1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/* Copyright (C) 2009 Free Software Foundation.
Verify that folding of built-in complex math functions with
constant arguments is correctly performed by the compiler.
Origin: Kaveh R. Ghazi, January 28, 2009. */
/* { dg-do link } */
/* All references to link_error should go away at compile-time. The
first number is the line number and the second is the value number
among several tests. These appear in the tree dump file and aid in
debugging. */
extern void link_error(int, int);
#define CONJ(X) __builtin_conjf(X)
/* Return TRUE if the signs of floating point values X and Y are not
equal. This is important when comparing signed zeros. */
#define CKSGN_F(X,Y) \
(__builtin_copysignf(1,(X)) != __builtin_copysignf(1,(Y)))
#define CKSGN(X,Y) \
(__builtin_copysign(1,(X)) != __builtin_copysign(1,(Y)))
#define CKSGN_L(X,Y) \
(__builtin_copysignl(1,(X)) != __builtin_copysignl(1,(Y)))
/* Return TRUE if signs of the real parts, and the signs of the
imaginary parts, of X and Y are not equal. */
#define COMPLEX_CKSGN_F(X,Y) \
(CKSGN_F(__real__ (X), __real__ (Y)) || CKSGN_F (__imag__ (X), __imag__ (Y)))
#define COMPLEX_CKSGN(X,Y) \
(CKSGN(__real__ (X), __real__ (Y)) || CKSGN (__imag__ (X), __imag__ (Y)))
#define COMPLEX_CKSGN_L(X,Y) \
(CKSGN_L(__real__ (X), __real__ (Y)) || CKSGN_L (__imag__ (X), __imag__ (Y)))
/* For complex numbers, test that FUNC(ARG) == (RES). */
#define TESTIT_COMPLEX(VAL_NUM, FUNC, ARG, RES) do { \
if (__builtin_##FUNC##f(ARG) != (RES) \
|| COMPLEX_CKSGN_F(__builtin_##FUNC##f(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (__builtin_##FUNC(ARG) != (RES) \
|| COMPLEX_CKSGN(__builtin_##FUNC(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (__builtin_##FUNC##l(ARG) != (RES) \
|| COMPLEX_CKSGN_L(__builtin_##FUNC##l(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
} while (0)
/* For complex numbers, call the TESTIT_COMPLEX macro for all
combinations of neg and conj. */
#define TESTIT_COMPLEX_ALLNEG(FUNC, ARG, RES1, RES2, RES3, RES4) do { \
TESTIT_COMPLEX(1, FUNC, (_Complex float)(ARG), RES1); \
TESTIT_COMPLEX(2, FUNC, -CONJ(ARG), RES2); \
TESTIT_COMPLEX(3, FUNC, CONJ(ARG), RES3); \
TESTIT_COMPLEX(4, FUNC, -(_Complex float)(ARG), RES4); \
} while (0)
/* For complex numbers, call the TESTIT_COMPLEX_R macro for all
combinations of neg and conj. */
#define TESTIT_COMPLEX_R_ALLNEG(FUNC, ARG, RES1, RES2, RES3, RES4) do { \
TESTIT_COMPLEX_R(1, FUNC, (_Complex float)(ARG), RES1); \
TESTIT_COMPLEX_R(2, FUNC, -CONJ(ARG), RES2); \
TESTIT_COMPLEX_R(3, FUNC, CONJ(ARG), RES3); \
TESTIT_COMPLEX_R(4, FUNC, -(_Complex float)(ARG), RES4); \
} while (0)
/* For complex numbers, test that FUNC(ARG0, ARG1) == (RES). */
#define TESTIT_COMPLEX2(VAL_NUM, FUNC, ARG0, ARG1, RES) do { \
if (__builtin_##FUNC##f(ARG0, ARG1) != (RES) \
|| COMPLEX_CKSGN_F(__builtin_##FUNC##f(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (__builtin_##FUNC(ARG0, ARG1) != (RES) \
|| COMPLEX_CKSGN(__builtin_##FUNC(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (__builtin_##FUNC##l(ARG0, ARG1) != (RES) \
|| COMPLEX_CKSGN_L(__builtin_##FUNC##l(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
} while (0)
/* For complex numbers, call the TESTIT_COMPLEX2 macro for all
combinations of neg and conj. */
