1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
|
/* Bits of OpenMP and OpenACC handling that is specific to device offloading
and a lowering pass for OpenACC device directives.
Copyright (C) 2005-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "langhooks.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "tree-nested.h"
#include "stor-layout.h"
#include "common/common-target.h"
#include "omp-general.h"
#include "omp-offload.h"
#include "lto-section-names.h"
#include "gomp-constants.h"
#include "gimple-pretty-print.h"
#include "intl.h"
#include "stringpool.h"
#include "attribs.h"
#include "cfgloop.h"
/* Describe the OpenACC looping structure of a function. The entire
function is held in a 'NULL' loop. */
struct oacc_loop
{
oacc_loop *parent; /* Containing loop. */
oacc_loop *child; /* First inner loop. */
oacc_loop *sibling; /* Next loop within same parent. */
location_t loc; /* Location of the loop start. */
gcall *marker; /* Initial head marker. */
gcall *heads[GOMP_DIM_MAX]; /* Head marker functions. */
gcall *tails[GOMP_DIM_MAX]; /* Tail marker functions. */
tree routine; /* Pseudo-loop enclosing a routine. */
unsigned mask; /* Partitioning mask. */
unsigned e_mask; /* Partitioning of element loops (when tiling). */
unsigned inner; /* Partitioning of inner loops. */
unsigned flags; /* Partitioning flags. */
vec<gcall *> ifns; /* Contained loop abstraction functions. */
tree chunk_size; /* Chunk size. */
gcall *head_end; /* Final marker of head sequence. */
};
/* Holds offload tables with decls. */
vec<tree, va_gc> *offload_funcs, *offload_vars;
/* Return level at which oacc routine may spawn a partitioned loop, or
-1 if it is not a routine (i.e. is an offload fn). */
static int
oacc_fn_attrib_level (tree attr)
{
tree pos = TREE_VALUE (attr);
if (!TREE_PURPOSE (pos))
return -1;
int ix = 0;
for (ix = 0; ix != GOMP_DIM_MAX;
ix++, pos = TREE_CHAIN (pos))
if (!integer_zerop (TREE_PURPOSE (pos)))
break;
return ix;
}
/* Helper function for omp_finish_file routine. Takes decls from V_DECLS and
adds their addresses and sizes to constructor-vector V_CTOR. */
static void
add_decls_addresses_to_decl_constructor (vec<tree, va_gc> *v_decls,
vec<constructor_elt, va_gc> *v_ctor)
{
unsigned len = vec_safe_length (v_decls);
for (unsigned i = 0; i < len; i++)
{
tree it = (*v_decls)[i];
bool is_var = VAR_P (it);
bool is_link_var
= is_var
#ifdef ACCEL_COMPILER
&& DECL_HAS_VALUE_EXPR_P (it)
#endif
&& lookup_attribute ("omp declare target link", DECL_ATTRIBUTES (it));
tree size = NULL_TREE;
if (is_var)
size = fold_convert (const_ptr_type_node, DECL_SIZE_UNIT (it));
tree addr;
if (!is_link_var)
addr = build_fold_addr_expr (it);
else
{
#ifdef ACCEL_COMPILER
/* For "omp declare target link" vars add address of the pointer to
the target table, instead of address of the var. */
tree value_expr = DECL_VALUE_EXPR (it);
tree link_ptr_decl = TREE_OPERAND (value_expr, 0);
varpool_node::finalize_decl (link_ptr_decl);
addr = build_fold_addr_expr (link_ptr_decl);
#else
addr = build_fold_addr_expr (it);
#endif
/* Most significant bit of the size marks "omp declare target link"
vars in host and target tables. */
unsigned HOST_WIDE_INT isize = tree_to_uhwi (size);
isize |= 1ULL << (int_size_in_bytes (const_ptr_type_node)
* BITS_PER_UNIT - 1);
size = wide_int_to_tree (const_ptr_type_node, isize);
}
CONSTRUCTOR_APPEND_ELT (v_ctor, NULL_TREE, addr);
if (is_var)
CONSTRUCTOR_APPEND_ELT (v_ctor, NULL_TREE, size);
}
}
/* Create new symbols containing (address, size) pairs for global variables,
marked with "omp declare target" attribute, as well as addresses for the
functions, which are outlined offloading regions. */
void
omp_finish_file (void)
{
unsigned num_funcs = vec_safe_length (offload_funcs);
unsigned num_vars = vec_safe_length (offload_vars);
if (num_funcs == 0 && num_vars == 0)
return;
if (targetm_common.have_named_sections)
{
vec<constructor_elt, va_gc> *v_f, *v_v;
vec_alloc (v_f, num_funcs);
vec_alloc (v_v, num_vars * 2);
add_decls_addresses_to_decl_constructor (offload_funcs, v_f);
add_decls_addresses_to_decl_constructor (offload_vars, v_v);
tree vars_decl_type = build_array_type_nelts (pointer_sized_int_node,
num_vars * 2);
tree funcs_decl_type = build_array_type_nelts (pointer_sized_int_node,
num_funcs);
SET_TYPE_ALIGN (vars_decl_type, TYPE_ALIGN (pointer_sized_int_node));
SET_TYPE_ALIGN (funcs_decl_type, TYPE_ALIGN (pointer_sized_int_node));
tree ctor_v = build_constructor (vars_decl_type, v_v);
tree ctor_f = build_constructor (funcs_decl_type, v_f);
TREE_CONSTANT (ctor_v) = TREE_CONSTANT (ctor_f) = 1;
TREE_STATIC (ctor_v) = TREE_STATIC (ctor_f) = 1;
tree funcs_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier (".offload_func_table"),
funcs_decl_type);
tree vars_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier (".offload_var_table"),
vars_decl_type);
TREE_STATIC (funcs_decl) = TREE_STATIC (vars_decl) = 1;
/* Do not align tables more than TYPE_ALIGN (pointer_sized_int_node),
otherwise a joint table in a binary will contain padding between
tables from multiple object files. */
DECL_USER_ALIGN (funcs_decl) = DECL_USER_ALIGN (vars_decl) = 1;
SET_DECL_ALIGN (funcs_decl, TYPE_ALIGN (funcs_decl_type));
SET_DECL_ALIGN (vars_decl, TYPE_ALIGN (vars_decl_type));
DECL_INITIAL (funcs_decl) = ctor_f;
DECL_INITIAL (vars_decl) = ctor_v;
set_decl_section_name (funcs_decl, OFFLOAD_FUNC_TABLE_SECTION_NAME);
set_decl_section_name (vars_decl, OFFLOAD_VAR_TABLE_SECTION_NAME);
varpool_node::finalize_decl (vars_decl);
varpool_node::finalize_decl (funcs_decl);
}
else
{
for (unsigned i = 0; i < num_funcs; i++)
{
tree it = (*offload_funcs)[i];
targetm.record_offload_symbol (it);
}
for (unsigned i = 0; i < num_vars; i++)
{
tree it = (*offload_vars)[i];
targetm.record_offload_symbol (it);
}
}
}
/* Call dim_pos (POS == true) or dim_size (POS == false) builtins for
axis DIM. Return a tmp var holding the result. */
static tree
oacc_dim_call (bool pos, int dim, gimple_seq *seq)
{
tree arg = build_int_cst (unsigned_type_node, dim);
tree size = create_tmp_var (integer_type_node);
enum internal_fn fn = pos ? IFN_GOACC_DIM_POS : IFN_GOACC_DIM_SIZE;
gimple *call = gimple_build_call_internal (fn, 1, arg);
gimple_call_set_lhs (call, size);
gimple_seq_add_stmt (seq, call);
return size;
}
/* Find the number of threads (POS = false), or thread number (POS =
true) for an OpenACC region partitioned as MASK. Setup code
required for the calculation is added to SEQ. */
static tree
oacc_thread_numbers (bool pos, int mask, gimple_seq *seq)
{
tree res = pos ? NULL_TREE : build_int_cst (unsigned_type_node, 1);
unsigned ix;
/* Start at gang level, and examine relevant dimension indices. */
