1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
|
/* C-compiler utilities for types and variables storage layout
Copyright (C) 1987-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "regs.h"
#include "emit-rtl.h"
#include "cgraph.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "varasm.h"
#include "print-tree.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "dumpfile.h"
#include "gimplify.h"
#include "attribs.h"
#include "debug.h"
/* Data type for the expressions representing sizes of data types.
It is the first integer type laid out. */
tree sizetype_tab[(int) stk_type_kind_last];
/* If nonzero, this is an upper limit on alignment of structure fields.
The value is measured in bits. */
unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
static tree self_referential_size (tree);
static void finalize_record_size (record_layout_info);
static void finalize_type_size (tree);
static void place_union_field (record_layout_info, tree);
static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
extern void debug_rli (record_layout_info);
/* Given a size SIZE that may not be a constant, return a SAVE_EXPR
to serve as the actual size-expression for a type or decl. */
tree
variable_size (tree size)
{
/* Obviously. */
if (TREE_CONSTANT (size))
return size;
/* If the size is self-referential, we can't make a SAVE_EXPR (see
save_expr for the rationale). But we can do something else. */
if (CONTAINS_PLACEHOLDER_P (size))
return self_referential_size (size);
/* If we are in the global binding level, we can't make a SAVE_EXPR
since it may end up being shared across functions, so it is up
to the front-end to deal with this case. */
if (lang_hooks.decls.global_bindings_p ())
return size;
return save_expr (size);
}
/* An array of functions used for self-referential size computation. */
static GTY(()) vec<tree, va_gc> *size_functions;
/* Return true if T is a self-referential component reference. */
static bool
self_referential_component_ref_p (tree t)
{
if (TREE_CODE (t) != COMPONENT_REF)
return false;
while (REFERENCE_CLASS_P (t))
t = TREE_OPERAND (t, 0);
return (TREE_CODE (t) == PLACEHOLDER_EXPR);
}
/* Similar to copy_tree_r but do not copy component references involving
PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
and substituted in substitute_in_expr. */
static tree
copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
{
enum tree_code code = TREE_CODE (*tp);
/* Stop at types, decls, constants like copy_tree_r. */
if (TREE_CODE_CLASS (code) == tcc_type
|| TREE_CODE_CLASS (code) == tcc_declaration
|| TREE_CODE_CLASS (code) == tcc_constant)
{
*walk_subtrees = 0;
return NULL_TREE;
}
/* This is the pattern built in ada/make_aligning_type. */
else if (code == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
{
*walk_subtrees = 0;
return NULL_TREE;
}
/* Default case: the component reference. */
else if (self_referential_component_ref_p (*tp))
{
*walk_subtrees = 0;
return NULL_TREE;
}
/* We're not supposed to have them in self-referential size trees
because we wouldn't properly control when they are evaluated.
However, not creating superfluous SAVE_EXPRs requires accurate
tracking of readonly-ness all the way down to here, which we
cannot always guarantee in practice. So punt in this case. */
else if (code == SAVE_EXPR)
return error_mark_node;
else if (code == STATEMENT_LIST)
gcc_unreachable ();
return copy_tree_r (tp, walk_subtrees, data);
}
/* Given a SIZE expression that is self-referential, return an equivalent
expression to serve as the actual size expression for a type. */
static tree
self_referential_size (tree size)
{
static unsigned HOST_WIDE_INT fnno = 0;
vec<tree> self_refs = vNULL;
tree param_type_list = NULL, param_decl_list = NULL;
tree t, ref, return_type, fntype, fnname, fndecl;
unsigned int i;
char buf[128];
vec<tree, va_gc> *args = NULL;
/* Do not factor out simple operations. */
t = skip_simple_constant_arithmetic (size);
if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
return size;
/* Collect the list of self-references in the expression. */
find_placeholder_in_expr (size, &self_refs);
gcc_assert (self_refs.length () > 0);
/* Obtain a private copy of the expression. */
t = size;
if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
return size;
size = t;
/* Build the parameter and argument lists in parallel; also
substitute the former for the latter in the expression. */
vec_alloc (args, self_refs.length ());
FOR_EACH_VEC_ELT (self_refs, i, ref)
{
tree subst, param_name, param_type, param_decl;
if (DECL_P (ref))
{
/* We shouldn't have true variables here. */
gcc_assert (TREE_READONLY (ref));
subst = ref;
}
/* This is the pattern built in ada/make_aligning_type. */
else if (TREE_CODE (ref) == ADDR_EXPR)
subst = ref;
/* Default case: the component reference. */
else
subst = TREE_OPERAND (ref, 1);
sprintf (buf, "p%d", i);
param_name = get_identifier (buf);
param_type = TREE_TYPE (ref);
param_decl
= build_decl (input_location, PARM_DECL, param_name, param_type);
DECL_ARG_TYPE (param_decl) = param_type;
DECL_ARTIFICIAL (param_decl) = 1;
TREE_READONLY (param_decl) = 1;
size = substitute_in_expr (size, subst, param_decl);
param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
param_decl_list = chainon (param_decl, param_decl_list);
args->quick_push (ref);
}
self_refs.release ();
/* Append 'void' to indicate that the number of parameters is fixed. */
param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
/* The 3 lists have been created in reverse order. */
param_type_list = nreverse (param_type_list);
param_decl_list = nreverse (param_decl_list);
/* Build the function type. */
return_type = TREE_TYPE (size);
fntype = build_function_type (return_type, param_type_list);
/* Build the function declaration. */
sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
fnname = get_file_function_name (buf);
fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
for (t = param_decl_list; t; t = DECL_CHAIN (t))
DECL_CONTEXT (t) = fndecl;
DECL_ARGUMENTS (fndecl) = param_decl_list;
DECL_RESULT (fndecl)
= build_decl (input_location, RESULT_DECL, 0, return_type);
DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
/* The function has been created by the compiler and we don't
want to emit debug info for it. */
DECL_ARTIFICIAL (fndecl) = 1;
DECL_IGNORED_P (fndecl) = 1;
/* It is supposed to be "const" and never throw. */
TREE_READONLY (fndecl) = 1;
TREE_NOTHROW (fndecl) = 1;
/* We want it to be inlined when this is deemed profitable, as
well as discarded if every call has been integrated. */
DECL_DECLARED_INLINE_P (fndecl) = 1;
/* It is made up of a unique return statement. */
DECL_INITIAL (fndecl) = make_node (BLOCK);
BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
TREE_STATIC (fndecl) = 1;
/* Put it onto the list of size functions. */
vec_safe_push (size_functions, fndecl);
/* Replace the original expression with a call to the size function. */
return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
}
/* Take, queue and compile all the size functions. It is essential that
the size functions be gimplified at the very end of the compilation
in order to guarantee transparent handling of self-referential sizes.
Otherwise the GENERIC inliner would not be able to inline them back
at each of their call sites, thus creating artificial non-constant
size expressions which would trigger nasty problems later on. */
void
finalize_size_functions (void)
{
unsigned int i;
tree fndecl;
for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
{
allocate_struct_function (fndecl, false);
set_cfun (NULL);
dump_function (TDI_original, fndecl);
/* As these functions are used to describe the layout of variable-length
structures, debug info generation needs their implementation. */
debug_hooks->size_function (fndecl);
gimplify_function_tree (fndecl);
cgraph_node::finalize_function (fndecl, false);
}
vec_free (size_functions);
}
/* Return a machine mode of class MCLASS with SIZE bits of precision,
if one exists. The mode may have padding bits as well the SIZE
value bits. If LIMIT is nonzero, disregard modes wider than
MAX_FIXED_MODE_SIZE. */
opt_machine_mode
mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
{
machine_mode mode;
int i;
if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
return opt_machine_mode ();
/* Get the first mode which has this size, in the specified class. */
FOR_EACH_MODE_IN_CLASS (mode, mclass)
if (known_eq (GET_MODE_PRECISION (mode), size))
return mode;
if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (known_eq (int_n_data[i].bitsize, size)
&& int_n_enabled_p[i])
return int_n_data[i].m;
return opt_machine_mode ();
}
/* Similar, except passed a tree node. */
opt_machine_mode
mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
{
unsigned HOST_WIDE_INT uhwi;
unsigned int ui;
if (!tree_fits_uhwi_p (size))
return opt_machine_mode ();
uhwi = tree_to_uhwi (size);
ui = uhwi;
if (uhwi != ui)
return opt_machine_mode ();
return mode_for_size (ui, mclass, limit);
}
/* Return the narrowest mode of class MCLASS that contains at least
SIZE bits. Abort if no such mode exists. */
machine_mode
smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
{
machine_mode mode = VOIDmode;
int i;
/* Get the first mode which has at least this size, in the
specified class. */
FOR_EACH_MODE_IN_CLASS (mode, mclass)
if (known_ge (GET_MODE_PRECISION (mode), size))
break;
gcc_assert (mode != VOIDmode);
if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
for (i = 0; i < NUM_INT_N_ENTS; i ++)
if (known_ge (int_n_data[i].bitsize, size)
&& known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
&& int_n_enabled_p[i])
mode = int_n_data[i].m;
return mode;
}
/* Return an integer mode of exactly the same size as MODE, if one exists. */
opt_scalar_int_mode
int_mode_for_mode (machine_mode mode)
{
switch (GET_MODE_CLASS (mode))
{
case MODE_INT:
case MODE_PARTIAL_INT:
return as_a <scalar_int_mode> (mode);
case MODE_COMPLEX_INT:
case MODE_COMPLEX_FLOAT:
case MODE_FLOAT:
case MODE_DECIMAL_FLOAT:
case MODE_FRACT:
case MODE_ACCUM:
case MODE_UFRACT:
case MODE_UACCUM:
case MODE_VECTOR_BOOL:
case MODE_VECTOR_INT:
case MODE_VECTOR_FLOAT:
case MODE_VECTOR_FRACT:
case MODE_VECTOR_ACCUM:
case MODE_VECTOR_UFRACT:
case MODE_VECTOR_UACCUM:
case MODE_POINTER_BOUNDS:
return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
case MODE_RANDOM:
if (mode == BLKmode)
return opt_scalar_int_mode ();
/* fall through */
case MODE_CC:
default:
gcc_unreachable ();
}
}
/* Find a mode that can be used for efficient bitwise operations on MODE,
if one exists. */
opt_machine_mode
bitwise_mode_for_mode (machine_mode mode)
{
/* Quick exit if we already have a suitable mode. */
scalar_int_mode int_mode;
if (is_a <scalar_int_mode> (mode, &int_mode)
&& GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
return int_mode;
/* Reuse the sanity checks from int_mode_for_mode. */
gcc_checking_assert ((int_mode_for_mode (mode), true));
poly_int64 bitsize = GET_MODE_BITSIZE (mode);
/* Try to replace complex modes with complex modes. In general we
expect both components to be processed independently, so we only
care whether there is a register for the inner mode. */
if (COMPLEX_MODE_P (mode))
{
machine_mode trial = mode;
if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
|| mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
&& have_regs_of_mode[GET_MODE_INNER (trial)])
return trial;
}
/* Try to replace vector modes with vector modes. Also try using vector
modes if an integer mode would be too big. */
if (VECTOR_MODE_P (mode)
|| maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
{
machine_mode trial = mode;
if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
|| mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
&& have_regs_of_mode[trial]
&& targetm.vector_mode_supported_p (trial))
return trial;
}
/* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
return mode_for_size (bitsize, MODE_INT, true);
}
/* Find a type that can be used for efficient bitwise operations on MODE.