#define TESTIT_COMPLEX2_ALLNEG(FUNC, ARG0, ARG1, RES1, RES2, RES3, RES4, RES5,\
RES6, RES7, RES8, RES9, RES10, RES11, RES12, RES13, RES14, RES15, RES16) do{ \
TESTIT_COMPLEX2(1, FUNC, (_Complex float)(ARG0),(_Complex float)(ARG1), RES1);\
TESTIT_COMPLEX2(2, FUNC, (_Complex float)(ARG0),CONJ(ARG1), RES2); \
TESTIT_COMPLEX2(3, FUNC, (_Complex float)(ARG0),-(_Complex float)(ARG1), RES3); \
TESTIT_COMPLEX2(4, FUNC, (_Complex float)(ARG0),-CONJ(ARG1), RES4); \
TESTIT_COMPLEX2(5, FUNC, -(_Complex float)(ARG0),(_Complex float)(ARG1), RES5); \
TESTIT_COMPLEX2(6, FUNC, -(_Complex float)(ARG0),CONJ(ARG1), RES6); \
TESTIT_COMPLEX2(7, FUNC, -(_Complex float)(ARG0),-(_Complex float)(ARG1), RES7); \
TESTIT_COMPLEX2(8, FUNC, -(_Complex float)(ARG0),-CONJ(ARG1), RES8); \
TESTIT_COMPLEX2(9, FUNC, CONJ(ARG0),(_Complex float)(ARG1), RES9); \
TESTIT_COMPLEX2(10, FUNC, CONJ(ARG0),CONJ(ARG1), RES10); \
TESTIT_COMPLEX2(11, FUNC, CONJ(ARG0),-(_Complex float)(ARG1), RES11); \
TESTIT_COMPLEX2(12, FUNC, CONJ(ARG0),-CONJ(ARG1), RES12); \
TESTIT_COMPLEX2(13, FUNC, -CONJ(ARG0),(_Complex float)(ARG1), RES13); \
TESTIT_COMPLEX2(14, FUNC, -CONJ(ARG0),CONJ(ARG1), RES14); \
TESTIT_COMPLEX2(15, FUNC, -CONJ(ARG0),-(_Complex float)(ARG1), RES15); \
TESTIT_COMPLEX2(16, FUNC, -CONJ(ARG0),-CONJ(ARG1), RES16); \
} while (0)
/* Return TRUE if X differs from EXPECTED by more than 1%. If
EXPECTED is zero, then any difference may return TRUE. We don't
worry about signed zeros. */
#define DIFF1PCT_F(X,EXPECTED) \
(__builtin_fabsf((X)-(EXPECTED)) * 100 > __builtin_fabsf(EXPECTED))
#define DIFF1PCT(X,EXPECTED) \
(__builtin_fabs((X)-(EXPECTED)) * 100 > __builtin_fabs(EXPECTED))
#define DIFF1PCT_L(X,EXPECTED) \
(__builtin_fabsl((X)-(EXPECTED)) * 100 > __builtin_fabsl(EXPECTED))
/* Return TRUE if complex value X differs from EXPECTED by more than
1% in either the real or imaginary parts. */
#define COMPLEX_DIFF1PCT_F(X,EXPECTED) \
(DIFF1PCT_F(__real__ (X), __real__ (EXPECTED)) \
|| DIFF1PCT_F(__imag__ (X), __imag__ (EXPECTED)))
#define COMPLEX_DIFF1PCT(X,EXPECTED) \
(DIFF1PCT(__real__ (X), __real__ (EXPECTED)) \
|| DIFF1PCT(__imag__ (X), __imag__ (EXPECTED)))
#define COMPLEX_DIFF1PCT_L(X,EXPECTED) \
(DIFF1PCT_L(__real__ (X), __real__ (EXPECTED)) \
|| DIFF1PCT_L(__imag__ (X), __imag__ (EXPECTED)))
/* Range test, for complex numbers check that FUNC(ARG) is within 1%
of RES. This is NOT a test for accuracy to the last-bit, we're
merely checking that we get relatively sane results. I.e. the GCC
builtin is hooked up to the correct MPC function call. We first
check the magnitude and then the sign. */
#define TESTIT_COMPLEX_R(VAL_NUM, FUNC, ARG, RES) do { \
if (COMPLEX_DIFF1PCT_F (__builtin_##FUNC##f(ARG), (RES)) \
|| COMPLEX_CKSGN_F(__builtin_##FUNC##f(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (COMPLEX_DIFF1PCT (__builtin_##FUNC(ARG), (RES)) \
|| COMPLEX_CKSGN(__builtin_##FUNC(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (COMPLEX_DIFF1PCT (__builtin_##FUNC(ARG), (RES)) \
|| COMPLEX_CKSGN(__builtin_##FUNC(ARG), (RES))) \
link_error(__LINE__, VAL_NUM); \
} while (0)
/* Range test, for complex numbers check that FUNC(ARG0, ARG1) is
within 1% of RES. This is NOT a test for accuracy to the last-bit,
we're merely checking that we get relatively sane results.
