1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
|
/* CPU mode switching
Copyright (C) 1998-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "lcm.h"
#include "cfgcleanup.h"
#include "tree-pass.h"
/* We want target macros for the mode switching code to be able to refer
to instruction attribute values. */
#include "insn-attr.h"
#ifdef OPTIMIZE_MODE_SWITCHING
/* The algorithm for setting the modes consists of scanning the insn list
and finding all the insns which require a specific mode. Each insn gets
a unique struct seginfo element. These structures are inserted into a list
for each basic block. For each entity, there is an array of bb_info over
the flow graph basic blocks (local var 'bb_info'), which contains a list
of all insns within that basic block, in the order they are encountered.
For each entity, any basic block WITHOUT any insns requiring a specific
mode are given a single entry without a mode (each basic block in the
flow graph must have at least one entry in the segment table).
The LCM algorithm is then run over the flow graph to determine where to
place the sets to the highest-priority mode with respect to the first
insn in any one block. Any adjustments required to the transparency
vectors are made, then the next iteration starts for the next-lower
priority mode, till for each entity all modes are exhausted.
More details can be found in the code of optimize_mode_switching. */
/* This structure contains the information for each insn which requires
either single or double mode to be set.
MODE is the mode this insn must be executed in.
INSN_PTR is the insn to be executed (may be the note that marks the
beginning of a basic block).
BBNUM is the flow graph basic block this insn occurs in.
NEXT is the next insn in the same basic block. */
struct seginfo
{
int mode;
rtx_insn *insn_ptr;
int bbnum;
struct seginfo *next;
HARD_REG_SET regs_live;
};
struct bb_info
{
struct seginfo *seginfo;
int computing;
int mode_out;
int mode_in;
};
static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
static void add_seginfo (struct bb_info *, struct seginfo *);
static void reg_dies (rtx, HARD_REG_SET *);
static void reg_becomes_live (rtx, const_rtx, void *);
/* Clear ode I from entity J in bitmap B. */
#define clear_mode_bit(b, j, i) \
bitmap_clear_bit (b, (j * max_num_modes) + i)
/* Test mode I from entity J in bitmap B. */
#define mode_bit_p(b, j, i) \
bitmap_bit_p (b, (j * max_num_modes) + i)
/* Set mode I from entity J in bitmal B. */
#define set_mode_bit(b, j, i) \
bitmap_set_bit (b, (j * max_num_modes) + i)
/* Emit modes segments from EDGE_LIST associated with entity E.
INFO gives mode availability for each mode. */
static bool
commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
{
bool need_commit = false;
for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
{
edge eg = INDEX_EDGE (edge_list, ed);
int mode;
if ((mode = (int)(intptr_t)(eg->aux)) != -1)
{
HARD_REG_SET live_at_edge;
basic_block src_bb = eg->src;
int cur_mode = info[src_bb->index].mode_out;
rtx_insn *mode_set;
REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
rtl_profile_for_edge (eg);
start_sequence ();
targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
mode_set = get_insns ();
end_sequence ();
default_rtl_profile ();
/* Do not bother to insert empty sequence. */
if (mode_set == NULL)
continue;
/* We should not get an abnormal edge here. */
gcc_assert (! (eg->flags & EDGE_ABNORMAL));
need_commit = true;
insert_insn_on_edge (mode_set, eg);
}
}
return need_commit;
}
/* Allocate a new BBINFO structure, initialized with the MODE, INSN,
and basic block BB parameters.
INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
basic block; that allows us later to insert instructions in a FIFO-like
manner. */
static struct seginfo *
new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
{
struct seginfo *ptr;
gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
|| insn == BB_END (NOTE_BASIC_BLOCK (insn)));
ptr = XNEW (struct seginfo);
ptr->mode = mode;
ptr->insn_ptr = insn;
ptr->bbnum = bb;
ptr->next = NULL;
COPY_HARD_REG_SET (ptr->regs_live, regs_live);
return ptr;
}
/* Add a seginfo element to the end of a list.
HEAD is a pointer to the list beginning.
INFO is the structure to be linked in. */
static void
add_seginfo (struct bb_info *head, struct seginfo *info)
{
struct seginfo *ptr;
if (head->seginfo == NULL)
head->seginfo = info;
else
{
ptr = head->seginfo;
while (ptr->next != NULL)
ptr = ptr->next;
ptr->next = info;
}
}
/* Record in LIVE that register REG died. */
static void
reg_dies (rtx reg, HARD_REG_SET *live)
{
int regno;
if (!REG_P (reg))
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
remove_from_hard_reg_set (live, GET_MODE (reg), regno);
}
/* Record in LIVE that register REG became live.