Return null if no such mode exists. */
tree
bitwise_type_for_mode (machine_mode mode)
{
if (!bitwise_mode_for_mode (mode).exists (&mode))
return NULL_TREE;
unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
tree inner_type = build_nonstandard_integer_type (inner_size, true);
if (VECTOR_MODE_P (mode))
return build_vector_type_for_mode (inner_type, mode);
if (COMPLEX_MODE_P (mode))
return build_complex_type (inner_type);
gcc_checking_assert (GET_MODE_INNER (mode) == mode);
return inner_type;
}
/* Find a mode that is suitable for representing a vector with NUNITS
elements of mode INNERMODE, if one exists. The returned mode can be
either an integer mode or a vector mode. */
opt_machine_mode
mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
{
machine_mode mode;
/* First, look for a supported vector type. */
if (SCALAR_FLOAT_MODE_P (innermode))
mode = MIN_MODE_VECTOR_FLOAT;
else if (SCALAR_FRACT_MODE_P (innermode))
mode = MIN_MODE_VECTOR_FRACT;
else if (SCALAR_UFRACT_MODE_P (innermode))
mode = MIN_MODE_VECTOR_UFRACT;
else if (SCALAR_ACCUM_MODE_P (innermode))
mode = MIN_MODE_VECTOR_ACCUM;
else if (SCALAR_UACCUM_MODE_P (innermode))
mode = MIN_MODE_VECTOR_UACCUM;
else
mode = MIN_MODE_VECTOR_INT;
/* Do not check vector_mode_supported_p here. We'll do that
later in vector_type_mode. */
FOR_EACH_MODE_FROM (mode, mode)
if (known_eq (GET_MODE_NUNITS (mode), nunits)
&& GET_MODE_INNER (mode) == innermode)
return mode;
/* For integers, try mapping it to a same-sized scalar mode. */
if (GET_MODE_CLASS (innermode) == MODE_INT)
{
poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
if (int_mode_for_size (nbits, 0).exists (&mode)
&& have_regs_of_mode[mode])
return mode;
}
return opt_machine_mode ();
}
/* Return the mode for a vector that has NUNITS integer elements of
INT_BITS bits each, if such a mode exists. The mode can be either
an integer mode or a vector mode. */
opt_machine_mode
mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
{
scalar_int_mode int_mode;
machine_mode vec_mode;
if (int_mode_for_size (int_bits, 0).exists (&int_mode)
&& mode_for_vector (int_mode, nunits).exists (&vec_mode))
return vec_mode;
return opt_machine_mode ();
}
/* Return the alignment of MODE. This will be bounded by 1 and
BIGGEST_ALIGNMENT. */
unsigned int
get_mode_alignment (machine_mode mode)
{
return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
}
/* Return the natural mode of an array, given that it is SIZE bytes in
total and has elements of type ELEM_TYPE. */
static machine_mode
mode_for_array (tree elem_type, tree size)
{
tree elem_size;
poly_uint64 int_size, int_elem_size;
unsigned HOST_WIDE_INT num_elems;
bool limit_p;
/* One-element arrays get the component type's mode. */
elem_size = TYPE_SIZE (elem_type);
if (simple_cst_equal (size, elem_size))
return TYPE_MODE (elem_type);
limit_p = true;
if (poly_int_tree_p (size, &int_size)
&& poly_int_tree_p (elem_size, &int_elem_size)
&& maybe_ne (int_elem_size, 0U)
&& constant_multiple_p (int_size, int_elem_size, &num_elems))
{
machine_mode elem_mode = TYPE_MODE (elem_type);
machine_mode mode;
if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
return mode;
if (targetm.array_mode_supported_p (elem_mode, num_elems))
limit_p = false;
}
return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
}
/* Subroutine of layout_decl: Force alignment required for the data type.
But if the decl itself wants greater alignment, don't override that. */
static inline void
do_type_align (tree type, tree decl)
{
if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
{
SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
if (TREE_CODE (decl) == FIELD_DECL)
DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
}
if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
}
/* Set the size, mode and alignment of a ..._DECL node.
TYPE_DECL does need this for C++.
Note that LABEL_DECL and CONST_DECL nodes do not need this,
and FUNCTION_DECL nodes have them set up in a special (and simple) way.
Don't call layout_decl for them.
KNOWN_ALIGN is the amount of alignment we can assume this
decl has with no special effort. It is relevant only for FIELD_DECLs
and depends on the previous fields.
All that matters about KNOWN_ALIGN is which powers of 2 divide it.
If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
the record will be aligned to suit. */
void
layout_decl (tree decl, unsigned int known_align)
{
tree type = TREE_TYPE (decl);
enum tree_code code = TREE_CODE (decl);
rtx rtl = NULL_RTX;
location_t loc = DECL_SOURCE_LOCATION (decl);
if (code == CONST_DECL)
return;
gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
|| code == TYPE_DECL || code == FIELD_DECL);
rtl = DECL_RTL_IF_SET (decl);
if (type == error_mark_node)
type = void_type_node;
/* Usually the size and mode come from the data type without change,
however, the front-end may set the explicit width of the field, so its
size may not be the same as the size of its type. This happens with
bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
also happens with other fields. For example, the C++ front-end creates
zero-sized fields corresponding to empty base classes, and depends on
layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
size in bytes from the size in bits. If we have already set the mode,
don't set it again since we can be called twice for FIELD_DECLs. */
DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
if (DECL_MODE (decl) == VOIDmode)
SET_DECL_MODE (decl, TYPE_MODE (type));
if (DECL_SIZE (decl) == 0)
{
DECL_SIZE (decl) = TYPE_SIZE (type);
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
}
else if (DECL_SIZE_UNIT (decl) == 0)
DECL_SIZE_UNIT (decl)
= fold_convert_loc (loc, sizetype,
size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
bitsize_unit_node));
if (code != FIELD_DECL)
/* For non-fields, update the alignment from the type. */
do_type_align (type, decl);
else
/* For fields, it's a bit more complicated... */
{
bool old_user_align = DECL_USER_ALIGN (decl);
bool zero_bitfield = false;
bool packed_p = DECL_PACKED (decl);
unsigned int mfa;
if (DECL_BIT_FIELD (decl))
{
DECL_BIT_FIELD_TYPE (decl) = type;
/* A zero-length bit-field affects the alignment of the next
field. In essence such bit-fields are not influenced by
any packing due to #pragma pack or attribute packed. */
if (integer_zerop (DECL_SIZE (decl))
&& ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
{
zero_bitfield = true;
packed_p = false;
if (PCC_BITFIELD_TYPE_MATTERS)
do_type_align (type, decl);
else
{
#ifdef EMPTY_FIELD_BOUNDARY
if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
{
SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
DECL_USER_ALIGN (decl) = 0;
}
#endif
}
}
/* See if we can use an ordinary integer mode for a bit-field.
Conditions are: a fixed size that is correct for another mode,
occupying a complete byte or bytes on proper boundary. */
if (TYPE_SIZE (type) != 0
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
{
machine_mode xmode;
if (mode_for_size_tree (DECL_SIZE (decl),
MODE_INT, 1).exists (&xmode))
{
unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
&& (known_align == 0 || known_align >= xalign))
{
SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
SET_DECL_MODE (decl, xmode);
DECL_BIT_FIELD (decl) = 0;
}
}
}
/* Turn off DECL_BIT_FIELD if we won't need it set. */
if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
&& known_align >= TYPE_ALIGN (type)
&& DECL_ALIGN (decl) >= TYPE_ALIGN (type))
DECL_BIT_FIELD (decl) = 0;
}
else if (packed_p && DECL_USER_ALIGN (decl))
/* Don't touch DECL_ALIGN. For other packed fields, go ahead and
round up; we'll reduce it again below. We want packing to
supersede USER_ALIGN inherited from the type, but defer to
alignment explicitly specified on the field decl. */;
else
do_type_align (type, decl);
/* If the field is packed and not explicitly aligned, give it the
minimum alignment. Note that do_type_align may set
DECL_USER_ALIGN, so we need to check old_user_align instead. */
if (packed_p
&& !old_user_align)
SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
if (! packed_p && ! DECL_USER_ALIGN (decl))
{
/* Some targets (i.e. i386, VMS) limit struct field alignment
to a lower boundary than alignment of variables unless
it was overridden by attribute aligned. */
#ifdef BIGGEST_FIELD_ALIGNMENT
SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
(unsigned) BIGGEST_FIELD_ALIGNMENT));
#endif
#ifdef ADJUST_FIELD_ALIGN
SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
DECL_ALIGN (decl)));
#endif
}
if (zero_bitfield)
mfa = initial_max_fld_align * BITS_PER_UNIT;
else
mfa = maximum_field_alignment;
/* Should this be controlled by DECL_USER_ALIGN, too? */
if (mfa != 0)
SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
}
/* Evaluate nonconstant size only once, either now or as soon as safe. */
if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
if (DECL_SIZE_UNIT (decl) != 0
&& TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
/* If requested, warn about definitions of large data objects. */
if (warn_larger_than
&& (code == VAR_DECL || code == PARM_DECL)
&& ! DECL_EXTERNAL (decl))
{
tree size = DECL_SIZE_UNIT (decl);
if (size != 0 && TREE_CODE (size) == INTEGER_CST
&& compare_tree_int (size, larger_than_size) > 0)
{
int size_as_int = TREE_INT_CST_LOW (size);
if (compare_tree_int (size, size_as_int) == 0)
warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
else
warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
decl, larger_than_size);
}
}
/* If the RTL was already set, update its mode and mem attributes. */
if (rtl)
{
PUT_MODE (rtl, DECL_MODE (decl));
SET_DECL_RTL (decl, 0);
if (MEM_P (rtl))
set_mem_attributes (rtl, decl, 1);
SET_DECL_RTL (decl, rtl);
}
}
/* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
results of a previous call to layout_decl and calls it again. */
void
relayout_decl (tree decl)
{
DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
SET_DECL_MODE (decl, VOIDmode);
if (!DECL_USER_ALIGN (decl))
SET_DECL_ALIGN (decl, 0);
if (DECL_RTL_SET_P (decl))
SET_DECL_RTL (decl, 0);
layout_decl (decl, 0);
}
/* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
is to be passed to all other layout functions for this record. It is the
responsibility of the caller to call `free' for the storage returned.