for (ix = GOMP_DIM_GANG; ix != GOMP_DIM_MAX; ix++)
if (GOMP_DIM_MASK (ix) & mask)
{
if (res)
{
/* We had an outer index, so scale that by the size of
this dimension. */
tree n = oacc_dim_call (false, ix, seq);
res = fold_build2 (MULT_EXPR, integer_type_node, res, n);
}
if (pos)
{
/* Determine index in this dimension. */
tree id = oacc_dim_call (true, ix, seq);
if (res)
res = fold_build2 (PLUS_EXPR, integer_type_node, res, id);
else
res = id;
}
}
if (res == NULL_TREE)
res = integer_zero_node;
return res;
}
/* Transform IFN_GOACC_LOOP calls to actual code. See
expand_oacc_for for where these are generated. At the vector
level, we stride loops, such that each member of a warp will
operate on adjacent iterations. At the worker and gang level,
each gang/warp executes a set of contiguous iterations. Chunking
can override this such that each iteration engine executes a
contiguous chunk, and then moves on to stride to the next chunk. */
static void
oacc_xform_loop (gcall *call)
{
gimple_stmt_iterator gsi = gsi_for_stmt (call);
enum ifn_goacc_loop_kind code
= (enum ifn_goacc_loop_kind) TREE_INT_CST_LOW (gimple_call_arg (call, 0));
tree dir = gimple_call_arg (call, 1);
tree range = gimple_call_arg (call, 2);
tree step = gimple_call_arg (call, 3);
tree chunk_size = NULL_TREE;
unsigned mask = (unsigned) TREE_INT_CST_LOW (gimple_call_arg (call, 5));
tree lhs = gimple_call_lhs (call);
tree type = TREE_TYPE (lhs);
tree diff_type = TREE_TYPE (range);
tree r = NULL_TREE;
gimple_seq seq = NULL;
bool chunking = false, striding = true;
unsigned outer_mask = mask & (~mask + 1); // Outermost partitioning
unsigned inner_mask = mask & ~outer_mask; // Inner partitioning (if any)
#ifdef ACCEL_COMPILER
chunk_size = gimple_call_arg (call, 4);
if (integer_minus_onep (chunk_size) /* Force static allocation. */
|| integer_zerop (chunk_size)) /* Default (also static). */
{
/* If we're at the gang level, we want each to execute a
contiguous run of iterations. Otherwise we want each element
to stride. */
striding = !(outer_mask & GOMP_DIM_MASK (GOMP_DIM_GANG));
chunking = false;
}
else
{
/* Chunk of size 1 is striding. */
striding = integer_onep (chunk_size);
chunking = !striding;
}
#endif
/* striding=true, chunking=true
-> invalid.
striding=true, chunking=false
-> chunks=1
striding=false,chunking=true
-> chunks=ceil (range/(chunksize*threads*step))
striding=false,chunking=false
-> chunk_size=ceil(range/(threads*step)),chunks=1 */
push_gimplify_context (true);
switch (code)
{
default: gcc_unreachable ();
case IFN_GOACC_LOOP_CHUNKS:
if (!chunking)
r = build_int_cst (type, 1);
else
{
/* chunk_max
= (range - dir) / (chunks * step * num_threads) + dir */
tree per = oacc_thread_numbers (false, mask, &seq);
per = fold_convert (type, per);
chunk_size = fold_convert (type, chunk_size);
per = fold_build2 (MULT_EXPR, type, per, chunk_size);
per = fold_build2 (MULT_EXPR, type, per, step);
r = build2 (MINUS_EXPR, type, range, dir);
r = build2 (PLUS_EXPR, type, r, per);
r = build2 (TRUNC_DIV_EXPR, type, r, per);
}
break;
case IFN_GOACC_LOOP_STEP:
{
/* If striding, step by the entire compute volume, otherwise
step by the inner volume. */
unsigned volume = striding ? mask : inner_mask;
r = oacc_thread_numbers (false, volume, &seq);
r = build2 (MULT_EXPR, type, fold_convert (type, r), step);
}
break;
case IFN_GOACC_LOOP_OFFSET:
/* Enable vectorization on non-SIMT targets. */
if (!targetm.simt.vf
&& outer_mask == GOMP_DIM_MASK (GOMP_DIM_VECTOR)
/* If not -fno-tree-loop-vectorize, hint that we want to vectorize
the loop. */
&& (flag_tree_loop_vectorize
|| !global_options_set.x_flag_tree_loop_vectorize))
{
basic_block bb = gsi_bb (gsi);
struct loop *parent = bb->loop_father;
struct loop *body = parent->inner;
parent->force_vectorize = true;
parent->safelen = INT_MAX;
/* "Chunking loops" may have inner loops. */
if (parent->inner)
{
body->force_vectorize = true;
body->safelen = INT_MAX;
}
cfun->has_force_vectorize_loops = true;
}
if (striding)
{
r = oacc_thread_numbers (true, mask, &seq);
r = fold_convert (diff_type, r);
}
else
{
tree inner_size = oacc_thread_numbers (false, inner_mask, &seq);
tree outer_size = oacc_thread_numbers (false, outer_mask, &seq);
tree volume = fold_build2 (MULT_EXPR, TREE_TYPE (inner_size),
inner_size, outer_size);
volume = fold_convert (diff_type, volume);
if (chunking)
chunk_size = fold_convert (diff_type, chunk_size);
else
{
tree per = fold_build2 (MULT_EXPR, diff_type, volume, step);
chunk_size = build2 (MINUS_EXPR, diff_type, range, dir);
chunk_size = build2 (PLUS_EXPR, diff_type, chunk_size, per);
chunk_size = build2 (TRUNC_DIV_EXPR, diff_type, chunk_size, per);
}
tree span = build2 (MULT_EXPR, diff_type, chunk_size,
fold_convert (diff_type, inner_size));
r = oacc_thread_numbers (true, outer_mask, &seq);
r = fold_convert (diff_type, r);
r = build2 (MULT_EXPR, diff_type, r, span);
tree inner = oacc_thread_numbers (true, inner_mask, &seq);
inner = fold_convert (diff_type, inner);
r = fold_build2 (PLUS_EXPR, diff_type, r, inner);
if (chunking)
{
tree chunk = fold_convert (diff_type, gimple_call_arg (call, 6));
tree per
= fold_build2 (MULT_EXPR, diff_type, volume, chunk_size);
per = build2 (MULT_EXPR, diff_type, per, chunk);
r = build2 (PLUS_EXPR, diff_type, r, per);
}
}
r = fold_build2 (MULT_EXPR, diff_type, r, step);
if (type != diff_type)
r = fold_convert (type, r);
break;
case IFN_GOACC_LOOP_BOUND:
if (striding)
r = range;
else
{
tree inner_size = oacc_thread_numbers (false, inner_mask, &seq);
tree outer_size = oacc_thread_numbers (false, outer_mask, &seq);
tree volume = fold_build2 (MULT_EXPR, TREE_TYPE (inner_size),
inner_size, outer_size);
volume = fold_convert (diff_type, volume);
if (chunking)
chunk_size = fold_convert (diff_type, chunk_size);
else
{
tree per = fold_build2 (MULT_EXPR, diff_type, volume, step);
chunk_size = build2 (MINUS_EXPR, diff_type, range, dir);
chunk_size = build2 (PLUS_EXPR, diff_type, chunk_size, per);
chunk_size = build2 (TRUNC_DIV_EXPR, diff_type, chunk_size, per);
}
tree span = build2 (MULT_EXPR, diff_type, chunk_size,
fold_convert (diff_type, inner_size));
r = fold_build2 (MULT_EXPR, diff_type, span, step);
tree offset = gimple_call_arg (call, 6);
r = build2 (PLUS_EXPR, diff_type, r,
fold_convert (diff_type, offset));
r = build2 (integer_onep (dir) ? MIN_EXPR : MAX_EXPR,
diff_type, r, range);
}
if (diff_type != type)
r = fold_convert (type, r);
break;
}
gimplify_assign (lhs, r, &seq);
pop_gimplify_context (NULL);
gsi_replace_with_seq (&gsi, seq, true);
}
/* Transform a GOACC_TILE call. Determines the element loop span for
the specified loop of the nest. This is 1 if we're not tiling.
