1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092
|
/* Control flow functions for trees.
Copyright (C) 2001-2018 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "trans-mem.h"
#include "stor-layout.h"
#include "print-tree.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "except.h"
#include "cfgloop.h"
#include "tree-ssa-propagate.h"
#include "value-prof.h"
#include "tree-inline.h"
#include "tree-ssa-live.h"
#include "omp-general.h"
#include "omp-expand.h"
#include "tree-cfgcleanup.h"
#include "gimplify.h"
#include "attribs.h"
#include "selftest.h"
#include "opts.h"
#include "asan.h"
/* This file contains functions for building the Control Flow Graph (CFG)
for a function tree. */
/* Local declarations. */
/* Initial capacity for the basic block array. */
static const int initial_cfg_capacity = 20;
/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
which use a particular edge. The CASE_LABEL_EXPRs are chained together
via their CASE_CHAIN field, which we clear after we're done with the
hash table to prevent problems with duplication of GIMPLE_SWITCHes.
Access to this list of CASE_LABEL_EXPRs allows us to efficiently
update the case vector in response to edge redirections.
Right now this table is set up and torn down at key points in the
compilation process. It would be nice if we could make the table
more persistent. The key is getting notification of changes to
the CFG (particularly edge removal, creation and redirection). */
static hash_map<edge, tree> *edge_to_cases;
/* If we record edge_to_cases, this bitmap will hold indexes
of basic blocks that end in a GIMPLE_SWITCH which we touched
due to edge manipulations. */
static bitmap touched_switch_bbs;
/* CFG statistics. */
struct cfg_stats_d
{
long num_merged_labels;
};
static struct cfg_stats_d cfg_stats;
/* Data to pass to replace_block_vars_by_duplicates_1. */
struct replace_decls_d
{
hash_map<tree, tree> *vars_map;
tree to_context;
};
/* Hash table to store last discriminator assigned for each locus. */
struct locus_discrim_map
{
location_t locus;
int discriminator;
};
/* Hashtable helpers. */
struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
{
static inline hashval_t hash (const locus_discrim_map *);
static inline bool equal (const locus_discrim_map *,
const locus_discrim_map *);
};
/* Trivial hash function for a location_t. ITEM is a pointer to
a hash table entry that maps a location_t to a discriminator. */
inline hashval_t
locus_discrim_hasher::hash (const locus_discrim_map *item)
{
return LOCATION_LINE (item->locus);
}
/* Equality function for the locus-to-discriminator map. A and B
point to the two hash table entries to compare. */
inline bool
locus_discrim_hasher::equal (const locus_discrim_map *a,
const locus_discrim_map *b)
{
return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
}
static hash_table<locus_discrim_hasher> *discriminator_per_locus;
/* Basic blocks and flowgraphs. */
static void make_blocks (gimple_seq);
/* Edges. */
static void make_edges (void);
static void assign_discriminators (void);
static void make_cond_expr_edges (basic_block);
static void make_gimple_switch_edges (gswitch *, basic_block);
static bool make_goto_expr_edges (basic_block);
static void make_gimple_asm_edges (basic_block);
static edge gimple_redirect_edge_and_branch (edge, basic_block);
static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
/* Various helpers. */
static inline bool stmt_starts_bb_p (gimple *, gimple *);
static int gimple_verify_flow_info (void);
static void gimple_make_forwarder_block (edge);
static gimple *first_non_label_stmt (basic_block);
static bool verify_gimple_transaction (gtransaction *);
static bool call_can_make_abnormal_goto (gimple *);
/* Flowgraph optimization and cleanup. */
static void gimple_merge_blocks (basic_block, basic_block);
static bool gimple_can_merge_blocks_p (basic_block, basic_block);
static void remove_bb (basic_block);
static edge find_taken_edge_computed_goto (basic_block, tree);
static edge find_taken_edge_cond_expr (const gcond *, tree);
static edge find_taken_edge_switch_expr (const gswitch *, tree);
static tree find_case_label_for_value (const gswitch *, tree);
static void lower_phi_internal_fn ();
void
init_empty_tree_cfg_for_function (struct function *fn)
{
/* Initialize the basic block array. */
init_flow (fn);
profile_status_for_fn (fn) = PROFILE_ABSENT;
n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
vec_safe_grow_cleared (basic_block_info_for_fn (fn),
initial_cfg_capacity);
/* Build a mapping of labels to their associated blocks. */
vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
initial_cfg_capacity);
SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
= EXIT_BLOCK_PTR_FOR_FN (fn);
EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
= ENTRY_BLOCK_PTR_FOR_FN (fn);
}
void
init_empty_tree_cfg (void)
{
init_empty_tree_cfg_for_function (cfun);
}
/*---------------------------------------------------------------------------
Create basic blocks
---------------------------------------------------------------------------*/
/* Entry point to the CFG builder for trees. SEQ is the sequence of
statements to be added to the flowgraph. */
static void
build_gimple_cfg (gimple_seq seq)
{
/* Register specific gimple functions. */
gimple_register_cfg_hooks ();
memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
init_empty_tree_cfg ();
make_blocks (seq);
/* Make sure there is always at least one block, even if it's empty. */
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
/* Adjust the size of the array. */
if (basic_block_info_for_fn (cfun)->length ()
< (size_t) n_basic_blocks_for_fn (cfun))
vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
n_basic_blocks_for_fn (cfun));
/* To speed up statement iterator walks, we first purge dead labels. */
cleanup_dead_labels ();
/* Group case nodes to reduce the number of edges.
We do this after cleaning up dead labels because otherwise we miss
a lot of obvious case merging opportunities. */
group_case_labels ();
/* Create the edges of the flowgraph. */
discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
make_edges ();
assign_discriminators ();
lower_phi_internal_fn ();
cleanup_dead_labels ();
delete discriminator_per_locus;
discriminator_per_locus = NULL;
}
/* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
them and propagate the information to LOOP. We assume that the annotations
come immediately before the condition in BB, if any. */
static void
replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
{
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gimple *stmt = gsi_stmt (gsi);
if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
return;
for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_CALL)
break;
if (!gimple_call_internal_p (stmt)
|| gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
break;
switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
{
case annot_expr_ivdep_kind:
loop->safelen = INT_MAX;
break;
case annot_expr_unroll_kind:
loop->unroll
= (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
cfun->has_unroll = true;
break;
case annot_expr_no_vector_kind:
loop->dont_vectorize = true;
break;
case annot_expr_vector_kind:
loop->force_vectorize = true;
cfun->has_force_vectorize_loops = true;
break;
case annot_expr_parallel_kind:
loop->can_be_parallel = true;
loop->safelen = INT_MAX;
break;
default:
gcc_unreachable ();
}
stmt = gimple_build_assign (gimple_call_lhs (stmt),
gimple_call_arg (stmt, 0));
gsi_replace (&gsi, stmt, true);
}
}
/* Look for ANNOTATE calls with loop annotation kind; if found, remove
them and propagate the information to the loop. We assume that the
annotations come immediately before the condition of the loop. */
static void
replace_loop_annotate (void)
{
struct loop *loop;
basic_block bb;
gimple_stmt_iterator gsi;
gimple *stmt;
FOR_EACH_LOOP (loop, 0)
{
/* First look into the header. */
replace_loop_annotate_in_block (loop->header, loop);
/* Then look into the latch, if any. */
if (loop->latch)
replace_loop_annotate_in_block (loop->latch, loop);
}
/* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_CALL)
continue;
if (!gimple_call_internal_p (stmt)
|| gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
continue;
switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
{
case annot_expr_ivdep_kind:
case annot_expr_unroll_kind:
case annot_expr_no_vector_kind:
case annot_expr_vector_kind:
case annot_expr_parallel_kind:
break;
default:
gcc_unreachable ();
}
warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
stmt = gimple_build_assign (gimple_call_lhs (stmt),
gimple_call_arg (stmt, 0));
gsi_replace (&gsi, stmt, true);
}
}
}
/* Lower internal PHI function from GIMPLE FE. */
static void
lower_phi_internal_fn ()
{
basic_block bb, pred = NULL;
gimple_stmt_iterator gsi;
tree lhs;
gphi *phi_node;
gimple *stmt;
/* After edge creation, handle __PHI function from GIMPLE FE. */
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
{
stmt = gsi_stmt (gsi);
if (! gimple_call_internal_p (stmt, IFN_PHI))
break;
lhs = gimple_call_lhs (stmt);
phi_node = create_phi_node (lhs, bb);
/* Add arguments to the PHI node. */
for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree arg = gimple_call_arg (stmt, i);
if (TREE_CODE (arg) == LABEL_DECL)
pred = label_to_block (arg);
else
{
edge e = find_edge (pred, bb);
add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
}
}
gsi_remove (&gsi, true);
}
}
}
static unsigned int
execute_build_cfg (void)
{
gimple_seq body = gimple_body (current_function_decl);
build_gimple_cfg (body);
gimple_set_body (current_function_decl, NULL);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Scope blocks:\n");
dump_scope_blocks (dump_file, dump_flags);
}
cleanup_tree_cfg ();
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
replace_loop_annotate ();
return 0;
}
namespace {
const pass_data pass_data_build_cfg =
{
GIMPLE_PASS, /* type */
"cfg", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_CFG, /* tv_id */
PROP_gimple_leh, /* properties_required */
( PROP_cfg | PROP_loops ), /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_build_cfg : public gimple_opt_pass
{
public:
pass_build_cfg (gcc::context *ctxt)
: gimple_opt_pass (pass_data_build_cfg, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return execute_build_cfg (); }
}; // class pass_build_cfg
} // anon namespace
gimple_opt_pass *
make_pass_build_cfg (gcc::context *ctxt)
{
return new pass_build_cfg (ctxt);
}
/* Return true if T is a computed goto. */
bool
computed_goto_p (gimple *t)
{
return (gimple_code (t) == GIMPLE_GOTO
&& TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
}
/* Returns true if the sequence of statements STMTS only contains
a call to __builtin_unreachable (). */
bool
gimple_seq_unreachable_p (gimple_seq stmts)
{
if (stmts == NULL
/* Return false if -fsanitize=unreachable, we don't want to
optimize away those calls, but rather turn them into
__ubsan_handle_builtin_unreachable () or __builtin_trap ()
later. */
|| sanitize_flags_p (SANITIZE_UNREACHABLE))
return false;
gimple_stmt_iterator gsi = gsi_last (stmts);
if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
return false;
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_LABEL
&& !is_gimple_debug (stmt)
&& !gimple_clobber_p (stmt))
return false;
}
return true;
}
/* Returns true for edge E where e->src ends with a GIMPLE_COND and
the other edge points to a bb with just __builtin_unreachable ().
I.e. return true for C->M edge in:
<bb C>:
...
if (something)
goto <bb N>;
else
goto <bb M>;
<bb N>:
__builtin_unreachable ();
<bb M>: */
bool
assert_unreachable_fallthru_edge_p (edge e)
{
basic_block pred_bb = e->src;
gimple *last = last_stmt (pred_bb);
if (last && gimple_code (last) == GIMPLE_COND)
{
basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
if (other_bb == e->dest)
other_bb = EDGE_SUCC (pred_bb, 1)->dest;
if (EDGE_COUNT (other_bb->succs) == 0)
return gimple_seq_unreachable_p (bb_seq (other_bb));
}
return false;
}
/* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
could alter control flow except via eh. We initialize the flag at
CFG build time and only ever clear it later. */
static void
gimple_call_initialize_ctrl_altering (gimple *stmt)
{
int flags = gimple_call_flags (stmt);
/* A call alters control flow if it can make an abnormal goto. */
if (call_can_make_abnormal_goto (stmt)
/* A call also alters control flow if it does not return. */
|| flags & ECF_NORETURN
/* TM ending statements have backedges out of the transaction.
Return true so we split the basic block containing them.
Note that the TM_BUILTIN test is merely an optimization. */
|| ((flags & ECF_TM_BUILTIN)
&& is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
/* BUILT_IN_RETURN call is same as return statement. */
|| gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
/* IFN_UNIQUE should be the last insn, to make checking for it
as cheap as possible. */
|| (gimple_call_internal_p (stmt)
&& gimple_call_internal_unique_p (stmt)))
gimple_call_set_ctrl_altering (stmt, true);
else
gimple_call_set_ctrl_altering (stmt, false);
}
/* Insert SEQ after BB and build a flowgraph. */
static basic_block
make_blocks_1 (gimple_seq seq, basic_block bb)
{
gimple_stmt_iterator i = gsi_start (seq);
gimple *stmt = NULL;
gimple *prev_stmt = NULL;
bool start_new_block = true;
bool first_stmt_of_seq = true;
while (!gsi_end_p (i))
{
/* PREV_STMT should only be set to a debug stmt if the debug
stmt is before nondebug stmts. Once stmt reaches a nondebug
nonlabel, prev_stmt will be set to it, so that
stmt_starts_bb_p will know to start a new block if a label is
found. However, if stmt was a label after debug stmts only,
keep the label in prev_stmt even if we find further debug
stmts, for there may be other labels after them, and they
should land in the same block. */
if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
prev_stmt = stmt;
stmt = gsi_stmt (i);
if (stmt && is_gimple_call (stmt))
gimple_call_initialize_ctrl_altering (stmt);
/* If the statement starts a new basic block or if we have determined
in a previous pass that we need to create a new block for STMT, do
so now. */
if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
{
if (!first_stmt_of_seq)
gsi_split_seq_before (&i, &seq);
bb = create_basic_block (seq, bb);
start_new_block = false;
prev_stmt = NULL;
}
/* Now add STMT to BB and create the subgraphs for special statement
codes. */
gimple_set_bb (stmt, bb);
/* If STMT is a basic block terminator, set START_NEW_BLOCK for the
next iteration. */
if (stmt_ends_bb_p (stmt))
{
/* If the stmt can make abnormal goto use a new temporary
for the assignment to the LHS. This makes sure the old value
of the LHS is available on the abnormal edge. Otherwise
we will end up with overlapping life-ranges for abnormal
SSA names. */
if (gimple_has_lhs (stmt)
&& stmt_can_make_abnormal_goto (stmt)
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
{
tree lhs = gimple_get_lhs (stmt);
tree tmp = create_tmp_var (TREE_TYPE (lhs));
gimple *s = gimple_build_assign (lhs, tmp);
gimple_set_location (s, gimple_location (stmt));
gimple_set_block (s, gimple_block (stmt));
gimple_set_lhs (stmt, tmp);
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
DECL_GIMPLE_REG_P (tmp) = 1;
gsi_insert_after (&i, s, GSI_SAME_STMT);
}
start_new_block = true;
}
gsi_next (&i);
first_stmt_of_seq = false;
}
return bb;
}
/* Build a flowgraph for the sequence of stmts SEQ. */
static void
make_blocks (gimple_seq seq)
{
/* Look for debug markers right before labels, and move the debug
stmts after the labels. Accepting labels among debug markers
adds no value, just complexity; if we wanted to annotate labels
with view numbers (so sequencing among markers would matter) or
somesuch, we're probably better off still moving the labels, but
adding other debug annotations in their original positions or
emitting nonbind or bind markers associated with the labels in
the original position of the labels.
Moving labels would probably be simpler, but we can't do that:
moving labels assigns label ids to them, and doing so because of
debug markers makes for -fcompare-debug and possibly even codegen
differences. So, we have to move the debug stmts instead. To
that end, we scan SEQ backwards, marking the position of the
latest (earliest we find) label, and moving debug stmts that are
not separated from it by nondebug nonlabel stmts after the
label. */
if (MAY_HAVE_DEBUG_MARKER_STMTS)
{
gimple_stmt_iterator label = gsi_none ();
for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
{
gimple *stmt = gsi_stmt (i);
/* If this is the first label we encounter (latest in SEQ)
before nondebug stmts, record its position. */
if (is_a <glabel *> (stmt))
{
if (gsi_end_p (label))
label = i;
continue;
}
/* Without a recorded label position to move debug stmts to,
there's nothing to do. */
if (gsi_end_p (label))
continue;
/* Move the debug stmt at I after LABEL. */
if (is_gimple_debug (stmt))
{
gcc_assert (gimple_debug_nonbind_marker_p (stmt));
/* As STMT is removed, I advances to the stmt after
STMT, so the gsi_prev in the for "increment"
expression gets us to the stmt we're to visit after
STMT. LABEL, however, would advance to the moved
stmt if we passed it to gsi_move_after, so pass it a
copy instead, so as to keep LABEL pointing to the
LABEL. */
gimple_stmt_iterator copy = label;
gsi_move_after (&i, ©);
continue;
}
/* There aren't any (more?) debug stmts before label, so
there isn't anything else to move after it. */
label = gsi_none ();
}
}
make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
}
/* Create and return a new empty basic block after bb AFTER. */
static basic_block
create_bb (void *h, void *e, basic_block after)
{
basic_block bb;
gcc_assert (!e);
/* Create and initialize a new basic block. Since alloc_block uses
GC allocation that clears memory to allocate a basic block, we do
not have to clear the newly allocated basic block here. */
bb = alloc_block ();
bb->index = last_basic_block_for_fn (cfun);
bb->flags = BB_NEW;
set_bb_seq (bb, h ? (gimple_seq) h : NULL);
/* Add the new block to the linked list of blocks. */
link_block (bb, after);
/* Grow the basic block array if needed. */
if ((size_t) last_basic_block_for_fn (cfun)
== basic_block_info_for_fn (cfun)->length ())
{
size_t new_size =
(last_basic_block_for_fn (cfun)
+ (last_basic_block_for_fn (cfun) + 3) / 4);
vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
}
/* Add the newly created block to the array. */
SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
n_basic_blocks_for_fn (cfun)++;
last_basic_block_for_fn (cfun)++;
return bb;
}
/*---------------------------------------------------------------------------
Edge creation
---------------------------------------------------------------------------*/
/* If basic block BB has an abnormal edge to a basic block
containing IFN_ABNORMAL_DISPATCHER internal call, return
that the dispatcher's basic block, otherwise return NULL. */
basic_block
get_abnormal_succ_dispatcher (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
{
gimple_stmt_iterator gsi
= gsi_start_nondebug_after_labels_bb (e->dest);
gimple *g = gsi_stmt (gsi);
if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
return e->dest;
}
return NULL;
}
/* Helper function for make_edges. Create a basic block with
with ABNORMAL_DISPATCHER internal call in it if needed, and
create abnormal edges from BBS to it and from it to FOR_BB
if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
static void
handle_abnormal_edges (basic_block *dispatcher_bbs,
basic_block for_bb, int *bb_to_omp_idx,
auto_vec<basic_block> *bbs, bool computed_goto)
{
basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
unsigned int idx = 0;
basic_block bb;
bool inner = false;
if (bb_to_omp_idx)
{
dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
if (bb_to_omp_idx[for_bb->index] != 0)
inner = true;
}
/* If the dispatcher has been created already, then there are basic
blocks with abnormal edges to it, so just make a new edge to
for_bb. */
if (*dispatcher == NULL)
{
/* Check if there are any basic blocks that need to have
abnormal edges to this dispatcher. If there are none, return
early. */
if (bb_to_omp_idx == NULL)
{
if (bbs->is_empty ())
return;
}
else
{
FOR_EACH_VEC_ELT (*bbs, idx, bb)
if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
break;
if (bb == NULL)
return;
}
/* Create the dispatcher bb. */
*dispatcher = create_basic_block (NULL, for_bb);
if (computed_goto)
{
/* Factor computed gotos into a common computed goto site. Also
record the location of that site so that we can un-factor the
gotos after we have converted back to normal form. */
gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
/* Create the destination of the factored goto. Each original
computed goto will put its desired destination into this
variable and jump to the label we create immediately below. */
tree var = create_tmp_var (ptr_type_node, "gotovar");
/* Build a label for the new block which will contain the
factored computed goto. */
tree factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION);
gimple *factored_computed_goto_label
= gimple_build_label (factored_label_decl);
gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
/* Build our new computed goto. */
gimple *factored_computed_goto = gimple_build_goto (var);
gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
FOR_EACH_VEC_ELT (*bbs, idx, bb)
{
if (bb_to_omp_idx
&& bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
continue;
gsi = gsi_last_bb (bb);
gimple *last = gsi_stmt (gsi);
gcc_assert (computed_goto_p (last));
/* Copy the original computed goto's destination into VAR. */
gimple *assignment
= gimple_build_assign (var, gimple_goto_dest (last));
gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
e->goto_locus = gimple_location (last);
gsi_remove (&gsi, true);
}
}
else
{
tree arg = inner ? boolean_true_node : boolean_false_node;
gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
1, arg);
gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
/* Create predecessor edges of the dispatcher. */
FOR_EACH_VEC_ELT (*bbs, idx, bb)
{
if (bb_to_omp_idx
&& bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
continue;
make_edge (bb, *dispatcher, EDGE_ABNORMAL);
}
}
}
make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
}
/* Creates outgoing edges for BB. Returns 1 when it ends with an
computed goto, returns 2 when it ends with a statement that
might return to this function via an nonlocal goto, otherwise
return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
static int
make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
{
gimple *last = last_stmt (bb);
bool fallthru = false;
int ret = 0;
if (!last)
return ret;
switch (gimple_code (last))
{
case GIMPLE_GOTO:
if (make_goto_expr_edges (bb))
ret = 1;
fallthru = false;
break;
case GIMPLE_RETURN:
{
edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
e->goto_locus = gimple_location (last);
fallthru = false;
}
break;
case GIMPLE_COND:
make_cond_expr_edges (bb);
fallthru = false;
break;
case GIMPLE_SWITCH:
make_gimple_switch_edges (as_a <gswitch *> (last), bb);
fallthru = false;
break;
case GIMPLE_RESX:
make_eh_edges (last);
fallthru = false;
break;
case GIMPLE_EH_DISPATCH:
fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
break;
case GIMPLE_CALL:
/* If this function receives a nonlocal goto, then we need to
make edges from this call site to all the nonlocal goto
handlers. */
if (stmt_can_make_abnormal_goto (last))
ret = 2;
/* If this statement has reachable exception handlers, then
create abnormal edges to them. */
make_eh_edges (last);
/* BUILTIN_RETURN is really a return statement. */
if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
{
make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
fallthru = false;
}
/* Some calls are known not to return. */
else
fallthru = !gimple_call_noreturn_p (last);
break;
case GIMPLE_ASSIGN:
/* A GIMPLE_ASSIGN may throw internally and thus be considered
control-altering. */
if (is_ctrl_altering_stmt (last))
make_eh_edges (last);
fallthru = true;
break;
case GIMPLE_ASM:
make_gimple_asm_edges (bb);
fallthru = true;
break;
CASE_GIMPLE_OMP:
fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
break;
case GIMPLE_TRANSACTION:
{
gtransaction *txn = as_a <gtransaction *> (last);
tree label1 = gimple_transaction_label_norm (txn);
tree label2 = gimple_transaction_label_uninst (txn);
if (label1)
make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
if (label2)
make_edge (bb, label_to_block (label2),
EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
tree label3 = gimple_transaction_label_over (txn);
if (gimple_transaction_subcode (txn)
& (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
fallthru = false;
}
break;
default:
gcc_assert (!stmt_ends_bb_p (last));
fallthru = true;
break;
}
if (fallthru)
make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
return ret;
}
/* Join all the blocks in the flowgraph. */
static void
make_edges (void)
{
basic_block bb;
struct omp_region *cur_region = NULL;
auto_vec<basic_block> ab_edge_goto;
auto_vec<basic_block> ab_edge_call;
int *bb_to_omp_idx = NULL;
int cur_omp_region_idx = 0;
/* Create an edge from entry to the first block with executable
statements in it. */
make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
EDGE_FALLTHRU);
/* Traverse the basic block array placing edges. */
FOR_EACH_BB_FN (bb, cfun)
{
int mer;
if (bb_to_omp_idx)
bb_to_omp_idx[bb->index] = cur_omp_region_idx;
mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
if (mer == 1)
ab_edge_goto.safe_push (bb);
else if (mer == 2)
ab_edge_call.safe_push (bb);
if (cur_region && bb_to_omp_idx == NULL)
bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
}
/* Computed gotos are hell to deal with, especially if there are
lots of them with a large number of destinations. So we factor
them to a common computed goto location before we build the
edge list. After we convert back to normal form, we will un-factor
the computed gotos since factoring introduces an unwanted jump.