Note that garbage collection is not permitted until we finish laying
out the record. */
record_layout_info
start_record_layout (tree t)
{
record_layout_info rli = XNEW (struct record_layout_info_s);
rli->t = t;
/* If the type has a minimum specified alignment (via an attribute
declaration, for example) use it -- otherwise, start with a
one-byte alignment. */
rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
rli->unpacked_align = rli->record_align;
rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
#ifdef STRUCTURE_SIZE_BOUNDARY
/* Packed structures don't need to have minimum size. */
if (! TYPE_PACKED (t))
{
unsigned tmp;
/* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
if (maximum_field_alignment != 0)
tmp = MIN (tmp, maximum_field_alignment);
rli->record_align = MAX (rli->record_align, tmp);
}
#endif
rli->offset = size_zero_node;
rli->bitpos = bitsize_zero_node;
rli->prev_field = 0;
rli->pending_statics = 0;
rli->packed_maybe_necessary = 0;
rli->remaining_in_alignment = 0;
return rli;
}
/* Fold sizetype value X to bitsizetype, given that X represents a type
size or offset. */
static tree
bits_from_bytes (tree x)
{
if (POLY_INT_CST_P (x))
/* The runtime calculation isn't allowed to overflow sizetype;
increasing the runtime values must always increase the size
or offset of the object. This means that the object imposes
a maximum value on the runtime parameters, but we don't record
what that is. */
return build_poly_int_cst
(bitsizetype,
poly_wide_int::from (poly_int_cst_value (x),
TYPE_PRECISION (bitsizetype),
TYPE_SIGN (TREE_TYPE (x))));
x = fold_convert (bitsizetype, x);
gcc_checking_assert (x);
return x;
}
/* Return the combined bit position for the byte offset OFFSET and the
bit position BITPOS.
These functions operate on byte and bit positions present in FIELD_DECLs
and assume that these expressions result in no (intermediate) overflow.
This assumption is necessary to fold the expressions as much as possible,
so as to avoid creating artificially variable-sized types in languages
supporting variable-sized types like Ada. */
tree
bit_from_pos (tree offset, tree bitpos)
{
return size_binop (PLUS_EXPR, bitpos,
size_binop (MULT_EXPR, bits_from_bytes (offset),
bitsize_unit_node));
}
/* Return the combined truncated byte position for the byte offset OFFSET and
the bit position BITPOS. */
tree
byte_from_pos (tree offset, tree bitpos)
{
tree bytepos;
if (TREE_CODE (bitpos) == MULT_EXPR
&& tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
bytepos = TREE_OPERAND (bitpos, 0);
else
bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
}
/* Split the bit position POS into a byte offset *POFFSET and a bit
position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
void
pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
tree pos)
{
tree toff_align = bitsize_int (off_align);
if (TREE_CODE (pos) == MULT_EXPR
&& tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
{
*poffset = size_binop (MULT_EXPR,
fold_convert (sizetype, TREE_OPERAND (pos, 0)),
size_int (off_align / BITS_PER_UNIT));
*pbitpos = bitsize_zero_node;
}
else
{
*poffset = size_binop (MULT_EXPR,
fold_convert (sizetype,
size_binop (FLOOR_DIV_EXPR, pos,
toff_align)),
size_int (off_align / BITS_PER_UNIT));
*pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
}
}
/* Given a pointer to bit and byte offsets and an offset alignment,
normalize the offsets so they are within the alignment. */
void
normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
{
/* If the bit position is now larger than it should be, adjust it
downwards. */
if (compare_tree_int (*pbitpos, off_align) >= 0)
{
tree offset, bitpos;
pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
*poffset = size_binop (PLUS_EXPR, *poffset, offset);
*pbitpos = bitpos;
}
}
/* Print debugging information about the information in RLI. */
DEBUG_FUNCTION void
debug_rli (record_layout_info rli)
{
print_node_brief (stderr, "type", rli->t, 0);
print_node_brief (stderr, "\noffset", rli->offset, 0);
print_node_brief (stderr, " bitpos", rli->bitpos, 0);
fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
rli->record_align, rli->unpacked_align,
rli->offset_align);
/* The ms_struct code is the only that uses this. */
if (targetm.ms_bitfield_layout_p (rli->t))
fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
if (rli->packed_maybe_necessary)
fprintf (stderr, "packed may be necessary\n");
if (!vec_safe_is_empty (rli->pending_statics))
{
fprintf (stderr, "pending statics:\n");
debug (rli->pending_statics);
}
}
/* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
void
normalize_rli (record_layout_info rli)
{
normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
}
/* Returns the size in bytes allocated so far. */
tree
rli_size_unit_so_far (record_layout_info rli)
{
return byte_from_pos (rli->offset, rli->bitpos);
}
/* Returns the size in bits allocated so far. */
tree
rli_size_so_far (record_layout_info rli)
{
return bit_from_pos (rli->offset, rli->bitpos);
}
/* FIELD is about to be added to RLI->T. The alignment (in bits) of
the next available location within the record is given by KNOWN_ALIGN.
Update the variable alignment fields in RLI, and return the alignment
to give the FIELD. */
unsigned int
update_alignment_for_field (record_layout_info rli, tree field,
unsigned int known_align)
{
/* The alignment required for FIELD. */
unsigned int desired_align;
/* The type of this field. */
tree type = TREE_TYPE (field);
/* True if the field was explicitly aligned by the user. */
bool user_align;
bool is_bitfield;
/* Do not attempt to align an ERROR_MARK node */
if (TREE_CODE (type) == ERROR_MARK)
return 0;
/* Lay out the field so we know what alignment it needs. */
layout_decl (field, known_align);
desired_align = DECL_ALIGN (field);
user_align = DECL_USER_ALIGN (field);
is_bitfield = (type != error_mark_node
&& DECL_BIT_FIELD_TYPE (field)
&& ! integer_zerop (TYPE_SIZE (type)));
/* Record must have at least as much alignment as any field.
Otherwise, the alignment of the field within the record is
meaningless. */
if (targetm.ms_bitfield_layout_p (rli->t))
{
/* Here, the alignment of the underlying type of a bitfield can
affect the alignment of a record; even a zero-sized field
can do this. The alignment should be to the alignment of
the type, except that for zero-size bitfields this only
applies if there was an immediately prior, nonzero-size
bitfield. (That's the way it is, experimentally.) */
if (!is_bitfield
|| ((DECL_SIZE (field) == NULL_TREE
|| !integer_zerop (DECL_SIZE (field)))
? !DECL_PACKED (field)
: (rli->prev_field
&& DECL_BIT_FIELD_TYPE (rli->prev_field)
&& ! integer_zerop (DECL_SIZE (rli->prev_field)))))
{
unsigned int type_align = TYPE_ALIGN (type);
if (!is_bitfield && DECL_PACKED (field))
type_align = desired_align;
else
type_align = MAX (type_align, desired_align);
if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
rli->record_align = MAX (rli->record_align, type_align);
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
}
}
else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
{
/* Named bit-fields cause the entire structure to have the
alignment implied by their type. Some targets also apply the same
rules to unnamed bitfields. */
if (DECL_NAME (field) != 0
|| targetm.align_anon_bitfield ())
{
unsigned int type_align = TYPE_ALIGN (type);
#ifdef ADJUST_FIELD_ALIGN
if (! TYPE_USER_ALIGN (type))
type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
#endif
/* Targets might chose to handle unnamed and hence possibly
zero-width bitfield. Those are not influenced by #pragmas
or packed attributes. */
if (integer_zerop (DECL_SIZE (field)))
{
if (initial_max_fld_align)
type_align = MIN (type_align,
initial_max_fld_align * BITS_PER_UNIT);
}
else if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
else if (DECL_PACKED (field))
type_align = MIN (type_align, BITS_PER_UNIT);
/* The alignment of the record is increased to the maximum
of the current alignment, the alignment indicated on the
field (i.e., the alignment specified by an __aligned__
attribute), and the alignment indicated by the type of
the field. */
rli->record_align = MAX (rli->record_align, desired_align);
rli->record_align = MAX (rli->record_align, type_align);
if (warn_packed)
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
user_align |= TYPE_USER_ALIGN (type);
}
}
else
{
rli->record_align = MAX (rli->record_align, desired_align);
rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
}
TYPE_USER_ALIGN (rli->t) |= user_align;
return desired_align;
}
/* Issue a warning if the record alignment, RECORD_ALIGN, is less than
the field alignment of FIELD or FIELD isn't aligned. */
static void
handle_warn_if_not_align (tree field, unsigned int record_align)
{
tree type = TREE_TYPE (field);
if (type == error_mark_node)
return;
unsigned int warn_if_not_align = 0;
int opt_w = 0;
if (warn_if_not_aligned)
{
warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
if (!warn_if_not_align)
warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
if (warn_if_not_align)
opt_w = OPT_Wif_not_aligned;
}
if (!warn_if_not_align
&& warn_packed_not_aligned
&& lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
{
warn_if_not_align = TYPE_ALIGN (type);
opt_w = OPT_Wpacked_not_aligned;
}
if (!warn_if_not_align)
return;
tree context = DECL_CONTEXT (field);
warn_if_not_align /= BITS_PER_UNIT;
record_align /= BITS_PER_UNIT;
if ((record_align % warn_if_not_align) != 0)
warning (opt_w, "alignment %u of %qT is less than %u",
record_align, context, warn_if_not_align);
tree off = byte_position (field);
if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
{
if (TREE_CODE (off) == INTEGER_CST)
warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
field, off, context, warn_if_not_align);
else
warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
field, off, context, warn_if_not_align);
}
}
/* Called from place_field to handle unions. */
static void
place_union_field (record_layout_info rli, tree field)
{
update_alignment_for_field (rli, field, /*known_align=*/0);