GOACC_TILE (collapse_count, loop_no, tile_arg, gwv_tile, gwv_element); */
static void
oacc_xform_tile (gcall *call)
{
gimple_stmt_iterator gsi = gsi_for_stmt (call);
unsigned collapse = tree_to_uhwi (gimple_call_arg (call, 0));
/* Inner loops have higher loop_nos. */
unsigned loop_no = tree_to_uhwi (gimple_call_arg (call, 1));
tree tile_size = gimple_call_arg (call, 2);
unsigned e_mask = tree_to_uhwi (gimple_call_arg (call, 4));
tree lhs = gimple_call_lhs (call);
tree type = TREE_TYPE (lhs);
gimple_seq seq = NULL;
tree span = build_int_cst (type, 1);
gcc_assert (!(e_mask
& ~(GOMP_DIM_MASK (GOMP_DIM_VECTOR)
| GOMP_DIM_MASK (GOMP_DIM_WORKER))));
push_gimplify_context (!seen_error ());
#ifndef ACCEL_COMPILER
/* Partitioning disabled on host compilers. */
e_mask = 0;
#endif
if (!e_mask)
/* Not paritioning. */
span = integer_one_node;
else if (!integer_zerop (tile_size))
/* User explicitly specified size. */
span = tile_size;
else
{
/* Pick a size based on the paritioning of the element loop and
the number of loop nests. */
tree first_size = NULL_TREE;
tree second_size = NULL_TREE;
if (e_mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR))
first_size = oacc_dim_call (false, GOMP_DIM_VECTOR, &seq);
if (e_mask & GOMP_DIM_MASK (GOMP_DIM_WORKER))
second_size = oacc_dim_call (false, GOMP_DIM_WORKER, &seq);
if (!first_size)
{
first_size = second_size;
second_size = NULL_TREE;
}
if (loop_no + 1 == collapse)
{
span = first_size;
if (!loop_no && second_size)
span = fold_build2 (MULT_EXPR, TREE_TYPE (span),
span, second_size);
}
else if (loop_no + 2 == collapse)
span = second_size;
else
span = NULL_TREE;
if (!span)
/* There's no obvious element size for this loop. Options
are 1, first_size or some non-unity constant (32 is my
favourite). We should gather some statistics. */
span = first_size;
}
span = fold_convert (type, span);
gimplify_assign (lhs, span, &seq);
pop_gimplify_context (NULL);
gsi_replace_with_seq (&gsi, seq, true);
}
/* Default partitioned and minimum partitioned dimensions. */
static int oacc_default_dims[GOMP_DIM_MAX];
static int oacc_min_dims[GOMP_DIM_MAX];
/* Parse the default dimension parameter. This is a set of
:-separated optional compute dimensions. Each specified dimension
is a positive integer. When device type support is added, it is
planned to be a comma separated list of such compute dimensions,
with all but the first prefixed by the colon-terminated device
type. */
static void
oacc_parse_default_dims (const char *dims)
{
int ix;
for (ix = GOMP_DIM_MAX; ix--;)
{
oacc_default_dims[ix] = -1;
oacc_min_dims[ix] = 1;
}
#ifndef ACCEL_COMPILER
/* Cannot be overridden on the host. */
dims = NULL;
#endif
if (dims)
{
const char *pos = dims;
for (ix = 0; *pos && ix != GOMP_DIM_MAX; ix++)
{
if (ix)
{
if (*pos != ':')
goto malformed;
pos++;
}
if (*pos != ':')
{
long val;
const char *eptr;
errno = 0;
val = strtol (pos, CONST_CAST (char **, &eptr), 10);
if (errno || val <= 0 || (int) val != val)
goto malformed;
pos = eptr;
oacc_default_dims[ix] = (int) val;
}
}
if (*pos)
{
malformed:
error_at (UNKNOWN_LOCATION,
"-fopenacc-dim operand is malformed at '%s'", pos);
}
}
/* Allow the backend to validate the dimensions. */
targetm.goacc.validate_dims (NULL_TREE, oacc_default_dims, -1);
targetm.goacc.validate_dims (NULL_TREE, oacc_min_dims, -2);
}
/* Validate and update the dimensions for offloaded FN. ATTRS is the
raw attribute. DIMS is an array of dimensions, which is filled in.
LEVEL is the partitioning level of a routine, or -1 for an offload
region itself. USED is the mask of partitioned execution in the
function. */
static void
oacc_validate_dims (tree fn, tree attrs, int *dims, int level, unsigned used)
{
tree purpose[GOMP_DIM_MAX];
unsigned ix;
tree pos = TREE_VALUE (attrs);
/* Make sure the attribute creator attached the dimension
information. */
gcc_assert (pos);
for (ix = 0; ix != GOMP_DIM_MAX; ix++)
{
purpose[ix] = TREE_PURPOSE (pos);
tree val = TREE_VALUE (pos);
dims[ix] = val ? TREE_INT_CST_LOW (val) : -1;
pos = TREE_CHAIN (pos);
}
bool changed = targetm.goacc.validate_dims (fn, dims, level);
/* Default anything left to 1 or a partitioned default. */
for (ix = 0; ix != GOMP_DIM_MAX; ix++)
if (dims[ix] < 0)
{
/* The OpenACC spec says 'If the [num_gangs] clause is not
specified, an implementation-defined default will be used;
the default may depend on the code within the construct.'
(2.5.6). Thus an implementation is free to choose
non-unity default for a parallel region that doesn't have
any gang-partitioned loops. However, it appears that there
is a sufficient body of user code that expects non-gang
partitioned regions to not execute in gang-redundant mode.
So we (a) don't warn about the non-portability and (b) pick
the minimum permissible dimension size when there is no
partitioned execution. Otherwise we pick the global
default for the dimension, which the user can control. The
same wording and logic applies to num_workers and
vector_length, however the worker- or vector- single
execution doesn't have the same impact as gang-redundant
execution. (If the minimum gang-level partioning is not 1,
the target is probably too confusing.) */
dims[ix] = (used & GOMP_DIM_MASK (ix)
? oacc_default_dims[ix] : oacc_min_dims[ix]);
changed = true;
}
if (changed)
{
/* Replace the attribute with new values. */
pos = NULL_TREE;
for (ix = GOMP_DIM_MAX; ix--;)
pos = tree_cons (purpose[ix],
build_int_cst (integer_type_node, dims[ix]), pos);
oacc_replace_fn_attrib (fn, pos);
}
}
/* Create an empty OpenACC loop structure at LOC. */
static oacc_loop *
new_oacc_loop_raw (oacc_loop *parent, location_t loc)
{
oacc_loop *loop = XCNEW (oacc_loop);
loop->parent = parent;
if (parent)
{
loop->sibling = parent->child;
parent->child = loop;
}
loop->loc = loc;
return loop;
}
/* Create an outermost, dummy OpenACC loop for offloaded function
DECL. */
static oacc_loop *
new_oacc_loop_outer (tree decl)
{
return new_oacc_loop_raw (NULL, DECL_SOURCE_LOCATION (decl));
}
/* Start a new OpenACC loop structure beginning at head marker HEAD.