This is called via note_stores. */
static void
reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
{
int regno;
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
if (!REG_P (reg))
return;
regno = REGNO (reg);
if (regno < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
}
/* Split the fallthrough edge to the exit block, so that we can note
that there NORMAL_MODE is required. Return the new block if it's
inserted before the exit block. Otherwise return null. */
static basic_block
create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
{
edge eg;
edge_iterator ei;
basic_block pre_exit;
/* The only non-call predecessor at this stage is a block with a
fallthrough edge; there can be at most one, but there could be
none at all, e.g. when exit is called. */
pre_exit = 0;
FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
if (eg->flags & EDGE_FALLTHRU)
{
basic_block src_bb = eg->src;
rtx_insn *last_insn;
rtx ret_reg;
gcc_assert (!pre_exit);
/* If this function returns a value at the end, we have to
insert the final mode switch before the return value copy
to its hard register. */
if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
&& NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
&& GET_CODE (PATTERN (last_insn)) == USE
&& GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
{
int ret_start = REGNO (ret_reg);
int nregs = REG_NREGS (ret_reg);
int ret_end = ret_start + nregs;
bool short_block = false;
bool multi_reg_return = false;
bool forced_late_switch = false;
rtx_insn *before_return_copy;
do
{
rtx_insn *return_copy = PREV_INSN (last_insn);
rtx return_copy_pat, copy_reg;
int copy_start, copy_num;
int j;
if (NONDEBUG_INSN_P (return_copy))
{
/* When using SJLJ exceptions, the call to the
unregister function is inserted between the
clobber of the return value and the copy.
We do not want to split the block before this
or any other call; if we have not found the
copy yet, the copy must have been deleted. */
if (CALL_P (return_copy))
{
short_block = true;
break;
}
return_copy_pat = PATTERN (return_copy);
switch (GET_CODE (return_copy_pat))
{
case USE:
/* Skip USEs of multiple return registers.
__builtin_apply pattern is also handled here. */
if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
&& (targetm.calls.function_value_regno_p
(REGNO (XEXP (return_copy_pat, 0)))))
{
multi_reg_return = true;
last_insn = return_copy;
continue;
}
break;
case ASM_OPERANDS:
/* Skip barrier insns. */
if (!MEM_VOLATILE_P (return_copy_pat))
break;
/* Fall through. */
case ASM_INPUT:
case UNSPEC_VOLATILE:
last_insn = return_copy;
continue;
default:
break;
}
/* If the return register is not (in its entirety)
likely spilled, the return copy might be
partially or completely optimized away. */
return_copy_pat = single_set (return_copy);
if (!return_copy_pat)
{
return_copy_pat = PATTERN (return_copy);
if (GET_CODE (return_copy_pat) != CLOBBER)
break;
else if (!optimize)
{
/* This might be (clobber (reg [<result>]))
when not optimizing. Then check if
the previous insn is the clobber for
the return register. */
copy_reg = SET_DEST (return_copy_pat);
if (GET_CODE (copy_reg) == REG
&& !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
{
if (INSN_P (PREV_INSN (return_copy)))
{
return_copy = PREV_INSN (return_copy);
return_copy_pat = PATTERN (return_copy);
if (GET_CODE (return_copy_pat) != CLOBBER)
break;
}
}
}
}
copy_reg = SET_DEST (return_copy_pat);
if (GET_CODE (copy_reg) == REG)
copy_start = REGNO (copy_reg);
else if (GET_CODE (copy_reg) == SUBREG
&& GET_CODE (SUBREG_REG (copy_reg)) == REG)
copy_start = REGNO (SUBREG_REG (copy_reg));
else
{
/* When control reaches end of non-void function,
there are no return copy insns at all. This
avoids an ice on that invalid function. */
if (ret_start + nregs == ret_end)
short_block = true;
break;
}
if (!targetm.calls.function_value_regno_p (copy_start))
copy_num = 0;
else
copy_num = hard_regno_nregs (copy_start,
GET_MODE (copy_reg));
/* If the return register is not likely spilled, - as is
the case for floating point on SH4 - then it might
be set by an arithmetic operation that needs a
different mode than the exit block. */
for (j = n_entities - 1; j >= 0; j--)
{
int e = entity_map[j];
int mode =
targetm.mode_switching.needed (e, return_copy);
if (mode != num_modes[e]
&& mode != targetm.mode_switching.exit (e))
break;
}
if (j >= 0)
{
/* __builtin_return emits a sequence of loads to all
return registers. One of them might require
another mode than MODE_EXIT, even if it is
unrelated to the return value, so we want to put
the final mode switch after it. */
if (multi_reg_return
&& targetm.calls.function_value_regno_p
(copy_start))
forced_late_switch = true;
/* For the SH4, floating point loads depend on fpscr,
thus we might need to put the final mode switch
after the return value copy. That is still OK,
because a floating point return value does not
conflict with address reloads. */
if (copy_start >= ret_start
&& copy_start + copy_num <= ret_end
&& OBJECT_P (SET_SRC (return_copy_pat)))
forced_late_switch = true;
break;
}
if (copy_num == 0)
{
last_insn = return_copy;
continue;
}
if (copy_start >= ret_start
&& copy_start + copy_num <= ret_end)
nregs -= copy_num;
else if (!multi_reg_return
|| !targetm.calls.function_value_regno_p
(copy_start))
break;
last_insn = return_copy;
}
/* ??? Exception handling can lead to the return value
copy being already separated from the return value use,
as in unwind-dw2.c .