DECL_FIELD_OFFSET (field) = size_zero_node;
DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
handle_warn_if_not_align (field, rli->record_align);
/* If this is an ERROR_MARK return *after* having set the
field at the start of the union. This helps when parsing
invalid fields. */
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
return;
if (AGGREGATE_TYPE_P (TREE_TYPE (field))
&& TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
TYPE_TYPELESS_STORAGE (rli->t) = 1;
/* We assume the union's size will be a multiple of a byte so we don't
bother with BITPOS. */
if (TREE_CODE (rli->t) == UNION_TYPE)
rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
DECL_SIZE_UNIT (field), rli->offset);
}
/* A bitfield of SIZE with a required access alignment of ALIGN is allocated
at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
units of alignment than the underlying TYPE. */
static int
excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
{
/* Note that the calculation of OFFSET might overflow; we calculate it so
that we still get the right result as long as ALIGN is a power of two. */
unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
offset = offset % align;
return ((offset + size + align - 1) / align
> tree_to_uhwi (TYPE_SIZE (type)) / align);
}
/* RLI contains information about the layout of a RECORD_TYPE. FIELD
is a FIELD_DECL to be added after those fields already present in
T. (FIELD is not actually added to the TYPE_FIELDS list here;
callers that desire that behavior must manually perform that step.) */
void
place_field (record_layout_info rli, tree field)
{
/* The alignment required for FIELD. */
unsigned int desired_align;
/* The alignment FIELD would have if we just dropped it into the
record as it presently stands. */
unsigned int known_align;
unsigned int actual_align;
/* The type of this field. */
tree type = TREE_TYPE (field);
gcc_assert (TREE_CODE (field) != ERROR_MARK);
/* If FIELD is static, then treat it like a separate variable, not
really like a structure field. If it is a FUNCTION_DECL, it's a
method. In both cases, all we do is lay out the decl, and we do
it *after* the record is laid out. */
if (VAR_P (field))
{
vec_safe_push (rli->pending_statics, field);
return;
}
/* Enumerators and enum types which are local to this class need not
be laid out. Likewise for initialized constant fields. */
else if (TREE_CODE (field) != FIELD_DECL)
return;
/* Unions are laid out very differently than records, so split
that code off to another function. */
else if (TREE_CODE (rli->t) != RECORD_TYPE)
{
place_union_field (rli, field);
return;
}
else if (TREE_CODE (type) == ERROR_MARK)
{
/* Place this field at the current allocation position, so we
maintain monotonicity. */
DECL_FIELD_OFFSET (field) = rli->offset;
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
handle_warn_if_not_align (field, rli->record_align);
return;
}
if (AGGREGATE_TYPE_P (type)
&& TYPE_TYPELESS_STORAGE (type))
TYPE_TYPELESS_STORAGE (rli->t) = 1;
/* Work out the known alignment so far. Note that A & (-A) is the
value of the least-significant bit in A that is one. */
if (! integer_zerop (rli->bitpos))
known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
else if (integer_zerop (rli->offset))
known_align = 0;
else if (tree_fits_uhwi_p (rli->offset))
known_align = (BITS_PER_UNIT
* least_bit_hwi (tree_to_uhwi (rli->offset)));
else
known_align = rli->offset_align;
desired_align = update_alignment_for_field (rli, field, known_align);
if (known_align == 0)
known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
if (warn_packed && DECL_PACKED (field))
{
if (known_align >= TYPE_ALIGN (type))
{
if (TYPE_ALIGN (type) > desired_align)
{
if (STRICT_ALIGNMENT)
warning (OPT_Wattributes, "packed attribute causes "
"inefficient alignment for %q+D", field);
/* Don't warn if DECL_PACKED was set by the type. */
else if (!TYPE_PACKED (rli->t))
warning (OPT_Wattributes, "packed attribute is "
"unnecessary for %q+D", field);
}
}
else
rli->packed_maybe_necessary = 1;
}
/* Does this field automatically have alignment it needs by virtue
of the fields that precede it and the record's own alignment? */
if (known_align < desired_align
&& (! targetm.ms_bitfield_layout_p (rli->t)
|| rli->prev_field == NULL))
{
/* No, we need to skip space before this field.
Bump the cumulative size to multiple of field alignment. */
if (!targetm.ms_bitfield_layout_p (rli->t)
&& DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
warning (OPT_Wpadded, "padding struct to align %q+D", field);
/* If the alignment is still within offset_align, just align
the bit position. */
if (desired_align < rli->offset_align)
rli->bitpos = round_up (rli->bitpos, desired_align);
else
{
/* First adjust OFFSET by the partial bits, then align. */
rli->offset
= size_binop (PLUS_EXPR, rli->offset,
fold_convert (sizetype,
size_binop (CEIL_DIV_EXPR, rli->bitpos,
bitsize_unit_node)));
rli->bitpos = bitsize_zero_node;
rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
}
if (! TREE_CONSTANT (rli->offset))
rli->offset_align = desired_align;
}
/* Handle compatibility with PCC. Note that if the record has any
variable-sized fields, we need not worry about compatibility. */
if (PCC_BITFIELD_TYPE_MATTERS
&& ! targetm.ms_bitfield_layout_p (rli->t)
&& TREE_CODE (field) == FIELD_DECL
&& type != error_mark_node
&& DECL_BIT_FIELD (field)
&& (! DECL_PACKED (field)
/* Enter for these packed fields only to issue a warning. */
|| TYPE_ALIGN (type) <= BITS_PER_UNIT)
&& maximum_field_alignment == 0
&& ! integer_zerop (DECL_SIZE (field))
&& tree_fits_uhwi_p (DECL_SIZE (field))
&& tree_fits_uhwi_p (rli->offset)
&& tree_fits_uhwi_p (TYPE_SIZE (type)))
{
unsigned int type_align = TYPE_ALIGN (type);
tree dsize = DECL_SIZE (field);
HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
#ifdef ADJUST_FIELD_ALIGN
if (! TYPE_USER_ALIGN (type))
type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
#endif
/* A bit field may not span more units of alignment of its type
than its type itself. Advance to next boundary if necessary. */
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
{
if (DECL_PACKED (field))
{
if (warn_packed_bitfield_compat == 1)
inform
(input_location,
"offset of packed bit-field %qD has changed in GCC 4.4",
field);
}
else
rli->bitpos = round_up (rli->bitpos, type_align);
}
if (! DECL_PACKED (field))
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
TYPE_WARN_IF_NOT_ALIGN (type));
}
#ifdef BITFIELD_NBYTES_LIMITED
if (BITFIELD_NBYTES_LIMITED
&& ! targetm.ms_bitfield_layout_p (rli->t)
&& TREE_CODE (field) == FIELD_DECL
&& type != error_mark_node
&& DECL_BIT_FIELD_TYPE (field)
&& ! DECL_PACKED (field)
&& ! integer_zerop (DECL_SIZE (field))
&& tree_fits_uhwi_p (DECL_SIZE (field))
&& tree_fits_uhwi_p (rli->offset)
&& tree_fits_uhwi_p (TYPE_SIZE (type)))
{
unsigned int type_align = TYPE_ALIGN (type);
tree dsize = DECL_SIZE (field);
HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
#ifdef ADJUST_FIELD_ALIGN
if (! TYPE_USER_ALIGN (type))
type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
#endif
if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
/* ??? This test is opposite the test in the containing if
statement, so this code is unreachable currently. */
else if (DECL_PACKED (field))
type_align = MIN (type_align, BITS_PER_UNIT);
/* A bit field may not span the unit of alignment of its type.
Advance to next boundary if necessary. */
if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
rli->bitpos = round_up (rli->bitpos, type_align);
TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
TYPE_WARN_IF_NOT_ALIGN (type));
}
#endif
/* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
A subtlety:
When a bit field is inserted into a packed record, the whole
size of the underlying type is used by one or more same-size
adjacent bitfields. (That is, if its long:3, 32 bits is
used in the record, and any additional adjacent long bitfields are
packed into the same chunk of 32 bits. However, if the size
changes, a new field of that size is allocated.) In an unpacked
record, this is the same as using alignment, but not equivalent
when packing.
Note: for compatibility, we use the type size, not the type alignment
to determine alignment, since that matches the documentation */
if (targetm.ms_bitfield_layout_p (rli->t))
{
tree prev_saved = rli->prev_field;
tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
/* This is a bitfield if it exists. */
if (rli->prev_field)
{
bool realign_p = known_align < desired_align;
/* If both are bitfields, nonzero, and the same size, this is
the middle of a run. Zero declared size fields are special
and handled as "end of run". (Note: it's nonzero declared
size, but equal type sizes!) (Since we know that both
the current and previous fields are bitfields by the
time we check it, DECL_SIZE must be present for both.) */
if (DECL_BIT_FIELD_TYPE (field)
&& !integer_zerop (DECL_SIZE (field))
&& !integer_zerop (DECL_SIZE (rli->prev_field))
&& tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
&& tree_fits_uhwi_p (TYPE_SIZE (type))
&& simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
{
/* We're in the middle of a run of equal type size fields; make
sure we realign if we run out of bits. (Not decl size,
type size!) */
HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
if (rli->remaining_in_alignment < bitsize)
{
HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
/* out of bits; bump up to next 'word'. */
rli->bitpos
= size_binop (PLUS_EXPR, rli->bitpos,
bitsize_int (rli->remaining_in_alignment));
rli->prev_field = field;
if (typesize < bitsize)
rli->remaining_in_alignment = 0;
else
rli->remaining_in_alignment = typesize - bitsize;
}
else
{
rli->remaining_in_alignment -= bitsize;
realign_p = false;
}
}
else
{
/* End of a run: if leaving a run of bitfields of the same type
size, we have to "use up" the rest of the bits of the type
size.
Compute the new position as the sum of the size for the prior
type and where we first started working on that type.