For non-local gotos and abnormal edges from calls to calls that return
twice or forced labels, factor the abnormal edges too, by having all
abnormal edges from the calls go to a common artificial basic block
with ABNORMAL_DISPATCHER internal call and abnormal edges from that
basic block to all forced labels and calls returning twice.
We do this per-OpenMP structured block, because those regions
are guaranteed to be single entry single exit by the standard,
so it is not allowed to enter or exit such regions abnormally this way,
thus all computed gotos, non-local gotos and setjmp/longjmp calls
must not transfer control across SESE region boundaries. */
if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
{
gimple_stmt_iterator gsi;
basic_block dispatcher_bb_array[2] = { NULL, NULL };
basic_block *dispatcher_bbs = dispatcher_bb_array;
int count = n_basic_blocks_for_fn (cfun);
if (bb_to_omp_idx)
dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
tree target;
if (!label_stmt)
break;
target = gimple_label_label (label_stmt);
/* Make an edge to every label block that has been marked as a
potential target for a computed goto or a non-local goto. */
if (FORCED_LABEL (target))
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_goto, true);
if (DECL_NONLOCAL (target))
{
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_call, false);
break;
}
}
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
if (!gsi_end_p (gsi))
{
/* Make an edge to every setjmp-like call. */
gimple *call_stmt = gsi_stmt (gsi);
if (is_gimple_call (call_stmt)
&& ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
|| gimple_call_builtin_p (call_stmt,
BUILT_IN_SETJMP_RECEIVER)))
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_call, false);
}
}
if (bb_to_omp_idx)
XDELETE (dispatcher_bbs);
}
XDELETE (bb_to_omp_idx);
omp_free_regions ();
}
/* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
needed. Returns true if new bbs were created.
Note: This is transitional code, and should not be used for new code. We
should be able to get rid of this by rewriting all target va-arg
gimplification hooks to use an interface gimple_build_cond_value as described
in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
bool
gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
basic_block bb = gimple_bb (stmt);
basic_block lastbb, afterbb;
int old_num_bbs = n_basic_blocks_for_fn (cfun);
edge e;
lastbb = make_blocks_1 (seq, bb);
if (old_num_bbs == n_basic_blocks_for_fn (cfun))
return false;
e = split_block (bb, stmt);
/* Move e->dest to come after the new basic blocks. */
afterbb = e->dest;
unlink_block (afterbb);
link_block (afterbb, lastbb);
redirect_edge_succ (e, bb->next_bb);
bb = bb->next_bb;
while (bb != afterbb)
{
struct omp_region *cur_region = NULL;
profile_count cnt = profile_count::zero ();
bool all = true;
int cur_omp_region_idx = 0;
int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
gcc_assert (!mer && !cur_region);
add_bb_to_loop (bb, afterbb->loop_father);
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->count ().initialized_p ())
cnt += e->count ();
else
all = false;
}
tree_guess_outgoing_edge_probabilities (bb);
if (all || profile_status_for_fn (cfun) == PROFILE_READ)
bb->count = cnt;
bb = bb->next_bb;
}
return true;
}
/* Find the next available discriminator value for LOCUS. The
discriminator distinguishes among several basic blocks that
share a common locus, allowing for more accurate sample-based
profiling. */
static int
next_discriminator_for_locus (location_t locus)
{
struct locus_discrim_map item;
struct locus_discrim_map **slot;
item.locus = locus;
item.discriminator = 0;
slot = discriminator_per_locus->find_slot_with_hash (
&item, LOCATION_LINE (locus), INSERT);
gcc_assert (slot);
if (*slot == HTAB_EMPTY_ENTRY)
{
*slot = XNEW (struct locus_discrim_map);
gcc_assert (*slot);
(*slot)->locus = locus;
(*slot)->discriminator = 0;
}
(*slot)->discriminator++;
return (*slot)->discriminator;
}
/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
static bool
same_line_p (location_t locus1, location_t locus2)
{
expanded_location from, to;
if (locus1 == locus2)
return true;
from = expand_location (locus1);
to = expand_location (locus2);
if (from.line != to.line)
return false;
if (from.file == to.file)
return true;
return (from.file != NULL
&& to.file != NULL
&& filename_cmp (from.file, to.file) == 0);
}
/* Assign discriminators to each basic block. */
static void
assign_discriminators (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
edge e;
edge_iterator ei;
gimple *last = last_stmt (bb);
location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
if (locus == UNKNOWN_LOCATION)
continue;
FOR_EACH_EDGE (e, ei, bb->succs)
{
gimple *first = first_non_label_stmt (e->dest);
gimple *last = last_stmt (e->dest);
if ((first && same_line_p (locus, gimple_location (first)))
|| (last && same_line_p (locus, gimple_location (last))))
{
if (e->dest->discriminator != 0 && bb->discriminator == 0)
bb->discriminator = next_discriminator_for_locus (locus);
else
e->dest->discriminator = next_discriminator_for_locus (locus);
}
}
}
}
/* Create the edges for a GIMPLE_COND starting at block BB. */
static void
make_cond_expr_edges (basic_block bb)
{
gcond *entry = as_a <gcond *> (last_stmt (bb));
gimple *then_stmt, *else_stmt;
basic_block then_bb, else_bb;
tree then_label, else_label;
edge e;
gcc_assert (entry);
gcc_assert (gimple_code (entry) == GIMPLE_COND);
/* Entry basic blocks for each component. */
then_label = gimple_cond_true_label (entry);
else_label = gimple_cond_false_label (entry);
then_bb = label_to_block (then_label);
else_bb = label_to_block (else_label);
then_stmt = first_stmt (then_bb);
else_stmt = first_stmt (else_bb);
e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
e->goto_locus = gimple_location (then_stmt);
e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
if (e)
e->goto_locus = gimple_location (else_stmt);
/* We do not need the labels anymore. */
gimple_cond_set_true_label (entry, NULL_TREE);
gimple_cond_set_false_label (entry, NULL_TREE);
}
/* Called for each element in the hash table (P) as we delete the
edge to cases hash table.
Clear all the CASE_CHAINs to prevent problems with copying of
SWITCH_EXPRs and structure sharing rules, then free the hash table
element. */
bool
edge_to_cases_cleanup (edge const &, tree const &value, void *)
{
tree t, next;
for (t = value; t; t = next)
{
next = CASE_CHAIN (t);
CASE_CHAIN (t) = NULL;
}
return true;
}
/* Start recording information mapping edges to case labels. */
void
start_recording_case_labels (void)
{
gcc_assert (edge_to_cases == NULL);
edge_to_cases = new hash_map<edge, tree>;
touched_switch_bbs = BITMAP_ALLOC (NULL);
}
/* Return nonzero if we are recording information for case labels. */
static bool
recording_case_labels_p (void)
{
return (edge_to_cases != NULL);
}
/* Stop recording information mapping edges to case labels and
remove any information we have recorded. */
void
end_recording_case_labels (void)
{
bitmap_iterator bi;
unsigned i;
edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
delete edge_to_cases;
edge_to_cases = NULL;
EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
if (bb)
{
gimple *stmt = last_stmt (bb);
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
group_case_labels_stmt (as_a <gswitch *> (stmt));
}
}
BITMAP_FREE (touched_switch_bbs);
}
/* If we are inside a {start,end}_recording_cases block, then return
a chain of CASE_LABEL_EXPRs from T which reference E.
Otherwise return NULL. */
static tree
get_cases_for_edge (edge e, gswitch *t)
{
tree *slot;
size_t i, n;
/* If we are not recording cases, then we do not have CASE_LABEL_EXPR
chains available. Return NULL so the caller can detect this case. */
if (!recording_case_labels_p ())
return NULL;
slot = edge_to_cases->get (e);
if (slot)
return *slot;
/* If we did not find E in the hash table, then this must be the first
time we have been queried for information about E & T. Add all the
elements from T to the hash table then perform the query again. */
n = gimple_switch_num_labels (t);
for (i = 0; i < n; i++)
{
tree elt = gimple_switch_label (t, i);
tree lab = CASE_LABEL (elt);
basic_block label_bb = label_to_block (lab);
edge this_edge = find_edge (e->src, label_bb);
/* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
a new chain. */
tree &s = edge_to_cases->get_or_insert (this_edge);
CASE_CHAIN (elt) = s;
s = elt;
}
return *edge_to_cases->get (e);
}
/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
static void
make_gimple_switch_edges (gswitch *entry, basic_block bb)
{
size_t i, n;
n = gimple_switch_num_labels (entry);
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (gimple_switch_label (entry, i));
basic_block label_bb = label_to_block (lab);
make_edge (bb, label_bb, 0);
}
}
/* Return the basic block holding label DEST. */
basic_block
label_to_block_fn (struct function *ifun, tree dest)
{
int uid = LABEL_DECL_UID (dest);
/* We would die hard when faced by an undefined label. Emit a label to
the very first basic block. This will hopefully make even the dataflow
and undefined variable warnings quite right. */
if (seen_error () && uid < 0)
{
gimple_stmt_iterator gsi =
gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
gimple *stmt;
stmt = gimple_build_label (dest);
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
uid = LABEL_DECL_UID (dest);
}
if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
return NULL;
return (*ifun->cfg->x_label_to_block_map)[uid];
}
/* Create edges for a goto statement at block BB. Returns true
if abnormal edges should be created. */
static bool
make_goto_expr_edges (basic_block bb)
{
gimple_stmt_iterator last = gsi_last_bb (bb);
gimple *goto_t = gsi_stmt (last);
/* A simple GOTO creates normal edges. */
if (simple_goto_p (goto_t))
{
tree dest = gimple_goto_dest (goto_t);
basic_block label_bb = label_to_block (dest);
edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
e->goto_locus = gimple_location (goto_t);
gsi_remove (&last, true);
return false;
}
/* A computed GOTO creates abnormal edges. */
return true;
}
/* Create edges for an asm statement with labels at block BB. */
static void
make_gimple_asm_edges (basic_block bb)
{
gasm *stmt = as_a <gasm *> (last_stmt (bb));
int i, n = gimple_asm_nlabels (stmt);
for (i = 0; i < n; ++i)
{
tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
basic_block label_bb = label_to_block (label);
make_edge (bb, label_bb, 0);
}
}
/*---------------------------------------------------------------------------
Flowgraph analysis
---------------------------------------------------------------------------*/
/* Cleanup useless labels in basic blocks. This is something we wish
to do early because it allows us to group case labels before creating
the edges for the CFG, and it speeds up block statement iterators in
all passes later on.
We rerun this pass after CFG is created, to get rid of the labels that
are no longer referenced. After then we do not run it any more, since
(almost) no new labels should be created. */
/* A map from basic block index to the leading label of that block. */
static struct label_record
{
/* The label. */
tree label;
/* True if the label is referenced from somewhere. */
bool used;
} *label_for_bb;
/* Given LABEL return the first label in the same basic block. */
static tree
main_block_label (tree label)
{
basic_block bb = label_to_block (label);
tree main_label = label_for_bb[bb->index].label;
/* label_to_block possibly inserted undefined label into the chain. */
if (!main_label)
{
label_for_bb[bb->index].label = label;
main_label = label;
}
label_for_bb[bb->index].used = true;
return main_label;
}
/* Clean up redundant labels within the exception tree. */
static void
cleanup_dead_labels_eh (void)
{
eh_landing_pad lp;
eh_region r;
tree lab;
int i;
if (cfun->eh == NULL)
return;
for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
if (lp && lp->post_landing_pad)
{
lab = main_block_label (lp->post_landing_pad);
if (lab != lp->post_landing_pad)
{
EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
EH_LANDING_PAD_NR (lab) = lp->index;
}
}
FOR_ALL_EH_REGION (r)
switch (r->type)
{
case ERT_CLEANUP:
case ERT_MUST_NOT_THROW:
break;
case ERT_TRY:
{
eh_catch c;
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
lab = c->label;
if (lab)
c->label = main_block_label (lab);
}
}
break;
case ERT_ALLOWED_EXCEPTIONS:
lab = r->u.allowed.label;
if (lab)
r->u.allowed.label = main_block_label (lab);
break;
}
}
/* Cleanup redundant labels. This is a three-step process:
1) Find the leading label for each block.
2) Redirect all references to labels to the leading labels.
3) Cleanup all useless labels. */
void
cleanup_dead_labels (void)
{
basic_block bb;
label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
/* Find a suitable label for each block. We use the first user-defined
label if there is one, or otherwise just the first label we see. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
{
tree label;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
if (!label_stmt)
break;
label = gimple_label_label (label_stmt);
/* If we have not yet seen a label for the current block,
remember this one and see if there are more labels. */
if (!label_for_bb[bb->index].label)
{
label_for_bb[bb->index].label = label;
continue;
}
/* If we did see a label for the current block already, but it
is an artificially created label, replace it if the current
label is a user defined label. */
if (!DECL_ARTIFICIAL (label)
&& DECL_ARTIFICIAL (label_for_bb[bb->index].label))
{
label_for_bb[bb->index].label = label;
break;
}
}
}
/* Now redirect all jumps/branches to the selected label.
First do so for each block ending in a control statement. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple *stmt = last_stmt (bb);
tree label, new_label;
if (!stmt)
continue;
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
label = gimple_cond_true_label (cond_stmt);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_cond_set_true_label (cond_stmt, new_label);
}
label = gimple_cond_false_label (cond_stmt);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_cond_set_false_label (cond_stmt, new_label);
}
}
break;
case GIMPLE_SWITCH:
{
gswitch *switch_stmt = as_a <gswitch *> (stmt);
size_t i, n = gimple_switch_num_labels (switch_stmt);
/* Replace all destination labels. */
for (i = 0; i < n; ++i)
{
tree case_label = gimple_switch_label (switch_stmt, i);
label = CASE_LABEL (case_label);
new_label = main_block_label (label);
if (new_label != label)
CASE_LABEL (case_label) = new_label;
}
break;
}
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
int i, n = gimple_asm_nlabels (asm_stmt);
for (i = 0; i < n; ++i)
{
tree cons = gimple_asm_label_op (asm_stmt, i);
tree label = main_block_label (TREE_VALUE (cons));
TREE_VALUE (cons) = label;
}
break;
}
/* We have to handle gotos until they're removed, and we don't
remove them until after we've created the CFG edges. */
case GIMPLE_GOTO:
if (!computed_goto_p (stmt))
{
ggoto *goto_stmt = as_a <ggoto *> (stmt);
label = gimple_goto_dest (goto_stmt);
new_label = main_block_label (label);
if (new_label != label)
gimple_goto_set_dest (goto_stmt, new_label);
}
break;
case GIMPLE_TRANSACTION:
{
gtransaction *txn = as_a <gtransaction *> (stmt);
label = gimple_transaction_label_norm (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_norm (txn, new_label);
}
label = gimple_transaction_label_uninst (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_uninst (txn, new_label);
}
label = gimple_transaction_label_over (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_over (txn, new_label);
}
}
break;
default:
break;
}
}
/* Do the same for the exception region tree labels. */
cleanup_dead_labels_eh ();
/* Finally, purge dead labels. All user-defined labels and labels that
can be the target of non-local gotos and labels which have their
address taken are preserved. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator i;
tree label_for_this_bb = label_for_bb[bb->index].label;
if (!label_for_this_bb)
continue;
/* If the main label of the block is unused, we may still remove it. */
if (!label_for_bb[bb->index].used)
label_for_this_bb = NULL;
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
{
tree label;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
if (!label_stmt)
break;
label = gimple_label_label (label_stmt);
if (label == label_for_this_bb
|| !DECL_ARTIFICIAL (label)
|| DECL_NONLOCAL (label)
|| FORCED_LABEL (label))
gsi_next (&i);
else
gsi_remove (&i, true);
}
}
free (label_for_bb);
}
/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
the ones jumping to the same label.
Eg. three separate entries 1: 2: 3: become one entry 1..3: */
bool
group_case_labels_stmt (gswitch *stmt)
{
int old_size = gimple_switch_num_labels (stmt);
int i, next_index, new_size;
basic_block default_bb = NULL;
default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
/* Look for possible opportunities to merge cases. */
new_size = i = 1;
while (i < old_size)
{
tree base_case, base_high;
basic_block base_bb;
base_case = gimple_switch_label (stmt, i);
gcc_assert (base_case);
base_bb = label_to_block (CASE_LABEL (base_case));
/* Discard cases that have the same destination as the default case or
whose destiniation blocks have already been removed as unreachable. */
if (base_bb == NULL || base_bb == default_bb)
{
i++;
continue;
}
base_high = CASE_HIGH (base_case)
? CASE_HIGH (base_case)
: CASE_LOW (base_case);
next_index = i + 1;
/* Try to merge case labels. Break out when we reach the end
of the label vector or when we cannot merge the next case
label with the current one. */
while (next_index < old_size)
{
tree merge_case = gimple_switch_label (stmt, next_index);
basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
wide_int bhp1 = wi::to_wide (base_high) + 1;
/* Merge the cases if they jump to the same place,
and their ranges are consecutive. */
if (merge_bb == base_bb
&& wi::to_wide (CASE_LOW (merge_case)) == bhp1)
{
base_high = CASE_HIGH (merge_case) ?