Link into PARENT loop. Return the new loop. */
static oacc_loop *
new_oacc_loop (oacc_loop *parent, gcall *marker)
{
oacc_loop *loop = new_oacc_loop_raw (parent, gimple_location (marker));
loop->marker = marker;
/* TODO: This is where device_type flattening would occur for the loop
flags. */
loop->flags = TREE_INT_CST_LOW (gimple_call_arg (marker, 3));
tree chunk_size = integer_zero_node;
if (loop->flags & OLF_GANG_STATIC)
chunk_size = gimple_call_arg (marker, 4);
loop->chunk_size = chunk_size;
return loop;
}
/* Create a dummy loop encompassing a call to a openACC routine.
Extract the routine's partitioning requirements. */
static void
new_oacc_loop_routine (oacc_loop *parent, gcall *call, tree decl, tree attrs)
{
oacc_loop *loop = new_oacc_loop_raw (parent, gimple_location (call));
int level = oacc_fn_attrib_level (attrs);
gcc_assert (level >= 0);
loop->marker = call;
loop->routine = decl;
loop->mask = ((GOMP_DIM_MASK (GOMP_DIM_MAX) - 1)
^ (GOMP_DIM_MASK (level) - 1));
}
/* Finish off the current OpenACC loop ending at tail marker TAIL.
Return the parent loop. */
static oacc_loop *
finish_oacc_loop (oacc_loop *loop)
{
/* If the loop has been collapsed, don't partition it. */
if (loop->ifns.is_empty ())
loop->mask = loop->flags = 0;
return loop->parent;
}
/* Free all OpenACC loop structures within LOOP (inclusive). */
static void
free_oacc_loop (oacc_loop *loop)
{
if (loop->sibling)
free_oacc_loop (loop->sibling);
if (loop->child)
free_oacc_loop (loop->child);
loop->ifns.release ();
free (loop);
}
/* Dump out the OpenACC loop head or tail beginning at FROM. */
static void
dump_oacc_loop_part (FILE *file, gcall *from, int depth,
const char *title, int level)
{
enum ifn_unique_kind kind
= (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (from, 0));
fprintf (file, "%*s%s-%d:\n", depth * 2, "", title, level);
for (gimple_stmt_iterator gsi = gsi_for_stmt (from);;)
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_UNIQUE))
{
enum ifn_unique_kind k
= ((enum ifn_unique_kind) TREE_INT_CST_LOW
(gimple_call_arg (stmt, 0)));
if (k == kind && stmt != from)
break;
}
print_gimple_stmt (file, stmt, depth * 2 + 2);
gsi_next (&gsi);
while (gsi_end_p (gsi))
gsi = gsi_start_bb (single_succ (gsi_bb (gsi)));
}
}
/* Dump OpenACC loops LOOP, its siblings and its children. */
static void
dump_oacc_loop (FILE *file, oacc_loop *loop, int depth)
{
int ix;
fprintf (file, "%*sLoop %x(%x) %s:%u\n", depth * 2, "",
loop->flags, loop->mask,
LOCATION_FILE (loop->loc), LOCATION_LINE (loop->loc));
if (loop->marker)
print_gimple_stmt (file, loop->marker, depth * 2);
if (loop->routine)
fprintf (file, "%*sRoutine %s:%u:%s\n",
depth * 2, "", DECL_SOURCE_FILE (loop->routine),
DECL_SOURCE_LINE (loop->routine),
IDENTIFIER_POINTER (DECL_NAME (loop->routine)));
for (ix = GOMP_DIM_GANG; ix != GOMP_DIM_MAX; ix++)
if (loop->heads[ix])
dump_oacc_loop_part (file, loop->heads[ix], depth, "Head", ix);
for (ix = GOMP_DIM_MAX; ix--;)
if (loop->tails[ix])
dump_oacc_loop_part (file, loop->tails[ix], depth, "Tail", ix);
if (loop->child)
dump_oacc_loop (file, loop->child, depth + 1);
if (loop->sibling)
dump_oacc_loop (file, loop->sibling, depth);
}
void debug_oacc_loop (oacc_loop *);
/* Dump loops to stderr. */
DEBUG_FUNCTION void
debug_oacc_loop (oacc_loop *loop)
{
dump_oacc_loop (stderr, loop, 0);
}
/* DFS walk of basic blocks BB onwards, creating OpenACC loop
structures as we go. By construction these loops are properly
nested. */
static void
oacc_loop_discover_walk (oacc_loop *loop, basic_block bb)
{
int marker = 0;
int remaining = 0;
if (bb->flags & BB_VISITED)
return;
follow:
bb->flags |= BB_VISITED;
/* Scan for loop markers. */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_call (stmt))
continue;
gcall *call = as_a <gcall *> (stmt);
/* If this is a routine, make a dummy loop for it. */
if (tree decl = gimple_call_fndecl (call))
if (tree attrs = oacc_get_fn_attrib (decl))
{
gcc_assert (!marker);
new_oacc_loop_routine (loop, call, decl, attrs);
}
if (!gimple_call_internal_p (call))
continue;
switch (gimple_call_internal_fn (call))
{
default:
break;
case IFN_GOACC_LOOP:
case IFN_GOACC_TILE:
/* Record the abstraction function, so we can manipulate it
later. */
loop->ifns.safe_push (call);
break;
case IFN_UNIQUE:
enum ifn_unique_kind kind
= (enum ifn_unique_kind) (TREE_INT_CST_LOW
(gimple_call_arg (call, 0)));
if (kind == IFN_UNIQUE_OACC_HEAD_MARK
|| kind == IFN_UNIQUE_OACC_TAIL_MARK)
{
if (gimple_call_num_args (call) == 2)
{
gcc_assert (marker && !remaining);
marker = 0;
if (kind == IFN_UNIQUE_OACC_TAIL_MARK)
loop = finish_oacc_loop (loop);
else
loop->head_end = call;
}
else
{
int count = TREE_INT_CST_LOW (gimple_call_arg (call, 2));
if (!marker)
{
if (kind == IFN_UNIQUE_OACC_HEAD_MARK)
loop = new_oacc_loop (loop, call);
remaining = count;
}
gcc_assert (count == remaining);
if (remaining)
{
remaining--;
if (kind == IFN_UNIQUE_OACC_HEAD_MARK)
loop->heads[marker] = call;
else
loop->tails[remaining] = call;
}
marker++;
}
}
}
}
if (remaining || marker)
{
bb = single_succ (bb);
gcc_assert (single_pred_p (bb) && !(bb->flags & BB_VISITED));
goto follow;
}
/* Walk successor blocks. */
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
oacc_loop_discover_walk (loop, e->dest);
}
/* LOOP is the first sibling. Reverse the order in place and return
the new first sibling. Recurse to child loops. */
static oacc_loop *
oacc_loop_sibling_nreverse (oacc_loop *loop)
{
oacc_loop *last = NULL;
do
{
if (loop->child)
loop->child = oacc_loop_sibling_nreverse (loop->child);
oacc_loop *next = loop->sibling;
loop->sibling = last;
last = loop;
loop = next;
}
while (loop);
return last;
}
/* Discover the OpenACC loops marked up by HEAD and TAIL markers for
the current function. */
static oacc_loop *
oacc_loop_discovery ()
{
/* Clear basic block flags, in particular BB_VISITED which we're going to use
in the following. */
clear_bb_flags ();
oacc_loop *top = new_oacc_loop_outer (current_function_decl);
oacc_loop_discover_walk (top, ENTRY_BLOCK_PTR_FOR_FN (cfun));