Note: since the beginning of the field was aligned then
of course the end will be too. No round needed. */
if (!integer_zerop (DECL_SIZE (rli->prev_field)))
{
rli->bitpos
= size_binop (PLUS_EXPR, rli->bitpos,
bitsize_int (rli->remaining_in_alignment));
}
else
/* We "use up" size zero fields; the code below should behave
as if the prior field was not a bitfield. */
prev_saved = NULL;
/* Cause a new bitfield to be captured, either this time (if
currently a bitfield) or next time we see one. */
if (!DECL_BIT_FIELD_TYPE (field)
|| integer_zerop (DECL_SIZE (field)))
rli->prev_field = NULL;
}
/* Does this field automatically have alignment it needs by virtue
of the fields that precede it and the record's own alignment? */
if (realign_p)
{
/* If the alignment is still within offset_align, just align
the bit position. */
if (desired_align < rli->offset_align)
rli->bitpos = round_up (rli->bitpos, desired_align);
else
{
/* First adjust OFFSET by the partial bits, then align. */
tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
bitsize_unit_node);
rli->offset = size_binop (PLUS_EXPR, rli->offset,
fold_convert (sizetype, d));
rli->bitpos = bitsize_zero_node;
rli->offset = round_up (rli->offset,
desired_align / BITS_PER_UNIT);
}
if (! TREE_CONSTANT (rli->offset))
rli->offset_align = desired_align;
}
normalize_rli (rli);
}
/* If we're starting a new run of same type size bitfields
(or a run of non-bitfields), set up the "first of the run"
fields.
That is, if the current field is not a bitfield, or if there
was a prior bitfield the type sizes differ, or if there wasn't
a prior bitfield the size of the current field is nonzero.
Note: we must be sure to test ONLY the type size if there was
a prior bitfield and ONLY for the current field being zero if
there wasn't. */
if (!DECL_BIT_FIELD_TYPE (field)
|| (prev_saved != NULL
? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
: !integer_zerop (DECL_SIZE (field))))
{
/* Never smaller than a byte for compatibility. */
unsigned int type_align = BITS_PER_UNIT;
/* (When not a bitfield), we could be seeing a flex array (with
no DECL_SIZE). Since we won't be using remaining_in_alignment
until we see a bitfield (and come by here again) we just skip
calculating it. */
if (DECL_SIZE (field) != NULL
&& tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
&& tree_fits_uhwi_p (DECL_SIZE (field)))
{
unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field));
unsigned HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
if (typesize < bitsize)
rli->remaining_in_alignment = 0;
else
rli->remaining_in_alignment = typesize - bitsize;
}
/* Now align (conventionally) for the new type. */
if (! DECL_PACKED (field))
type_align = TYPE_ALIGN (TREE_TYPE (field));
if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
rli->bitpos = round_up (rli->bitpos, type_align);
/* If we really aligned, don't allow subsequent bitfields
to undo that. */
rli->prev_field = NULL;
}
}
/* Offset so far becomes the position of this field after normalizing. */
normalize_rli (rli);
DECL_FIELD_OFFSET (field) = rli->offset;
DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
handle_warn_if_not_align (field, rli->record_align);
/* Evaluate nonconstant offsets only once, either now or as soon as safe. */
if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
/* If this field ended up more aligned than we thought it would be (we
approximate this by seeing if its position changed), lay out the field
again; perhaps we can use an integral mode for it now. */
if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
else if (integer_zerop (DECL_FIELD_OFFSET (field)))
actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
actual_align = (BITS_PER_UNIT
* least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
else
actual_align = DECL_OFFSET_ALIGN (field);
/* ACTUAL_ALIGN is still the actual alignment *within the record* .
store / extract bit field operations will check the alignment of the
record against the mode of bit fields. */
if (known_align != actual_align)
layout_decl (field, actual_align);
if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
rli->prev_field = field;
/* Now add size of this field to the size of the record. If the size is
not constant, treat the field as being a multiple of bytes and just
adjust the offset, resetting the bit position. Otherwise, apportion the
size amongst the bit position and offset. First handle the case of an
unspecified size, which can happen when we have an invalid nested struct
definition, such as struct j { struct j { int i; } }. The error message
is printed in finish_struct. */
if (DECL_SIZE (field) == 0)
/* Do nothing. */;
else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
|| TREE_OVERFLOW (DECL_SIZE (field)))
{
rli->offset
= size_binop (PLUS_EXPR, rli->offset,
fold_convert (sizetype,
size_binop (CEIL_DIV_EXPR, rli->bitpos,
bitsize_unit_node)));
rli->offset
= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
rli->bitpos = bitsize_zero_node;
rli->offset_align = MIN (rli->offset_align, desired_align);
if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
bitsize_int (rli->offset_align)))
{
tree type = strip_array_types (TREE_TYPE (field));
/* The above adjusts offset_align just based on the start of the
field. The field might not have a size that is a multiple of
that offset_align though. If the field is an array of fixed
sized elements, assume there can be any multiple of those
sizes. If it is a variable length aggregate or array of
variable length aggregates, assume worst that the end is
just BITS_PER_UNIT aligned. */
if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
{
if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
{
unsigned HOST_WIDE_INT sz
= least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
rli->offset_align = MIN (rli->offset_align, sz);
}
}
else
rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
}
}
else if (targetm.ms_bitfield_layout_p (rli->t))
{
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
/* If FIELD is the last field and doesn't end at the full length
of the type then pad the struct out to the full length of the
last type. */
if (DECL_BIT_FIELD_TYPE (field)
&& !integer_zerop (DECL_SIZE (field)))
{
/* We have to scan, because non-field DECLS are also here. */
tree probe = field;
while ((probe = DECL_CHAIN (probe)))
if (TREE_CODE (probe) == FIELD_DECL)
break;
if (!probe)
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
bitsize_int (rli->remaining_in_alignment));
}
normalize_rli (rli);
}
else
{
rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
normalize_rli (rli);
}
}
/* Assuming that all the fields have been laid out, this function uses
RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
indicated by RLI. */
static void
finalize_record_size (record_layout_info rli)
{
tree unpadded_size, unpadded_size_unit;
/* Now we want just byte and bit offsets, so set the offset alignment
to be a byte and then normalize. */
rli->offset_align = BITS_PER_UNIT;
normalize_rli (rli);
/* Determine the desired alignment. */
#ifdef ROUND_TYPE_ALIGN
SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
rli->record_align));
#else
SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
#endif
/* Compute the size so far. Be sure to allow for extra bits in the
size in bytes. We have guaranteed above that it will be no more
than a single byte. */
unpadded_size = rli_size_so_far (rli);
unpadded_size_unit = rli_size_unit_so_far (rli);
if (! integer_zerop (rli->bitpos))
unpadded_size_unit
= size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
/* Round the size up to be a multiple of the required alignment. */
TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
TYPE_SIZE_UNIT (rli->t)
= round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
if (TREE_CONSTANT (unpadded_size)
&& simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
&& input_location != BUILTINS_LOCATION)
warning (OPT_Wpadded, "padding struct size to alignment boundary");
if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
&& TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
&& TREE_CONSTANT (unpadded_size))
{
tree unpacked_size;
#ifdef ROUND_TYPE_ALIGN
rli->unpacked_align
= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
#else
rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
#endif
unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
{
if (TYPE_NAME (rli->t))
{
tree name;
if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
name = TYPE_NAME (rli->t);
else
name = DECL_NAME (TYPE_NAME (rli->t));
if (STRICT_ALIGNMENT)
warning (OPT_Wpacked, "packed attribute causes inefficient "
"alignment for %qE", name);
else
warning (OPT_Wpacked,
"packed attribute is unnecessary for %qE", name);
}
else
{
if (STRICT_ALIGNMENT)
warning (OPT_Wpacked,
"packed attribute causes inefficient alignment");
else
warning (OPT_Wpacked, "packed attribute is unnecessary");
}
}
}
}
/* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
void
compute_record_mode (tree type)
{
tree field;
machine_mode mode = VOIDmode;
/* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
However, if possible, we use a mode that fits in a register
instead, in order to allow for better optimization down the
line. */
SET_TYPE_MODE (type, BLKmode);
if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
return;
/* A record which has any BLKmode members must itself be
BLKmode; it can't go in a register. Unless the member is
BLKmode only because it isn't aligned. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
|| (TYPE_MODE (TREE_TYPE (field)) == BLKmode
&& ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
&& !(TYPE_SIZE (TREE_TYPE (field)) != 0
&& integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
|| ! tree_fits_uhwi_p (bit_position (field))
|| DECL_SIZE (field) == 0
|| ! tree_fits_uhwi_p (DECL_SIZE (field)))
return;
/* If this field is the whole struct, remember its mode so
that, say, we can put a double in a class into a DF
register instead of forcing it to live in the stack. */
if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
mode = DECL_MODE (field);
/* With some targets, it is sub-optimal to access an aligned
BLKmode structure as a scalar. */
if (targetm.member_type_forces_blk (field, mode))
return;
}
/* If we only have one real field; use its mode if that mode's size
matches the type's size. This only applies to RECORD_TYPE. This
does not apply to unions. */
if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
&& tree_fits_uhwi_p (TYPE_SIZE (type))
&& known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
;
else
mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
/* If structure's known alignment is less than what the scalar
mode would need, and it matters, then stick with BLKmode. */
if (mode != BLKmode
&& STRICT_ALIGNMENT
&& ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
|| TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
{
/* If this is the only reason this type is BLKmode, then
don't force containing types to be BLKmode. */
TYPE_NO_FORCE_BLK (type) = 1;
mode = BLKmode;
}
SET_TYPE_MODE (type, mode);
}
/* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
out. */
static void
finalize_type_size (tree type)
{
/* Normally, use the alignment corresponding to the mode chosen.