Similarly, conditionally returning without a value,
and conditionally using builtin_return can lead to an
isolated use. */
if (return_copy == BB_HEAD (src_bb))
{
short_block = true;
break;
}
last_insn = return_copy;
}
while (nregs);
/* If we didn't see a full return value copy, verify that there
is a plausible reason for this. If some, but not all of the
return register is likely spilled, we can expect that there
is a copy for the likely spilled part. */
gcc_assert (!nregs
|| forced_late_switch
|| short_block
|| !(targetm.class_likely_spilled_p
(REGNO_REG_CLASS (ret_start)))
|| nregs != REG_NREGS (ret_reg)
/* For multi-hard-register floating point
values, sometimes the likely-spilled part
is ordinarily copied first, then the other
part is set with an arithmetic operation.
This doesn't actually cause reload
failures, so let it pass. */
|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
&& nregs != 1));
if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
{
before_return_copy
= emit_note_before (NOTE_INSN_DELETED, last_insn);
/* Instructions preceding LAST_INSN in the same block might
require a different mode than MODE_EXIT, so if we might
have such instructions, keep them in a separate block
from pre_exit. */
src_bb = split_block (src_bb,
PREV_INSN (before_return_copy))->dest;
}
else
before_return_copy = last_insn;
pre_exit = split_block (src_bb, before_return_copy)->src;
}
else
{
pre_exit = split_edge (eg);
}
}
return pre_exit;
}
/* Find all insns that need a particular mode setting, and insert the
necessary mode switches. Return true if we did work. */
static int
optimize_mode_switching (void)
{
int e;
basic_block bb;
bool need_commit = false;
static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
#define N_ENTITIES ARRAY_SIZE (num_modes)
int entity_map[N_ENTITIES];
struct bb_info *bb_info[N_ENTITIES];
int i, j;
int n_entities = 0;
int max_num_modes = 0;
bool emitted ATTRIBUTE_UNUSED = false;
basic_block post_entry = 0;
basic_block pre_exit = 0;
struct edge_list *edge_list = 0;
/* These bitmaps are used for the LCM algorithm. */
sbitmap *kill, *del, *insert, *antic, *transp, *comp;
sbitmap *avin, *avout;
for (e = N_ENTITIES - 1; e >= 0; e--)
if (OPTIMIZE_MODE_SWITCHING (e))
{
int entry_exit_extra = 0;
/* Create the list of segments within each basic block.
If NORMAL_MODE is defined, allow for two extra
blocks split from the entry and exit block. */
if (targetm.mode_switching.entry && targetm.mode_switching.exit)
entry_exit_extra = 3;
bb_info[n_entities]
= XCNEWVEC (struct bb_info,
last_basic_block_for_fn (cfun) + entry_exit_extra);
entity_map[n_entities++] = e;
if (num_modes[e] > max_num_modes)
max_num_modes = num_modes[e];
}
if (! n_entities)
return 0;
/* Make sure if MODE_ENTRY is defined MODE_EXIT is defined. */
gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
|| (!targetm.mode_switching.entry
&& !targetm.mode_switching.exit));
if (targetm.mode_switching.entry && targetm.mode_switching.exit)
{
/* Split the edge from the entry block, so that we can note that
there NORMAL_MODE is supplied. */
post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
}
df_analyze ();
/* Create the bitmap vectors. */
antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
n_entities * max_num_modes);
bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
for (j = n_entities - 1; j >= 0; j--)
{
int e = entity_map[j];
int no_mode = num_modes[e];
struct bb_info *info = bb_info[j];
rtx_insn *insn;
/* Determine what the first use (if any) need for a mode of entity E is.