CASE_HIGH (merge_case) : CASE_LOW (merge_case);
CASE_HIGH (base_case) = base_high;
next_index++;
}
else
break;
}
/* Discard cases that have an unreachable destination block. */
if (EDGE_COUNT (base_bb->succs) == 0
&& gimple_seq_unreachable_p (bb_seq (base_bb))
/* Don't optimize this if __builtin_unreachable () is the
implicitly added one by the C++ FE too early, before
-Wreturn-type can be diagnosed. We'll optimize it later
during switchconv pass or any other cfg cleanup. */
&& (gimple_in_ssa_p (cfun)
|| (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
!= BUILTINS_LOCATION)))
{
edge base_edge = find_edge (gimple_bb (stmt), base_bb);
if (base_edge != NULL)
remove_edge_and_dominated_blocks (base_edge);
i = next_index;
continue;
}
if (new_size < i)
gimple_switch_set_label (stmt, new_size,
gimple_switch_label (stmt, i));
i = next_index;
new_size++;
}
gcc_assert (new_size <= old_size);
if (new_size < old_size)
gimple_switch_set_num_labels (stmt, new_size);
return new_size < old_size;
}
/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
and scan the sorted vector of cases. Combine the ones jumping to the
same label. */
bool
group_case_labels (void)
{
basic_block bb;
bool changed = false;
FOR_EACH_BB_FN (bb, cfun)
{
gimple *stmt = last_stmt (bb);
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
}
return changed;
}
/* Checks whether we can merge block B into block A. */
static bool
gimple_can_merge_blocks_p (basic_block a, basic_block b)
{
gimple *stmt;
if (!single_succ_p (a))
return false;
if (single_succ_edge (a)->flags & EDGE_COMPLEX)
return false;
if (single_succ (a) != b)
return false;
if (!single_pred_p (b))
return false;
if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|| b == EXIT_BLOCK_PTR_FOR_FN (cfun))
return false;
/* If A ends by a statement causing exceptions or something similar, we
cannot merge the blocks. */
stmt = last_stmt (a);
if (stmt && stmt_ends_bb_p (stmt))
return false;
/* Do not allow a block with only a non-local label to be merged. */
if (stmt)
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
return false;
/* Examine the labels at the beginning of B. */
for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
gsi_next (&gsi))
{
tree lab;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
if (!label_stmt)
break;
lab = gimple_label_label (label_stmt);
/* Do not remove user forced labels or for -O0 any user labels. */
if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
return false;
}
/* Protect simple loop latches. We only want to avoid merging
the latch with the loop header or with a block in another
loop in this case. */
if (current_loops
&& b->loop_father->latch == b
&& loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
&& (b->loop_father->header == a
|| b->loop_father != a->loop_father))
return false;
/* It must be possible to eliminate all phi nodes in B. If ssa form
is not up-to-date and a name-mapping is registered, we cannot eliminate
any phis. Symbols marked for renaming are never a problem though. */
for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
/* Technically only new names matter. */
if (name_registered_for_update_p (PHI_RESULT (phi)))
return false;
}
/* When not optimizing, don't merge if we'd lose goto_locus. */
if (!optimize
&& single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
{
location_t goto_locus = single_succ_edge (a)->goto_locus;
gimple_stmt_iterator prev, next;
prev = gsi_last_nondebug_bb (a);
next = gsi_after_labels (b);
if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
gsi_next_nondebug (&next);
if ((gsi_end_p (prev)
|| gimple_location (gsi_stmt (prev)) != goto_locus)
&& (gsi_end_p (next)
|| gimple_location (gsi_stmt (next)) != goto_locus))
return false;
}
return true;
}
/* Replaces all uses of NAME by VAL. */
void
replace_uses_by (tree name, tree val)
{
imm_use_iterator imm_iter;
use_operand_p use;
gimple *stmt;
edge e;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
{
/* Mark the block if we change the last stmt in it. */
if (cfgcleanup_altered_bbs
&& stmt_ends_bb_p (stmt))
bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
{
replace_exp (use, val);
if (gimple_code (stmt) == GIMPLE_PHI)
{
e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
PHI_ARG_INDEX_FROM_USE (use));
if (e->flags & EDGE_ABNORMAL
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
{
/* This can only occur for virtual operands, since
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
would prevent replacement. */
gcc_checking_assert (virtual_operand_p (name));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
}
}
}
if (gimple_code (stmt) != GIMPLE_PHI)
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gimple *orig_stmt = stmt;
size_t i;
/* FIXME. It shouldn't be required to keep TREE_CONSTANT
on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
only change sth from non-invariant to invariant, and only
when propagating constants. */
if (is_gimple_min_invariant (val))
for (i = 0; i < gimple_num_ops (stmt); i++)
{
tree op = gimple_op (stmt, i);
/* Operands may be empty here. For example, the labels
of a GIMPLE_COND are nulled out following the creation
of the corresponding CFG edges. */
if (op && TREE_CODE (op) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (op);
}
if (fold_stmt (&gsi))
stmt = gsi_stmt (gsi);
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
gimple_purge_dead_eh_edges (gimple_bb (stmt));
update_stmt (stmt);
}
}
gcc_checking_assert (has_zero_uses (name));
/* Also update the trees stored in loop structures. */
if (current_loops)
{
struct loop *loop;
FOR_EACH_LOOP (loop, 0)
{
substitute_in_loop_info (loop, name, val);
}
}
}
/* Merge block B into block A. */
static void
gimple_merge_blocks (basic_block a, basic_block b)
{
gimple_stmt_iterator last, gsi;
gphi_iterator psi;
if (dump_file)
fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
/* Remove all single-valued PHI nodes from block B of the form
V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
gsi = gsi_last_bb (a);
for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
{
gimple *phi = gsi_stmt (psi);
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
gimple *copy;
bool may_replace_uses = (virtual_operand_p (def)
|| may_propagate_copy (def, use));
/* In case we maintain loop closed ssa form, do not propagate arguments
of loop exit phi nodes. */
if (current_loops
&& loops_state_satisfies_p (LOOP_CLOSED_SSA)
&& !virtual_operand_p (def)
&& TREE_CODE (use) == SSA_NAME
&& a->loop_father != b->loop_father)
may_replace_uses = false;
if (!may_replace_uses)
{
gcc_assert (!virtual_operand_p (def));
/* Note that just emitting the copies is fine -- there is no problem
with ordering of phi nodes. This is because A is the single
predecessor of B, therefore results of the phi nodes cannot
appear as arguments of the phi nodes. */
copy = gimple_build_assign (def, use);
gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
remove_phi_node (&psi, false);
}
else
{
/* If we deal with a PHI for virtual operands, we can simply
propagate these without fussing with folding or updating
the stmt. */
if (virtual_operand_p (def))
{
imm_use_iterator iter;
use_operand_p use_p;
gimple *stmt;
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, use);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
}
else
replace_uses_by (def, use);
remove_phi_node (&psi, true);
}
}
/* Ensure that B follows A. */
move_block_after (b, a);
gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
/* Remove labels from B and set gimple_bb to A for other statements. */
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
tree label = gimple_label_label (label_stmt);
int lp_nr;
gsi_remove (&gsi, false);
/* Now that we can thread computed gotos, we might have
a situation where we have a forced label in block B
However, the label at the start of block B might still be
used in other ways (think about the runtime checking for
Fortran assigned gotos). So we can not just delete the
label. Instead we move the label to the start of block A. */
if (FORCED_LABEL (label))
{
gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
}
/* Other user labels keep around in a form of a debug stmt. */
else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
{
gimple *dbg = gimple_build_debug_bind (label,
integer_zero_node,
stmt);
gimple_debug_bind_reset_value (dbg);
gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
}
lp_nr = EH_LANDING_PAD_NR (label);
if (lp_nr)
{
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
lp->post_landing_pad = NULL;
}
}
else
{
gimple_set_bb (stmt, a);
gsi_next (&gsi);
}
}
/* When merging two BBs, if their counts are different, the larger count
is selected as the new bb count. This is to handle inconsistent
profiles. */
if (a->loop_father == b->loop_father)
{
a->count = a->count.merge (b->count);
}
/* Merge the sequences. */
last = gsi_last_bb (a);
gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
set_bb_seq (b, NULL);
if (cfgcleanup_altered_bbs)
bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
}
/* Return the one of two successors of BB that is not reachable by a
complex edge, if there is one. Else, return BB. We use
this in optimizations that use post-dominators for their heuristics,
to catch the cases in C++ where function calls are involved. */
basic_block
single_noncomplex_succ (basic_block bb)
{
edge e0, e1;
if (EDGE_COUNT (bb->succs) != 2)
return bb;
e0 = EDGE_SUCC (bb, 0);
e1 = EDGE_SUCC (bb, 1);
if (e0->flags & EDGE_COMPLEX)
return e1->dest;
if (e1->flags & EDGE_COMPLEX)
return e0->dest;
return bb;
}
/* T is CALL_EXPR. Set current_function_calls_* flags. */
void
notice_special_calls (gcall *call)
{
int flags = gimple_call_flags (call);
if (flags & ECF_MAY_BE_ALLOCA)
cfun->calls_alloca = true;
if (flags & ECF_RETURNS_TWICE)
cfun->calls_setjmp = true;
}
/* Clear flags set by notice_special_calls. Used by dead code removal
to update the flags. */
void
clear_special_calls (void)
{
cfun->calls_alloca = false;
cfun->calls_setjmp = false;
}
/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
static void
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
{
/* Since this block is no longer reachable, we can just delete all
of its PHI nodes. */
remove_phi_nodes (bb);
/* Remove edges to BB's successors. */
while (EDGE_COUNT (bb->succs) > 0)
remove_edge (EDGE_SUCC (bb, 0));
}
/* Remove statements of basic block BB. */
static void
remove_bb (basic_block bb)
{
gimple_stmt_iterator i;
if (dump_file)
{
fprintf (dump_file, "Removing basic block %d\n", bb->index);
if (dump_flags & TDF_DETAILS)
{
dump_bb (dump_file, bb, 0, TDF_BLOCKS);
fprintf (dump_file, "\n");
}
}
if (current_loops)
{
struct loop *loop = bb->loop_father;
/* If a loop gets removed, clean up the information associated
with it. */
if (loop->latch == bb
|| loop->header == bb)
free_numbers_of_iterations_estimates (loop);
}
/* Remove all the instructions in the block. */
if (bb_seq (bb) != NULL)
{
/* Walk backwards so as to get a chance to substitute all
released DEFs into debug stmts. See
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
details. */
for (i = gsi_last_bb (bb); !gsi_end_p (i);)
{
gimple *stmt = gsi_stmt (i);
glabel *label_stmt = dyn_cast <glabel *> (stmt);
if (label_stmt
&& (FORCED_LABEL (gimple_label_label (label_stmt))
|| DECL_NONLOCAL (gimple_label_label (label_stmt))))
{
basic_block new_bb;
gimple_stmt_iterator new_gsi;
/* A non-reachable non-local label may still be referenced.
But it no longer needs to carry the extra semantics of
non-locality. */
if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
{
DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
}
new_bb = bb->prev_bb;
/* Don't move any labels into ENTRY block. */
if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
new_bb = single_succ (new_bb);
gcc_assert (new_bb != bb);
}
new_gsi = gsi_start_bb (new_bb);
gsi_remove (&i, false);
gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
}
else
{
/* Release SSA definitions. */
release_defs (stmt);
gsi_remove (&i, true);
}
if (gsi_end_p (i))
i = gsi_last_bb (bb);
else
gsi_prev (&i);
}
}
remove_phi_nodes_and_edges_for_unreachable_block (bb);
bb->il.gimple.seq = NULL;
bb->il.gimple.phi_nodes = NULL;
}
/* Given a basic block BB and a value VAL for use in the final statement
of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
the edge that will be taken out of the block.
If VAL is NULL_TREE, then the current value of the final statement's
predicate or index is used.
If the value does not match a unique edge, NULL is returned. */
edge
find_taken_edge (basic_block bb, tree val)
{
gimple *stmt;
stmt = last_stmt (bb);
/* Handle ENTRY and EXIT. */
if (!stmt)
return NULL;
if (gimple_code (stmt) == GIMPLE_COND)
return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
if (gimple_code (stmt) == GIMPLE_SWITCH)
return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
if (computed_goto_p (stmt))
{
/* Only optimize if the argument is a label, if the argument is
not a label then we can not construct a proper CFG.
It may be the case that we only need to allow the LABEL_REF to
appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
appear inside a LABEL_EXPR just to be safe. */
if (val
&& (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
&& TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
}
/* Otherwise we only know the taken successor edge if it's unique. */
return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
}
/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
statement, determine which of the outgoing edges will be taken out of the
block. Return NULL if either edge may be taken. */
static edge
find_taken_edge_computed_goto (basic_block bb, tree val)
{
basic_block dest;
edge e = NULL;
dest = label_to_block (val);
if (dest)
e = find_edge (bb, dest);
/* It's possible for find_edge to return NULL here on invalid code
that abuses the labels-as-values extension (e.g. code that attempts to
jump *between* functions via stored labels-as-values; PR 84136).
If so, then we simply return that NULL for the edge.
We don't currently have a way of detecting such invalid code, so we
can't assert that it was the case when a NULL edge occurs here. */
return e;
}
/* Given COND_STMT and a constant value VAL for use as the predicate,
determine which of the two edges will be taken out of
the statement's block. Return NULL if either edge may be taken.
If VAL is NULL_TREE, then the current value of COND_STMT's predicate
is used. */
static edge
find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
{
edge true_edge, false_edge;
if (val == NULL_TREE)
{
/* Use the current value of the predicate. */
if (gimple_cond_true_p (cond_stmt))
val = integer_one_node;
else if (gimple_cond_false_p (cond_stmt))
val = integer_zero_node;
else
return NULL;
}
else if (TREE_CODE (val) != INTEGER_CST)
return NULL;
extract_true_false_edges_from_block (gimple_bb (cond_stmt),
&true_edge, &false_edge);
return (integer_zerop (val) ? false_edge : true_edge);
}
/* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
which edge will be taken out of the statement's block. Return NULL if any
edge may be taken.
If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
is used. */
static edge
find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
{
basic_block dest_bb;
edge e;
tree taken_case;
if (gimple_switch_num_labels (switch_stmt) == 1)
taken_case = gimple_switch_default_label (switch_stmt);
else
{
if (val == NULL_TREE)
val = gimple_switch_index (switch_stmt);
if (TREE_CODE (val) != INTEGER_CST)
return NULL;
else
taken_case = find_case_label_for_value (switch_stmt, val);
}
dest_bb = label_to_block (CASE_LABEL (taken_case));
e = find_edge (gimple_bb (switch_stmt), dest_bb);
gcc_assert (e);
return e;
}
/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
We can make optimal use here of the fact that the case labels are
sorted: We can do a binary search for a case matching VAL. */
static tree
find_case_label_for_value (const gswitch *switch_stmt, tree val)
{
size_t low, high, n = gimple_switch_num_labels (switch_stmt);
tree default_case = gimple_switch_default_label (switch_stmt);
for (low = 0, high = n; high - low > 1; )
{
size_t i = (high + low) / 2;
tree t = gimple_switch_label (switch_stmt, i);
int cmp;
/* Cache the result of comparing CASE_LOW and val. */
cmp = tree_int_cst_compare (CASE_LOW (t), val);
if (cmp > 0)
high = i;
else
low = i;
if (CASE_HIGH (t) == NULL)
{
/* A singe-valued case label. */
if (cmp == 0)
return t;
}
else
{
/* A case range. We can only handle integer ranges. */
if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
return t;
}
}
return default_case;
}
/* Dump a basic block on stderr. */
void
gimple_debug_bb (basic_block bb)
{
dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
}
/* Dump basic block with index N on stderr. */
basic_block
gimple_debug_bb_n (int n)
{
gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
return BASIC_BLOCK_FOR_FN (cfun, n);
}
/* Dump the CFG on stderr.
FLAGS are the same used by the tree dumping functions
(see TDF_* in dumpfile.h). */
void
gimple_debug_cfg (dump_flags_t flags)
{
gimple_dump_cfg (stderr, flags);
}
/* Dump the program showing basic block boundaries on the given FILE.
FLAGS are the same used by the tree dumping functions (see TDF_* in
tree.h). */
void
gimple_dump_cfg (FILE *file, dump_flags_t flags)
{
if (flags & TDF_DETAILS)
{
dump_function_header (file, current_function_decl, flags);
fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
last_basic_block_for_fn (cfun));
brief_dump_cfg (file, flags);
fprintf (file, "\n");
}
if (flags & TDF_STATS)
dump_cfg_stats (file);
dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
}
/* Dump CFG statistics on FILE. */
void
dump_cfg_stats (FILE *file)
{
static long max_num_merged_labels = 0;
unsigned long size, total = 0;
long num_edges;
basic_block bb;
const char * const fmt_str = "%-30s%-13s%12s\n";
const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
const char * const fmt_str_3 = "%-43s%11lu%c\n";
const char *funcname = current_function_name ();
fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str, "", " Number of ", "Memory");
fprintf (file, fmt_str, "", " instances ", "used ");
fprintf (file, "---------------------------------------------------------\n");
size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
total += size;
fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
SCALE (size), LABEL (size));
num_edges = 0;
FOR_EACH_BB_FN (bb, cfun)
num_edges += EDGE_COUNT (bb->succs);
size = num_edges * sizeof (struct edge_def);
total += size;
fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
LABEL (total));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, "\n");
if (cfg_stats.num_merged_labels > max_num_merged_labels)
max_num_merged_labels = cfg_stats.num_merged_labels;
fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
cfg_stats.num_merged_labels, max_num_merged_labels);
fprintf (file, "\n");
}
/* Dump CFG statistics on stderr. Keep extern so that it's always
linked in the final executable. */
DEBUG_FUNCTION void
debug_cfg_stats (void)
{
dump_cfg_stats (stderr);
}
/*---------------------------------------------------------------------------
Miscellaneous helpers
---------------------------------------------------------------------------*/
/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
flow. Transfers of control flow associated with EH are excluded. */
static bool
call_can_make_abnormal_goto (gimple *t)
{
/* If the function has no non-local labels, then a call cannot make an
abnormal transfer of control. */
if (!cfun->has_nonlocal_label
&& !cfun->calls_setjmp)
return false;
/* Likewise if the call has no side effects. */
if (!gimple_has_side_effects (t))
return false;
/* Likewise if the called function is leaf. */
if (gimple_call_flags (t) & ECF_LEAF)
return false;
return true;
}
/* Return true if T can make an abnormal transfer of control flow.
