
data->insn_static_data = insn_static_data
= get_static_insn_data (-1, nop, 0, nalt);
for (i = 0; i < nop; i++)
{
insn_static_data->operand[i].mode = operand_mode[i];
insn_static_data->operand[i].constraint = constraints[i];
insn_static_data->operand[i].strict_low = false;
insn_static_data->operand[i].is_operator = false;
insn_static_data->operand[i].is_address = false;
}
}
for (i = 0; i < insn_static_data->n_operands; i++)
insn_static_data->operand[i].type
= (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
: insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN);
data->preferred_alternatives = ALL_ALTERNATIVES;
if (nop > 0)
{
operand_alternative *op_alt = XCNEWVEC (operand_alternative,
nalt * nop);
preprocess_constraints (nop, nalt, constraints, op_alt,
data->operand_loc);
setup_operand_alternative (data, op_alt);
}
}
else
{
insn_extract (insn);
data->insn_static_data = insn_static_data
= get_static_insn_data (icode, insn_data[icode].n_operands,
insn_data[icode].n_dups,
insn_data[icode].n_alternatives);
n = insn_static_data->n_operands;
if (n == 0)
locs = NULL;
else
{
locs = XNEWVEC (rtx *, n);
memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
}
data->operand_loc = locs;
n = insn_static_data->n_dups;
if (n == 0)
locs = NULL;
else
{
locs = XNEWVEC (rtx *, n);
memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
}
data->dup_loc = locs;
data->preferred_alternatives = get_preferred_alternatives (insn);
const operand_alternative *op_alt = preprocess_insn_constraints (icode);
if (!insn_static_data->operand_alternative)
setup_operand_alternative (data, op_alt);
else if (op_alt != insn_static_data->operand_alternative)
insn_static_data->operand_alternative = op_alt;
}
if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
insn_static_data->hard_regs = NULL;
else
insn_static_data->hard_regs
= collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
NULL, OP_IN, false);
data->arg_hard_regs = NULL;
if (CALL_P (insn))
{
bool use_p;
rtx link;
int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
n_hard_regs = 0;
/* Finding implicit hard register usage. We believe it will be
not changed whatever transformations are used. Call insns
are such example. */
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link != NULL_RTX;
link = XEXP (link, 1))
if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
|| GET_CODE (XEXP (link, 0)) == CLOBBER)
&& REG_P (XEXP (XEXP (link, 0), 0)))
{
regno = REGNO (XEXP (XEXP (link, 0), 0));
lra_assert (regno < FIRST_PSEUDO_REGISTER);
/* It is an argument register. */
for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
arg_hard_regs[n_hard_regs++]
= regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
}
if (n_hard_regs != 0)
{
arg_hard_regs[n_hard_regs++] = -1;
data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
memcpy (data->arg_hard_regs, arg_hard_regs,
sizeof (int) * n_hard_regs);
}
}
/* Some output operand can be recognized only from the context not
from the constraints which are empty in this case. Call insn may
contain a hard register in set destination with empty constraint
and extract_insn treats them as an input. */
for (i = 0; i < insn_static_data->n_operands; i++)
{
int j;
rtx pat, set;
struct lra_operand_data *operand = &insn_static_data->operand[i];
/* ??? Should we treat 'X' the same way. It looks to me that
'X' means anything and empty constraint means we do not
care. */
if (operand->type != OP_IN || *operand->constraint != '\0'
|| operand->is_operator)
continue;
pat = PATTERN (insn);
if (GET_CODE (pat) == SET)
{
if (data->operand_loc[i] != &SET_DEST (pat))
continue;
}
else if (GET_CODE (pat) == PARALLEL)
{
for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
{
set = XVECEXP (PATTERN (insn), 0, j);
if (GET_CODE (set) == SET
&& &SET_DEST (set) == data->operand_loc[i])
break;
}
if (j < 0)
continue;
}
else
continue;
operand->type = OP_OUT;
}
return data;
}
/* Return info about insn give by UID. The info should be already set
up. */
static lra_insn_recog_data_t
get_insn_recog_data_by_uid (int uid)
{
lra_insn_recog_data_t data;
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
return data;
}
/* Invalidate all info about insn given by its UID. */
static void
invalidate_insn_recog_data (int uid)
{
lra_insn_recog_data_t data;
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
free_insn_recog_data (data);
lra_insn_recog_data[uid] = NULL;
}
/* Update all the insn info about INSN. It is usually called when
something in the insn was changed. Return the updated info. */
lra_insn_recog_data_t
lra_update_insn_recog_data (rtx_insn *insn)
{
lra_insn_recog_data_t data;