/* The siblings were constructed in reverse order, reverse them so
that diagnostics come out in an unsurprising order. */
top = oacc_loop_sibling_nreverse (top);
return top;
}
/* Transform the abstract internal function markers starting at FROM
to be for partitioning level LEVEL. Stop when we meet another HEAD
or TAIL marker. */
static void
oacc_loop_xform_head_tail (gcall *from, int level)
{
enum ifn_unique_kind kind
= (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (from, 0));
tree replacement = build_int_cst (unsigned_type_node, level);
for (gimple_stmt_iterator gsi = gsi_for_stmt (from);;)
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_UNIQUE))
{
enum ifn_unique_kind k
= ((enum ifn_unique_kind)
TREE_INT_CST_LOW (gimple_call_arg (stmt, 0)));
if (k == IFN_UNIQUE_OACC_FORK || k == IFN_UNIQUE_OACC_JOIN)
*gimple_call_arg_ptr (stmt, 2) = replacement;
else if (k == kind && stmt != from)
break;
}
else if (gimple_call_internal_p (stmt, IFN_GOACC_REDUCTION))
*gimple_call_arg_ptr (stmt, 3) = replacement;
gsi_next (&gsi);
while (gsi_end_p (gsi))
gsi = gsi_start_bb (single_succ (gsi_bb (gsi)));
}
}
/* Process the discovered OpenACC loops, setting the correct
partitioning level etc. */
static void
oacc_loop_process (oacc_loop *loop)
{
if (loop->child)
oacc_loop_process (loop->child);
if (loop->mask && !loop->routine)
{
int ix;
tree mask_arg = build_int_cst (unsigned_type_node, loop->mask);
tree e_mask_arg = build_int_cst (unsigned_type_node, loop->e_mask);
tree chunk_arg = loop->chunk_size;
gcall *call;
for (ix = 0; loop->ifns.iterate (ix, &call); ix++)
switch (gimple_call_internal_fn (call))
{
case IFN_GOACC_LOOP:
{
bool is_e = gimple_call_arg (call, 5) == integer_minus_one_node;
gimple_call_set_arg (call, 5, is_e ? e_mask_arg : mask_arg);
if (!is_e)
gimple_call_set_arg (call, 4, chunk_arg);
}
break;
case IFN_GOACC_TILE:
gimple_call_set_arg (call, 3, mask_arg);
gimple_call_set_arg (call, 4, e_mask_arg);
break;
default:
gcc_unreachable ();
}
unsigned dim = GOMP_DIM_GANG;
unsigned mask = loop->mask | loop->e_mask;
for (ix = 0; ix != GOMP_DIM_MAX && mask; ix++)
{
while (!(GOMP_DIM_MASK (dim) & mask))
dim++;
oacc_loop_xform_head_tail (loop->heads[ix], dim);
oacc_loop_xform_head_tail (loop->tails[ix], dim);
mask ^= GOMP_DIM_MASK (dim);
}
}
if (loop->sibling)
oacc_loop_process (loop->sibling);
}
/* Walk the OpenACC loop heirarchy checking and assigning the
programmer-specified partitionings. OUTER_MASK is the partitioning
this loop is contained within. Return mask of partitioning
encountered. If any auto loops are discovered, set GOMP_DIM_MAX
bit. */
static unsigned
oacc_loop_fixed_partitions (oacc_loop *loop, unsigned outer_mask)
{
unsigned this_mask = loop->mask;
unsigned mask_all = 0;
bool noisy = true;
#ifdef ACCEL_COMPILER
/* When device_type is supported, we want the device compiler to be
noisy, if the loop parameters are device_type-specific. */
noisy = false;
#endif
if (!loop->routine)
{
bool auto_par = (loop->flags & OLF_AUTO) != 0;
bool seq_par = (loop->flags & OLF_SEQ) != 0;
bool tiling = (loop->flags & OLF_TILE) != 0;
this_mask = ((loop->flags >> OLF_DIM_BASE)
& (GOMP_DIM_MASK (GOMP_DIM_MAX) - 1));
/* Apply auto partitioning if this is a non-partitioned regular
loop, or (no more than) single axis tiled loop. */
bool maybe_auto
= !seq_par && this_mask == (tiling ? this_mask & -this_mask : 0);
if ((this_mask != 0) + auto_par + seq_par > 1)
{
if (noisy)
error_at (loop->loc,
seq_par
? G_("%<seq%> overrides other OpenACC loop specifiers")
: G_("%<auto%> conflicts with other OpenACC loop "
"specifiers"));
maybe_auto = false;
loop->flags &= ~OLF_AUTO;
if (seq_par)
{
loop->flags
&= ~((GOMP_DIM_MASK (GOMP_DIM_MAX) - 1) << OLF_DIM_BASE);
this_mask = 0;
}
}
if (maybe_auto && (loop->flags & OLF_INDEPENDENT))
{
loop->flags |= OLF_AUTO;
mask_all |= GOMP_DIM_MASK (GOMP_DIM_MAX);
}
}
if (this_mask & outer_mask)
{
const oacc_loop *outer;
for (outer = loop->parent; outer; outer = outer->parent)
if ((outer->mask | outer->e_mask) & this_mask)
break;
if (noisy)
{
if (outer)
{
error_at (loop->loc,
loop->routine
? G_("routine call uses same OpenACC parallelism"
" as containing loop")
: G_("inner loop uses same OpenACC parallelism"
" as containing loop"));
inform (outer->loc, "containing loop here");
}
else
error_at (loop->loc,
loop->routine
? G_("routine call uses OpenACC parallelism disallowed"
" by containing routine")
: G_("loop uses OpenACC parallelism disallowed"
" by containing routine"));
if (loop->routine)
inform (DECL_SOURCE_LOCATION (loop->routine),
"routine %qD declared here", loop->routine);
}
this_mask &= ~outer_mask;
}
else
{
unsigned outermost = least_bit_hwi (this_mask);
if (outermost && outermost <= outer_mask)
{
if (noisy)
{
error_at (loop->loc,
"incorrectly nested OpenACC loop parallelism");
const oacc_loop *outer;
for (outer = loop->parent;
outer->flags && outer->flags < outermost;
outer = outer->parent)
continue;
inform (outer->loc, "containing loop here");
}
this_mask &= ~outermost;
}
}
mask_all |= this_mask;
if (loop->flags & OLF_TILE)
{
/* When tiling, vector goes to the element loop, and failing
that we put worker there. The std doesn't contemplate
specifying all three. We choose to put worker and vector on
the element loops in that case. */
unsigned this_e_mask = this_mask & GOMP_DIM_MASK (GOMP_DIM_VECTOR);
if (!this_e_mask || this_mask & GOMP_DIM_MASK (GOMP_DIM_GANG))
this_e_mask |= this_mask & GOMP_DIM_MASK (GOMP_DIM_WORKER);
loop->e_mask = this_e_mask;
this_mask ^= this_e_mask;
}
loop->mask = this_mask;
if (dump_file)
fprintf (dump_file, "Loop %s:%d user specified %d & %d\n",
LOCATION_FILE (loop->loc), LOCATION_LINE (loop->loc),
loop->mask, loop->e_mask);
if (loop->child)
{
unsigned tmp_mask = outer_mask | this_mask | loop->e_mask;
loop->inner = oacc_loop_fixed_partitions (loop->child, tmp_mask);
mask_all |= loop->inner;
}
if (loop->sibling)
mask_all |= oacc_loop_fixed_partitions (loop->sibling, outer_mask);
return mask_all;
}
/* Walk the OpenACC loop heirarchy to assign auto-partitioned loops.