Transfers of control flow associated with EH are excluded. */
bool
stmt_can_make_abnormal_goto (gimple *t)
{
if (computed_goto_p (t))
return true;
if (is_gimple_call (t))
return call_can_make_abnormal_goto (t);
return false;
}
/* Return true if T represents a stmt that always transfers control. */
bool
is_ctrl_stmt (gimple *t)
{
switch (gimple_code (t))
{
case GIMPLE_COND:
case GIMPLE_SWITCH:
case GIMPLE_GOTO:
case GIMPLE_RETURN:
case GIMPLE_RESX:
return true;
default:
return false;
}
}
/* Return true if T is a statement that may alter the flow of control
(e.g., a call to a non-returning function). */
bool
is_ctrl_altering_stmt (gimple *t)
{
gcc_assert (t);
switch (gimple_code (t))
{
case GIMPLE_CALL:
/* Per stmt call flag indicates whether the call could alter
controlflow. */
if (gimple_call_ctrl_altering_p (t))
return true;
break;
case GIMPLE_EH_DISPATCH:
/* EH_DISPATCH branches to the individual catch handlers at
this level of a try or allowed-exceptions region. It can
fallthru to the next statement as well. */
return true;
case GIMPLE_ASM:
if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
return true;
break;
CASE_GIMPLE_OMP:
/* OpenMP directives alter control flow. */
return true;
case GIMPLE_TRANSACTION:
/* A transaction start alters control flow. */
return true;
default:
break;
}
/* If a statement can throw, it alters control flow. */
return stmt_can_throw_internal (t);
}
/* Return true if T is a simple local goto. */
bool
simple_goto_p (gimple *t)
{
return (gimple_code (t) == GIMPLE_GOTO
&& TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
}
/* Return true if STMT should start a new basic block. PREV_STMT is
the statement preceding STMT. It is used when STMT is a label or a
case label. Labels should only start a new basic block if their
previous statement wasn't a label. Otherwise, sequence of labels
would generate unnecessary basic blocks that only contain a single
label. */
static inline bool
stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
{
if (stmt == NULL)
return false;
/* PREV_STMT is only set to a debug stmt if the debug stmt is before
any nondebug stmts in the block. We don't want to start another
block in this case: the debug stmt will already have started the
one STMT would start if we weren't outputting debug stmts. */
if (prev_stmt && is_gimple_debug (prev_stmt))
return false;
/* Labels start a new basic block only if the preceding statement
wasn't a label of the same type. This prevents the creation of
consecutive blocks that have nothing but a single label. */
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
/* Nonlocal and computed GOTO targets always start a new block. */
if (DECL_NONLOCAL (gimple_label_label (label_stmt))
|| FORCED_LABEL (gimple_label_label (label_stmt)))
return true;
if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
{
if (DECL_NONLOCAL (gimple_label_label (
as_a <glabel *> (prev_stmt))))
return true;
cfg_stats.num_merged_labels++;
return false;
}
else
return true;
}
else if (gimple_code (stmt) == GIMPLE_CALL)
{
if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
/* setjmp acts similar to a nonlocal GOTO target and thus should
start a new block. */
return true;
if (gimple_call_internal_p (stmt, IFN_PHI)
&& prev_stmt
&& gimple_code (prev_stmt) != GIMPLE_LABEL
&& (gimple_code (prev_stmt) != GIMPLE_CALL
|| ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
/* PHI nodes start a new block unless preceeded by a label
or another PHI. */
return true;
}
return false;
}
/* Return true if T should end a basic block. */
bool
stmt_ends_bb_p (gimple *t)
{
return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
}
/* Remove block annotations and other data structures. */
void
delete_tree_cfg_annotations (struct function *fn)
{
vec_free (label_to_block_map_for_fn (fn));
}
/* Return the virtual phi in BB. */
gphi *
get_virtual_phi (basic_block bb)
{
for (gphi_iterator gsi = gsi_start_phis (bb);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (virtual_operand_p (PHI_RESULT (phi)))
return phi;
}
return NULL;
}
/* Return the first statement in basic block BB. */
gimple *
first_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_start_bb (bb);
gimple *stmt = NULL;
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
{
gsi_next (&i);
stmt = NULL;
}
return stmt;
}
/* Return the first non-label statement in basic block BB. */
static gimple *
first_non_label_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_start_bb (bb);
while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
gsi_next (&i);
return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
}
/* Return the last statement in basic block BB. */
gimple *
last_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_last_bb (bb);
gimple *stmt = NULL;
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
{
gsi_prev (&i);
stmt = NULL;
}
return stmt;
}
/* Return the last statement of an otherwise empty block. Return NULL
if the block is totally empty, or if it contains more than one
statement. */
gimple *
last_and_only_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
gimple *last, *prev;
if (gsi_end_p (i))
return NULL;
last = gsi_stmt (i);
gsi_prev_nondebug (&i);
if (gsi_end_p (i))
return last;
/* Empty statements should no longer appear in the instruction stream.
Everything that might have appeared before should be deleted by
remove_useless_stmts, and the optimizers should just gsi_remove
instead of smashing with build_empty_stmt.
Thus the only thing that should appear here in a block containing
one executable statement is a label. */
prev = gsi_stmt (i);
if (gimple_code (prev) == GIMPLE_LABEL)
return last;
else
return NULL;
}
/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
static void
reinstall_phi_args (edge new_edge, edge old_edge)
{
edge_var_map *vm;
int i;
gphi_iterator phis;
vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
if (!v)
return;
for (i = 0, phis = gsi_start_phis (new_edge->dest);
v->iterate (i, &vm) && !gsi_end_p (phis);
i++, gsi_next (&phis))
{
gphi *phi = phis.phi ();
tree result = redirect_edge_var_map_result (vm);
tree arg = redirect_edge_var_map_def (vm);
gcc_assert (result == gimple_phi_result (phi));
add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
}
redirect_edge_var_map_clear (old_edge);
}
/* Returns the basic block after which the new basic block created
by splitting edge EDGE_IN should be placed. Tries to keep the new block
near its "logical" location. This is of most help to humans looking
at debugging dumps. */
basic_block
split_edge_bb_loc (edge edge_in)
{
basic_block dest = edge_in->dest;
basic_block dest_prev = dest->prev_bb;
if (dest_prev)
{
edge e = find_edge (dest_prev, dest);
if (e && !(e->flags & EDGE_COMPLEX))
return edge_in->src;
}
return dest_prev;
}
/* Split a (typically critical) edge EDGE_IN. Return the new block.
Abort on abnormal edges. */
static basic_block
gimple_split_edge (edge edge_in)
{
basic_block new_bb, after_bb, dest;
edge new_edge, e;
/* Abnormal edges cannot be split. */
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
dest = edge_in->dest;
after_bb = split_edge_bb_loc (edge_in);
new_bb = create_empty_bb (after_bb);
new_bb->count = edge_in->count ();
e = redirect_edge_and_branch (edge_in, new_bb);
gcc_assert (e == edge_in);
new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
reinstall_phi_args (new_edge, e);
return new_bb;
}
/* Verify properties of the address expression T with base object BASE. */
static tree
verify_address (tree t, tree base)
{
bool old_constant;
bool old_side_effects;
bool new_constant;
bool new_side_effects;
old_constant = TREE_CONSTANT (t);
old_side_effects = TREE_SIDE_EFFECTS (t);
recompute_tree_invariant_for_addr_expr (t);
new_side_effects = TREE_SIDE_EFFECTS (t);
new_constant = TREE_CONSTANT (t);
if (old_constant != new_constant)
{
error ("constant not recomputed when ADDR_EXPR changed");
return t;
}
if (old_side_effects != new_side_effects)
{
error ("side effects not recomputed when ADDR_EXPR changed");
return t;
}
if (!(VAR_P (base)
|| TREE_CODE (base) == PARM_DECL
|| TREE_CODE (base) == RESULT_DECL))
return NULL_TREE;
if (DECL_GIMPLE_REG_P (base))
{
error ("DECL_GIMPLE_REG_P set on a variable with address taken");
return base;
}
return NULL_TREE;
}
/* Callback for walk_tree, check that all elements with address taken are
properly noticed as such. The DATA is an int* that is 1 if TP was seen
inside a PHI node. */
static tree
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp, x;
if (TYPE_P (t))
*walk_subtrees = 0;
/* Check operand N for being valid GIMPLE and give error MSG if not. */
#define CHECK_OP(N, MSG) \
do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
{ error (MSG); return TREE_OPERAND (t, N); }} while (0)
switch (TREE_CODE (t))
{
case SSA_NAME:
if (SSA_NAME_IN_FREE_LIST (t))
{
error ("SSA name in freelist but still referenced");
return *tp;
}
break;
case PARM_DECL:
case VAR_DECL:
case RESULT_DECL:
{
tree context = decl_function_context (t);
if (context != cfun->decl
&& !SCOPE_FILE_SCOPE_P (context)
&& !TREE_STATIC (t)
&& !DECL_EXTERNAL (t))
{
error ("Local declaration from a different function");
return t;
}
}
break;
case INDIRECT_REF:
error ("INDIRECT_REF in gimple IL");
return t;
case MEM_REF:
x = TREE_OPERAND (t, 0);
if (!POINTER_TYPE_P (TREE_TYPE (x))
|| !is_gimple_mem_ref_addr (x))
{
error ("invalid first operand of MEM_REF");
return x;
}
if (!poly_int_tree_p (TREE_OPERAND (t, 1))
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid offset operand of MEM_REF");
return TREE_OPERAND (t, 1);
}
if (TREE_CODE (x) == ADDR_EXPR)
{
tree va = verify_address (x, TREE_OPERAND (x, 0));
if (va)
return va;
x = TREE_OPERAND (x, 0);
}
walk_tree (&x, verify_expr, data, NULL);
*walk_subtrees = 0;
break;
case ASSERT_EXPR:
x = fold (ASSERT_EXPR_COND (t));
if (x == boolean_false_node)
{
error ("ASSERT_EXPR with an always-false condition");
return *tp;
}
break;
case MODIFY_EXPR:
error ("MODIFY_EXPR not expected while having tuples");
return *tp;
case ADDR_EXPR:
{
tree tem;
gcc_assert (is_gimple_address (t));
/* Skip any references (they will be checked when we recurse down the
tree) and ensure that any variable used as a prefix is marked
addressable. */
for (x = TREE_OPERAND (t, 0);
handled_component_p (x);
x = TREE_OPERAND (x, 0))
;
if ((tem = verify_address (t, x)))
return tem;
if (!(VAR_P (x)
|| TREE_CODE (x) == PARM_DECL
|| TREE_CODE (x) == RESULT_DECL))
return NULL;
if (!TREE_ADDRESSABLE (x))
{
error ("address taken, but ADDRESSABLE bit not set");
return x;
}
break;
}
case COND_EXPR:
x = COND_EXPR_COND (t);
if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
{
error ("non-integral used in condition");
return x;
}
if (!is_gimple_condexpr (x))
{
error ("invalid conditional operand");
return x;
}
break;
case NON_LVALUE_EXPR:
case TRUTH_NOT_EXPR:
gcc_unreachable ();
CASE_CONVERT:
case FIX_TRUNC_EXPR:
case FLOAT_EXPR:
case NEGATE_EXPR:
case ABS_EXPR:
case BIT_NOT_EXPR:
CHECK_OP (0, "invalid operand to unary operator");
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
case BIT_FIELD_REF:
if (!is_gimple_reg_type (TREE_TYPE (t)))
{
error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
return t;
}
if (TREE_CODE (t) == BIT_FIELD_REF)
{
tree t0 = TREE_OPERAND (t, 0);
tree t1 = TREE_OPERAND (t, 1);
tree t2 = TREE_OPERAND (t, 2);
poly_uint64 size, bitpos;
if (!poly_int_tree_p (t1, &size)
|| !poly_int_tree_p (t2, &bitpos)
|| !types_compatible_p (bitsizetype, TREE_TYPE (t1))
|| !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
{
error ("invalid position or size operand to BIT_FIELD_REF");
return t;
}
if (INTEGRAL_TYPE_P (TREE_TYPE (t))
&& maybe_ne (TYPE_PRECISION (TREE_TYPE (t)), size))
{
error ("integral result type precision does not match "
"field size of BIT_FIELD_REF");
return t;
}
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
&& TYPE_MODE (TREE_TYPE (t)) != BLKmode
&& maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))),
size))
{
error ("mode size of non-integral result does not "
"match field size of BIT_FIELD_REF");
return t;
}
if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
&& maybe_gt (size + bitpos,
tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (t0)))))
{
error ("position plus size exceeds size of referenced object in "
"BIT_FIELD_REF");
return t;
}
}
t = TREE_OPERAND (t, 0);
/* Fall-through. */
case COMPONENT_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case VIEW_CONVERT_EXPR:
/* We have a nest of references. Verify that each of the operands
that determine where to reference is either a constant or a variable,
verify that the base is valid, and then show we've already checked
the subtrees. */
while (handled_component_p (t))
{
if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid COMPONENT_REF offset operator");
else if (TREE_CODE (t) == ARRAY_REF
|| TREE_CODE (t) == ARRAY_RANGE_REF)
{
CHECK_OP (1, "invalid array index");
if (TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid array lower bound");
if (TREE_OPERAND (t, 3))
CHECK_OP (3, "invalid array stride");
}
else if (TREE_CODE (t) == BIT_FIELD_REF
|| TREE_CODE (t) == REALPART_EXPR
|| TREE_CODE (t) == IMAGPART_EXPR)
{
error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
"REALPART_EXPR");
return t;
}
t = TREE_OPERAND (t, 0);
}
if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
{
error ("invalid reference prefix");
return t;
}
walk_tree (&t, verify_expr, data, NULL);
*walk_subtrees = 0;
break;
case PLUS_EXPR:
case MINUS_EXPR:
/* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
POINTER_PLUS_EXPR. */
if (POINTER_TYPE_P (TREE_TYPE (t)))
{
error ("invalid operand to plus/minus, type is a pointer");
return t;
}
CHECK_OP (0, "invalid operand to binary operator");
CHECK_OP (1, "invalid operand to binary operator");
break;
case POINTER_DIFF_EXPR:
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid operand to pointer diff, operand is not a pointer");
return t;
}
if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
|| TYPE_UNSIGNED (TREE_TYPE (t))
|| (TYPE_PRECISION (TREE_TYPE (t))
!= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
{
error ("invalid type for pointer diff");
return t;
}
CHECK_OP (0, "invalid operand to pointer diff");
CHECK_OP (1, "invalid operand to pointer diff");
break;
case POINTER_PLUS_EXPR:
/* Check to make sure the first operand is a pointer or reference type. */
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
{
error ("invalid operand to pointer plus, first operand is not a pointer");
return t;
}
/* Check to make sure the second operand is a ptrofftype. */
if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid operand to pointer plus, second operand is not an "
"integer type of appropriate width");
return t;
}
/* FALLTHROUGH */
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case RDIV_EXPR:
case EXACT_DIV_EXPR:
case MIN_EXPR:
case MAX_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
CHECK_OP (0, "invalid operand to binary operator");
CHECK_OP (1, "invalid operand to binary operator");
break;
case CONSTRUCTOR:
if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
*walk_subtrees = 0;
break;
case CASE_LABEL_EXPR:
if (CASE_CHAIN (t))
{
error ("invalid CASE_CHAIN");
return t;
}
break;
default:
break;
}
return NULL;
#undef CHECK_OP
}
/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
Returns true if there is an error, otherwise false. */
static bool
verify_types_in_gimple_min_lval (tree expr)
{
tree op;
if (is_gimple_id (expr))
return false;
if (TREE_CODE (expr) != TARGET_MEM_REF
&& TREE_CODE (expr) != MEM_REF)
{
error ("invalid expression for min lvalue");
return true;
}
/* TARGET_MEM_REFs are strange beasts. */
if (TREE_CODE (expr) == TARGET_MEM_REF)
return false;
op = TREE_OPERAND (expr, 0);
if (!is_gimple_val (op))
{
error ("invalid operand in indirect reference");
debug_generic_stmt (op);
return true;
}
/* Memory references now generally can involve a value conversion. */
return false;
}
/* Verify if EXPR is a valid GIMPLE reference expression. If
REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
if there is an error, otherwise false. */
static bool
verify_types_in_gimple_reference (tree expr, bool require_lvalue)
{
while (handled_component_p (expr))
{
tree op = TREE_OPERAND (expr, 0);
if (TREE_CODE (expr) == ARRAY_REF
|| TREE_CODE (expr) == ARRAY_RANGE_REF)
{
if (!is_gimple_val (TREE_OPERAND (expr, 1))
|| (TREE_OPERAND (expr, 2)
&& !is_gimple_val (TREE_OPERAND (expr, 2)))
|| (TREE_OPERAND (expr, 3)
&& !is_gimple_val (TREE_OPERAND (expr, 3))))
{
error ("invalid operands to array reference");
debug_generic_stmt (expr);
return true;
}
}
/* Verify if the reference array element types are compatible. */
if (TREE_CODE (expr) == ARRAY_REF
&& !useless_type_conversion_p (TREE_TYPE (expr),
TREE_TYPE (TREE_TYPE (op))))
{
error ("type mismatch in array reference");
debug_generic_stmt (TREE_TYPE (expr));
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
return true;
}
if (TREE_CODE (expr) == ARRAY_RANGE_REF
&& !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
TREE_TYPE (TREE_TYPE (op))))
{
error ("type mismatch in array range reference");
debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
return true;
}
if ((TREE_CODE (expr) == REALPART_EXPR
|| TREE_CODE (expr) == IMAGPART_EXPR)
&& !useless_type_conversion_p (TREE_TYPE (expr),
TREE_TYPE (TREE_TYPE (op))))
{
error ("type mismatch in real/imagpart reference");
debug_generic_stmt (TREE_TYPE (expr));
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
return true;
}
if (TREE_CODE (expr) == COMPONENT_REF
&& !useless_type_conversion_p (TREE_TYPE (expr),
TREE_TYPE (TREE_OPERAND (expr, 1))))
{
error ("type mismatch in component reference");
debug_generic_stmt (TREE_TYPE (expr));
debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
return true;
}
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
{
/* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
that their operand is not an SSA name or an invariant when
requiring an lvalue (this usually means there is a SRA or IPA-SRA
bug). Otherwise there is nothing to verify, gross mismatches at
most invoke undefined behavior. */
if (require_lvalue
&& (TREE_CODE (op) == SSA_NAME
|| is_gimple_min_invariant (op)))
{
error ("conversion of an SSA_NAME on the left hand side");
debug_generic_stmt (expr);
return true;
}
else if (TREE_CODE (op) == SSA_NAME
&& TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
{
error ("conversion of register to a different size");
debug_generic_stmt (expr);
return true;
}
else if (!handled_component_p (op))
return false;
}
expr = op;
}
if (TREE_CODE (expr) == MEM_REF)
{
if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
{
error ("invalid address operand in MEM_REF");
debug_generic_stmt (expr);
return true;
}
if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
{
error ("invalid offset operand in MEM_REF");
debug_generic_stmt (expr);
return true;
}
}
else if (TREE_CODE (expr) == TARGET_MEM_REF)
{
if (!TMR_BASE (expr)
|| !is_gimple_mem_ref_addr (TMR_BASE (expr)))
{
error ("invalid address operand in TARGET_MEM_REF");
return true;
}
if (!TMR_OFFSET (expr)
|| !poly_int_tree_p (TMR_OFFSET (expr))
|| !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
{
error ("invalid offset operand in TARGET_MEM_REF");
debug_generic_stmt (expr);
return true;
}
}
return ((require_lvalue || !is_gimple_min_invariant (expr))
&& verify_types_in_gimple_min_lval (expr));
}
/* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
list of pointer-to types that is trivially convertible to DEST. */
static bool
one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
{
tree src;
if (!TYPE_POINTER_TO (src_obj))
return true;
for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
if (useless_type_conversion_p (dest, src))
return true;
return false;
}
/* Return true if TYPE1 is a fixed-point type and if conversions to and
from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
static bool
valid_fixed_convert_types_p (tree type1, tree type2)
{
return (FIXED_POINT_TYPE_P (type1)
&& (INTEGRAL_TYPE_P (type2)
|| SCALAR_FLOAT_TYPE_P (type2)
|| FIXED_POINT_TYPE_P (type2)));
}
/* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
is a problem, otherwise false. */
static bool
verify_gimple_call (gcall *stmt)
{
tree fn = gimple_call_fn (stmt);
tree fntype, fndecl;
unsigned i;
if (gimple_call_internal_p (stmt))
{
if (fn)
{
error ("gimple call has two targets");
debug_generic_stmt (fn);
return true;
}
/* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
else if (gimple_call_internal_fn (stmt) == IFN_PHI)
{
return false;
}
}
else
{
if (!fn)
{
error ("gimple call has no target");
return true;
}
}
if (fn && !is_gimple_call_addr (fn))
{
error ("invalid function in gimple call");
debug_generic_stmt (fn);
return true;
}
if (fn
&& (!POINTER_TYPE_P (TREE_TYPE (fn))
|| (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
{
error ("non-function in gimple call");
return true;
}
fndecl = gimple_call_fndecl (stmt);
if (fndecl
&& TREE_CODE (fndecl) == FUNCTION_DECL
&& DECL_LOOPING_CONST_OR_PURE_P (fndecl)
&& !DECL_PURE_P (fndecl)
&& !TREE_READONLY (fndecl))
{
error ("invalid pure const state for function");
return true;
}
tree lhs = gimple_call_lhs (stmt);
if (lhs
&& (!is_gimple_lvalue (lhs)
|| verify_types_in_gimple_reference (lhs, true)))
{
error ("invalid LHS in gimple call");
return true;
}
if (gimple_call_ctrl_altering_p (stmt)
&& gimple_call_noreturn_p (stmt)
&& should_remove_lhs_p (lhs))
{
error ("LHS in noreturn call");
return true;
}
fntype = gimple_call_fntype (stmt);
if (fntype
&& lhs
&& !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
/* ??? At least C++ misses conversions at assignments from
void * call results.