int n;
unsigned int uid = INSN_UID (insn);
struct lra_static_insn_data *insn_static_data;
poly_int64 sp_offset = 0;
check_and_expand_insn_recog_data (uid);
if ((data = lra_insn_recog_data[uid]) != NULL
&& data->icode != INSN_CODE (insn))
{
sp_offset = data->sp_offset;
invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
invalidate_insn_recog_data (uid);
data = NULL;
}
if (data == NULL)
{
data = lra_get_insn_recog_data (insn);
/* Initiate or restore SP offset. */
data->sp_offset = sp_offset;
return data;
}
insn_static_data = data->insn_static_data;
data->used_insn_alternative = LRA_UNKNOWN_ALT;
if (DEBUG_INSN_P (insn))
return data;
if (data->icode < 0)
{
int nop;
machine_mode operand_mode[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
nop = asm_noperands (PATTERN (insn));
if (nop >= 0)
{
lra_assert (nop == data->insn_static_data->n_operands);
/* Now get the operand values and constraints out of the
insn. */
decode_asm_operands (PATTERN (insn), NULL,
data->operand_loc,
constraints, operand_mode, NULL);
if (flag_checking)
for (int i = 0; i < nop; i++)
lra_assert
(insn_static_data->operand[i].mode == operand_mode[i]
&& insn_static_data->operand[i].constraint == constraints[i]
&& ! insn_static_data->operand[i].is_operator);
}
if (flag_checking)
for (int i = 0; i < insn_static_data->n_operands; i++)
lra_assert
(insn_static_data->operand[i].type
== (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
: insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN));
}
else
{
insn_extract (insn);
n = insn_static_data->n_operands;
if (n != 0)
memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
n = insn_static_data->n_dups;
if (n != 0)
memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
lra_assert (check_bool_attrs (insn));
}
return data;
}
/* Set up that INSN is using alternative ALT now. */
void
lra_set_used_insn_alternative (rtx_insn *insn, int alt)
{
lra_insn_recog_data_t data;
data = lra_get_insn_recog_data (insn);
data->used_insn_alternative = alt;
}
/* Set up that insn with UID is using alternative ALT now. The insn
info should be already set up. */
void
lra_set_used_insn_alternative_by_uid (int uid, int alt)
{
lra_insn_recog_data_t data;
check_and_expand_insn_recog_data (uid);
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
data->used_insn_alternative = alt;
}
/* This page contains code dealing with common register info and
pseudo copies. */
/* The size of the following array. */
static int reg_info_size;
/* Common info about each register. */
struct lra_reg *lra_reg_info;
HARD_REG_SET hard_regs_spilled_into;
/* Last register value. */
static int last_reg_value;
/* Return new register value. */
static int
get_new_reg_value (void)
{
return ++last_reg_value;
}
/* Vec referring to pseudo copies. */
static vec<lra_copy_t> copy_vec;
/* Initialize I-th element of lra_reg_info. */
static inline void
initialize_lra_reg_info_element (int i)
{
bitmap_initialize (&lra_reg_info[i].insn_bitmap, ®_obstack);
#ifdef STACK_REGS
lra_reg_info[i].no_stack_p = false;
#endif
CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
lra_reg_info[i].preferred_hard_regno1 = -1;
lra_reg_info[i].preferred_hard_regno2 = -1;
lra_reg_info[i].preferred_hard_regno_profit1 = 0;
lra_reg_info[i].preferred_hard_regno_profit2 = 0;
lra_reg_info[i].biggest_mode = VOIDmode;
lra_reg_info[i].live_ranges = NULL;
lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
lra_reg_info[i].last_reload = 0;
lra_reg_info[i].restore_rtx = NULL_RTX;
lra_reg_info[i].val = get_new_reg_value ();
lra_reg_info[i].offset = 0;
lra_reg_info[i].copies = NULL;
}
/* Initialize common reg info and copies. */
static void
init_reg_info (void)
{
int i;
last_reg_value = 0;
reg_info_size = max_reg_num () * 3 / 2 + 1;
lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
for (i = 0; i < reg_info_size; i++)
initialize_lra_reg_info_element (i);
copy_vec.truncate (0);
CLEAR_HARD_REG_SET (hard_regs_spilled_into);
}
/* Finish common reg info and copies. */
static void
finish_reg_info (void)
{
int i;
for (i = 0; i < reg_info_size; i++)
bitmap_clear (&lra_reg_info[i].insn_bitmap);
free (lra_reg_info);
reg_info_size = 0;
}
/* Expand common reg info if it is necessary. */
static void
expand_reg_info (void)
{
int i, old = reg_info_size;
if (reg_info_size > max_reg_num ())
return;
reg_info_size = max_reg_num () * 3 / 2 + 1;
lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
for (i = old; i < reg_info_size; i++)
initialize_lra_reg_info_element (i);
}
/* Free all copies. */
void
lra_free_copies (void)
{
lra_copy_t cp;
while (copy_vec.length () != 0)
{
cp = copy_vec.pop ();
lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
lra_copy_pool.remove (cp);
}
}
/* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
frequency is FREQ. */
void
lra_create_copy (int regno1, int regno2, int freq)
{
bool regno1_dest_p;
lra_copy_t cp;
lra_assert (regno1 != regno2);
regno1_dest_p = true;
if (regno1 > regno2)
{
std::swap (regno1, regno2);
regno1_dest_p = false;
}
cp = lra_copy_pool.allocate ();
copy_vec.safe_push (cp);
cp->regno1_dest_p = regno1_dest_p;
cp->freq = freq;
cp->regno1 = regno1;
cp->regno2 = regno2;
cp->regno1_next = lra_reg_info[regno1].copies;
lra_reg_info[regno1].copies = cp;
cp->regno2_next = lra_reg_info[regno2].copies;
lra_reg_info[regno2].copies = cp;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
}
/* Return N-th (0, 1, ...) copy. If there is no copy, return
NULL. */
lra_copy_t
lra_get_copy (int n)
{
if (n >= (int) copy_vec.length ())
return NULL;
return copy_vec[n];
}
/* This page contains code dealing with info about registers in
insns. */
/* Process X of INSN recursively and add info (operand type is
given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
about registers in X to the insn DATA. If X can be early clobbered,
alternatives in which it can be early clobbered are given by
EARLY_CLOBBER_ALTS. */
static void
add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
rtx_insn *insn,
enum op_type type, bool early_clobber,
alternative_mask early_clobber_alts)
{
int i, j, regno;
bool subreg_p;
machine_mode mode;
const char *fmt;
enum rtx_code code;
struct lra_insn_reg *curr;
code = GET_CODE (x);
mode = GET_MODE (x);
subreg_p = false;
if (GET_CODE (x) == SUBREG)
{
mode = wider_subreg_mode (x);
if (read_modify_subreg_p (x))
subreg_p = true;
x = SUBREG_REG (x);
code = GET_CODE (x);
}
if (REG_P (x))
{
regno = REGNO (x);
/* Process all regs even unallocatable ones as we need info about
all regs for rematerialization pass. */
expand_reg_info ();
if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
{
data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
early_clobber, early_clobber_alts,
data->regs);
return;
}
else
{
for (curr = data->regs; curr != NULL; curr = curr->next)
if (curr->regno == regno)
{
if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
/* The info can not be integrated into the found
structure. */
data->regs = new_insn_reg (data->insn, regno, type, mode,
subreg_p, early_clobber,
early_clobber_alts, data->regs);
else
{
if (curr->type != type)
curr->type = OP_INOUT;
if (curr->early_clobber != early_clobber)
curr->early_clobber = true;
curr->early_clobber_alts |= early_clobber_alts;
}
return;
}
gcc_unreachable ();
}
}
switch (code)
{
case SET:
add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, false, 0);
add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, false, 0);
break;
case CLOBBER:
/* We treat clobber of non-operand hard registers as early
clobber. */
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
true, ALL_ALTERNATIVES);
break;
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, false, 0);
break;
case PRE_MODIFY: case POST_MODIFY:
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, false, 0);
add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, false, 0);
break;
default:
if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
/* Some targets place small structures in registers for return
values of functions, and those registers are wrapped in
PARALLEL that we may see as the destination of a SET. Here
is an example:
(call_insn 13 12 14 2 (set (parallel:BLK [
(expr_list:REG_DEP_TRUE (reg:DI 0 ax)
(const_int 0 [0]))
(expr_list:REG_DEP_TRUE (reg:DI 1 dx)
(const_int 8 [0x8]))
])
(call (mem:QI (symbol_ref:DI (... */
type = OP_IN;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, false, 0);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
type, false, 0);
}
}
}
}
/* Return execution frequency of INSN. */
static int
get_insn_freq (rtx_insn *insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
gcc_checking_assert (bb != NULL);
return REG_FREQ_FROM_BB (bb);
}
/* Invalidate all reg info of INSN with DATA and execution frequency
FREQ. Update common info about the invalidated registers. */
static void
invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
int freq)
{
int uid;
bool debug_p;
unsigned int i;
struct lra_insn_reg *ir, *next_ir;
uid = INSN_UID (insn);
debug_p = DEBUG_INSN_P (insn);
for (ir = data->regs; ir != NULL; ir = next_ir)
{
i = ir->regno;
next_ir = ir->next;
lra_insn_reg_pool.remove (ir);
bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
{
lra_reg_info[i].nrefs--;
lra_reg_info[i].freq -= freq;
lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
}
}
data->regs = NULL;
}
/* Invalidate all reg info of INSN. Update common info about the
invalidated registers. */
void
lra_invalidate_insn_regno_info (rtx_insn *insn)
{
invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
get_insn_freq (insn));
}
/* Update common reg info from reg info of insn given by its DATA and
execution frequency FREQ. */
static void
setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
{
unsigned int i;
struct lra_insn_reg *ir;
for (ir = data->regs; ir != NULL; ir = ir->next)
if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
{
lra_reg_info[i].nrefs++;
lra_reg_info[i].freq += freq;
}
}
/* Set up insn reg info of INSN. Update common reg info from reg info
of INSN. */
void
lra_update_insn_regno_info (rtx_insn *insn)
{
int i, freq;
lra_insn_recog_data_t data;
struct lra_static_insn_data *static_data;
enum rtx_code code;
rtx link;
if (! INSN_P (insn))
return;
data = lra_get_insn_recog_data (insn);
static_data = data->insn_static_data;
freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
invalidate_insn_data_regno_info (data, insn, freq);
for (i = static_data->n_operands - 1; i >= 0; i--)
add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
static_data->operand[i].type,
static_data->operand[i].early_clobber,
static_data->operand[i].early_clobber_alts);
if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
code == USE ? OP_IN : OP_OUT, false, 0);
if (CALL_P (insn))
/* On some targets call insns can refer to pseudos in memory in
CALL_INSN_FUNCTION_USAGE list. Process them in order to
consider their occurrences in calls for different
transformations (e.g. inheritance) with given pseudos. */
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link != NULL_RTX;
link = XEXP (link, 1))
if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER)
&& MEM_P (XEXP (XEXP (link, 0), 0)))
add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
code == USE ? OP_IN : OP_OUT, false, 0);
if (NONDEBUG_INSN_P (insn))
setup_insn_reg_info (data, freq);
}
/* Return reg info of insn given by it UID. */
struct lra_insn_reg *
lra_get_insn_regs (int uid)
{
lra_insn_recog_data_t data;
data = get_insn_recog_data_by_uid (uid);
return data->regs;
}
/* Recursive hash function for RTL X. */
hashval_t
lra_rtx_hash (rtx x)
{
int i, j;
enum rtx_code code;
const char *fmt;
hashval_t val = 0;
if (x == 0)
return val;
code = GET_CODE (x);
val += (int) code + 4095;
/* Some RTL can be compared nonrecursively. */
switch (code)
{
case REG:
return val + REGNO (x);
case LABEL_REF:
return iterative_hash_object (XEXP (x, 0), val);
case SYMBOL_REF:
return iterative_hash_object (XSTR (x, 0), val);
case SCRATCH:
case CONST_DOUBLE:
case CONST_VECTOR:
return val;
case CONST_INT:
return val + UINTVAL (x);
default:
break;
}
/* Hash the elements. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'w':
val += XWINT (x, i);
break;
case 'n':
case 'i':
val += XINT (x, i);
break;
case 'V':
case 'E':
val += XVECLEN (x, i);
for (j = 0; j < XVECLEN (x, i); j++)
val += lra_rtx_hash (XVECEXP (x, i, j));
break;
case 'e':
val += lra_rtx_hash (XEXP (x, i));
break;
case 'S':
case 's':
val += htab_hash_string (XSTR (x, i));
break;
case 'u':
case '0':
case 't':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's, except for
within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return val;
}
/* This page contains code dealing with stack of the insns which
should be processed by the next constraint pass. */
/* Bitmap used to put an insn on the stack only in one exemplar. */
static sbitmap lra_constraint_insn_stack_bitmap;
/* The stack itself. */
vec<rtx_insn *> lra_constraint_insn_stack;
/* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
info for INSN, otherwise only update it if INSN is not already on the
stack. */
static inline void
lra_push_insn_1 (rtx_insn *insn, bool always_update)
{
unsigned int uid = INSN_UID (insn);
if (always_update)
lra_update_insn_regno_info (insn);
if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
lra_constraint_insn_stack_bitmap =
sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
return;
bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
if (! always_update)
lra_update_insn_regno_info (insn);
lra_constraint_insn_stack.safe_push (insn);
}
/* Put INSN on the stack. */
void
lra_push_insn (rtx_insn *insn)
{
lra_push_insn_1 (insn, false);
}
/* Put INSN on the stack and update its reg info. */
void
lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
{
lra_push_insn_1 (insn, true);
}
/* Put insn with UID on the stack. */
void