OUTER_MASK is the partitioning this loop is contained within.
OUTER_ASSIGN is true if an outer loop is being auto-partitioned.
Return the cumulative partitioning used by this loop, siblings and
children. */
static unsigned
oacc_loop_auto_partitions (oacc_loop *loop, unsigned outer_mask,
bool outer_assign)
{
bool assign = (loop->flags & OLF_AUTO) && (loop->flags & OLF_INDEPENDENT);
bool noisy = true;
bool tiling = loop->flags & OLF_TILE;
#ifdef ACCEL_COMPILER
/* When device_type is supported, we want the device compiler to be
noisy, if the loop parameters are device_type-specific. */
noisy = false;
#endif
if (assign && (!outer_assign || loop->inner))
{
/* Allocate outermost and non-innermost loops at the outermost
non-innermost available level. */
unsigned this_mask = GOMP_DIM_MASK (GOMP_DIM_GANG);
/* Find the first outermost available partition. */
while (this_mask <= outer_mask)
this_mask <<= 1;
/* Grab two axes if tiling, and we've not assigned anything */
if (tiling && !(loop->mask | loop->e_mask))
this_mask |= this_mask << 1;
/* Prohibit the innermost partitioning at the moment. */
this_mask &= GOMP_DIM_MASK (GOMP_DIM_MAX - 1) - 1;
/* Don't use any dimension explicitly claimed by an inner loop. */
this_mask &= ~loop->inner;
if (tiling && !loop->e_mask)
{
/* If we got two axes, allocate the inner one to the element
loop. */
loop->e_mask = this_mask & (this_mask << 1);
this_mask ^= loop->e_mask;
}
loop->mask |= this_mask;
}
if (loop->child)
{
unsigned tmp_mask = outer_mask | loop->mask | loop->e_mask;
loop->inner = oacc_loop_auto_partitions (loop->child, tmp_mask,
outer_assign | assign);
}
if (assign && (!loop->mask || (tiling && !loop->e_mask) || !outer_assign))
{
/* Allocate the loop at the innermost available level. Note
that we do this even if we already assigned this loop the
outermost available level above. That way we'll partition
this along 2 axes, if they are available. */
unsigned this_mask = 0;
/* Determine the outermost partitioning used within this loop. */
this_mask = loop->inner | GOMP_DIM_MASK (GOMP_DIM_MAX);
this_mask = least_bit_hwi (this_mask);
/* Pick the partitioning just inside that one. */
this_mask >>= 1;
/* And avoid picking one use by an outer loop. */
this_mask &= ~outer_mask;
/* If tiling and we failed completely above, grab the next one
too. Making sure it doesn't hit an outer loop. */
if (tiling)
{
this_mask &= ~(loop->e_mask | loop->mask);
unsigned tile_mask = ((this_mask >> 1)
& ~(outer_mask | loop->e_mask | loop->mask));
if (tile_mask || loop->mask)
{
loop->e_mask |= this_mask;
this_mask = tile_mask;
}
if (!loop->e_mask && noisy)
warning_at (loop->loc, 0,
"insufficient partitioning available"
" to parallelize element loop");
}
loop->mask |= this_mask;
if (!loop->mask && noisy)
warning_at (loop->loc, 0,
tiling
? G_("insufficient partitioning available"
" to parallelize tile loop")
: G_("insufficient partitioning available"
" to parallelize loop"));
}
if (assign && dump_file)
fprintf (dump_file, "Auto loop %s:%d assigned %d & %d\n",
LOCATION_FILE (loop->loc), LOCATION_LINE (loop->loc),
loop->mask, loop->e_mask);
unsigned inner_mask = 0;
if (loop->sibling)
inner_mask |= oacc_loop_auto_partitions (loop->sibling,
outer_mask, outer_assign);
inner_mask |= loop->inner | loop->mask | loop->e_mask;
return inner_mask;
}
/* Walk the OpenACC loop heirarchy to check and assign partitioning
axes. Return mask of partitioning. */
static unsigned
oacc_loop_partition (oacc_loop *loop, unsigned outer_mask)
{
unsigned mask_all = oacc_loop_fixed_partitions (loop, outer_mask);
if (mask_all & GOMP_DIM_MASK (GOMP_DIM_MAX))
{
mask_all ^= GOMP_DIM_MASK (GOMP_DIM_MAX);
mask_all |= oacc_loop_auto_partitions (loop, outer_mask, false);
}
return mask_all;
}
/* Default fork/join early expander. Delete the function calls if
there is no RTL expander. */
bool
default_goacc_fork_join (gcall *ARG_UNUSED (call),
const int *ARG_UNUSED (dims), bool is_fork)
{
if (is_fork)
return targetm.have_oacc_fork ();
else
return targetm.have_oacc_join ();
}
/* Default goacc.reduction early expander.
LHS-opt = IFN_REDUCTION (KIND, RES_PTR, VAR, LEVEL, OP, OFFSET)
If RES_PTR is not integer-zerop:
SETUP - emit 'LHS = *RES_PTR', LHS = NULL
TEARDOWN - emit '*RES_PTR = VAR'
If LHS is not NULL
emit 'LHS = VAR' */
void
default_goacc_reduction (gcall *call)
{
unsigned code = (unsigned)TREE_INT_CST_LOW (gimple_call_arg (call, 0));
gimple_stmt_iterator gsi = gsi_for_stmt (call);
tree lhs = gimple_call_lhs (call);
tree var = gimple_call_arg (call, 2);
gimple_seq seq = NULL;
if (code == IFN_GOACC_REDUCTION_SETUP
|| code == IFN_GOACC_REDUCTION_TEARDOWN)
{
/* Setup and Teardown need to copy from/to the receiver object,
if there is one. */
tree ref_to_res = gimple_call_arg (call, 1);
if (!integer_zerop (ref_to_res))
{
tree dst = build_simple_mem_ref (ref_to_res);
tree src = var;
if (code == IFN_GOACC_REDUCTION_SETUP)
{
src = dst;
dst = lhs;
lhs = NULL;
}
gimple_seq_add_stmt (&seq, gimple_build_assign (dst, src));
}
}
/* Copy VAR to LHS, if there is an LHS. */
if (lhs)
gimple_seq_add_stmt (&seq, gimple_build_assign (lhs, var));
gsi_replace_with_seq (&gsi, seq, true);
}
/* Main entry point for oacc transformations which run on the device
compiler after LTO, so we know what the target device is at this
point (including the host fallback). */
static unsigned int
execute_oacc_device_lower ()
{
tree attrs = oacc_get_fn_attrib (current_function_decl);
if (!attrs)
/* Not an offloaded function. */
return 0;
/* Parse the default dim argument exactly once. */
if ((const void *)flag_openacc_dims != &flag_openacc_dims)
{
oacc_parse_default_dims (flag_openacc_dims);
flag_openacc_dims = (char *)&flag_openacc_dims;
}