For now simply allow arbitrary pointer type conversions. */
&& !(POINTER_TYPE_P (TREE_TYPE (lhs))
&& POINTER_TYPE_P (TREE_TYPE (fntype))))
{
error ("invalid conversion in gimple call");
debug_generic_stmt (TREE_TYPE (lhs));
debug_generic_stmt (TREE_TYPE (fntype));
return true;
}
if (gimple_call_chain (stmt)
&& !is_gimple_val (gimple_call_chain (stmt)))
{
error ("invalid static chain in gimple call");
debug_generic_stmt (gimple_call_chain (stmt));
return true;
}
/* If there is a static chain argument, the call should either be
indirect, or the decl should have DECL_STATIC_CHAIN set. */
if (gimple_call_chain (stmt)
&& fndecl
&& !DECL_STATIC_CHAIN (fndecl))
{
error ("static chain with function that doesn%'t use one");
return true;
}
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
{
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_UNREACHABLE:
case BUILT_IN_TRAP:
if (gimple_call_num_args (stmt) > 0)
{
/* Built-in unreachable with parameters might not be caught by
undefined behavior sanitizer. Front-ends do check users do not
call them that way but we also produce calls to
__builtin_unreachable internally, for example when IPA figures
out a call cannot happen in a legal program. In such cases,
we must make sure arguments are stripped off. */
error ("__builtin_unreachable or __builtin_trap call with "
"arguments");
return true;
}
break;
default:
break;
}
}
/* ??? The C frontend passes unpromoted arguments in case it
didn't see a function declaration before the call. So for now
leave the call arguments mostly unverified. Once we gimplify
unit-at-a-time we have a chance to fix this. */
for (i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree arg = gimple_call_arg (stmt, i);
if ((is_gimple_reg_type (TREE_TYPE (arg))
&& !is_gimple_val (arg))
|| (!is_gimple_reg_type (TREE_TYPE (arg))
&& !is_gimple_lvalue (arg)))
{
error ("invalid argument to gimple call");
debug_generic_expr (arg);
return true;
}
}
return false;
}
/* Verifies the gimple comparison with the result type TYPE and
the operands OP0 and OP1, comparison code is CODE. */
static bool
verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
{
tree op0_type = TREE_TYPE (op0);
tree op1_type = TREE_TYPE (op1);
if (!is_gimple_val (op0) || !is_gimple_val (op1))
{
error ("invalid operands in gimple comparison");
return true;
}
/* For comparisons we do not have the operations type as the
effective type the comparison is carried out in. Instead
we require that either the first operand is trivially
convertible into the second, or the other way around.
Because we special-case pointers to void we allow
comparisons of pointers with the same mode as well. */
if (!useless_type_conversion_p (op0_type, op1_type)
&& !useless_type_conversion_p (op1_type, op0_type)
&& (!POINTER_TYPE_P (op0_type)
|| !POINTER_TYPE_P (op1_type)
|| TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
{
error ("mismatching comparison operand types");
debug_generic_expr (op0_type);
debug_generic_expr (op1_type);
return true;
}
/* The resulting type of a comparison may be an effective boolean type. */
if (INTEGRAL_TYPE_P (type)
&& (TREE_CODE (type) == BOOLEAN_TYPE
|| TYPE_PRECISION (type) == 1))
{
if ((TREE_CODE (op0_type) == VECTOR_TYPE
|| TREE_CODE (op1_type) == VECTOR_TYPE)
&& code != EQ_EXPR && code != NE_EXPR
&& !VECTOR_BOOLEAN_TYPE_P (op0_type)
&& !VECTOR_INTEGER_TYPE_P (op0_type))
{
error ("unsupported operation or type for vector comparison"
" returning a boolean");
debug_generic_expr (op0_type);
debug_generic_expr (op1_type);
return true;
}
}
/* Or a boolean vector type with the same element count
as the comparison operand types. */
else if (TREE_CODE (type) == VECTOR_TYPE
&& TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
{
if (TREE_CODE (op0_type) != VECTOR_TYPE
|| TREE_CODE (op1_type) != VECTOR_TYPE)
{
error ("non-vector operands in vector comparison");
debug_generic_expr (op0_type);
debug_generic_expr (op1_type);
return true;
}
if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
TYPE_VECTOR_SUBPARTS (op0_type)))
{
error ("invalid vector comparison resulting type");
debug_generic_expr (type);
return true;
}
}
else
{
error ("bogus comparison result type");
debug_generic_expr (type);
return true;
}
return false;
}
/* Verify a gimple assignment statement STMT with an unary rhs.
Returns true if anything is wrong. */
static bool
verify_gimple_assign_unary (gassign *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs1_type = TREE_TYPE (rhs1);
if (!is_gimple_reg (lhs))
{
error ("non-register as LHS of unary operation");
return true;
}
if (!is_gimple_val (rhs1))
{
error ("invalid operand in unary operation");
return true;
}
/* First handle conversions. */
switch (rhs_code)
{
CASE_CONVERT:
{
/* Allow conversions from pointer type to integral type only if
there is no sign or zero extension involved.
For targets were the precision of ptrofftype doesn't match that
of pointers we need to allow arbitrary conversions to ptrofftype. */
if ((POINTER_TYPE_P (lhs_type)
&& INTEGRAL_TYPE_P (rhs1_type))
|| (POINTER_TYPE_P (rhs1_type)
&& INTEGRAL_TYPE_P (lhs_type)
&& (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
|| ptrofftype_p (sizetype))))
return false;
/* Allow conversion from integral to offset type and vice versa. */
if ((TREE_CODE (lhs_type) == OFFSET_TYPE
&& INTEGRAL_TYPE_P (rhs1_type))
|| (INTEGRAL_TYPE_P (lhs_type)
&& TREE_CODE (rhs1_type) == OFFSET_TYPE))
return false;
/* Otherwise assert we are converting between types of the
same kind. */
if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
{
error ("invalid types in nop conversion");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
case ADDR_SPACE_CONVERT_EXPR:
{
if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
|| (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
== TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
{
error ("invalid types in address space conversion");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
case FIXED_CONVERT_EXPR:
{
if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
&& !valid_fixed_convert_types_p (rhs1_type, lhs_type))
{
error ("invalid types in fixed-point conversion");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
case FLOAT_EXPR:
{
if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
&& (!VECTOR_INTEGER_TYPE_P (rhs1_type)
|| !VECTOR_FLOAT_TYPE_P (lhs_type)))
{
error ("invalid types in conversion to floating point");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
case FIX_TRUNC_EXPR:
{
if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
&& (!VECTOR_INTEGER_TYPE_P (lhs_type)
|| !VECTOR_FLOAT_TYPE_P (rhs1_type)))
{
error ("invalid types in conversion to integer");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
case VEC_UNPACK_HI_EXPR:
case VEC_UNPACK_LO_EXPR:
case VEC_UNPACK_FLOAT_HI_EXPR:
case VEC_UNPACK_FLOAT_LO_EXPR:
/* FIXME. */
return false;
case NEGATE_EXPR:
case ABS_EXPR:
case BIT_NOT_EXPR:
case PAREN_EXPR:
case CONJ_EXPR:
break;
case VEC_DUPLICATE_EXPR:
if (TREE_CODE (lhs_type) != VECTOR_TYPE
|| !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
{
error ("vec_duplicate should be from a scalar to a like vector");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
default:
gcc_unreachable ();
}
/* For the remaining codes assert there is no conversion involved. */
if (!useless_type_conversion_p (lhs_type, rhs1_type))
{
error ("non-trivial conversion in unary operation");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
return false;
}
/* Verify a gimple assignment statement STMT with a binary rhs.
Returns true if anything is wrong. */
static bool
verify_gimple_assign_binary (gassign *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs1_type = TREE_TYPE (rhs1);
tree rhs2 = gimple_assign_rhs2 (stmt);
tree rhs2_type = TREE_TYPE (rhs2);
if (!is_gimple_reg (lhs))
{
error ("non-register as LHS of binary operation");
return true;
}
if (!is_gimple_val (rhs1)
|| !is_gimple_val (rhs2))
{
error ("invalid operands in binary operation");
return true;
}
/* First handle operations that involve different types. */
switch (rhs_code)
{
case COMPLEX_EXPR:
{
if (TREE_CODE (lhs_type) != COMPLEX_TYPE
|| !(INTEGRAL_TYPE_P (rhs1_type)
|| SCALAR_FLOAT_TYPE_P (rhs1_type))
|| !(INTEGRAL_TYPE_P (rhs2_type)
|| SCALAR_FLOAT_TYPE_P (rhs2_type)))
{
error ("type mismatch in complex expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
{
/* Shifts and rotates are ok on integral types, fixed point
types and integer vector types. */
if ((!INTEGRAL_TYPE_P (rhs1_type)
&& !FIXED_POINT_TYPE_P (rhs1_type)
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
|| (!INTEGRAL_TYPE_P (rhs2_type)
/* Vector shifts of vectors are also ok. */
&& !(TREE_CODE (rhs1_type) == VECTOR_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
&& TREE_CODE (rhs2_type) == VECTOR_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
|| !useless_type_conversion_p (lhs_type, rhs1_type))
{
error ("type mismatch in shift expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case WIDEN_LSHIFT_EXPR:
{
if (!INTEGRAL_TYPE_P (lhs_type)
|| !INTEGRAL_TYPE_P (rhs1_type)
|| TREE_CODE (rhs2) != INTEGER_CST
|| (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
{
error ("type mismatch in widening vector shift expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case VEC_WIDEN_LSHIFT_HI_EXPR:
case VEC_WIDEN_LSHIFT_LO_EXPR:
{
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (lhs_type) != VECTOR_TYPE
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
|| !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
|| TREE_CODE (rhs2) != INTEGER_CST
|| (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
> TYPE_PRECISION (TREE_TYPE (lhs_type))))
{
error ("type mismatch in widening vector shift expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case PLUS_EXPR:
case MINUS_EXPR:
{
tree lhs_etype = lhs_type;
tree rhs1_etype = rhs1_type;
tree rhs2_etype = rhs2_type;
if (TREE_CODE (lhs_type) == VECTOR_TYPE)
{
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (rhs2_type) != VECTOR_TYPE)
{
error ("invalid non-vector operands to vector valued plus");
return true;
}
lhs_etype = TREE_TYPE (lhs_type);
rhs1_etype = TREE_TYPE (rhs1_type);
rhs2_etype = TREE_TYPE (rhs2_type);
}
if (POINTER_TYPE_P (lhs_etype)
|| POINTER_TYPE_P (rhs1_etype)
|| POINTER_TYPE_P (rhs2_etype))
{
error ("invalid (pointer) operands to plus/minus");
return true;
}
/* Continue with generic binary expression handling. */
break;
}
case POINTER_PLUS_EXPR:
{
if (!POINTER_TYPE_P (rhs1_type)
|| !useless_type_conversion_p (lhs_type, rhs1_type)
|| !ptrofftype_p (rhs2_type))
{
error ("type mismatch in pointer plus expression");
debug_generic_stmt (lhs_type);
debug_generic_stmt (rhs1_type);
debug_generic_stmt (rhs2_type);
return true;
}
return false;
}
case POINTER_DIFF_EXPR:
{
if (!POINTER_TYPE_P (rhs1_type)
|| !POINTER_TYPE_P (rhs2_type)
/* Because we special-case pointers to void we allow difference
of arbitrary pointers with the same mode. */
|| TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
|| TREE_CODE (lhs_type) != INTEGER_TYPE
|| TYPE_UNSIGNED (lhs_type)
|| TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
{
error ("type mismatch in pointer diff expression");
debug_generic_stmt (lhs_type);
debug_generic_stmt (rhs1_type);
debug_generic_stmt (rhs2_type);
return true;
}
return false;
}
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
gcc_unreachable ();
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
/* Comparisons are also binary, but the result type is not
connected to the operand types. */
return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
case WIDEN_MULT_EXPR:
if (TREE_CODE (lhs_type) != INTEGER_TYPE)
return true;
return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
|| (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
case WIDEN_SUM_EXPR:
{
if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (lhs_type) != VECTOR_TYPE)
&& ((!INTEGRAL_TYPE_P (rhs1_type)
&& !SCALAR_FLOAT_TYPE_P (rhs1_type))
|| (!INTEGRAL_TYPE_P (lhs_type)
&& !SCALAR_FLOAT_TYPE_P (lhs_type))))
|| !useless_type_conversion_p (lhs_type, rhs2_type)
|| maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
2 * GET_MODE_SIZE (element_mode (rhs1_type))))
{
error ("type mismatch in widening sum reduction");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case VEC_WIDEN_MULT_HI_EXPR:
case VEC_WIDEN_MULT_LO_EXPR:
case VEC_WIDEN_MULT_EVEN_EXPR:
case VEC_WIDEN_MULT_ODD_EXPR:
{
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (lhs_type) != VECTOR_TYPE
|| !types_compatible_p (rhs1_type, rhs2_type)
|| maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
2 * GET_MODE_SIZE (element_mode (rhs1_type))))
{
error ("type mismatch in vector widening multiplication");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case VEC_PACK_TRUNC_EXPR:
/* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
vector boolean types. */
if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
&& VECTOR_BOOLEAN_TYPE_P (rhs1_type)
&& types_compatible_p (rhs1_type, rhs2_type)
&& known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
return false;
/* Fallthru. */
case VEC_PACK_SAT_EXPR:
case VEC_PACK_FIX_TRUNC_EXPR:
{
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (lhs_type) != VECTOR_TYPE
|| !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
&& INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
|| (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
== INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
|| !types_compatible_p (rhs1_type, rhs2_type)
|| maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
2 * GET_MODE_SIZE (element_mode (lhs_type))))
{
error ("type mismatch in vector pack expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case MULT_EXPR:
case MULT_HIGHPART_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case RDIV_EXPR:
case EXACT_DIV_EXPR:
case MIN_EXPR:
case MAX_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
/* Continue with generic binary expression handling. */
break;
case VEC_SERIES_EXPR:
if (!useless_type_conversion_p (rhs1_type, rhs2_type))
{
error ("type mismatch in series expression");
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
if (TREE_CODE (lhs_type) != VECTOR_TYPE
|| !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
{
error ("vector type expected in series expression");
debug_generic_expr (lhs_type);
return true;
}
return false;
default:
gcc_unreachable ();
}
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|| !useless_type_conversion_p (lhs_type, rhs2_type))
{
error ("type mismatch in binary expression");
debug_generic_stmt (lhs_type);
debug_generic_stmt (rhs1_type);
debug_generic_stmt (rhs2_type);
return true;
}
return false;
}
/* Verify a gimple assignment statement STMT with a ternary rhs.
Returns true if anything is wrong. */
static bool
verify_gimple_assign_ternary (gassign *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs1_type = TREE_TYPE (rhs1);
tree rhs2 = gimple_assign_rhs2 (stmt);
tree rhs2_type = TREE_TYPE (rhs2);
tree rhs3 = gimple_assign_rhs3 (stmt);
tree rhs3_type = TREE_TYPE (rhs3);
if (!is_gimple_reg (lhs))
{
error ("non-register as LHS of ternary operation");
return true;
}
if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
|| !is_gimple_val (rhs2)
|| !is_gimple_val (rhs3))
{
error ("invalid operands in ternary operation");
return true;
}
/* First handle operations that involve different types. */
switch (rhs_code)
{
case WIDEN_MULT_PLUS_EXPR:
case WIDEN_MULT_MINUS_EXPR:
if ((!INTEGRAL_TYPE_P (rhs1_type)
&& !FIXED_POINT_TYPE_P (rhs1_type))
|| !useless_type_conversion_p (rhs1_type, rhs2_type)
|| !useless_type_conversion_p (lhs_type, rhs3_type)
|| 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
|| TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
{
error ("type mismatch in widening multiply-accumulate expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
break;
case FMA_EXPR:
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|| !useless_type_conversion_p (lhs_type, rhs2_type)
|| !useless_type_conversion_p (lhs_type, rhs3_type))
{
error ("type mismatch in fused multiply-add expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
break;
case VEC_COND_EXPR:
if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
|| maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
TYPE_VECTOR_SUBPARTS (lhs_type)))
{
error ("the first argument of a VEC_COND_EXPR must be of a "
"boolean vector type of the same number of elements "
"as the result");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
/* Fallthrough. */
case COND_EXPR:
if (!useless_type_conversion_p (lhs_type, rhs2_type)
|| !useless_type_conversion_p (lhs_type, rhs3_type))
{
error ("type mismatch in conditional expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
break;
case VEC_PERM_EXPR:
if (!useless_type_conversion_p (lhs_type, rhs1_type)
|| !useless_type_conversion_p (lhs_type, rhs2_type))
{
error ("type mismatch in vector permute expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (rhs2_type) != VECTOR_TYPE
|| TREE_CODE (rhs3_type) != VECTOR_TYPE)
{
error ("vector types expected in vector permute expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
TYPE_VECTOR_SUBPARTS (rhs2_type))
|| maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
TYPE_VECTOR_SUBPARTS (rhs3_type))
|| maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
TYPE_VECTOR_SUBPARTS (lhs_type)))
{
error ("vectors with different element number found "
"in vector permute expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
|| (TREE_CODE (rhs3) != VECTOR_CST
&& (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
(TREE_TYPE (rhs3_type)))
!= GET_MODE_BITSIZE (SCALAR_TYPE_MODE
(TREE_TYPE (rhs1_type))))))
{
error ("invalid mask type in vector permute expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
return false;
case SAD_EXPR:
if (!useless_type_conversion_p (rhs1_type, rhs2_type)
|| !useless_type_conversion_p (lhs_type, rhs3_type)
|| 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
> GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
{
error ("type mismatch in sad expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
if (TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (rhs2_type) != VECTOR_TYPE
|| TREE_CODE (rhs3_type) != VECTOR_TYPE)
{
error ("vector types expected in sad expression");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
debug_generic_expr (rhs3_type);
return true;
}
return false;
case BIT_INSERT_EXPR:
if (! useless_type_conversion_p (lhs_type, rhs1_type))
{
error ("type mismatch in BIT_INSERT_EXPR");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
if (! ((INTEGRAL_TYPE_P (rhs1_type)
&& INTEGRAL_TYPE_P (rhs2_type))
|| (VECTOR_TYPE_P (rhs1_type)
&& types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
{
error ("not allowed type combination in BIT_INSERT_EXPR");
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
if (! tree_fits_uhwi_p (rhs3)
|| ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
|| ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
{
error ("invalid position or size in BIT_INSERT_EXPR");
return true;
}
if (INTEGRAL_TYPE_P (rhs1_type))
{
unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
if (bitpos >= TYPE_PRECISION (rhs1_type)
|| (bitpos + TYPE_PRECISION (rhs2_type)
> TYPE_PRECISION (rhs1_type)))
{
error ("insertion out of range in BIT_INSERT_EXPR");
return true;
}
}
else if (VECTOR_TYPE_P (rhs1_type))
{
unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
if (bitpos % bitsize != 0)
{
error ("vector insertion not at element boundary");
return true;
}
}
return false;
case DOT_PROD_EXPR:
{
if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
|| TREE_CODE (lhs_type) != VECTOR_TYPE)
&& ((!INTEGRAL_TYPE_P (rhs1_type)
&& !SCALAR_FLOAT_TYPE_P (rhs1_type))
|| (!INTEGRAL_TYPE_P (lhs_type)
&& !SCALAR_FLOAT_TYPE_P (lhs_type))))
|| !types_compatible_p (rhs1_type, rhs2_type)
|| !useless_type_conversion_p (lhs_type, rhs3_type)
|| maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
2 * GET_MODE_SIZE (element_mode (rhs1_type))))
{
error ("type mismatch in dot product reduction");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
debug_generic_expr (rhs2_type);
return true;
}
return false;
}
case REALIGN_LOAD_EXPR:
/* FIXME. */
return false;
default:
gcc_unreachable ();
}
return false;
}
/* Verify a gimple assignment statement STMT with a single rhs.