I.e. the GCC builtin is hooked up to the correct MPC function call.
We first check the magnitude and then the sign. */
#define TESTIT_COMPLEX_R2(VAL_NUM, FUNC, ARG0, ARG1, RES) do { \
if (COMPLEX_DIFF1PCT_F (__builtin_##FUNC##f(ARG0, ARG1), (RES)) \
|| COMPLEX_CKSGN_F (__builtin_##FUNC##f(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (COMPLEX_DIFF1PCT (__builtin_##FUNC(ARG0, ARG1), (RES)) \
|| COMPLEX_CKSGN (__builtin_##FUNC(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
if (COMPLEX_DIFF1PCT_L (__builtin_##FUNC##l(ARG0, ARG1), (RES)) \
|| COMPLEX_CKSGN_L (__builtin_##FUNC##l(ARG0, ARG1), (RES))) \
link_error(__LINE__, VAL_NUM); \
} while (0)
/* For complex numbers, call the TESTIT_COMPLEX_R2 macro for all
combinations of neg and conj. */
#define TESTIT_COMPLEX_R2_ALLNEG(FUNC, ARG0, ARG1, RES1, RES2, RES3, RES4, RES5,\
RES6, RES7, RES8, RES9, RES10, RES11, RES12, RES13, RES14, RES15, RES16) do{ \
TESTIT_COMPLEX_R2(1, FUNC, (_Complex float)(ARG0),(_Complex float)(ARG1), RES1);\
TESTIT_COMPLEX_R2(2, FUNC, (_Complex float)(ARG0),CONJ(ARG1), RES2); \
TESTIT_COMPLEX_R2(3, FUNC, (_Complex float)(ARG0),-(_Complex float)(ARG1), RES3); \
TESTIT_COMPLEX_R2(4, FUNC, (_Complex float)(ARG0),-CONJ(ARG1), RES4); \
TESTIT_COMPLEX_R2(5, FUNC, -(_Complex float)(ARG0),(_Complex float)(ARG1), RES5); \
TESTIT_COMPLEX_R2(6, FUNC, -(_Complex float)(ARG0),CONJ(ARG1), RES6); \
TESTIT_COMPLEX_R2(7, FUNC, -(_Complex float)(ARG0),-(_Complex float)(ARG1), RES7); \
TESTIT_COMPLEX_R2(8, FUNC, -(_Complex float)(ARG0),-CONJ(ARG1), RES8); \
TESTIT_COMPLEX_R2(9, FUNC, CONJ(ARG0),(_Complex float)(ARG1), RES9); \
TESTIT_COMPLEX_R2(10, FUNC, CONJ(ARG0),CONJ(ARG1), RES10); \
TESTIT_COMPLEX_R2(11, FUNC, CONJ(ARG0),-(_Complex float)(ARG1), RES11); \
TESTIT_COMPLEX_R2(12, FUNC, CONJ(ARG0),-CONJ(ARG1), RES12); \
TESTIT_COMPLEX_R2(13, FUNC, -CONJ(ARG0),(_Complex float)(ARG1), RES13); \
TESTIT_COMPLEX_R2(14, FUNC, -CONJ(ARG0),CONJ(ARG1), RES14); \
TESTIT_COMPLEX_R2(15, FUNC, -CONJ(ARG0),-(_Complex float)(ARG1), RES15); \
TESTIT_COMPLEX_R2(16, FUNC, -CONJ(ARG0),-CONJ(ARG1), RES16); \
} while (0)
int main (void)
{
TESTIT_COMPLEX (1, cacos, 1, CONJ(0));
TESTIT_COMPLEX_R (1, cacos, -1, CONJ(3.141593F));
TESTIT_COMPLEX (1, cacos, CONJ(1), 0);
TESTIT_COMPLEX_R (1, cacos, CONJ(-1), 3.141593F);
TESTIT_COMPLEX_R_ALLNEG (cacos, 3.45678F + 2.34567FI,
0.60971F - 2.11780FI, 2.531875F - 2.117800FI,