bool is_oacc_kernels
= (lookup_attribute ("oacc kernels",
DECL_ATTRIBUTES (current_function_decl)) != NULL);
bool is_oacc_kernels_parallelized
= (lookup_attribute ("oacc kernels parallelized",
DECL_ATTRIBUTES (current_function_decl)) != NULL);
/* Unparallelized OpenACC kernels constructs must get launched as 1 x 1 x 1
kernels, so remove the parallelism dimensions function attributes
potentially set earlier on. */
if (is_oacc_kernels && !is_oacc_kernels_parallelized)
{
oacc_set_fn_attrib (current_function_decl, NULL, NULL);
attrs = oacc_get_fn_attrib (current_function_decl);
}
/* Discover, partition and process the loops. */
oacc_loop *loops = oacc_loop_discovery ();
int fn_level = oacc_fn_attrib_level (attrs);
if (dump_file)
{
if (fn_level >= 0)
fprintf (dump_file, "Function is OpenACC routine level %d\n",
fn_level);
else if (is_oacc_kernels)
fprintf (dump_file, "Function is %s OpenACC kernels offload\n",
(is_oacc_kernels_parallelized
? "parallelized" : "unparallelized"));
else
fprintf (dump_file, "Function is OpenACC parallel offload\n");
}
unsigned outer_mask = fn_level >= 0 ? GOMP_DIM_MASK (fn_level) - 1 : 0;
unsigned used_mask = oacc_loop_partition (loops, outer_mask);
/* OpenACC kernels constructs are special: they currently don't use the
generic oacc_loop infrastructure and attribute/dimension processing. */
if (is_oacc_kernels && is_oacc_kernels_parallelized)
{
/* Parallelized OpenACC kernels constructs use gang parallelism. See
also tree-parloops.c:create_parallel_loop. */
used_mask |= GOMP_DIM_MASK (GOMP_DIM_GANG);
}
int dims[GOMP_DIM_MAX];
oacc_validate_dims (current_function_decl, attrs, dims, fn_level, used_mask);
if (dump_file)
{
const char *comma = "Compute dimensions [";
for (int ix = 0; ix != GOMP_DIM_MAX; ix++, comma = ", ")
fprintf (dump_file, "%s%d", comma, dims[ix]);
fprintf (dump_file, "]\n");
}
oacc_loop_process (loops);
if (dump_file)
{
fprintf (dump_file, "OpenACC loops\n");
dump_oacc_loop (dump_file, loops, 0);
fprintf (dump_file, "\n");
}
/* Offloaded targets may introduce new basic blocks, which require
dominance information to update SSA. */
calculate_dominance_info (CDI_DOMINATORS);
/* Now lower internal loop functions to target-specific code
sequences. */
basic_block bb;
FOR_ALL_BB_FN (bb, cfun)
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_call (stmt))
{
gsi_next (&gsi);
continue;
}
gcall *call = as_a <gcall *> (stmt);
if (!gimple_call_internal_p (call))
{
gsi_next (&gsi);
continue;
}
/* Rewind to allow rescan. */
gsi_prev (&gsi);
bool rescan = false, remove = false;
enum internal_fn ifn_code = gimple_call_internal_fn (call);
switch (ifn_code)
{
default: break;
case IFN_GOACC_TILE:
oacc_xform_tile (call);
rescan = true;
break;
case IFN_GOACC_LOOP:
oacc_xform_loop (call);
rescan = true;
break;
case IFN_GOACC_REDUCTION:
/* Mark the function for SSA renaming. */
mark_virtual_operands_for_renaming (cfun);
/* If the level is -1, this ended up being an unused
axis. Handle as a default. */
if (integer_minus_onep (gimple_call_arg (call, 3)))
default_goacc_reduction (call);
else
targetm.goacc.reduction (call);
rescan = true;
break;
case IFN_UNIQUE:
{
enum ifn_unique_kind kind
= ((enum ifn_unique_kind)
TREE_INT_CST_LOW (gimple_call_arg (call, 0)));
switch (kind)
{
default:
break;
case IFN_UNIQUE_OACC_FORK:
case IFN_UNIQUE_OACC_JOIN:
if (integer_minus_onep (gimple_call_arg (call, 2)))
remove = true;
else if (!targetm.goacc.fork_join
(call, dims, kind == IFN_UNIQUE_OACC_FORK))
remove = true;
break;
case IFN_UNIQUE_OACC_HEAD_MARK:
case IFN_UNIQUE_OACC_TAIL_MARK:
remove = true;
break;
}
break;
}
}
if (gsi_end_p (gsi))
/* We rewound past the beginning of the BB. */
gsi = gsi_start_bb (bb);
else
/* Undo the rewind. */
gsi_next (&gsi);
if (remove)
{
if (gimple_vdef (call))
replace_uses_by (gimple_vdef (call), gimple_vuse (call));
if (gimple_call_lhs (call))
{
/* Propagate the data dependency var. */
gimple *ass = gimple_build_assign (gimple_call_lhs (call),
gimple_call_arg (call, 1));
gsi_replace (&gsi, ass, false);
}
else
gsi_remove (&gsi, true);
}
else if (!rescan)
/* If not rescanning, advance over the call. */
gsi_next (&gsi);
}
free_oacc_loop (loops);
return 0;
}
/* Default launch dimension validator. Force everything to 1. A
backend that wants to provide larger dimensions must override this
hook. */
bool
default_goacc_validate_dims (tree ARG_UNUSED (decl), int *dims,
int ARG_UNUSED (fn_level))
{
bool changed = false;
for (unsigned ix = 0; ix != GOMP_DIM_MAX; ix++)
{
if (dims[ix] != 1)
{
dims[ix] = 1;
changed = true;
}
}
return changed;
}
/* Default dimension bound is unknown on accelerator and 1 on host. */
int
default_goacc_dim_limit (int ARG_UNUSED (axis))
{
#ifdef ACCEL_COMPILER
return 0;
#else
return 1;
#endif
}
namespace {
const pass_data pass_data_oacc_device_lower =
{
GIMPLE_PASS, /* type */
"oaccdevlow", /* name */
OPTGROUP_OMP, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
0 /* Possibly PROP_gimple_eomp. */, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
};
class pass_oacc_device_lower : public gimple_opt_pass
{
public:
pass_oacc_device_lower (gcc::context *ctxt)
: gimple_opt_pass (pass_data_oacc_device_lower, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_openacc; };
virtual unsigned int execute (function *)
{
return execute_oacc_device_lower ();
}
}; // class pass_oacc_device_lower
} // anon namespace
gimple_opt_pass *
make_pass_oacc_device_lower (gcc::context *ctxt)
{
return new pass_oacc_device_lower (ctxt);
}
/* Rewrite GOMP_SIMT_ENTER_ALLOC call given by GSI and remove the preceding
GOMP_SIMT_ENTER call identifying the privatized variables, which are
turned to structure fields and receive a DECL_VALUE_EXPR accordingly.