However, where strict alignment is not required, avoid
over-aligning structures, since most compilers do not do this
alignment. */
if (TYPE_MODE (type) != BLKmode
&& TYPE_MODE (type) != VOIDmode
&& (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
{
unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
/* Don't override a larger alignment requirement coming from a user
alignment of one of the fields. */
if (mode_align >= TYPE_ALIGN (type))
{
SET_TYPE_ALIGN (type, mode_align);
TYPE_USER_ALIGN (type) = 0;
}
}
/* Do machine-dependent extra alignment. */
#ifdef ROUND_TYPE_ALIGN
SET_TYPE_ALIGN (type,
ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
#endif
/* If we failed to find a simple way to calculate the unit size
of the type, find it by division. */
if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
/* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
result will fit in sizetype. We will get more efficient code using
sizetype, so we force a conversion. */
TYPE_SIZE_UNIT (type)
= fold_convert (sizetype,
size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
bitsize_unit_node));
if (TYPE_SIZE (type) != 0)
{
TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
TYPE_SIZE_UNIT (type)
= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
}
/* Evaluate nonconstant sizes only once, either now or as soon as safe. */
if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
if (TYPE_SIZE_UNIT (type) != 0
&& TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
/* Handle empty records as per the x86-64 psABI. */
TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
/* Also layout any other variants of the type. */
if (TYPE_NEXT_VARIANT (type)
|| type != TYPE_MAIN_VARIANT (type))
{
tree variant;
/* Record layout info of this variant. */
tree size = TYPE_SIZE (type);
tree size_unit = TYPE_SIZE_UNIT (type);
unsigned int align = TYPE_ALIGN (type);
unsigned int precision = TYPE_PRECISION (type);
unsigned int user_align = TYPE_USER_ALIGN (type);
machine_mode mode = TYPE_MODE (type);
bool empty_p = TYPE_EMPTY_P (type);
/* Copy it into all variants. */
for (variant = TYPE_MAIN_VARIANT (type);
variant != 0;
variant = TYPE_NEXT_VARIANT (variant))
{
TYPE_SIZE (variant) = size;
TYPE_SIZE_UNIT (variant) = size_unit;
unsigned valign = align;
if (TYPE_USER_ALIGN (variant))
valign = MAX (valign, TYPE_ALIGN (variant));
else
TYPE_USER_ALIGN (variant) = user_align;
SET_TYPE_ALIGN (variant, valign);
TYPE_PRECISION (variant) = precision;
SET_TYPE_MODE (variant, mode);
TYPE_EMPTY_P (variant) = empty_p;
}
}
}
/* Return a new underlying object for a bitfield started with FIELD. */
static tree
start_bitfield_representative (tree field)
{
tree repr = make_node (FIELD_DECL);
DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
/* Force the representative to begin at a BITS_PER_UNIT aligned
boundary - C++ may use tail-padding of a base object to
continue packing bits so the bitfield region does not start
at bit zero (see g++.dg/abi/bitfield5.C for example).
Unallocated bits may happen for other reasons as well,
for example Ada which allows explicit bit-granular structure layout. */
DECL_FIELD_BIT_OFFSET (repr)
= size_binop (BIT_AND_EXPR,
DECL_FIELD_BIT_OFFSET (field),
bitsize_int (~(BITS_PER_UNIT - 1)));
SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
DECL_SIZE (repr) = DECL_SIZE (field);
DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
DECL_PACKED (repr) = DECL_PACKED (field);
DECL_CONTEXT (repr) = DECL_CONTEXT (field);
/* There are no indirect accesses to this field. If we introduce
some then they have to use the record alias set. This makes
sure to properly conflict with [indirect] accesses to addressable
fields of the bitfield group. */
DECL_NONADDRESSABLE_P (repr) = 1;
return repr;
}
/* Finish up a bitfield group that was started by creating the underlying
object REPR with the last field in the bitfield group FIELD. */
static void
finish_bitfield_representative (tree repr, tree field)
{
unsigned HOST_WIDE_INT bitsize, maxbitsize;
tree nextf, size;
size = size_diffop (DECL_FIELD_OFFSET (field),
DECL_FIELD_OFFSET (repr));
while (TREE_CODE (size) == COMPOUND_EXPR)
size = TREE_OPERAND (size, 1);
gcc_assert (tree_fits_uhwi_p (size));
bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
+ tree_to_uhwi (DECL_SIZE (field)));
/* Round up bitsize to multiples of BITS_PER_UNIT. */
bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
/* Now nothing tells us how to pad out bitsize ... */
nextf = DECL_CHAIN (field);
while (nextf && TREE_CODE (nextf) != FIELD_DECL)
nextf = DECL_CHAIN (nextf);
if (nextf)
{
tree maxsize;
/* If there was an error, the field may be not laid out
correctly. Don't bother to do anything. */
if (TREE_TYPE (nextf) == error_mark_node)
return;
maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
DECL_FIELD_OFFSET (repr));
if (tree_fits_uhwi_p (maxsize))
{
maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
/* If the group ends within a bitfield nextf does not need to be
aligned to BITS_PER_UNIT. Thus round up. */
maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
}
else
maxbitsize = bitsize;
}
else
{
/* Note that if the C++ FE sets up tail-padding to be re-used it
creates a as-base variant of the type with TYPE_SIZE adjusted
accordingly. So it is safe to include tail-padding here. */
tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
(DECL_CONTEXT (field));
tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
/* We cannot generally rely on maxsize to fold to an integer constant,
so use bitsize as fallback for this case. */
if (tree_fits_uhwi_p (maxsize))
maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
else
maxbitsize = bitsize;
}
/* Only if we don't artificially break up the representative in
the middle of a large bitfield with different possibly
overlapping representatives. And all representatives start
at byte offset. */
gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
/* Find the smallest nice mode to use. */
opt_scalar_int_mode mode_iter;
FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
break;
scalar_int_mode mode;
if (!mode_iter.exists (&mode)
|| GET_MODE_BITSIZE (mode) > maxbitsize
|| GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
{
/* We really want a BLKmode representative only as a last resort,
considering the member b in
struct { int a : 7; int b : 17; int c; } __attribute__((packed));
Otherwise we simply want to split the representative up
allowing for overlaps within the bitfield region as required for
struct { int a : 7; int b : 7;
int c : 10; int d; } __attribute__((packed));
[0, 15] HImode for a and b, [8, 23] HImode for c. */
DECL_SIZE (repr) = bitsize_int (bitsize);
DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
SET_DECL_MODE (repr, BLKmode);
TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
bitsize / BITS_PER_UNIT);
}
else
{
unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
DECL_SIZE (repr) = bitsize_int (modesize);
DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
SET_DECL_MODE (repr, mode);
TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
}
/* Remember whether the bitfield group is at the end of the
structure or not. */
DECL_CHAIN (repr) = nextf;
}
/* Compute and set FIELD_DECLs for the underlying objects we should
use for bitfield access for the structure T. */
void
finish_bitfield_layout (tree t)
{
tree field, prev;
tree repr = NULL_TREE;
/* Unions would be special, for the ease of type-punning optimizations
we could use the underlying type as hint for the representative
if the bitfield would fit and the representative would not exceed
the union in size. */
if (TREE_CODE (t) != RECORD_TYPE)
return;
for (prev = NULL_TREE, field = TYPE_FIELDS (t);
field; field = DECL_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
/* In the C++ memory model, consecutive bit fields in a structure are
considered one memory location and updating a memory location
may not store into adjacent memory locations. */
if (!repr
&& DECL_BIT_FIELD_TYPE (field))
{
/* Start new representative. */
repr = start_bitfield_representative (field);
}
else if (repr
&& ! DECL_BIT_FIELD_TYPE (field))
{
/* Finish off new representative. */
finish_bitfield_representative (repr, prev);
repr = NULL_TREE;
}
else if (DECL_BIT_FIELD_TYPE (field))
{
gcc_assert (repr != NULL_TREE);
/* Zero-size bitfields finish off a representative and
do not have a representative themselves. This is
required by the C++ memory model. */
if (integer_zerop (DECL_SIZE (field)))
{
finish_bitfield_representative (repr, prev);
repr = NULL_TREE;
}
/* We assume that either DECL_FIELD_OFFSET of the representative
and each bitfield member is a constant or they are equal.
This is because we need to be able to compute the bit-offset
of each field relative to the representative in get_bit_range
during RTL expansion.
If these constraints are not met, simply force a new
representative to be generated. That will at most
generate worse code but still maintain correctness with
respect to the C++ memory model. */
else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
&& tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
|| operand_equal_p (DECL_FIELD_OFFSET (repr),
DECL_FIELD_OFFSET (field), 0)))
{
finish_bitfield_representative (repr, prev);
repr = start_bitfield_representative (field);
}
}
else
continue;
if (repr)
DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
prev = field;
}
if (repr)
finish_bitfield_representative (repr, prev);
}
/* Do all of the work required to layout the type indicated by RLI,
once the fields have been laid out. This function will call `free'
for RLI, unless FREE_P is false. Passing a value other than false
for FREE_P is bad practice; this option only exists to support the
G++ 3.2 ABI. */
void
finish_record_layout (record_layout_info rli, int free_p)
{
tree variant;
/* Compute the final size. */
finalize_record_size (rli);
/* Compute the TYPE_MODE for the record. */
compute_record_mode (rli->t);
/* Perform any last tweaks to the TYPE_SIZE, etc. */
finalize_type_size (rli->t);
/* Compute bitfield representatives. */
finish_bitfield_layout (rli->t);
/* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
With C++ templates, it is too early to do this when the attribute
is being parsed. */
for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
variant = TYPE_NEXT_VARIANT (variant))
{
TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
TYPE_REVERSE_STORAGE_ORDER (variant)
= TYPE_REVERSE_STORAGE_ORDER (rli->t);
}
/* Lay out any static members. This is done now because their type
may use the record's type. */
while (!vec_safe_is_empty (rli->pending_statics))
layout_decl (rli->pending_statics->pop (), 0);
/* Clean up. */
if (free_p)
{
vec_free (rli->pending_statics);
free (rli);
}
}
/* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
NAME, its fields are chained in reverse on FIELDS.
If ALIGN_TYPE is non-null, it is given the same alignment as
ALIGN_TYPE. */
void
finish_builtin_struct (tree type, const char *name, tree fields,
tree align_type)
{
tree tail, next;
for (tail = NULL_TREE; fields; tail = fields, fields = next)
{
DECL_FIELD_CONTEXT (fields) = type;
next = DECL_CHAIN (fields);
DECL_CHAIN (fields) = tail;
}
TYPE_FIELDS (type) = tail;
if (align_type)
{
SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
SET_TYPE_WARN_IF_NOT_ALIGN (type,
TYPE_WARN_IF_NOT_ALIGN (align_type));
}
layout_type (type);
#if 0 /* not yet, should get fixed properly later */
TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
#else
TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
TYPE_DECL, get_identifier (name), type);
#endif
TYPE_STUB_DECL (type) = TYPE_NAME (type);
layout_decl (TYPE_NAME (type), 0);
}
/* Calculate the mode, size, and alignment for TYPE.