Returns true if anything is wrong. */
static bool
verify_gimple_assign_single (gassign *stmt)
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree lhs_type = TREE_TYPE (lhs);
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs1_type = TREE_TYPE (rhs1);
bool res = false;
if (!useless_type_conversion_p (lhs_type, rhs1_type))
{
error ("non-trivial conversion at assignment");
debug_generic_expr (lhs_type);
debug_generic_expr (rhs1_type);
return true;
}
if (gimple_clobber_p (stmt)
&& !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
{
error ("non-decl/MEM_REF LHS in clobber statement");
debug_generic_expr (lhs);
return true;
}
if (handled_component_p (lhs)
|| TREE_CODE (lhs) == MEM_REF
|| TREE_CODE (lhs) == TARGET_MEM_REF)
res |= verify_types_in_gimple_reference (lhs, true);
/* Special codes we cannot handle via their class. */
switch (rhs_code)
{
case ADDR_EXPR:
{
tree op = TREE_OPERAND (rhs1, 0);
if (!is_gimple_addressable (op))
{
error ("invalid operand in unary expression");
return true;
}
/* Technically there is no longer a need for matching types, but
gimple hygiene asks for this check. In LTO we can end up
combining incompatible units and thus end up with addresses
of globals that change their type to a common one. */
if (!in_lto_p
&& !types_compatible_p (TREE_TYPE (op),
TREE_TYPE (TREE_TYPE (rhs1)))
&& !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
TREE_TYPE (op)))
{
error ("type mismatch in address expression");
debug_generic_stmt (TREE_TYPE (rhs1));
debug_generic_stmt (TREE_TYPE (op));
return true;
}
return verify_types_in_gimple_reference (op, true);
}
/* tcc_reference */
case INDIRECT_REF:
error ("INDIRECT_REF in gimple IL");
return true;
case COMPONENT_REF:
case BIT_FIELD_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case VIEW_CONVERT_EXPR:
case REALPART_EXPR:
case IMAGPART_EXPR:
case TARGET_MEM_REF:
case MEM_REF:
if (!is_gimple_reg (lhs)
&& is_gimple_reg_type (TREE_TYPE (lhs)))
{
error ("invalid rhs for gimple memory store");
debug_generic_stmt (lhs);
debug_generic_stmt (rhs1);
return true;
}
return res || verify_types_in_gimple_reference (rhs1, false);
/* tcc_constant */
case SSA_NAME:
case INTEGER_CST:
case REAL_CST:
case FIXED_CST:
case COMPLEX_CST:
case VECTOR_CST:
case STRING_CST:
return res;
/* tcc_declaration */
case CONST_DECL:
return res;
case VAR_DECL:
case PARM_DECL:
if (!is_gimple_reg (lhs)
&& !is_gimple_reg (rhs1)
&& is_gimple_reg_type (TREE_TYPE (lhs)))
{
error ("invalid rhs for gimple memory store");
debug_generic_stmt (lhs);
debug_generic_stmt (rhs1);
return true;
}
return res;
case CONSTRUCTOR:
if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
{
unsigned int i;
tree elt_i, elt_v, elt_t = NULL_TREE;
if (CONSTRUCTOR_NELTS (rhs1) == 0)
return res;
/* For vector CONSTRUCTORs we require that either it is empty
CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
(then the element count must be correct to cover the whole
outer vector and index must be NULL on all elements, or it is
a CONSTRUCTOR of scalar elements, where we as an exception allow
smaller number of elements (assuming zero filling) and
consecutive indexes as compared to NULL indexes (such
CONSTRUCTORs can appear in the IL from FEs). */
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
{
if (elt_t == NULL_TREE)
{
elt_t = TREE_TYPE (elt_v);
if (TREE_CODE (elt_t) == VECTOR_TYPE)
{
tree elt_t = TREE_TYPE (elt_v);
if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
TREE_TYPE (elt_t)))
{
error ("incorrect type of vector CONSTRUCTOR"
" elements");
debug_generic_stmt (rhs1);
return true;
}
else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
* TYPE_VECTOR_SUBPARTS (elt_t),
TYPE_VECTOR_SUBPARTS (rhs1_type)))
{
error ("incorrect number of vector CONSTRUCTOR"
" elements");
debug_generic_stmt (rhs1);
return true;
}
}
else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
elt_t))
{
error ("incorrect type of vector CONSTRUCTOR elements");
debug_generic_stmt (rhs1);
return true;
}
else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
TYPE_VECTOR_SUBPARTS (rhs1_type)))
{
error ("incorrect number of vector CONSTRUCTOR elements");
debug_generic_stmt (rhs1);
return true;
}
}
else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
{
error ("incorrect type of vector CONSTRUCTOR elements");
debug_generic_stmt (rhs1);
return true;
}
if (elt_i != NULL_TREE
&& (TREE_CODE (elt_t) == VECTOR_TYPE
|| TREE_CODE (elt_i) != INTEGER_CST
|| compare_tree_int (elt_i, i) != 0))
{
error ("vector CONSTRUCTOR with non-NULL element index");
debug_generic_stmt (rhs1);
return true;
}
if (!is_gimple_val (elt_v))
{
error ("vector CONSTRUCTOR element is not a GIMPLE value");
debug_generic_stmt (rhs1);
return true;
}
}
}
else if (CONSTRUCTOR_NELTS (rhs1) != 0)
{
error ("non-vector CONSTRUCTOR with elements");
debug_generic_stmt (rhs1);
return true;
}
return res;
case OBJ_TYPE_REF:
case ASSERT_EXPR:
case WITH_SIZE_EXPR:
/* FIXME. */
return res;
default:;
}
return res;
}
/* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
is a problem, otherwise false. */
static bool
verify_gimple_assign (gassign *stmt)
{
switch (gimple_assign_rhs_class (stmt))
{
case GIMPLE_SINGLE_RHS:
return verify_gimple_assign_single (stmt);
case GIMPLE_UNARY_RHS:
return verify_gimple_assign_unary (stmt);
case GIMPLE_BINARY_RHS:
return verify_gimple_assign_binary (stmt);
case GIMPLE_TERNARY_RHS:
return verify_gimple_assign_ternary (stmt);
default:
gcc_unreachable ();
}
}
/* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
is a problem, otherwise false. */
static bool
verify_gimple_return (greturn *stmt)
{
tree op = gimple_return_retval (stmt);
tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
/* We cannot test for present return values as we do not fix up missing
return values from the original source. */
if (op == NULL)
return false;
if (!is_gimple_val (op)
&& TREE_CODE (op) != RESULT_DECL)
{
error ("invalid operand in return statement");
debug_generic_stmt (op);
return true;
}
if ((TREE_CODE (op) == RESULT_DECL
&& DECL_BY_REFERENCE (op))
|| (TREE_CODE (op) == SSA_NAME
&& SSA_NAME_VAR (op)
&& TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
&& DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
op = TREE_TYPE (op);
if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
{
error ("invalid conversion in return statement");
debug_generic_stmt (restype);
debug_generic_stmt (TREE_TYPE (op));
return true;
}
return false;
}
/* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
is a problem, otherwise false. */
static bool
verify_gimple_goto (ggoto *stmt)
{
tree dest = gimple_goto_dest (stmt);
/* ??? We have two canonical forms of direct goto destinations, a
bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
if (TREE_CODE (dest) != LABEL_DECL
&& (!is_gimple_val (dest)
|| !POINTER_TYPE_P (TREE_TYPE (dest))))
{
error ("goto destination is neither a label nor a pointer");
return true;
}
return false;
}
/* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
is a problem, otherwise false. */
static bool
verify_gimple_switch (gswitch *stmt)
{
unsigned int i, n;
tree elt, prev_upper_bound = NULL_TREE;
tree index_type, elt_type = NULL_TREE;
if (!is_gimple_val (gimple_switch_index (stmt)))
{
error ("invalid operand to switch statement");
debug_generic_stmt (gimple_switch_index (stmt));
return true;
}
index_type = TREE_TYPE (gimple_switch_index (stmt));
if (! INTEGRAL_TYPE_P (index_type))
{
error ("non-integral type switch statement");
debug_generic_expr (index_type);
return true;
}
elt = gimple_switch_label (stmt, 0);
if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
{
error ("invalid default case label in switch statement");
debug_generic_expr (elt);
return true;
}
n = gimple_switch_num_labels (stmt);
for (i = 1; i < n; i++)
{
elt = gimple_switch_label (stmt, i);
if (! CASE_LOW (elt))
{
error ("invalid case label in switch statement");
debug_generic_expr (elt);
return true;
}
if (CASE_HIGH (elt)
&& ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
{
error ("invalid case range in switch statement");
debug_generic_expr (elt);
return true;
}
if (elt_type)
{
if (TREE_TYPE (CASE_LOW (elt)) != elt_type
|| (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
{
error ("type mismatch for case label in switch statement");
debug_generic_expr (elt);
return true;
}
}
else
{
elt_type = TREE_TYPE (CASE_LOW (elt));
if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
{
error ("type precision mismatch in switch statement");
return true;
}
}
if (prev_upper_bound)
{
if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
{
error ("case labels not sorted in switch statement");
return true;
}
}
prev_upper_bound = CASE_HIGH (elt);
if (! prev_upper_bound)
prev_upper_bound = CASE_LOW (elt);
}
return false;
}
/* Verify a gimple debug statement STMT.
Returns true if anything is wrong. */
static bool
verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
{
/* There isn't much that could be wrong in a gimple debug stmt. A
gimple debug bind stmt, for example, maps a tree, that's usually
a VAR_DECL or a PARM_DECL, but that could also be some scalarized
component or member of an aggregate type, to another tree, that
can be an arbitrary expression. These stmts expand into debug
insns, and are converted to debug notes by var-tracking.c. */
return false;
}
/* Verify a gimple label statement STMT.
Returns true if anything is wrong. */
static bool
verify_gimple_label (glabel *stmt)
{
tree decl = gimple_label_label (stmt);
int uid;
bool err = false;
if (TREE_CODE (decl) != LABEL_DECL)
return true;
if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
&& DECL_CONTEXT (decl) != current_function_decl)
{
error ("label's context is not the current function decl");
err |= true;
}
uid = LABEL_DECL_UID (decl);
if (cfun->cfg
&& (uid == -1
|| (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
{
error ("incorrect entry in label_to_block_map");
err |= true;
}
uid = EH_LANDING_PAD_NR (decl);
if (uid)
{
eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
if (decl != lp->post_landing_pad)
{
error ("incorrect setting of landing pad number");
err |= true;
}
}
return err;
}
/* Verify a gimple cond statement STMT.
Returns true if anything is wrong. */
static bool
verify_gimple_cond (gcond *stmt)
{
if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
{
error ("invalid comparison code in gimple cond");
return true;
}
if (!(!gimple_cond_true_label (stmt)
|| TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
|| !(!gimple_cond_false_label (stmt)
|| TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
{
error ("invalid labels in gimple cond");
return true;
}
return verify_gimple_comparison (boolean_type_node,
gimple_cond_lhs (stmt),
gimple_cond_rhs (stmt),
gimple_cond_code (stmt));
}
/* Verify the GIMPLE statement STMT. Returns true if there is an
error, otherwise false. */
static bool
verify_gimple_stmt (gimple *stmt)
{
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return verify_gimple_assign (as_a <gassign *> (stmt));
case GIMPLE_LABEL:
return verify_gimple_label (as_a <glabel *> (stmt));
case GIMPLE_CALL:
return verify_gimple_call (as_a <gcall *> (stmt));
case GIMPLE_COND:
return verify_gimple_cond (as_a <gcond *> (stmt));
case GIMPLE_GOTO:
return verify_gimple_goto (as_a <ggoto *> (stmt));
case GIMPLE_SWITCH:
return verify_gimple_switch (as_a <gswitch *> (stmt));
case GIMPLE_RETURN:
return verify_gimple_return (as_a <greturn *> (stmt));
case GIMPLE_ASM:
return false;
case GIMPLE_TRANSACTION:
return verify_gimple_transaction (as_a <gtransaction *> (stmt));
/* Tuples that do not have tree operands. */
case GIMPLE_NOP:
case GIMPLE_PREDICT:
case GIMPLE_RESX:
case GIMPLE_EH_DISPATCH:
case GIMPLE_EH_MUST_NOT_THROW:
return false;
CASE_GIMPLE_OMP:
/* OpenMP directives are validated by the FE and never operated
on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
non-gimple expressions when the main index variable has had
its address taken. This does not affect the loop itself
because the header of an GIMPLE_OMP_FOR is merely used to determine
how to setup the parallel iteration. */
return false;
case GIMPLE_DEBUG:
return verify_gimple_debug (stmt);
default:
gcc_unreachable ();
}
}
/* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
and false otherwise. */
static bool
verify_gimple_phi (gimple *phi)
{
bool err = false;
unsigned i;
tree phi_result = gimple_phi_result (phi);
bool virtual_p;
if (!phi_result)
{
error ("invalid PHI result");
return true;
}
virtual_p = virtual_operand_p (phi_result);
if (TREE_CODE (phi_result) != SSA_NAME
|| (virtual_p
&& SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
{
error ("invalid PHI result");
err = true;
}
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree t = gimple_phi_arg_def (phi, i);
if (!t)
{
error ("missing PHI def");
err |= true;
continue;
}
/* Addressable variables do have SSA_NAMEs but they
are not considered gimple values. */
else if ((TREE_CODE (t) == SSA_NAME
&& virtual_p != virtual_operand_p (t))
|| (virtual_p
&& (TREE_CODE (t) != SSA_NAME
|| SSA_NAME_VAR (t) != gimple_vop (cfun)))
|| (!virtual_p
&& !is_gimple_val (t)))
{
error ("invalid PHI argument");
debug_generic_expr (t);
err |= true;
}
#ifdef ENABLE_TYPES_CHECKING
if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
{
error ("incompatible types in PHI argument %u", i);
debug_generic_stmt (TREE_TYPE (phi_result));
debug_generic_stmt (TREE_TYPE (t));
err |= true;
}
#endif
}
return err;
}
/* Verify the GIMPLE statements inside the sequence STMTS. */
static bool
verify_gimple_in_seq_2 (gimple_seq stmts)
{
gimple_stmt_iterator ittr;
bool err = false;
for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
{
gimple *stmt = gsi_stmt (ittr);
switch (gimple_code (stmt))
{
case GIMPLE_BIND:
err |= verify_gimple_in_seq_2 (
gimple_bind_body (as_a <gbind *> (stmt)));
break;
case GIMPLE_TRY:
err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
break;
case GIMPLE_EH_FILTER:
err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
break;
case GIMPLE_EH_ELSE:
{
geh_else *eh_else = as_a <geh_else *> (stmt);
err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
}
break;
case GIMPLE_CATCH:
err |= verify_gimple_in_seq_2 (gimple_catch_handler (
as_a <gcatch *> (stmt)));
break;
case GIMPLE_TRANSACTION:
err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
break;
default:
{
bool err2 = verify_gimple_stmt (stmt);
if (err2)
debug_gimple_stmt (stmt);
err |= err2;
}
}
}
return err;
}
/* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
is a problem, otherwise false. */
static bool
verify_gimple_transaction (gtransaction *stmt)
{
tree lab;
lab = gimple_transaction_label_norm (stmt);
if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
return true;
lab = gimple_transaction_label_uninst (stmt);
if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
return true;
lab = gimple_transaction_label_over (stmt);
if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
return true;
return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
}
/* Verify the GIMPLE statements inside the statement list STMTS. */
DEBUG_FUNCTION void
verify_gimple_in_seq (gimple_seq stmts)
{
timevar_push (TV_TREE_STMT_VERIFY);
if (verify_gimple_in_seq_2 (stmts))
internal_error ("verify_gimple failed");
timevar_pop (TV_TREE_STMT_VERIFY);
}
/* Return true when the T can be shared. */
static bool
tree_node_can_be_shared (tree t)
{
if (IS_TYPE_OR_DECL_P (t)
|| is_gimple_min_invariant (t)
|| TREE_CODE (t) == SSA_NAME
|| t == error_mark_node
|| TREE_CODE (t) == IDENTIFIER_NODE)
return true;
if (TREE_CODE (t) == CASE_LABEL_EXPR)
return true;
if (DECL_P (t))
return true;
return false;
}
/* Called via walk_tree. Verify tree sharing. */
static tree
verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
{
hash_set<void *> *visited = (hash_set<void *> *) data;
if (tree_node_can_be_shared (*tp))
{
*walk_subtrees = false;
return NULL;
}
if (visited->add (*tp))
return *tp;
return NULL;
}
/* Called via walk_gimple_stmt. Verify tree sharing. */
static tree
verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
}
static bool eh_error_found;
bool
verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
hash_set<gimple *> *visited)
{
if (!visited->contains (stmt))
{
error ("dead STMT in EH table");
debug_gimple_stmt (stmt);
eh_error_found = true;
}
return true;
}
/* Verify if the location LOCs block is in BLOCKS. */
static bool
verify_location (hash_set<tree> *blocks, location_t loc)
{
tree block = LOCATION_BLOCK (loc);
if (block != NULL_TREE
&& !blocks->contains (block))
{
error ("location references block not in block tree");
return true;
}
if (block != NULL_TREE)
return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
return false;
}
/* Called via walk_tree. Verify that expressions have no blocks. */
static tree
verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
{
if (!EXPR_P (*tp))
{
*walk_subtrees = false;
return NULL;
}
location_t loc = EXPR_LOCATION (*tp);
if (LOCATION_BLOCK (loc) != NULL)
return *tp;
return NULL;
}
/* Called via walk_tree. Verify locations of expressions. */
static tree
verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
{
hash_set<tree> *blocks = (hash_set<tree> *) data;
if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
{
tree t = DECL_DEBUG_EXPR (*tp);
tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
if (addr)
return addr;
}
if ((VAR_P (*tp)
|| TREE_CODE (*tp) == PARM_DECL
|| TREE_CODE (*tp) == RESULT_DECL)
&& DECL_HAS_VALUE_EXPR_P (*tp))
{
tree t = DECL_VALUE_EXPR (*tp);
tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
if (addr)
return addr;
}
if (!EXPR_P (*tp))
{
*walk_subtrees = false;
return NULL;
}
location_t loc = EXPR_LOCATION (*tp);
if (verify_location (blocks, loc))
return *tp;
return NULL;
}
/* Called via walk_gimple_op. Verify locations of expressions. */
static tree
verify_expr_location (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
return verify_expr_location_1 (tp, walk_subtrees, wi->info);
}
/* Insert all subblocks of BLOCK into BLOCKS and recurse. */
static void
collect_subblocks (hash_set<tree> *blocks, tree block)
{
tree t;
for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
{
blocks->add (t);
collect_subblocks (blocks, t);
}
}
/* Verify the GIMPLE statements in the CFG of FN. */
DEBUG_FUNCTION void
verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
{
basic_block bb;
bool err = false;
timevar_push (TV_TREE_STMT_VERIFY);
hash_set<void *> visited;
hash_set<gimple *> visited_stmts;
/* Collect all BLOCKs referenced by the BLOCK tree of FN. */
hash_set<tree> blocks;
if (DECL_INITIAL (fn->decl))
{
blocks.add (DECL_INITIAL (fn->decl));
collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
}
FOR_EACH_BB_FN (bb, fn)
{
gimple_stmt_iterator gsi;
for (gphi_iterator gpi = gsi_start_phis (bb);
!gsi_end_p (gpi);
gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
bool err2 = false;
unsigned i;
visited_stmts.add (phi);
if (gimple_bb (phi) != bb)
{
error ("gimple_bb (phi) is set to a wrong basic block");
err2 = true;
}
err2 |= verify_gimple_phi (phi);
/* Only PHI arguments have locations. */
if (gimple_location (phi) != UNKNOWN_LOCATION)
{
error ("PHI node with location");
err2 = true;
}
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = gimple_phi_arg_def (phi, i);
tree addr = walk_tree (&arg, verify_node_sharing_1,
&visited, NULL);
if (addr)
{
error ("incorrect sharing of tree nodes");
debug_generic_expr (addr);
err2 |= true;
}
location_t loc = gimple_phi_arg_location (phi, i);
if (virtual_operand_p (gimple_phi_result (phi))
&& loc != UNKNOWN_LOCATION)
{
error ("virtual PHI with argument locations");
err2 = true;
}
addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
if (addr)
{
debug_generic_expr (addr);
err2 = true;
}
err2 |= verify_location (&blocks, loc);
}
if (err2)
debug_gimple_stmt (phi);
err |= err2;
}
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
bool err2 = false;
struct walk_stmt_info wi;
tree addr;
int lp_nr;
visited_stmts.add (stmt);
if (gimple_bb (stmt) != bb)
{
error ("gimple_bb (stmt) is set to a wrong basic block");
err2 = true;
}
err2 |= verify_gimple_stmt (stmt);
err2 |= verify_location (&blocks, gimple_location (stmt));
memset (&wi, 0, sizeof (wi));
wi.info = (void *) &visited;
addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
if (addr)
{
error ("incorrect sharing of tree nodes");
debug_generic_expr (addr);
err2 |= true;
}
memset (&wi, 0, sizeof (wi));
wi.info = (void *) &blocks;
addr = walk_gimple_op (stmt, verify_expr_location, &wi);
if (addr)
{
debug_generic_expr (addr);
err2 |= true;
}
/* ??? Instead of not checking these stmts at all the walker
should know its context via wi. */