lra_push_insn_by_uid (unsigned int uid)
{
lra_push_insn (lra_insn_recog_data[uid]->insn);
}
/* Take the last-inserted insns off the stack and return it. */
rtx_insn *
lra_pop_insn (void)
{
rtx_insn *insn = lra_constraint_insn_stack.pop ();
bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
return insn;
}
/* Return the current size of the insn stack. */
unsigned int
lra_insn_stack_length (void)
{
return lra_constraint_insn_stack.length ();
}
/* Push insns FROM to TO (excluding it) going in reverse order. */
static void
push_insns (rtx_insn *from, rtx_insn *to)
{
rtx_insn *insn;
if (from == NULL_RTX)
return;
for (insn = from; insn != to; insn = PREV_INSN (insn))
if (INSN_P (insn))
lra_push_insn (insn);
}
/* Set up sp offset for insn in range [FROM, LAST]. The offset is
taken from the next BB insn after LAST or zero if there in such
insn. */
static void
setup_sp_offset (rtx_insn *from, rtx_insn *last)
{
rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
? 0 : lra_get_insn_recog_data (before)->sp_offset);
for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
lra_get_insn_recog_data (insn)->sp_offset = offset;
}
/* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
insns onto the stack. Print about emitting the insns with
TITLE. */
void
lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
const char *title)
{
rtx_insn *last;
if (before == NULL_RTX && after == NULL_RTX)
return;
if (lra_dump_file != NULL)
{
dump_insn_slim (lra_dump_file, insn);
if (before != NULL_RTX)
{
fprintf (lra_dump_file," %s before:\n", title);
dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
}
if (after != NULL_RTX)
{
fprintf (lra_dump_file, " %s after:\n", title);
dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
}
fprintf (lra_dump_file, "\n");
}
if (before != NULL_RTX)
{
if (cfun->can_throw_non_call_exceptions)
copy_reg_eh_region_note_forward (insn, before, NULL);
emit_insn_before (before, insn);
push_insns (PREV_INSN (insn), PREV_INSN (before));
setup_sp_offset (before, PREV_INSN (insn));
}
if (after != NULL_RTX)
{
if (cfun->can_throw_non_call_exceptions)
copy_reg_eh_region_note_forward (insn, after, NULL);
for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
;
emit_insn_after (after, insn);
push_insns (last, insn);
setup_sp_offset (after, last);
}
if (cfun->can_throw_non_call_exceptions)
{
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
if (note && !insn_could_throw_p (insn))
remove_note (insn, note);
}
}
/* Replace all references to register OLD_REGNO in *LOC with pseudo
register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
DEBUG_P is if LOC is within a DEBUG_INSN. Return true if any
change was made. */
bool
lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
bool debug_p)
{
rtx x = *loc;
bool result = false;
enum rtx_code code;
const char *fmt;
int i, j;
if (x == NULL_RTX)
return false;
code = GET_CODE (x);
if (code == SUBREG && subreg_p)
{
rtx subst, inner = SUBREG_REG (x);
/* Transform subreg of constant while we still have inner mode
of the subreg. The subreg internal should not be an insn
operand. */
if (REG_P (inner) && (int) REGNO (inner) == old_regno
&& CONSTANT_P (new_reg)
&& (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
SUBREG_BYTE (x))) != NULL_RTX)
{
*loc = subst;
return true;
}
}
else if (code == REG && (int) REGNO (x) == old_regno)
{
machine_mode mode = GET_MODE (x);
machine_mode inner_mode = GET_MODE (new_reg);
if (mode != inner_mode
&& ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
{
poly_uint64 offset = 0;
if (partial_subreg_p (mode, inner_mode)
&& SCALAR_INT_MODE_P (inner_mode))
offset = subreg_lowpart_offset (mode, inner_mode);
if (debug_p)
new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
else
new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
}
*loc = new_reg;
return true;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
new_reg, subreg_p, debug_p))
result = true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
new_reg, subreg_p, debug_p))
result = true;
}
}
return result;
}
/* Call lra_substitute_pseudo within an insn. Try to simplify subreg
of constant if SUBREG_P. This won't update the insn ptr, just the
contents of the insn. */
bool
lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
rtx new_reg, bool subreg_p)
{
rtx loc = insn;
return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
DEBUG_INSN_P (insn));
}
/* This page contains code dealing with scratches (changing them onto
pseudos and restoring them from the pseudos).
We change scratches into pseudos at the beginning of LRA to
simplify dealing with them (conflicts, hard register assignments).