For an array type, calculate the element separation as well.
Record TYPE on the chain of permanent or temporary types
so that dbxout will find out about it.
TYPE_SIZE of a type is nonzero if the type has been laid out already.
layout_type does nothing on such a type.
If the type is incomplete, its TYPE_SIZE remains zero. */
void
layout_type (tree type)
{
gcc_assert (type);
if (type == error_mark_node)
return;
/* We don't want finalize_type_size to copy an alignment attribute to
variants that don't have it. */
type = TYPE_MAIN_VARIANT (type);
/* Do nothing if type has been laid out before. */
if (TYPE_SIZE (type))
return;
switch (TREE_CODE (type))
{
case LANG_TYPE:
/* This kind of type is the responsibility
of the language-specific code. */
gcc_unreachable ();
case BOOLEAN_TYPE:
case INTEGER_TYPE:
case ENUMERAL_TYPE:
{
scalar_int_mode mode
= smallest_int_mode_for_size (TYPE_PRECISION (type));
SET_TYPE_MODE (type, mode);
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
/* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
break;
}
case REAL_TYPE:
{
/* Allow the caller to choose the type mode, which is how decimal
floats are distinguished from binary ones. */
if (TYPE_MODE (type) == VOIDmode)
SET_TYPE_MODE
(type, float_mode_for_size (TYPE_PRECISION (type)).require ());
scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
break;
}
case FIXED_POINT_TYPE:
{
/* TYPE_MODE (type) has been set already. */
scalar_mode mode = SCALAR_TYPE_MODE (type);
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
break;
}
case COMPLEX_TYPE:
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
SET_TYPE_MODE (type,
GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
break;
case VECTOR_TYPE:
{
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
tree innertype = TREE_TYPE (type);
/* Find an appropriate mode for the vector type. */
if (TYPE_MODE (type) == VOIDmode)
SET_TYPE_MODE (type,
mode_for_vector (SCALAR_TYPE_MODE (innertype),
nunits).else_blk ());
TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
/* Several boolean vector elements may fit in a single unit. */
if (VECTOR_BOOLEAN_TYPE_P (type)
&& type->type_common.mode != BLKmode)
TYPE_SIZE_UNIT (type)
= size_int (GET_MODE_SIZE (type->type_common.mode));
else
TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
TYPE_SIZE_UNIT (innertype),
size_int (nunits));
TYPE_SIZE (type) = int_const_binop
(MULT_EXPR,
bits_from_bytes (TYPE_SIZE_UNIT (type)),
bitsize_int (BITS_PER_UNIT));
/* For vector types, we do not default to the mode's alignment.
Instead, query a target hook, defaulting to natural alignment.
This prevents ABI changes depending on whether or not native
vector modes are supported. */
SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
/* However, if the underlying mode requires a bigger alignment than
what the target hook provides, we cannot use the mode. For now,
simply reject that case. */
gcc_assert (TYPE_ALIGN (type)
>= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
break;
}
case VOID_TYPE:
/* This is an incomplete type and so doesn't have a size. */
SET_TYPE_ALIGN (type, 1);
TYPE_USER_ALIGN (type) = 0;
SET_TYPE_MODE (type, VOIDmode);
break;
case POINTER_BOUNDS_TYPE:
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
break;
case OFFSET_TYPE:
TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
/* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
integral, which may be an __intN. */
SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
TYPE_PRECISION (type) = POINTER_SIZE;
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
/* It's hard to see what the mode and size of a function ought to
be, but we do know the alignment is FUNCTION_BOUNDARY, so
make it consistent with that. */
SET_TYPE_MODE (type,
int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
{
scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
TYPE_UNSIGNED (type) = 1;
TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
}
break;
case ARRAY_TYPE:
{
tree index = TYPE_DOMAIN (type);
tree element = TREE_TYPE (type);
/* We need to know both bounds in order to compute the size. */
if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
&& TYPE_SIZE (element))
{
tree ub = TYPE_MAX_VALUE (index);
tree lb = TYPE_MIN_VALUE (index);
tree element_size = TYPE_SIZE (element);
tree length;
/* Make sure that an array of zero-sized element is zero-sized
regardless of its extent. */
if (integer_zerop (element_size))
length = size_zero_node;
/* The computation should happen in the original signedness so
that (possible) negative values are handled appropriately
when determining overflow. */
else
{
/* ??? When it is obvious that the range is signed
represent it using ssizetype. */
if (TREE_CODE (lb) == INTEGER_CST
&& TREE_CODE (ub) == INTEGER_CST
&& TYPE_UNSIGNED (TREE_TYPE (lb))
&& tree_int_cst_lt (ub, lb))
{
lb = wide_int_to_tree (ssizetype,
offset_int::from (wi::to_wide (lb),
SIGNED));
ub = wide_int_to_tree (ssizetype,
offset_int::from (wi::to_wide (ub),
SIGNED));
}
length
= fold_convert (sizetype,
size_binop (PLUS_EXPR,
build_int_cst (TREE_TYPE (lb), 1),
size_binop (MINUS_EXPR, ub, lb)));
}
/* ??? We have no way to distinguish a null-sized array from an
array spanning the whole sizetype range, so we arbitrarily
decide that [0, -1] is the only valid representation. */
if (integer_zerop (length)
&& TREE_OVERFLOW (length)
&& integer_zerop (lb))
length = size_zero_node;
TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
bits_from_bytes (length));
/* If we know the size of the element, calculate the total size
directly, rather than do some division thing below. This
optimization helps Fortran assumed-size arrays (where the
size of the array is determined at runtime) substantially. */
if (TYPE_SIZE_UNIT (element))
TYPE_SIZE_UNIT (type)
= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
}
/* Now round the alignment and size,
using machine-dependent criteria if any. */
unsigned align = TYPE_ALIGN (element);
if (TYPE_USER_ALIGN (type))
align = MAX (align, TYPE_ALIGN (type));
else
TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
if (!TYPE_WARN_IF_NOT_ALIGN (type))
SET_TYPE_WARN_IF_NOT_ALIGN (type,
TYPE_WARN_IF_NOT_ALIGN (element));
#ifdef ROUND_TYPE_ALIGN
align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
#else
align = MAX (align, BITS_PER_UNIT);
#endif
SET_TYPE_ALIGN (type, align);
SET_TYPE_MODE (type, BLKmode);
if (TYPE_SIZE (type) != 0
&& ! targetm.member_type_forces_blk (type, VOIDmode)
/* BLKmode elements force BLKmode aggregate;
else extract/store fields may lose. */
&& (TYPE_MODE (TREE_TYPE (type)) != BLKmode
|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
{
SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
TYPE_SIZE (type)));
if (TYPE_MODE (type) != BLKmode
&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
{
TYPE_NO_FORCE_BLK (type) = 1;
SET_TYPE_MODE (type, BLKmode);
}
}
if (AGGREGATE_TYPE_P (element))
TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
/* When the element size is constant, check that it is at least as
large as the element alignment. */
if (TYPE_SIZE_UNIT (element)
&& TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
/* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
TYPE_ALIGN_UNIT. */
&& !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
&& !integer_zerop (TYPE_SIZE_UNIT (element))
&& compare_tree_int (TYPE_SIZE_UNIT (element),
TYPE_ALIGN_UNIT (element)) < 0)
error ("alignment of array elements is greater than element size");
break;
}
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
tree field;
record_layout_info rli;
/* Initialize the layout information. */
rli = start_record_layout (type);
/* If this is a QUAL_UNION_TYPE, we want to process the fields
in the reverse order in building the COND_EXPR that denotes
its size. We reverse them again later. */
if (TREE_CODE (type) == QUAL_UNION_TYPE)
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
/* Place all the fields. */
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
place_field (rli, field);
if (TREE_CODE (type) == QUAL_UNION_TYPE)
TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
/* Finish laying out the record. */
finish_record_layout (rli, /*free_p=*/true);
}
break;
default:
gcc_unreachable ();
}
/* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
records and unions, finish_record_layout already called this
function. */
if (!RECORD_OR_UNION_TYPE_P (type))
finalize_type_size (type);
/* We should never see alias sets on incomplete aggregates. And we
should not call layout_type on not incomplete aggregates. */
if (AGGREGATE_TYPE_P (type))
gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
}
/* Return the least alignment required for type TYPE. */
unsigned int
min_align_of_type (tree type)
{
unsigned int align = TYPE_ALIGN (type);
if (!TYPE_USER_ALIGN (type))
{
align = MIN (align, BIGGEST_ALIGNMENT);
#ifdef BIGGEST_FIELD_ALIGNMENT
align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
#endif
unsigned int field_align = align;
#ifdef ADJUST_FIELD_ALIGN
field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
#endif
align = MIN (align, field_align);
}
return align / BITS_PER_UNIT;
}
/* Create and return a type for signed integers of PRECISION bits. */
tree
make_signed_type (int precision)
{
tree type = make_node (INTEGER_TYPE);
TYPE_PRECISION (type) = precision;
fixup_signed_type (type);
return type;
}
/* Create and return a type for unsigned integers of PRECISION bits. */
tree
make_unsigned_type (int precision)
{
tree type = make_node (INTEGER_TYPE);
TYPE_PRECISION (type) = precision;
fixup_unsigned_type (type);
return type;
}
/* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
and SATP. */
tree
make_fract_type (int precision, int unsignedp, int satp)
{
tree type = make_node (FIXED_POINT_TYPE);
TYPE_PRECISION (type) = precision;
if (satp)
TYPE_SATURATING (type) = 1;
/* Lay out the type: set its alignment, size, etc. */
TYPE_UNSIGNED (type) = unsignedp;
enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
layout_type (type);
return type;
}
/* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
and SATP. */
tree
make_accum_type (int precision, int unsignedp, int satp)
{
tree type = make_node (FIXED_POINT_TYPE);
TYPE_PRECISION (type) = precision;
if (satp)
TYPE_SATURATING (type) = 1;
/* Lay out the type: set its alignment, size, etc. */
TYPE_UNSIGNED (type) = unsignedp;
enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
layout_type (type);
return type;
}
/* Initialize sizetypes so layout_type can use them. */
void
initialize_sizetypes (void)
{
int precision, bprecision;
/* Get sizetypes precision from the SIZE_TYPE target macro. */