if (!is_gimple_debug (stmt)
&& !is_gimple_omp (stmt))
{
memset (&wi, 0, sizeof (wi));
addr = walk_gimple_op (stmt, verify_expr, &wi);
if (addr)
{
debug_generic_expr (addr);
inform (gimple_location (stmt), "in statement");
err2 |= true;
}
}
/* If the statement is marked as part of an EH region, then it is
expected that the statement could throw. Verify that when we
have optimizations that simplify statements such that we prove
that they cannot throw, that we update other data structures
to match. */
lp_nr = lookup_stmt_eh_lp (stmt);
if (lp_nr > 0)
{
if (!stmt_could_throw_p (stmt))
{
if (verify_nothrow)
{
error ("statement marked for throw, but doesn%'t");
err2 |= true;
}
}
else if (!gsi_one_before_end_p (gsi))
{
error ("statement marked for throw in middle of block");
err2 |= true;
}
}
if (err2)
debug_gimple_stmt (stmt);
err |= err2;
}
}
eh_error_found = false;
hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
if (eh_table)
eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
(&visited_stmts);
if (err || eh_error_found)
internal_error ("verify_gimple failed");
verify_histograms ();
timevar_pop (TV_TREE_STMT_VERIFY);
}
/* Verifies that the flow information is OK. */
static int
gimple_verify_flow_info (void)
{
int err = 0;
basic_block bb;
gimple_stmt_iterator gsi;
gimple *stmt;
edge e;
edge_iterator ei;
if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
|| ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
{
error ("ENTRY_BLOCK has IL associated with it");
err = 1;
}
if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
|| EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
{
error ("EXIT_BLOCK has IL associated with it");
err = 1;
}
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
if (e->flags & EDGE_FALLTHRU)
{
error ("fallthru to exit from bb %d", e->src->index);
err = 1;
}
FOR_EACH_BB_FN (bb, cfun)
{
bool found_ctrl_stmt = false;
stmt = NULL;
/* Skip labels on the start of basic block. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
tree label;
gimple *prev_stmt = stmt;
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_LABEL)
break;
label = gimple_label_label (as_a <glabel *> (stmt));
if (prev_stmt && DECL_NONLOCAL (label))
{
error ("nonlocal label ");
print_generic_expr (stderr, label);
fprintf (stderr, " is not first in a sequence of labels in bb %d",
bb->index);
err = 1;
}
if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
{
error ("EH landing pad label ");
print_generic_expr (stderr, label);
fprintf (stderr, " is not first in a sequence of labels in bb %d",
bb->index);
err = 1;
}
if (label_to_block (label) != bb)
{
error ("label ");
print_generic_expr (stderr, label);
fprintf (stderr, " to block does not match in bb %d",
bb->index);
err = 1;
}
if (decl_function_context (label) != current_function_decl)
{
error ("label ");
print_generic_expr (stderr, label);
fprintf (stderr, " has incorrect context in bb %d",
bb->index);
err = 1;
}
}
/* Verify that body of basic block BB is free of control flow. */
for (; !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (found_ctrl_stmt)
{
error ("control flow in the middle of basic block %d",
bb->index);
err = 1;
}
if (stmt_ends_bb_p (stmt))
found_ctrl_stmt = true;
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
error ("label ");
print_generic_expr (stderr, gimple_label_label (label_stmt));
fprintf (stderr, " in the middle of basic block %d", bb->index);
err = 1;
}
}
gsi = gsi_last_nondebug_bb (bb);
if (gsi_end_p (gsi))
continue;
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) == GIMPLE_LABEL)
continue;
err |= verify_eh_edges (stmt);
if (is_ctrl_stmt (stmt))
{
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & EDGE_FALLTHRU)
{
error ("fallthru edge after a control statement in bb %d",
bb->index);
err = 1;
}
}
if (gimple_code (stmt) != GIMPLE_COND)
{
/* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
after anything else but if statement. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
{
error ("true/false edge after a non-GIMPLE_COND in bb %d",
bb->index);
err = 1;
}
}
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
edge true_edge;
edge false_edge;
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
if (!true_edge
|| !false_edge
|| !(true_edge->flags & EDGE_TRUE_VALUE)
|| !(false_edge->flags & EDGE_FALSE_VALUE)
|| (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|| (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
|| EDGE_COUNT (bb->succs) >= 3)
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
}
break;
case GIMPLE_GOTO:
if (simple_goto_p (stmt))
{
error ("explicit goto at end of bb %d", bb->index);
err = 1;
}
else
{
/* FIXME. We should double check that the labels in the
destination blocks have their address taken. */
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE))
|| !(e->flags & EDGE_ABNORMAL))
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
}
break;
case GIMPLE_CALL:
if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
break;
/* fallthru */
case GIMPLE_RETURN:
if (!single_succ_p (bb)
|| (single_succ_edge (bb)->flags
& (EDGE_FALLTHRU | EDGE_ABNORMAL
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
{
error ("wrong outgoing edge flags at end of bb %d", bb->index);
err = 1;
}
if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
{
error ("return edge does not point to exit in bb %d",
bb->index);
err = 1;
}
break;
case GIMPLE_SWITCH:
{
gswitch *switch_stmt = as_a <gswitch *> (stmt);
tree prev;
edge e;
size_t i, n;
n = gimple_switch_num_labels (switch_stmt);
/* Mark all the destination basic blocks. */
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
basic_block label_bb = label_to_block (lab);
gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
label_bb->aux = (void *)1;
}
/* Verify that the case labels are sorted. */
prev = gimple_switch_label (switch_stmt, 0);
for (i = 1; i < n; ++i)
{
tree c = gimple_switch_label (switch_stmt, i);
if (!CASE_LOW (c))
{
error ("found default case not at the start of "
"case vector");
err = 1;
continue;
}
if (CASE_LOW (prev)
&& !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
{
error ("case labels not sorted: ");
print_generic_expr (stderr, prev);
fprintf (stderr," is greater than ");
print_generic_expr (stderr, c);
fprintf (stderr," but comes before it.\n");
err = 1;
}
prev = c;
}
/* VRP will remove the default case if it can prove it will
never be executed. So do not verify there always exists
a default case here. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!e->dest->aux)
{
error ("extra outgoing edge %d->%d",
bb->index, e->dest->index);
err = 1;
}
e->dest->aux = (void *)2;
if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
| EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
{
error ("wrong outgoing edge flags at end of bb %d",
bb->index);
err = 1;
}
}
/* Check that we have all of them. */
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
basic_block label_bb = label_to_block (lab);
if (label_bb->aux != (void *)2)
{
error ("missing edge %i->%i", bb->index, label_bb->index);
err = 1;
}
}
FOR_EACH_EDGE (e, ei, bb->succs)
e->dest->aux = (void *)0;
}
break;
case GIMPLE_EH_DISPATCH:
err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
break;
default:
break;
}
}
if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
verify_dominators (CDI_DOMINATORS);
return err;
}
/* Updates phi nodes after creating a forwarder block joined
by edge FALLTHRU. */
static void
gimple_make_forwarder_block (edge fallthru)
{
edge e;
edge_iterator ei;
basic_block dummy, bb;
tree var;
gphi_iterator gsi;
dummy = fallthru->src;
bb = fallthru->dest;
if (single_pred_p (bb))
return;
/* If we redirected a branch we must create new PHI nodes at the
start of BB. */
for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi, *new_phi;
phi = gsi.phi ();
var = gimple_phi_result (phi);
new_phi = create_phi_node (var, bb);
gimple_phi_set_result (phi, copy_ssa_name (var, phi));
add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
UNKNOWN_LOCATION);
}
/* Add the arguments we have stored on edges. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e == fallthru)
continue;
flush_pending_stmts (e);
}
}
/* Return a non-special label in the head of basic block BLOCK.
Create one if it doesn't exist. */
tree
gimple_block_label (basic_block bb)
{
gimple_stmt_iterator i, s = gsi_start_bb (bb);
bool first = true;
tree label;
glabel *stmt;
for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
{
stmt = dyn_cast <glabel *> (gsi_stmt (i));
if (!stmt)
break;
label = gimple_label_label (stmt);
if (!DECL_NONLOCAL (label))
{
if (!first)
gsi_move_before (&i, &s);
return label;
}
}
label = create_artificial_label (UNKNOWN_LOCATION);
stmt = gimple_build_label (label);
gsi_insert_before (&s, stmt, GSI_NEW_STMT);
return label;
}
/* Attempt to perform edge redirection by replacing a possibly complex
jump instruction by a goto or by removing the jump completely.
This can apply only if all edges now point to the same block. The
parameters and return values are equivalent to
redirect_edge_and_branch. */
static edge
gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
{
basic_block src = e->src;
gimple_stmt_iterator i;
gimple *stmt;
/* We can replace or remove a complex jump only when we have exactly
two edges. */
if (EDGE_COUNT (src->succs) != 2
/* Verify that all targets will be TARGET. Specifically, the
edge that is not E must also go to TARGET. */
|| EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
return NULL;
i = gsi_last_bb (src);
if (gsi_end_p (i))
return NULL;
stmt = gsi_stmt (i);
if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
{
gsi_remove (&i, true);
e = ssa_redirect_edge (e, target);
e->flags = EDGE_FALLTHRU;
return e;
}
return NULL;
}
/* Redirect E to DEST. Return NULL on failure. Otherwise, return the
edge representing the redirected branch. */
static edge
gimple_redirect_edge_and_branch (edge e, basic_block dest)
{
basic_block bb = e->src;
gimple_stmt_iterator gsi;
edge ret;
gimple *stmt;
if (e->flags & EDGE_ABNORMAL)
return NULL;
if (e->dest == dest)
return NULL;
if (e->flags & EDGE_EH)
return redirect_eh_edge (e, dest);
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
ret = gimple_try_redirect_by_replacing_jump (e, dest);
if (ret)
return ret;
}
gsi = gsi_last_nondebug_bb (bb);
stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
{
case GIMPLE_COND:
/* For COND_EXPR, we only need to redirect the edge. */
break;
case GIMPLE_GOTO:
/* No non-abnormal edges should lead from a non-simple goto, and
simple ones should be represented implicitly. */
gcc_unreachable ();
case GIMPLE_SWITCH:
{
gswitch *switch_stmt = as_a <gswitch *> (stmt);
tree label = gimple_block_label (dest);
tree cases = get_cases_for_edge (e, switch_stmt);
/* If we have a list of cases associated with E, then use it
as it's a lot faster than walking the entire case vector. */
if (cases)
{
edge e2 = find_edge (e->src, dest);
tree last, first;
first = cases;
while (cases)
{
last = cases;
CASE_LABEL (cases) = label;
cases = CASE_CHAIN (cases);
}
/* If there was already an edge in the CFG, then we need
to move all the cases associated with E to E2. */
if (e2)
{
tree cases2 = get_cases_for_edge (e2, switch_stmt);
CASE_CHAIN (last) = CASE_CHAIN (cases2);
CASE_CHAIN (cases2) = first;
}
bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
}
else
{
size_t i, n = gimple_switch_num_labels (switch_stmt);
for (i = 0; i < n; i++)
{
tree elt = gimple_switch_label (switch_stmt, i);
if (label_to_block (CASE_LABEL (elt)) == e->dest)
CASE_LABEL (elt) = label;
}
}
}
break;
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
int i, n = gimple_asm_nlabels (asm_stmt);
tree label = NULL;
for (i = 0; i < n; ++i)
{
tree cons = gimple_asm_label_op (asm_stmt, i);
if (label_to_block (TREE_VALUE (cons)) == e->dest)
{
if (!label)
label = gimple_block_label (dest);
TREE_VALUE (cons) = label;
}
}
/* If we didn't find any label matching the former edge in the
asm labels, we must be redirecting the fallthrough
edge. */
gcc_assert (label || (e->flags & EDGE_FALLTHRU));
}
break;
case GIMPLE_RETURN:
gsi_remove (&gsi, true);
e->flags |= EDGE_FALLTHRU;
break;
case GIMPLE_OMP_RETURN:
case GIMPLE_OMP_CONTINUE:
case GIMPLE_OMP_SECTIONS_SWITCH:
case GIMPLE_OMP_FOR:
/* The edges from OMP constructs can be simply redirected. */
break;
case GIMPLE_EH_DISPATCH:
if (!(e->flags & EDGE_FALLTHRU))
redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
break;
case GIMPLE_TRANSACTION:
if (e->flags & EDGE_TM_ABORT)
gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
gimple_block_label (dest));
else if (e->flags & EDGE_TM_UNINSTRUMENTED)
gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
gimple_block_label (dest));
else
gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
gimple_block_label (dest));
break;
default:
/* Otherwise it must be a fallthru edge, and we don't need to
do anything besides redirecting it. */
gcc_assert (e->flags & EDGE_FALLTHRU);
break;
}
/* Update/insert PHI nodes as necessary. */
/* Now update the edges in the CFG. */
e = ssa_redirect_edge (e, dest);
return e;
}
/* Returns true if it is possible to remove edge E by redirecting
it to the destination of the other edge from E->src. */
static bool
gimple_can_remove_branch_p (const_edge e)
{
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
return false;
return true;
}
/* Simple wrapper, as we can always redirect fallthru edges. */
static basic_block
gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
{
e = gimple_redirect_edge_and_branch (e, dest);
gcc_assert (e);
return NULL;
}
/* Splits basic block BB after statement STMT (but at least after the
labels). If STMT is NULL, BB is split just after the labels. */
static basic_block
gimple_split_block (basic_block bb, void *stmt)
{
gimple_stmt_iterator gsi;
gimple_stmt_iterator gsi_tgt;
gimple_seq list;
basic_block new_bb;
edge e;
edge_iterator ei;
new_bb = create_empty_bb (bb);
/* Redirect the outgoing edges. */
new_bb->succs = bb->succs;
bb->succs = NULL;
FOR_EACH_EDGE (e, ei, new_bb->succs)
e->src = new_bb;
/* Get a stmt iterator pointing to the first stmt to move. */
if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
gsi = gsi_after_labels (bb);
else
{
gsi = gsi_for_stmt ((gimple *) stmt);
gsi_next (&gsi);
}
/* Move everything from GSI to the new basic block. */
if (gsi_end_p (gsi))
return new_bb;
/* Split the statement list - avoid re-creating new containers as this
brings ugly quadratic memory consumption in the inliner.
(We are still quadratic since we need to update stmt BB pointers,
sadly.) */
gsi_split_seq_before (&gsi, &list);
set_bb_seq (new_bb, list);
for (gsi_tgt = gsi_start (list);
!gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
return new_bb;
}
/* Moves basic block BB after block AFTER. */
static bool
gimple_move_block_after (basic_block bb, basic_block after)
{
if (bb->prev_bb == after)
return true;
unlink_block (bb);
link_block (bb, after);
return true;
}
/* Return TRUE if block BB has no executable statements, otherwise return
FALSE. */
static bool
gimple_empty_block_p (basic_block bb)
{
/* BB must have no executable statements. */
gimple_stmt_iterator gsi = gsi_after_labels (bb);
if (phi_nodes (bb))
return false;
if (gsi_end_p (gsi))
return true;
if (is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
return gsi_end_p (gsi);
}
/* Split a basic block if it ends with a conditional branch and if the
other part of the block is not empty. */
static basic_block
gimple_split_block_before_cond_jump (basic_block bb)
{
gimple *last, *split_point;
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
if (gsi_end_p (gsi))
return NULL;
last = gsi_stmt (gsi);
if (gimple_code (last) != GIMPLE_COND
&& gimple_code (last) != GIMPLE_SWITCH)
return NULL;
gsi_prev (&gsi);
split_point = gsi_stmt (gsi);
return split_block (bb, split_point)->dest;
}
/* Return true if basic_block can be duplicated. */
static bool
gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
{
return true;
}
/* Create a duplicate of the basic block BB. NOTE: This does not
preserve SSA form. */
static basic_block
gimple_duplicate_bb (basic_block bb)
{
basic_block new_bb;
gimple_stmt_iterator gsi_tgt;
new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
/* Copy the PHI nodes. We ignore PHI node arguments here because
the incoming edges have not been setup yet. */
for (gphi_iterator gpi = gsi_start_phis (bb);
!gsi_end_p (gpi);
gsi_next (&gpi))
{
gphi *phi, *copy;
phi = gpi.phi ();
copy = create_phi_node (NULL_TREE, new_bb);
create_new_def_for (gimple_phi_result (phi), copy,
gimple_phi_result_ptr (copy));
gimple_set_uid (copy, gimple_uid (phi));
}
gsi_tgt = gsi_start_bb (new_bb);
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
def_operand_p def_p;
ssa_op_iter op_iter;
tree lhs;
gimple *stmt, *copy;
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) == GIMPLE_LABEL)
continue;
/* Don't duplicate label debug stmts. */
if (gimple_debug_bind_p (stmt)
&& TREE_CODE (gimple_debug_bind_get_var (stmt))
== LABEL_DECL)
continue;
/* Create a new copy of STMT and duplicate STMT's virtual
operands. */
copy = gimple_copy (stmt);
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
maybe_duplicate_eh_stmt (copy, stmt);
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
/* When copying around a stmt writing into a local non-user
aggregate, make sure it won't share stack slot with other
vars. */
lhs = gimple_get_lhs (stmt);
if (lhs && TREE_CODE (lhs) != SSA_NAME)
{
tree base = get_base_address (lhs);
if (base
&& (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
&& DECL_IGNORED_P (base)
&& !TREE_STATIC (base)
&& !DECL_EXTERNAL (base)
&& (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
DECL_NONSHAREABLE (base) = 1;
}
/* Create new names for all the definitions created by COPY and
add replacement mappings for each new name. */
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
}
return new_bb;
}
/* Adds phi node arguments for edge E_COPY after basic block duplication. */
static void
add_phi_args_after_copy_edge (edge e_copy)
{
basic_block bb, bb_copy = e_copy->src, dest;
edge e;
edge_iterator ei;
gphi *phi, *phi_copy;
tree def;
gphi_iterator psi, psi_copy;
if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
return;
bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
if (e_copy->dest->flags & BB_DUPLICATED)
dest = get_bb_original (e_copy->dest);
else
dest = e_copy->dest;
e = find_edge (bb, dest);
if (!e)
{
/* During loop unrolling the target of the latch edge is copied.
In this case we are not looking for edge to dest, but to
duplicated block whose original was dest. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if ((e->dest->flags & BB_DUPLICATED)
&& get_bb_original (e->dest) == dest)
break;
}
gcc_assert (e != NULL);
}
for (psi = gsi_start_phis (e->dest),
psi_copy = gsi_start_phis (e_copy->dest);
!gsi_end_p (psi);
gsi_next (&psi), gsi_next (&psi_copy))
{
phi = psi.phi ();
phi_copy = psi_copy.phi ();
def = PHI_ARG_DEF_FROM_EDGE (phi, e);
add_phi_arg (phi_copy, def, e_copy,
gimple_phi_arg_location_from_edge (phi, e));
}
}
/* Basic block BB_COPY was created by code duplication. Add phi node
arguments for edges going out of BB_COPY. The blocks that were
duplicated have BB_DUPLICATED set. */
void
add_phi_args_after_copy_bb (basic_block bb_copy)
{
edge e_copy;
edge_iterator ei;
FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
{
add_phi_args_after_copy_edge (e_copy);
}
}
/* Blocks in REGION_COPY array of length N_REGION were created by
duplication of basic blocks. Add phi node arguments for edges
going from these blocks. If E_COPY is not NULL, also add
phi node arguments for its destination.*/
void
add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
edge e_copy)
{
unsigned i;
for (i = 0; i < n_region; i++)
region_copy[i]->flags |= BB_DUPLICATED;
for (i = 0; i < n_region; i++)
add_phi_args_after_copy_bb (region_copy[i]);
if (e_copy)
add_phi_args_after_copy_edge (e_copy);
for (i = 0; i < n_region; i++)
region_copy[i]->flags &= ~BB_DUPLICATED;
}
/* Duplicates a REGION (set of N_REGION basic blocks) with just a single
important exit edge EXIT. By important we mean that no SSA name defined
inside region is live over the other exit edges of the region. All entry
edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
to the duplicate of the region. Dominance and loop information is
updated if UPDATE_DOMINANCE is true, but not the SSA web. If
UPDATE_DOMINANCE is false then we assume that the caller will update the
dominance information after calling this function. The new basic
blocks are stored to REGION_COPY in the same order as they had in REGION,
provided that REGION_COPY is not NULL.