If the pseudo denoting scratch was spilled it means that we do need
a hard register for it. Such pseudos are transformed back to
scratches at the end of LRA. */
/* Description of location of a former scratch operand. */
struct sloc
{
rtx_insn *insn; /* Insn where the scratch was. */
int nop; /* Number of the operand which was a scratch. */
};
typedef struct sloc *sloc_t;
/* Locations of the former scratches. */
static vec<sloc_t> scratches;
/* Bitmap of scratch regnos. */
static bitmap_head scratch_bitmap;
/* Bitmap of scratch operands. */
static bitmap_head scratch_operand_bitmap;
/* Return true if pseudo REGNO is made of SCRATCH. */
bool
lra_former_scratch_p (int regno)
{
return bitmap_bit_p (&scratch_bitmap, regno);
}
/* Return true if the operand NOP of INSN is a former scratch. */
bool
lra_former_scratch_operand_p (rtx_insn *insn, int nop)
{
return bitmap_bit_p (&scratch_operand_bitmap,
INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
}
/* Register operand NOP in INSN as a former scratch. It will be
changed to scratch back, if it is necessary, at the LRA end. */
void
lra_register_new_scratch_op (rtx_insn *insn, int nop)
{
lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
rtx op = *id->operand_loc[nop];
sloc_t loc = XNEW (struct sloc);
lra_assert (REG_P (op));
loc->insn = insn;
loc->nop = nop;
scratches.safe_push (loc);
bitmap_set_bit (&scratch_bitmap, REGNO (op));
bitmap_set_bit (&scratch_operand_bitmap,
INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
add_reg_note (insn, REG_UNUSED, op);
}
/* Change scratches onto pseudos and save their location. */
static void
remove_scratches (void)
{
int i;
bool insn_changed_p;
basic_block bb;
rtx_insn *insn;
rtx reg;
lra_insn_recog_data_t id;
struct lra_static_insn_data *static_id;
scratches.create (get_max_uid ());
bitmap_initialize (&scratch_bitmap, ®_obstack);
bitmap_initialize (&scratch_operand_bitmap, ®_obstack);
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn))
{
id = lra_get_insn_recog_data (insn);
static_id = id->insn_static_data;
insn_changed_p = false;
for (i = 0; i < static_id->n_operands; i++)
if (GET_CODE (*id->operand_loc[i]) == SCRATCH
&& GET_MODE (*id->operand_loc[i]) != VOIDmode)
{
insn_changed_p = true;
*id->operand_loc[i] = reg
= lra_create_new_reg (static_id->operand[i].mode,
*id->operand_loc[i], ALL_REGS, NULL);
lra_register_new_scratch_op (insn, i);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
"Removing SCRATCH in insn #%u (nop %d)\n",
INSN_UID (insn), i);
}
if (insn_changed_p)
/* Because we might use DF right after caller-saves sub-pass
we need to keep DF info up to date. */
df_insn_rescan (insn);
}
}
/* Changes pseudos created by function remove_scratches onto scratches. */
static void
restore_scratches (void)
{
int regno;
unsigned i;
sloc_t loc;
rtx_insn *last = NULL;
lra_insn_recog_data_t id = NULL;
for (i = 0; scratches.iterate (i, &loc); i++)
{
/* Ignore already deleted insns. */
if (NOTE_P (loc->insn)
&& NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
continue;
if (last != loc->insn)
{
last = loc->insn;
id = lra_get_insn_recog_data (last);
}
if (REG_P (*id->operand_loc[loc->nop])
&& ((regno = REGNO (*id->operand_loc[loc->nop]))
>= FIRST_PSEUDO_REGISTER)
&& lra_get_regno_hard_regno (regno) < 0)
{
/* It should be only case when scratch register with chosen
constraint 'X' did not get memory or hard register. */
lra_assert (lra_former_scratch_p (regno));
*id->operand_loc[loc->nop]
= gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
lra_update_dup (id, loc->nop);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
INSN_UID (loc->insn), loc->nop);
}
}
for (i = 0; scratches.iterate (i, &loc); i++)
free (loc);
scratches.release ();
bitmap_clear (&scratch_bitmap);
bitmap_clear (&scratch_operand_bitmap);
}
/* Function checks RTL for correctness. If FINAL_P is true, it is
done at the end of LRA and the check is more rigorous. */
static void
check_rtl (bool final_p)
{
basic_block bb;
rtx_insn *insn;
lra_assert (! final_p || reload_completed);
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& GET_CODE (PATTERN (insn)) != ASM_INPUT)
{
if (final_p)
{
extract_constrain_insn (insn);
continue;
}
/* LRA code is based on assumption that all addresses can be
correctly decomposed. LRA can generate reloads for
decomposable addresses. The decomposition code checks the
correctness of the addresses. So we don't need to check
the addresses here. Don't call insn_invalid_p here, it can
change the code at this stage. */
if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
fatal_insn_not_found (insn);
}
}
/* Determine if the current function has an exception receiver block
that reaches the exit block via non-exceptional edges */
static bool
has_nonexceptional_receiver (void)
{
edge e;
edge_iterator ei;
basic_block *tos, *worklist, bb;
/* If we're not optimizing, then just err on the safe side. */
if (!optimize)
return true;
/* First determine which blocks can reach exit via normal paths. */
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
FOR_EACH_BB_FN (bb, cfun)
bb->flags &= ~BB_REACHABLE;
/* Place the exit block on our worklist. */
EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
*tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
/* Iterate: find everything reachable from what we've already seen. */
while (tos != worklist)
{
bb = *--tos;
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_ABNORMAL)
{
free (worklist);
return true;
}
else
{
basic_block src = e->src;
if (!(src->flags & BB_REACHABLE))
{
src->flags |= BB_REACHABLE;
*tos++ = src;
}
}
}
free (worklist);
/* No exceptional block reached exit unexceptionally. */
return false;
}