This will be the mode that is anticipatable for this block.
Also compute the initial transparency settings. */
FOR_EACH_BB_FN (bb, cfun)
{
struct seginfo *ptr;
int last_mode = no_mode;
bool any_set_required = false;
HARD_REG_SET live_now;
info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
/* Pretend the mode is clobbered across abnormal edges. */
{
edge_iterator ei;
edge eg;
FOR_EACH_EDGE (eg, ei, bb->preds)
if (eg->flags & EDGE_COMPLEX)
break;
if (eg)
{
rtx_insn *ins_pos = BB_HEAD (bb);
if (LABEL_P (ins_pos))
ins_pos = NEXT_INSN (ins_pos);
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
if (ins_pos != BB_END (bb))
ins_pos = NEXT_INSN (ins_pos);
ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
add_seginfo (info + bb->index, ptr);
for (i = 0; i < no_mode; i++)
clear_mode_bit (transp[bb->index], j, i);
}
}
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
{
int mode = targetm.mode_switching.needed (e, insn);
rtx link;
if (mode != no_mode && mode != last_mode)
{
any_set_required = true;
last_mode = mode;
ptr = new_seginfo (mode, insn, bb->index, live_now);
add_seginfo (info + bb->index, ptr);
for (i = 0; i < no_mode; i++)
clear_mode_bit (transp[bb->index], j, i);
}
if (targetm.mode_switching.after)
last_mode = targetm.mode_switching.after (e, last_mode,
insn);
/* Update LIVE_NOW. */
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_DEAD)
reg_dies (XEXP (link, 0), &live_now);
note_stores (PATTERN (insn), reg_becomes_live, &live_now);
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_UNUSED)
reg_dies (XEXP (link, 0), &live_now);
}
}
info[bb->index].computing = last_mode;
/* Check for blocks without ANY mode requirements.
N.B. because of MODE_AFTER, last_mode might still
be different from no_mode, in which case we need to
mark the block as nontransparent. */
if (!any_set_required)
{
ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
add_seginfo (info + bb->index, ptr);
if (last_mode != no_mode)
for (i = 0; i < no_mode; i++)
clear_mode_bit (transp[bb->index], j, i);
}
}
if (targetm.mode_switching.entry && targetm.mode_switching.exit)
{
int mode = targetm.mode_switching.entry (e);
info[post_entry->index].mode_out =
info[post_entry->index].mode_in = no_mode;
if (pre_exit)
{
info[pre_exit->index].mode_out =
info[pre_exit->index].mode_in = no_mode;
}
if (mode != no_mode)
{
bb = post_entry;
/* By always making this nontransparent, we save
an extra check in make_preds_opaque. We also
need this to avoid confusing pre_edge_lcm when
antic is cleared but transp and comp are set. */
for (i = 0; i < no_mode; i++)
clear_mode_bit (transp[bb->index], j, i);
/* Insert a fake computing definition of MODE into entry
blocks which compute no mode. This represents the mode on
entry. */
info[bb->index].computing = mode;
if (pre_exit)
info[pre_exit->index].seginfo->mode =
targetm.mode_switching.exit (e);
}
}
/* Set the anticipatable and computing arrays. */
for (i = 0; i < no_mode; i++)
{
int m = targetm.mode_switching.priority (entity_map[j], i);
FOR_EACH_BB_FN (bb, cfun)
{
if (info[bb->index].seginfo->mode == m)
set_mode_bit (antic[bb->index], j, m);
if (info[bb->index].computing == m)
set_mode_bit (comp[bb->index], j, m);
}
}
}
/* Calculate the optimal locations for the
placement mode switches to modes with priority I. */
FOR_EACH_BB_FN (bb, cfun)
bitmap_not (kill[bb->index], transp[bb->index]);
edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
kill, avin, avout, &insert, &del);
for (j = n_entities - 1; j >= 0; j--)
{
int no_mode = num_modes[entity_map[j]];
/* Insert all mode sets that have been inserted by lcm. */
for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
{
edge eg = INDEX_EDGE (edge_list, ed);
eg->aux = (void *)(intptr_t)-1;
for (i = 0; i < no_mode; i++)
{
int m = targetm.mode_switching.priority (entity_map[j], i);