0.60971F + 2.11780FI, 2.531875F + 2.117800FI);
TESTIT_COMPLEX_ALLNEG (casin, 0,
0, -CONJ(0), CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (casin, 3.45678F + 2.34567FI,
0.96107F + 2.11780FI, -0.96107F + 2.11780FI,
0.96107F - 2.11780FI, -0.96107F - 2.11780FI);
TESTIT_COMPLEX_ALLNEG (catan, 0,
0, -CONJ(0), CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (catan, 3.45678F + 2.34567FI,
1.37188F + 0.12997FI, -1.37188F + 0.12997FI,
1.37188F - 0.12997FI, -1.37188F - 0.12997FI);
TESTIT_COMPLEX (1, cacosh, 1, 0);
TESTIT_COMPLEX_R (1, cacosh, -1, 3.141593FI);
TESTIT_COMPLEX (1, cacosh, CONJ(1), CONJ(0));
TESTIT_COMPLEX_R (1, cacosh, CONJ(-1), CONJ(3.141593FI));
TESTIT_COMPLEX_R_ALLNEG (cacosh, 3.45678F + 2.34567FI,
2.11780F + 0.60971FI, 2.11780F + 2.531875FI,
2.11780F - 0.60971FI, 2.11780F - 2.531875FI);
TESTIT_COMPLEX_ALLNEG (casinh, 0,
0, -CONJ(0), CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (casinh, 3.45678F + 2.34567FI,
2.12836F + 0.58310FI, -2.12836F + 0.58310FI,
2.12836F - 0.58310FI, -2.12836F - 0.58310FI);
TESTIT_COMPLEX_ALLNEG (catanh, 0,
0, -CONJ(0), CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (catanh, 3.45678F + 2.34567FI,
0.19693F + 1.43190FI, -0.19693F + 1.43190FI,
0.19693F - 1.43190FI, -0.19693F - 1.43190FI);
TESTIT_COMPLEX_ALLNEG (csin, 0,
0, -0.F, CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (csin, 3.45678F + 2.34567FI,
-1.633059F - 4.917448FI, 1.633059F - 4.917448FI,
-1.633059F + 4.917448FI, 1.633059F + 4.917448FI);
TESTIT_COMPLEX_ALLNEG (ccos, 0,
CONJ(1), 1, 1, CONJ(1));
TESTIT_COMPLEX_R_ALLNEG (ccos, 3.45678F + 2.34567FI,
-5.008512F + 1.603367FI, -5.008512F - 1.603367FI,
-5.008512F - 1.603367FI, -5.008512F + 1.603367FI);
TESTIT_COMPLEX_ALLNEG (ctan, 0,
0, -0.F, CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (ctan, 3.45678F + 2.34567FI,
0.010657F + 0.985230FI, -0.010657F + 0.985230FI,
0.010657F - 0.985230FI, -0.010657F - 0.985230FI);
TESTIT_COMPLEX_ALLNEG (csinh, 0,
0, -0.F, CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (csinh, 3.45678F + 2.34567FI,
-11.083178F + 11.341487FI, 11.083178F +11.341487FI,
-11.083178F - 11.341487FI, 11.083178F -11.341487FI);
TESTIT_COMPLEX_ALLNEG (ccosh, 0,
1, CONJ(1), CONJ(1), 1);
TESTIT_COMPLEX_R_ALLNEG (ccosh, 3.45678F + 2.34567FI,
-11.105238F + 11.318958FI,-11.105238F -11.318958FI,
-11.105238F - 11.318958FI,-11.105238F +11.318958FI);
TESTIT_COMPLEX_ALLNEG (ctanh, 0,
0, -0.F, CONJ(0), CONJ(-0.F));