/* Process recursively X of INSN and add REG_INC notes if necessary. */
static void
add_auto_inc_notes (rtx_insn *insn, rtx x)
{
enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
if (code == MEM && auto_inc_p (XEXP (x, 0)))
{
add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
return;
}
/* Scan all X sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_auto_inc_notes (insn, XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_auto_inc_notes (insn, XVECEXP (x, i, j));
}
}
/* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
We change pseudos by hard registers without notification of DF and
that can make the notes obsolete. DF-infrastructure does not deal
with REG_INC notes -- so we should regenerate them here. */
static void
update_inc_notes (void)
{
rtx *pnote;
basic_block bb;
rtx_insn *insn;
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn))
{
pnote = ®_NOTES (insn);
while (*pnote != 0)
{
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|| REG_NOTE_KIND (*pnote) == REG_INC)
*pnote = XEXP (*pnote, 1);
else
pnote = &XEXP (*pnote, 1);
}
if (AUTO_INC_DEC)
add_auto_inc_notes (insn, PATTERN (insn));
}
}
/* Set to 1 while in lra. */
int lra_in_progress;
/* Start of pseudo regnos before the LRA. */
int lra_new_regno_start;
/* Start of reload pseudo regnos before the new spill pass. */
int lra_constraint_new_regno_start;
/* Avoid spilling pseudos with regno more than the following value if
it is possible. */
int lra_bad_spill_regno_start;
/* Inheritance pseudo regnos before the new spill pass. */
bitmap_head lra_inheritance_pseudos;
/* Split regnos before the new spill pass. */
bitmap_head lra_split_regs;
/* Reload pseudo regnos before the new assignment pass which still can
be spilled after the assignment pass as memory is also accepted in
insns for the reload pseudos. */
bitmap_head lra_optional_reload_pseudos;
/* Pseudo regnos used for subreg reloads before the new assignment
pass. Such pseudos still can be spilled after the assignment
pass. */
bitmap_head lra_subreg_reload_pseudos;
/* File used for output of LRA debug information. */
FILE *lra_dump_file;
/* True if we should try spill into registers of different classes
instead of memory. */
bool lra_reg_spill_p;
/* Set up value LRA_REG_SPILL_P. */
static void
setup_reg_spill_flag (void)
{
int cl, mode;
if (targetm.spill_class != NULL)
for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
if (targetm.spill_class ((enum reg_class) cl,
(machine_mode) mode) != NO_REGS)
{
lra_reg_spill_p = true;
return;
}
lra_reg_spill_p = false;
}
/* True if the current function is too big to use regular algorithms
in LRA. In other words, we should use simpler and faster algorithms
in LRA. It also means we should not worry about generation code
for caller saves. The value is set up in IRA. */
bool lra_simple_p;
/* Major LRA entry function. F is a file should be used to dump LRA
debug info. */
void
lra (FILE *f)
{
int i;
bool live_p, inserted_p;
lra_dump_file = f;
timevar_push (TV_LRA);
/* Make sure that the last insn is a note. Some subsequent passes
need it. */
emit_note (NOTE_INSN_DELETED);
COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
init_reg_info ();
expand_reg_info ();
init_insn_recog_data ();
/* Some quick check on RTL generated by previous passes. */
if (flag_checking)
check_rtl (false);
lra_in_progress = 1;
lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
lra_assignment_iter = lra_assignment_iter_after_spill = 0;
lra_inheritance_iter = lra_undo_inheritance_iter = 0;
lra_rematerialization_iter = 0;
setup_reg_spill_flag ();
/* Function remove_scratches can creates new pseudos for clobbers --
so set up lra_constraint_new_regno_start before its call to
permit changing reg classes for pseudos created by this
simplification. */
lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
lra_bad_spill_regno_start = INT_MAX;
remove_scratches ();
/* A function that has a non-local label that can reach the exit
block via non-exceptional paths must save all call-saved
registers. */
if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
crtl->saves_all_registers = 1;
if (crtl->saves_all_registers)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
df_set_regs_ever_live (i, true);
/* We don't DF from now and avoid its using because it is to
expensive when a lot of RTL changes are made. */
df_set_flags (DF_NO_INSN_RESCAN);
lra_constraint_insn_stack.create (get_max_uid ());
lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
bitmap_clear (lra_constraint_insn_stack_bitmap);
lra_live_ranges_init ();
lra_constraints_init ();
lra_curr_reload_num = 0;
push_insns (get_last_insn (), NULL);
/* It is needed for the 1st coalescing. */
bitmap_initialize (&lra_inheritance_pseudos, ®_obstack);
bitmap_initialize (&lra_split_regs, ®_obstack);
bitmap_initialize (&lra_optional_reload_pseudos, ®_obstack);
bitmap_initialize (&lra_subreg_reload_pseudos, ®_obstack);
live_p = false;
if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
/* If we have a stack frame, we must align it now. The stack size
may be a part of the offset computation for register
elimination. */
assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
lra_init_equiv ();
for (;;)
{
for (;;)
{
bool reloads_p = lra_constraints (lra_constraint_iter == 0);
/* Constraint transformations may result in that eliminable
hard regs become uneliminable and pseudos which use them
should be spilled. It is better to do it before pseudo
assignments.
For example, rs6000 can make
RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
to use a constant pool. */
lra_eliminate (false, false);
/* We should try to assign hard registers to scratches even
if there were no RTL transformations in lra_constraints.