Set *REGIMPLIFY to true, except if no privatized variables were seen. */
static void
ompdevlow_adjust_simt_enter (gimple_stmt_iterator *gsi, bool *regimplify)
{
gimple *alloc_stmt = gsi_stmt (*gsi);
tree simtrec = gimple_call_lhs (alloc_stmt);
tree simduid = gimple_call_arg (alloc_stmt, 0);
gimple *enter_stmt = SSA_NAME_DEF_STMT (simduid);
gcc_assert (gimple_call_internal_p (enter_stmt, IFN_GOMP_SIMT_ENTER));
tree rectype = lang_hooks.types.make_type (RECORD_TYPE);
TYPE_ARTIFICIAL (rectype) = TYPE_NAMELESS (rectype) = 1;
TREE_ADDRESSABLE (rectype) = 1;
TREE_TYPE (simtrec) = build_pointer_type (rectype);
for (unsigned i = 1; i < gimple_call_num_args (enter_stmt); i++)
{
tree *argp = gimple_call_arg_ptr (enter_stmt, i);
if (*argp == null_pointer_node)
continue;
gcc_assert (TREE_CODE (*argp) == ADDR_EXPR
&& VAR_P (TREE_OPERAND (*argp, 0)));
tree var = TREE_OPERAND (*argp, 0);
tree field = build_decl (DECL_SOURCE_LOCATION (var), FIELD_DECL,
DECL_NAME (var), TREE_TYPE (var));
SET_DECL_ALIGN (field, DECL_ALIGN (var));
DECL_USER_ALIGN (field) = DECL_USER_ALIGN (var);
TREE_THIS_VOLATILE (field) = TREE_THIS_VOLATILE (var);
insert_field_into_struct (rectype, field);
tree t = build_simple_mem_ref (simtrec);
t = build3 (COMPONENT_REF, TREE_TYPE (var), t, field, NULL);
TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (var);
SET_DECL_VALUE_EXPR (var, t);
DECL_HAS_VALUE_EXPR_P (var) = 1;
*regimplify = true;
}
layout_type (rectype);
tree size = TYPE_SIZE_UNIT (rectype);
tree align = build_int_cst (TREE_TYPE (size), TYPE_ALIGN_UNIT (rectype));
alloc_stmt
= gimple_build_call_internal (IFN_GOMP_SIMT_ENTER_ALLOC, 2, size, align);
gimple_call_set_lhs (alloc_stmt, simtrec);
gsi_replace (gsi, alloc_stmt, false);
gimple_stmt_iterator enter_gsi = gsi_for_stmt (enter_stmt);
enter_stmt = gimple_build_assign (simduid, gimple_call_arg (enter_stmt, 0));
gsi_replace (&enter_gsi, enter_stmt, false);
use_operand_p use;
gimple *exit_stmt;
if (single_imm_use (simtrec, &use, &exit_stmt))
{
gcc_assert (gimple_call_internal_p (exit_stmt, IFN_GOMP_SIMT_EXIT));
gimple_stmt_iterator exit_gsi = gsi_for_stmt (exit_stmt);
tree clobber = build_constructor (rectype, NULL);
TREE_THIS_VOLATILE (clobber) = 1;
exit_stmt = gimple_build_assign (build_simple_mem_ref (simtrec), clobber);
gsi_insert_before (&exit_gsi, exit_stmt, GSI_SAME_STMT);
}
else
gcc_checking_assert (has_zero_uses (simtrec));
}
/* Callback for walk_gimple_stmt used to scan for SIMT-privatized variables. */
static tree
find_simtpriv_var_op (tree *tp, int *walk_subtrees, void *)
{
tree t = *tp;
if (VAR_P (t)
&& DECL_HAS_VALUE_EXPR_P (t)
&& lookup_attribute ("omp simt private", DECL_ATTRIBUTES (t)))
{
*walk_subtrees = 0;
return t;
}
return NULL_TREE;
}
/* Cleanup uses of SIMT placeholder internal functions: on non-SIMT targets,
VF is 1 and LANE is 0; on SIMT targets, VF is folded to a constant, and
LANE is kept to be expanded to RTL later on. Also cleanup all other SIMT
internal functions on non-SIMT targets, and likewise some SIMD internal
functions on SIMT targets. */
static unsigned int
execute_omp_device_lower ()
{
int vf = targetm.simt.vf ? targetm.simt.vf () : 1;
bool regimplify = false;
basic_block bb;
gimple_stmt_iterator gsi;
FOR_EACH_BB_FN (bb, cfun)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt))
continue;
tree lhs = gimple_call_lhs (stmt), rhs = NULL_TREE;
tree type = lhs ? TREE_TYPE (lhs) : integer_type_node;
switch (gimple_call_internal_fn (stmt))
{
case IFN_GOMP_USE_SIMT:
rhs = vf == 1 ? integer_zero_node : integer_one_node;
break;
case IFN_GOMP_SIMT_ENTER:
rhs = vf == 1 ? gimple_call_arg (stmt, 0) : NULL_TREE;
goto simtreg_enter_exit;
case IFN_GOMP_SIMT_ENTER_ALLOC:
if (vf != 1)
ompdevlow_adjust_simt_enter (&gsi, ®implify);
rhs = vf == 1 ? null_pointer_node : NULL_TREE;
goto simtreg_enter_exit;
case IFN_GOMP_SIMT_EXIT:
simtreg_enter_exit:
if (vf != 1)
continue;
unlink_stmt_vdef (stmt);
break;
case IFN_GOMP_SIMT_LANE:
case IFN_GOMP_SIMT_LAST_LANE:
rhs = vf == 1 ? build_zero_cst (type) : NULL_TREE;
break;
case IFN_GOMP_SIMT_VF:
rhs = build_int_cst (type, vf);
break;
case IFN_GOMP_SIMT_ORDERED_PRED:
rhs = vf == 1 ? integer_zero_node : NULL_TREE;
if (rhs || !lhs)
unlink_stmt_vdef (stmt);
break;
case IFN_GOMP_SIMT_VOTE_ANY:
case IFN_GOMP_SIMT_XCHG_BFLY:
case IFN_GOMP_SIMT_XCHG_IDX:
rhs = vf == 1 ? gimple_call_arg (stmt, 0) : NULL_TREE;
break;
case IFN_GOMP_SIMD_LANE:
case IFN_GOMP_SIMD_LAST_LANE:
rhs = vf != 1 ? build_zero_cst (type) : NULL_TREE;
break;
case IFN_GOMP_SIMD_VF:
rhs = vf != 1 ? build_one_cst (type) : NULL_TREE;
break;
default:
continue;
}
if (lhs && !rhs)
continue;
stmt = lhs ? gimple_build_assign (lhs, rhs) : gimple_build_nop ();
gsi_replace (&gsi, stmt, false);
}
if (regimplify)
FOR_EACH_BB_REVERSE_FN (bb, cfun)
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
if (walk_gimple_stmt (&gsi, NULL, find_simtpriv_var_op, NULL))
{
if (gimple_clobber_p (gsi_stmt (gsi)))
gsi_remove (&gsi, true);
else
gimple_regimplify_operands (gsi_stmt (gsi), &gsi);
}
if (vf != 1)
cfun->has_force_vectorize_loops = false;
return 0;
}
namespace {
const pass_data pass_data_omp_device_lower =
{
GIMPLE_PASS, /* type */
"ompdevlow", /* name */
OPTGROUP_OMP, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
PROP_gimple_lomp_dev, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_omp_device_lower : public gimple_opt_pass
{
public:
pass_omp_device_lower (gcc::context *ctxt)
: gimple_opt_pass (pass_data_omp_device_lower, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
return !(fun->curr_properties & PROP_gimple_lomp_dev);
}
virtual unsigned int execute (function *)
{
return execute_omp_device_lower ();
}
}; // class pass_expand_omp_ssa
} // anon namespace
gimple_opt_pass *
make_pass_omp_device_lower (gcc::context *ctxt)
{
return new pass_omp_device_lower (ctxt);
}
/* "omp declare target link" handling pass. */
namespace {
const pass_data pass_data_omp_target_link =
{
GIMPLE_PASS, /* type */
"omptargetlink", /* name */
OPTGROUP_OMP, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_omp_target_link : public gimple_opt_pass
{
public:
pass_omp_target_link (gcc::context *ctxt)
: gimple_opt_pass (pass_data_omp_target_link, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
#ifdef ACCEL_COMPILER
return offloading_function_p (fun->decl);
#else
(void) fun;
return false;
#endif
}
virtual unsigned execute (function *);
};
/* Callback for walk_gimple_stmt used to scan for link var operands. */
static tree
find_link_var_op (tree *tp, int *walk_subtrees, void *)
{
tree t = *tp;
if (VAR_P (t)
&& DECL_HAS_VALUE_EXPR_P (t)
&& is_global_var (t)
&& lookup_attribute ("omp declare target link", DECL_ATTRIBUTES (t)))
{
*walk_subtrees = 0;
return t;
}
return NULL_TREE;
}
unsigned
pass_omp_target_link::execute (function *fun)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (walk_gimple_stmt (&gsi, NULL, find_link_var_op, NULL))
gimple_regimplify_operands (gsi_stmt (gsi), &gsi);
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_omp_target_link (gcc::context *ctxt)
{
return new pass_omp_target_link (ctxt);
}
|