if (strcmp (SIZETYPE, "unsigned int") == 0)
precision = INT_TYPE_SIZE;
else if (strcmp (SIZETYPE, "long unsigned int") == 0)
precision = LONG_TYPE_SIZE;
else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
precision = LONG_LONG_TYPE_SIZE;
else if (strcmp (SIZETYPE, "short unsigned int") == 0)
precision = SHORT_TYPE_SIZE;
else
{
int i;
precision = -1;
for (i = 0; i < NUM_INT_N_ENTS; i++)
if (int_n_enabled_p[i])
{
char name[50];
sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
if (strcmp (name, SIZETYPE) == 0)
{
precision = int_n_data[i].bitsize;
}
}
if (precision == -1)
gcc_unreachable ();
}
bprecision
= MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
if (bprecision > HOST_BITS_PER_DOUBLE_INT)
bprecision = HOST_BITS_PER_DOUBLE_INT;
/* Create stubs for sizetype and bitsizetype so we can create constants. */
sizetype = make_node (INTEGER_TYPE);
TYPE_NAME (sizetype) = get_identifier ("sizetype");
TYPE_PRECISION (sizetype) = precision;
TYPE_UNSIGNED (sizetype) = 1;
bitsizetype = make_node (INTEGER_TYPE);
TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
TYPE_PRECISION (bitsizetype) = bprecision;
TYPE_UNSIGNED (bitsizetype) = 1;
/* Now layout both types manually. */
scalar_int_mode mode = smallest_int_mode_for_size (precision);
SET_TYPE_MODE (sizetype, mode);
SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
TYPE_SIZE (sizetype) = bitsize_int (precision);
TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
mode = smallest_int_mode_for_size (bprecision);
SET_TYPE_MODE (bitsizetype, mode);
SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
/* Create the signed variants of *sizetype. */
ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
}
/* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
for TYPE, based on the PRECISION and whether or not the TYPE
IS_UNSIGNED. PRECISION need not correspond to a width supported
natively by the hardware; for example, on a machine with 8-bit,
16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
61. */
void
set_min_and_max_values_for_integral_type (tree type,
int precision,
signop sgn)
{
/* For bitfields with zero width we end up creating integer types
with zero precision. Don't assign any minimum/maximum values
to those types, they don't have any valid value. */
if (precision < 1)
return;
TYPE_MIN_VALUE (type)
= wide_int_to_tree (type, wi::min_value (precision, sgn));
TYPE_MAX_VALUE (type)
= wide_int_to_tree (type, wi::max_value (precision, sgn));
}
/* Set the extreme values of TYPE based on its precision in bits,
then lay it out. Used when make_signed_type won't do
because the tree code is not INTEGER_TYPE. */
void
fixup_signed_type (tree type)
{
int precision = TYPE_PRECISION (type);
set_min_and_max_values_for_integral_type (type, precision, SIGNED);
/* Lay out the type: set its alignment, size, etc. */
layout_type (type);
}
/* Set the extreme values of TYPE based on its precision in bits,
then lay it out. This is used both in `make_unsigned_type'
and for enumeral types. */
void
fixup_unsigned_type (tree type)
{
int precision = TYPE_PRECISION (type);
TYPE_UNSIGNED (type) = 1;
set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
/* Lay out the type: set its alignment, size, etc. */
layout_type (type);
}
/* Construct an iterator for a bitfield that spans BITSIZE bits,
starting at BITPOS.
BITREGION_START is the bit position of the first bit in this
sequence of bit fields. BITREGION_END is the last bit in this
sequence. If these two fields are non-zero, we should restrict the
memory access to that range. Otherwise, we are allowed to touch
any adjacent non bit-fields.
ALIGN is the alignment of the underlying object in bits.
VOLATILEP says whether the bitfield is volatile. */
bit_field_mode_iterator
::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
poly_int64 bitregion_start,
poly_int64 bitregion_end,
unsigned int align, bool volatilep)
: m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
m_bitpos (bitpos), m_bitregion_start (bitregion_start),
m_bitregion_end (bitregion_end), m_align (align),
m_volatilep (volatilep), m_count (0)
{
if (known_eq (m_bitregion_end, 0))
{
/* We can assume that any aligned chunk of ALIGN bits that overlaps
the bitfield is mapped and won't trap, provided that ALIGN isn't
too large. The cap is the biggest required alignment for data,
or at least the word size. And force one such chunk at least. */
unsigned HOST_WIDE_INT units
= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
if (bitsize <= 0)
bitsize = 1;
HOST_WIDE_INT end = bitpos + bitsize + units - 1;
m_bitregion_end = end - end % units - 1;
}
}
/* Calls to this function return successively larger modes that can be used
to represent the bitfield. Return true if another bitfield mode is
available, storing it in *OUT_MODE if so. */
bool
bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
{
scalar_int_mode mode;
for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
{
unsigned int unit = GET_MODE_BITSIZE (mode);
/* Skip modes that don't have full precision. */
if (unit != GET_MODE_PRECISION (mode))
continue;
/* Stop if the mode is too wide to handle efficiently. */
if (unit > MAX_FIXED_MODE_SIZE)
break;
/* Don't deliver more than one multiword mode; the smallest one
should be used. */
if (m_count > 0 && unit > BITS_PER_WORD)
break;
/* Skip modes that are too small. */
unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
unsigned HOST_WIDE_INT subend = substart + m_bitsize;
if (subend > unit)
continue;
/* Stop if the mode goes outside the bitregion. */
HOST_WIDE_INT start = m_bitpos - substart;
if (maybe_ne (m_bitregion_start, 0)
&& maybe_lt (start, m_bitregion_start))
break;
HOST_WIDE_INT end = start + unit;
if (maybe_gt (end, m_bitregion_end + 1))
break;
/* Stop if the mode requires too much alignment. */
if (GET_MODE_ALIGNMENT (mode) > m_align
&& targetm.slow_unaligned_access (mode, m_align))
break;
*out_mode = mode;
m_mode = GET_MODE_WIDER_MODE (mode);
m_count++;
return true;
}
return false;
}
/* Return true if smaller modes are generally preferred for this kind
of bitfield. */
bool
bit_field_mode_iterator::prefer_smaller_modes ()
{
return (m_volatilep
? targetm.narrow_volatile_bitfield ()
: !SLOW_BYTE_ACCESS);
}
/* Find the best machine mode to use when referencing a bit field of length
BITSIZE bits starting at BITPOS.
BITREGION_START is the bit position of the first bit in this
sequence of bit fields. BITREGION_END is the last bit in this
sequence. If these two fields are non-zero, we should restrict the
memory access to that range. Otherwise, we are allowed to touch
any adjacent non bit-fields.
The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
doesn't want to apply a specific limit.
If no mode meets all these conditions, we return VOIDmode.
The underlying object is known to be aligned to a boundary of ALIGN bits.
If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
smallest mode meeting these conditions.
If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
largest mode (but a mode no wider than UNITS_PER_WORD) that meets
all the conditions.
If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
decide which of the above modes should be used. */
bool
get_best_mode (int bitsize, int bitpos,
poly_uint64 bitregion_start, poly_uint64 bitregion_end,
unsigned int align,
unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
scalar_int_mode *best_mode)
{
bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
bitregion_end, align, volatilep);
scalar_int_mode mode;
bool found = false;
while (iter.next_mode (&mode)
/* ??? For historical reasons, reject modes that would normally
receive greater alignment, even if unaligned accesses are
acceptable. This has both advantages and disadvantages.
Removing this check means that something like:
struct s { unsigned int x; unsigned int y; };
int f (struct s *s) { return s->x == 0 && s->y == 0; }
can be implemented using a single load and compare on
64-bit machines that have no alignment restrictions.
For example, on powerpc64-linux-gnu, we would generate:
ld 3,0(3)
cntlzd 3,3
srdi 3,3,6
blr
rather than:
lwz 9,0(3)
cmpwi 7,9,0
bne 7,.L3
lwz 3,4(3)
cntlzw 3,3
srwi 3,3,5
extsw 3,3
blr
.p2align 4,,15
.L3:
li 3,0
blr
However, accessing more than one field can make life harder
for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
has a series of unsigned short copies followed by a series of
unsigned short comparisons. With this check, both the copies
and comparisons remain 16-bit accesses and FRE is able
to eliminate the latter. Without the check, the comparisons
can be done using 2 64-bit operations, which FRE isn't able
to handle in the same way.
Either way, it would probably be worth disabling this check
during expand. One particular example where removing the
check would help is the get_best_mode call in store_bit_field.
If we are given a memory bitregion of 128 bits that is aligned
to a 64-bit boundary, and the bitfield we want to modify is
in the second half of the bitregion, this check causes
store_bitfield to turn the memory into a 64-bit reference
to the _first_ half of the region. We later use
adjust_bitfield_address to get a reference to the correct half,
but doing so looks to adjust_bitfield_address as though we are
moving past the end of the original object, so it drops the
associated MEM_EXPR and MEM_OFFSET. Removing the check
causes store_bit_field to keep a 128-bit memory reference,
so that the final bitfield reference still has a MEM_EXPR
and MEM_OFFSET. */
&& GET_MODE_ALIGNMENT (mode) <= align
&& GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
{
*best_mode = mode;
found = true;
if (iter.prefer_smaller_modes ())
break;
}
return found;
}
/* Gets minimal and maximal values for MODE (signed or unsigned depending on
SIGN). The returned constants are made to be usable in TARGET_MODE. */
void
get_mode_bounds (scalar_int_mode mode, int sign,
scalar_int_mode target_mode,
rtx *mmin, rtx *mmax)
{
unsigned size = GET_MODE_PRECISION (mode);
unsigned HOST_WIDE_INT min_val, max_val;
gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
/* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
if (mode == BImode)
{
if (STORE_FLAG_VALUE < 0)
{
min_val = STORE_FLAG_VALUE;
max_val = 0;
}
else
{
min_val = 0;
max_val = STORE_FLAG_VALUE;
}
}
else if (sign)
{
min_val = -(HOST_WIDE_INT_1U << (size - 1));
max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
}
else
{
min_val = 0;
max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
}
*mmin = gen_int_mode (min_val, target_mode);
*mmax = gen_int_mode (max_val, target_mode);
}
#include "gt-stor-layout.h"
|