Also we should check IRA assignments on the first
iteration as they can be wrong because of early clobbers
operands which are ignored in IRA. */
if (! reloads_p && lra_constraint_iter > 1)
{
/* Stack is not empty here only when there are changes
during the elimination sub-pass. */
if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
break;
else
/* If there are no reloads but changing due
elimination, restart the constraint sub-pass
first. */
continue;
}
/* Do inheritance only for regular algorithms. */
if (! lra_simple_p)
{
if (flag_ipa_ra)
{
if (live_p)
lra_clear_live_ranges ();
/* As a side-effect of lra_create_live_ranges, we calculate
actual_call_used_reg_set, which is needed during
lra_inheritance. */
lra_create_live_ranges (true, true);
live_p = true;
}
lra_inheritance ();
}
if (live_p)
lra_clear_live_ranges ();
bool fails_p;
do
{
/* We need live ranges for lra_assign -- so build them.
But don't remove dead insns or change global live
info as we can undo inheritance transformations after
inheritance pseudo assigning. */
lra_create_live_ranges (true, false);
live_p = true;
/* If we don't spill non-reload and non-inheritance
pseudos, there is no sense to run memory-memory move
coalescing. If inheritance pseudos were spilled, the
memory-memory moves involving them will be removed by
pass undoing inheritance. */
if (lra_simple_p)
lra_assign (fails_p);
else
{
bool spill_p = !lra_assign (fails_p);
if (lra_undo_inheritance ())
live_p = false;
if (spill_p && ! fails_p)
{
if (! live_p)
{
lra_create_live_ranges (true, true);
live_p = true;
}
if (lra_coalesce ())
live_p = false;
}
if (! live_p)
lra_clear_live_ranges ();
}
if (fails_p)
{
/* It is a very rare case. It is the last hope to
split a hard regno live range for a reload
pseudo. */
if (live_p)
lra_clear_live_ranges ();
live_p = false;
if (! lra_split_hard_reg_for ())
break;
}
}
while (fails_p);
}
/* Don't clear optional reloads bitmap until all constraints are
satisfied as we need to differ them from regular reloads. */
bitmap_clear (&lra_optional_reload_pseudos);
bitmap_clear (&lra_subreg_reload_pseudos);
bitmap_clear (&lra_inheritance_pseudos);
bitmap_clear (&lra_split_regs);
if (! live_p)
{
/* We need full live info for spilling pseudos into
registers instead of memory. */
lra_create_live_ranges (lra_reg_spill_p, true);
live_p = true;
}
/* We should check necessity for spilling here as the above live
range pass can remove spilled pseudos. */
if (! lra_need_for_spills_p ())
break;
/* Now we know what pseudos should be spilled. Try to
rematerialize them first. */
if (lra_remat ())
{
/* We need full live info -- see the comment above. */
lra_create_live_ranges (lra_reg_spill_p, true);
live_p = true;
if (! lra_need_for_spills_p ())
break;
}
lra_spill ();
/* Assignment of stack slots changes elimination offsets for
some eliminations. So update the offsets here. */
lra_eliminate (false, false);
lra_constraint_new_regno_start = max_reg_num ();
if (lra_bad_spill_regno_start == INT_MAX
&& lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
&& lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
/* After switching off inheritance and rematerialization
passes, avoid spilling reload pseudos will be created to
prevent LRA cycling in some complicated cases. */
lra_bad_spill_regno_start = lra_constraint_new_regno_start;
lra_assignment_iter_after_spill = 0;
}
restore_scratches ();
lra_eliminate (true, false);
lra_final_code_change ();
lra_in_progress = 0;
if (live_p)
lra_clear_live_ranges ();
lra_live_ranges_finish ();
lra_constraints_finish ();
finish_reg_info ();
sbitmap_free (lra_constraint_insn_stack_bitmap);
lra_constraint_insn_stack.release ();
finish_insn_recog_data ();
regstat_free_n_sets_and_refs ();
regstat_free_ri ();
reload_completed = 1;
update_inc_notes ();
inserted_p = fixup_abnormal_edges ();
/* We've possibly turned single trapping insn into multiple ones. */
if (cfun->can_throw_non_call_exceptions)
{
auto_sbitmap blocks (last_basic_block_for_fn (cfun));
bitmap_ones (blocks);
find_many_sub_basic_blocks (blocks);
}
if (inserted_p)
commit_edge_insertions ();
/* Replacing pseudos with their memory equivalents might have
created shared rtx. Subsequent passes would get confused
by this, so unshare everything here. */
unshare_all_rtl_again (get_insns ());
if (flag_checking)
check_rtl (true);
timevar_pop (TV_LRA);
}
/* Called once per compiler to initialize LRA data once. */
void
lra_init_once (void)
{
init_insn_code_data_once ();
}
/* Called once per compiler to finish LRA data which are initialize
once. */
void
lra_finish_once (void)
{
finish_insn_code_data_once ();
}
|