TESTIT_COMPLEX_R_ALLNEG (ctanh, 3.45678F + 2.34567FI,
1.000040F - 0.001988FI, -1.000040F - 0.001988FI,
1.000040F + 0.001988FI, -1.000040F + 0.001988FI);
TESTIT_COMPLEX (1, clog, 1, 0);
TESTIT_COMPLEX_R (1, clog, -1, 3.141593FI);
TESTIT_COMPLEX (1, clog, CONJ(1), CONJ(0));
TESTIT_COMPLEX_R (1, clog, CONJ(-1), CONJ(3.141593FI));
TESTIT_COMPLEX_R_ALLNEG (clog, 3.45678F + 2.34567FI,
1.429713F + 0.596199FI, 1.429713F + 2.545394FI,
1.429713F - 0.596199FI, 1.429713F - 2.545394FI);
TESTIT_COMPLEX_ALLNEG (csqrt, 0,
0, 0, CONJ(0), CONJ(0));
TESTIT_COMPLEX_R_ALLNEG (csqrt, 3.45678F + 2.34567FI,
1.953750F + 0.600299FI, 0.600299F + 1.953750FI,
1.953750F - 0.600299FI, 0.600299F - 1.953750FI);
TESTIT_COMPLEX2_ALLNEG (cpow, 1, 0,
1, 1, CONJ(1), CONJ(1), CONJ(1), CONJ(1), 1, 1,
CONJ(1), CONJ(1), 1, 1, 1, 1, CONJ(1), CONJ(1));
TESTIT_COMPLEX2_ALLNEG (cpow, 1.FI, 0,
1, 1, CONJ(1), CONJ(1), CONJ(1), CONJ(1), 1, 1,
CONJ(1), CONJ(1), 1, 1, 1, 1, CONJ(1), CONJ(1));
TESTIT_COMPLEX_R2_ALLNEG (cpow, 2, 3,
8, 8, CONJ(1/8.F), CONJ(1/8.F), CONJ(-8), CONJ(-8), -1/8.F, -1/8.F,
CONJ(8), CONJ(8), 1/8.F, 1/8.F, -8, -8, CONJ(-1/8.F), CONJ(-1/8.F));
TESTIT_COMPLEX_R2_ALLNEG (cpow, 3, 4,
81, 81, CONJ(1/81.F), CONJ(1/81.F), CONJ(81), CONJ(81), 1/81.F, 1/81.F,
CONJ(81), CONJ(81), 1/81.F, 1/81.F, 81, 81, CONJ(1/81.F), CONJ(1/81.F));
TESTIT_COMPLEX_R2_ALLNEG (cpow, 3, 5,
243, 243, CONJ(1/243.F), CONJ(1/243.F), CONJ(-243), CONJ(-243), -1/243.F, -1/243.F,
CONJ(243), CONJ(243), 1/243.F, 1/243.F, -243, -243, CONJ(-1/243.F), CONJ(-1/243.F));
TESTIT_COMPLEX_R2_ALLNEG (cpow, 4, 2,
16, 16, CONJ(1/16.F), CONJ(1/16.F), CONJ(16), CONJ(16), 1/16.F, 1/16.F,
CONJ(16), CONJ(16), 1/16.F, 1/16.F, 16, 16, CONJ(1/16.F), CONJ(1/16.F));
TESTIT_COMPLEX_R2_ALLNEG (cpow, 1.5, 3,
3.375F, 3.375F, CONJ(1/3.375F), CONJ(1/3.375F), CONJ(-3.375F), CONJ(-3.375F), -1/3.375F, -1/3.375F,
CONJ(3.375F), CONJ(3.375F), 1/3.375F, 1/3.375F, -3.375F, -3.375F, CONJ(-1/3.375F), CONJ(-1/3.375F));
TESTIT_COMPLEX2 (1, cpow, 16, 0.25F, 2);
TESTIT_COMPLEX_R2 (1, cpow, 3.45678F + 2.34567FI, 1.23456 + 4.56789FI, 0.212485F + 0.319304FI);
TESTIT_COMPLEX_R2 (1, cpow, 3.45678F - 2.34567FI, 1.23456 + 4.56789FI, 78.576402F + -41.756208FI);
TESTIT_COMPLEX_R2 (1, cpow, -1.23456F + 2.34567FI, 2.34567 - 1.23456FI, -110.629847F + -57.021655FI);
TESTIT_COMPLEX_R2 (1, cpow, -1.23456F - 2.34567FI, 2.34567 - 1.23456FI, 0.752336F + 0.199095FI);
return 0;
}
|