if (mode_bit_p (insert[ed], j, m))
{
eg->aux = (void *)(intptr_t)m;
break;
}
}
}
FOR_EACH_BB_FN (bb, cfun)
{
struct bb_info *info = bb_info[j];
int last_mode = no_mode;
/* intialize mode in availability for bb. */
for (i = 0; i < no_mode; i++)
if (mode_bit_p (avout[bb->index], j, i))
{
if (last_mode == no_mode)
last_mode = i;
if (last_mode != i)
{
last_mode = no_mode;
break;
}
}
info[bb->index].mode_out = last_mode;
/* intialize mode out availability for bb. */
last_mode = no_mode;
for (i = 0; i < no_mode; i++)
if (mode_bit_p (avin[bb->index], j, i))
{
if (last_mode == no_mode)
last_mode = i;
if (last_mode != i)
{
last_mode = no_mode;
break;
}
}
info[bb->index].mode_in = last_mode;
for (i = 0; i < no_mode; i++)
if (mode_bit_p (del[bb->index], j, i))
info[bb->index].seginfo->mode = no_mode;
}
/* Now output the remaining mode sets in all the segments. */
/* In case there was no mode inserted. the mode information on the edge
might not be complete.
Update mode info on edges and commit pending mode sets. */
need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
/* Reset modes for next entity. */
clear_aux_for_edges ();
FOR_EACH_BB_FN (bb, cfun)
{
struct seginfo *ptr, *next;
int cur_mode = bb_info[j][bb->index].mode_in;
for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
{
next = ptr->next;
if (ptr->mode != no_mode)
{
rtx_insn *mode_set;
rtl_profile_for_bb (bb);
start_sequence ();
targetm.mode_switching.emit (entity_map[j], ptr->mode,
cur_mode, ptr->regs_live);
mode_set = get_insns ();
end_sequence ();
/* modes kill each other inside a basic block. */
cur_mode = ptr->mode;
/* Insert MODE_SET only if it is nonempty. */
if (mode_set != NULL_RTX)
{
emitted = true;
if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
/* We need to emit the insns in a FIFO-like manner,
i.e. the first to be emitted at our insertion
point ends up first in the instruction steam.
Because we made sure that NOTE_INSN_BASIC_BLOCK is
only used for initially empty basic blocks, we
can achieve this by appending at the end of
the block. */
emit_insn_after
(mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
else
emit_insn_before (mode_set, ptr->insn_ptr);
}
default_rtl_profile ();
}
free (ptr);
}
}
free (bb_info[j]);
}
free_edge_list (edge_list);
/* Finished. Free up all the things we've allocated. */
sbitmap_vector_free (del);
sbitmap_vector_free (insert);
sbitmap_vector_free (kill);
sbitmap_vector_free (antic);
sbitmap_vector_free (transp);
sbitmap_vector_free (comp);
sbitmap_vector_free (avin);
sbitmap_vector_free (avout);
if (need_commit)
commit_edge_insertions ();
if (targetm.mode_switching.entry && targetm.mode_switching.exit)
cleanup_cfg (CLEANUP_NO_INSN_DEL);
else if (!need_commit && !emitted)
return 0;
return 1;
}
#endif /* OPTIMIZE_MODE_SWITCHING */
namespace {
const pass_data pass_data_mode_switching =
{
RTL_PASS, /* type */
"mode_sw", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_MODE_SWITCH, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_df_finish, /* todo_flags_finish */
};
class pass_mode_switching : public rtl_opt_pass
{
public:
pass_mode_switching (gcc::context *ctxt)
: rtl_opt_pass (pass_data_mode_switching, ctxt)
{}
/* opt_pass methods: */
/* The epiphany backend creates a second instance of this pass, so we need
a clone method. */
opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
virtual bool gate (function *)
{
#ifdef OPTIMIZE_MODE_SWITCHING
return true;
#else
return false;
#endif
}
virtual unsigned int execute (function *)
{
#ifdef OPTIMIZE_MODE_SWITCHING
optimize_mode_switching ();
#endif /* OPTIMIZE_MODE_SWITCHING */
return 0;
}
}; // class pass_mode_switching
} // anon namespace
rtl_opt_pass *
make_pass_mode_switching (gcc::context *ctxt)
{
return new pass_mode_switching (ctxt);
}
|