The function returns false if it is unable to copy the region,
true otherwise. */
bool
gimple_duplicate_sese_region (edge entry, edge exit,
basic_block *region, unsigned n_region,
basic_block *region_copy,
bool update_dominance)
{
unsigned i;
bool free_region_copy = false, copying_header = false;
struct loop *loop = entry->dest->loop_father;
edge exit_copy;
vec<basic_block> doms = vNULL;
edge redirected;
profile_count total_count = profile_count::uninitialized ();
profile_count entry_count = profile_count::uninitialized ();
if (!can_copy_bbs_p (region, n_region))
return false;
/* Some sanity checking. Note that we do not check for all possible
missuses of the functions. I.e. if you ask to copy something weird,
it will work, but the state of structures probably will not be
correct. */
for (i = 0; i < n_region; i++)
{
/* We do not handle subloops, i.e. all the blocks must belong to the
same loop. */
if (region[i]->loop_father != loop)
return false;
if (region[i] != entry->dest
&& region[i] == loop->header)
return false;
}
/* In case the function is used for loop header copying (which is the primary
use), ensure that EXIT and its copy will be new latch and entry edges. */
if (loop->header == entry->dest)
{
copying_header = true;
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
return false;
for (i = 0; i < n_region; i++)
if (region[i] != exit->src
&& dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
return false;
}
initialize_original_copy_tables ();
if (copying_header)
set_loop_copy (loop, loop_outer (loop));
else
set_loop_copy (loop, loop);
if (!region_copy)
{
region_copy = XNEWVEC (basic_block, n_region);
free_region_copy = true;
}
/* Record blocks outside the region that are dominated by something
inside. */
if (update_dominance)
{
doms.create (0);
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
}
if (entry->dest->count.initialized_p ())
{
total_count = entry->dest->count;
entry_count = entry->count ();
/* Fix up corner cases, to avoid division by zero or creation of negative
frequencies. */
if (entry_count > total_count)
entry_count = total_count;
}
copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
split_edge_bb_loc (entry), update_dominance);
if (total_count.initialized_p () && entry_count.initialized_p ())
{
scale_bbs_frequencies_profile_count (region, n_region,
total_count - entry_count,
total_count);
scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
total_count);
}
if (copying_header)
{
loop->header = exit->dest;
loop->latch = exit->src;
}
/* Redirect the entry and add the phi node arguments. */
redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
gcc_assert (redirected != NULL);
flush_pending_stmts (entry);
/* Concerning updating of dominators: We must recount dominators
for entry block and its copy. Anything that is outside of the
region, but was dominated by something inside needs recounting as
well. */
if (update_dominance)
{
set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
doms.safe_push (get_bb_original (entry->dest));
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
doms.release ();
}
/* Add the other PHI node arguments. */
add_phi_args_after_copy (region_copy, n_region, NULL);
if (free_region_copy)
free (region_copy);
free_original_copy_tables ();
return true;
}
/* Checks if BB is part of the region defined by N_REGION BBS. */
static bool
bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
{
unsigned int n;
for (n = 0; n < n_region; n++)
{
if (bb == bbs[n])
return true;
}
return false;
}
/* Duplicates REGION consisting of N_REGION blocks. The new blocks
are stored to REGION_COPY in the same order in that they appear
in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
the region, EXIT an exit from it. The condition guarding EXIT
is moved to ENTRY. Returns true if duplication succeeds, false
otherwise.
For example,
some_code;
if (cond)
A;
else
B;
is transformed to
if (cond)
{
some_code;
A;
}
else
{
some_code;
B;
}
*/
bool
gimple_duplicate_sese_tail (edge entry, edge exit,
basic_block *region, unsigned n_region,
basic_block *region_copy)
{
unsigned i;
bool free_region_copy = false;
struct loop *loop = exit->dest->loop_father;
struct loop *orig_loop = entry->dest->loop_father;
basic_block switch_bb, entry_bb, nentry_bb;
vec<basic_block> doms;
profile_count total_count = profile_count::uninitialized (),
exit_count = profile_count::uninitialized ();
edge exits[2], nexits[2], e;
gimple_stmt_iterator gsi;
gimple *cond_stmt;
edge sorig, snew;
basic_block exit_bb;
gphi_iterator psi;
gphi *phi;
tree def;
struct loop *target, *aloop, *cloop;
gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
exits[0] = exit;
exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
if (!can_copy_bbs_p (region, n_region))
return false;
initialize_original_copy_tables ();
set_loop_copy (orig_loop, loop);
target= loop;
for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
{
if (bb_part_of_region_p (aloop->header, region, n_region))
{
cloop = duplicate_loop (aloop, target);
duplicate_subloops (aloop, cloop);
}
}
if (!region_copy)
{
region_copy = XNEWVEC (basic_block, n_region);
free_region_copy = true;
}
gcc_assert (!need_ssa_update_p (cfun));
/* Record blocks outside the region that are dominated by something
inside. */
doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
total_count = exit->src->count;
exit_count = exit->count ();
/* Fix up corner cases, to avoid division by zero or creation of negative
frequencies. */
if (exit_count > total_count)
exit_count = total_count;
copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
split_edge_bb_loc (exit), true);
if (total_count.initialized_p () && exit_count.initialized_p ())
{
scale_bbs_frequencies_profile_count (region, n_region,
total_count - exit_count,
total_count);
scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
total_count);
}
/* Create the switch block, and put the exit condition to it. */
entry_bb = entry->dest;
nentry_bb = get_bb_copy (entry_bb);
if (!last_stmt (entry->src)
|| !stmt_ends_bb_p (last_stmt (entry->src)))
switch_bb = entry->src;
else
switch_bb = split_edge (entry);
set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
gsi = gsi_last_bb (switch_bb);
cond_stmt = last_stmt (exit->src);
gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
cond_stmt = gimple_copy (cond_stmt);
gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
sorig = single_succ_edge (switch_bb);
sorig->flags = exits[1]->flags;
sorig->probability = exits[1]->probability;
snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
snew->probability = exits[0]->probability;
/* Register the new edge from SWITCH_BB in loop exit lists. */
rescan_loop_exit (snew, true, false);
/* Add the PHI node arguments. */
add_phi_args_after_copy (region_copy, n_region, snew);
/* Get rid of now superfluous conditions and associated edges (and phi node
arguments). */
exit_bb = exit->dest;
e = redirect_edge_and_branch (exits[0], exits[1]->dest);
PENDING_STMT (e) = NULL;
/* The latch of ORIG_LOOP was copied, and so was the backedge
to the original header. We redirect this backedge to EXIT_BB. */
for (i = 0; i < n_region; i++)
if (get_bb_original (region_copy[i]) == orig_loop->latch)
{
gcc_assert (single_succ_edge (region_copy[i]));
e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
PENDING_STMT (e) = NULL;
for (psi = gsi_start_phis (exit_bb);
!gsi_end_p (psi);
gsi_next (&psi))
{
phi = psi.phi ();
def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
}
}
e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
PENDING_STMT (e) = NULL;
/* Anything that is outside of the region, but was dominated by something
inside needs to update dominance info. */
iterate_fix_dominators (CDI_DOMINATORS, doms, false);
doms.release ();
/* Update the SSA web. */
update_ssa (TODO_update_ssa);
if (free_region_copy)
free (region_copy);
free_original_copy_tables ();
return true;
}
/* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
adding blocks when the dominator traversal reaches EXIT. This
function silently assumes that ENTRY strictly dominates EXIT. */
void
gather_blocks_in_sese_region (basic_block entry, basic_block exit,
vec<basic_block> *bbs_p)
{
basic_block son;
for (son = first_dom_son (CDI_DOMINATORS, entry);
son;
son = next_dom_son (CDI_DOMINATORS, son))
{
bbs_p->safe_push (son);
if (son != exit)
gather_blocks_in_sese_region (son, exit, bbs_p);
}
}
/* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
The duplicates are recorded in VARS_MAP. */
static void
replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
tree to_context)
{
tree t = *tp, new_t;
struct function *f = DECL_STRUCT_FUNCTION (to_context);
if (DECL_CONTEXT (t) == to_context)
return;
bool existed;
tree &loc = vars_map->get_or_insert (t, &existed);
if (!existed)
{
if (SSA_VAR_P (t))
{
new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
add_local_decl (f, new_t);
}
else
{
gcc_assert (TREE_CODE (t) == CONST_DECL);
new_t = copy_node (t);
}
DECL_CONTEXT (new_t) = to_context;
loc = new_t;
}
else
new_t = loc;
*tp = new_t;
}
/* Creates an ssa name in TO_CONTEXT equivalent to NAME.
VARS_MAP maps old ssa names and var_decls to the new ones. */
static tree
replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
tree to_context)
{
tree new_name;
gcc_assert (!virtual_operand_p (name));
tree *loc = vars_map->get (name);
if (!loc)
{
tree decl = SSA_NAME_VAR (name);
if (decl)
{
gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
replace_by_duplicate_decl (&decl, vars_map, to_context);
new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
decl, SSA_NAME_DEF_STMT (name));
}
else
new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
name, SSA_NAME_DEF_STMT (name));
/* Now that we've used the def stmt to define new_name, make sure it
doesn't define name anymore. */
SSA_NAME_DEF_STMT (name) = NULL;
vars_map->put (name, new_name);
}
else
new_name = *loc;
return new_name;
}
struct move_stmt_d
{
tree orig_block;
tree new_block;
tree from_context;
tree to_context;
hash_map<tree, tree> *vars_map;
htab_t new_label_map;
hash_map<void *, void *> *eh_map;
bool remap_decls_p;
};
/* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
contained in *TP if it has been ORIG_BLOCK previously and change the
DECL_CONTEXT of every local variable referenced in *TP. */
static tree
move_stmt_op (tree *tp, int *walk_subtrees, void *data)
{
struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
tree t = *tp;
if (EXPR_P (t))
{
tree block = TREE_BLOCK (t);
if (block == NULL_TREE)
;
else if (block == p->orig_block
|| p->orig_block == NULL_TREE)
{
/* tree_node_can_be_shared says we can share invariant
addresses but unshare_expr copies them anyways. Make sure
to unshare before adjusting the block in place - we do not
always see a copy here. */
if (TREE_CODE (t) == ADDR_EXPR
&& is_gimple_min_invariant (t))
*tp = t = unshare_expr (t);
TREE_SET_BLOCK (t, p->new_block);
}
else if (flag_checking)
{
while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
block = BLOCK_SUPERCONTEXT (block);
gcc_assert (block == p->orig_block);
}
}
else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
{
if (TREE_CODE (t) == SSA_NAME)
*tp = replace_ssa_name (t, p->vars_map, p->to_context);
else if (TREE_CODE (t) == PARM_DECL
&& gimple_in_ssa_p (cfun))
*tp = *(p->vars_map->get (t));
else if (TREE_CODE (t) == LABEL_DECL)
{
if (p->new_label_map)
{
struct tree_map in, *out;
in.base.from = t;
out = (struct tree_map *)
htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
if (out)
*tp = t = out->to;
}
/* For FORCED_LABELs we can end up with references from other
functions if some SESE regions are outlined. It is UB to
jump in between them, but they could be used just for printing
addresses etc. In that case, DECL_CONTEXT on the label should
be the function containing the glabel stmt with that LABEL_DECL,
rather than whatever function a reference to the label was seen
last time. */
if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
DECL_CONTEXT (t) = p->to_context;
}
else if (p->remap_decls_p)
{
/* Replace T with its duplicate. T should no longer appear in the
parent function, so this looks wasteful; however, it may appear
in referenced_vars, and more importantly, as virtual operands of
statements, and in alias lists of other variables. It would be
quite difficult to expunge it from all those places. ??? It might
suffice to do this for addressable variables. */
if ((VAR_P (t) && !is_global_var (t))
|| TREE_CODE (t) == CONST_DECL)
replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
}
*walk_subtrees = 0;
}
else if (TYPE_P (t))
*walk_subtrees = 0;
return NULL_TREE;
}
/* Helper for move_stmt_r. Given an EH region number for the source
function, map that to the duplicate EH regio number in the dest. */
static int
move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
{
eh_region old_r, new_r;
old_r = get_eh_region_from_number (old_nr);
new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
return new_r->index;
}
/* Similar, but operate on INTEGER_CSTs. */
static tree
move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
{
int old_nr, new_nr;
old_nr = tree_to_shwi (old_t_nr);
new_nr = move_stmt_eh_region_nr (old_nr, p);
return build_int_cst (integer_type_node, new_nr);
}
/* Like move_stmt_op, but for gimple statements.
Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
contained in the current statement in *GSI_P and change the
DECL_CONTEXT of every local variable referenced in the current
statement. */
static tree
move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
struct walk_stmt_info *wi)
{
struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
gimple *stmt = gsi_stmt (*gsi_p);
tree block = gimple_block (stmt);
if (block == p->orig_block
|| (p->orig_block == NULL_TREE
&& block != NULL_TREE))
gimple_set_block (stmt, p->new_block);
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
/* Remap the region numbers for __builtin_eh_{pointer,filter}. */
{
tree r, fndecl = gimple_call_fndecl (stmt);
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_EH_COPY_VALUES:
r = gimple_call_arg (stmt, 1);
r = move_stmt_eh_region_tree_nr (r, p);
gimple_call_set_arg (stmt, 1, r);
/* FALLTHRU */
case BUILT_IN_EH_POINTER:
case BUILT_IN_EH_FILTER:
r = gimple_call_arg (stmt, 0);
r = move_stmt_eh_region_tree_nr (r, p);
gimple_call_set_arg (stmt, 0, r);
break;
default:
break;
}
}
break;
case GIMPLE_RESX:
{
gresx *resx_stmt = as_a <gresx *> (stmt);
int r = gimple_resx_region (resx_stmt);
r = move_stmt_eh_region_nr (r, p);
gimple_resx_set_region (resx_stmt, r);
}
break;
case GIMPLE_EH_DISPATCH:
{
geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
r = move_stmt_eh_region_nr (r, p);
gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
}
break;
case GIMPLE_OMP_RETURN:
case GIMPLE_OMP_CONTINUE:
break;
case GIMPLE_LABEL:
{
/* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
so that such labels can be referenced from other regions.
Make sure to update it when seeing a GIMPLE_LABEL though,
that is the owner of the label. */
walk_gimple_op (stmt, move_stmt_op, wi);
*handled_ops_p = true;
tree label = gimple_label_label (as_a <glabel *> (stmt));
if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
DECL_CONTEXT (label) = p->to_context;
}
break;
default:
if (is_gimple_omp (stmt))
{
/* Do not remap variables inside OMP directives. Variables
referenced in clauses and directive header belong to the
parent function and should not be moved into the child
function. */
bool save_remap_decls_p = p->remap_decls_p;
p->remap_decls_p = false;
*handled_ops_p = true;
walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
move_stmt_op, wi);
p->remap_decls_p = save_remap_decls_p;
}
break;
}
return NULL_TREE;
}
/* Move basic block BB from function CFUN to function DEST_FN. The
block is moved out of the original linked list and placed after
block AFTER in the new list. Also, the block is removed from the
original array of blocks and placed in DEST_FN's array of blocks.
If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
updated to reflect the moved edges.
The local variables are remapped to new instances, VARS_MAP is used
to record the mapping. */
static void
move_block_to_fn (struct function *dest_cfun, basic_block bb,
basic_block after, bool update_edge_count_p,
struct move_stmt_d *d)
{
struct control_flow_graph *cfg;
edge_iterator ei;
edge e;
gimple_stmt_iterator si;
unsigned old_len, new_len;
/* Remove BB from dominance structures. */
delete_from_dominance_info (CDI_DOMINATORS, bb);
/* Move BB from its current loop to the copy in the new function. */
if (current_loops)
{
struct loop *new_loop = (struct loop *)bb->loop_father->aux;
if (new_loop)
bb->loop_father = new_loop;
}
/* Link BB to the new linked list. */
move_block_after (bb, after);
/* Update the edge count in the corresponding flowgraphs. */
if (update_edge_count_p)
FOR_EACH_EDGE (e, ei, bb->succs)
{
cfun->cfg->x_n_edges--;
dest_cfun->cfg->x_n_edges++;
}
/* Remove BB from the original basic block array. */
(*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
cfun->cfg->x_n_basic_blocks--;
/* Grow DEST_CFUN's basic block array if needed. */
cfg = dest_cfun->cfg;
cfg->x_n_basic_blocks++;
if (bb->index >= cfg->x_last_basic_block)
cfg->x_last_basic_block = bb->index + 1;
old_len = vec_safe_length (cfg->x_basic_block_info);
if ((unsigned) cfg->x_last_basic_block >= old_len)
{
new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
}
(*cfg->x_basic_block_info)[bb->index] = bb;
/* Remap the variables in phi nodes. */
for (gphi_iterator psi = gsi_start_phis (bb);
!gsi_end_p (psi); )
{
gphi *phi = psi.phi ();
use_operand_p use;
tree op = PHI_RESULT (phi);
ssa_op_iter oi;
unsigned i;
if (virtual_operand_p (op))
{
/* Remove the phi nodes for virtual operands (alias analysis will be
run for the new function, anyway). */
remove_phi_node (&psi, true);
continue;
}
SET_PHI_RESULT (phi,
replace_ssa_name (op, d->vars_map, dest_cfun->decl));
FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
{
op = USE_FROM_PTR (use);
if (TREE_CODE (op) == SSA_NAME)
SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
}
for (i = 0; i < EDGE_COUNT (bb->preds); i++)
{
location_t locus = gimple_phi_arg_location (phi, i);
tree block = LOCATION_BLOCK (locus);
if (locus == UNKNOWN_LOCATION)
continue;
if (d->orig_block == NULL_TREE || block == d->orig_block)
{
locus = set_block (locus, d->new_block);
gimple_phi_arg_set_location (phi, i, locus);
}
}
gsi_next (&psi);
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
struct walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
wi.info = d;
walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
tree label = gimple_label_label (label_stmt);
int uid = LABEL_DECL_UID (label);
gcc_assert (uid > -1);
old_len = vec_safe_length (cfg->x_label_to_block_map);
if (old_len <= (unsigned) uid)
{
new_len = 3 * uid / 2 + 1;
vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
}
(*cfg->x_label_to_block_map)[uid] = bb;
(*cfun->cfg->x_label_to_block_map)[uid] = NULL;
gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
if (uid >= dest_cfun->cfg->last_label_uid)
dest_cfun->cfg->last_label_uid = uid + 1;
}
maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
remove_stmt_from_eh_lp_fn (cfun, stmt);
gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
gimple_remove_stmt_histograms (cfun, stmt);
/* We cannot leave any operands allocated from the operand caches of
the current function. */
free_stmt_operands (cfun, stmt);
push_cfun (dest_cfun);
update_stmt (stmt);
pop_cfun ();
}
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->goto_locus != UNKNOWN_LOCATION)
{
tree block = LOCATION_BLOCK (e->goto_locus);
if (d->orig_block == NULL_TREE
|| block == d->orig_block)
e->goto_locus = set_block (e->goto_locus, d->new_block);
}
}
/* Examine the statements in BB (which is in SRC_CFUN); find and return
the outermost EH region. Use REGION as the incoming base EH region.
If there is no single outermost region, return NULL and set *ALL to
true. */
static eh_region
find_outermost_region_in_block (struct function *src_cfun,
basic_block bb, eh_region region,
bool *all)
{
gimple_stmt_iterator si;
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
eh_region stmt_region;
int lp_nr;
lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
if (stmt_region)
{
if (region == NULL)
region = stmt_region;
else if (stmt_region != region)
{
region = eh_region_outermost (src_cfun, stmt_region, region);
if (region == NULL)
{
*all = true;
return NULL;
}
}
}
}
return region;
}
static tree
new_label_mapper (tree decl, void *data)
{
htab_t hash = (htab_t) data;
struct tree_map *m;
void **slot;
gcc_assert (TREE_CODE (decl) == LABEL_DECL);
m = XNEW (struct tree_map);
m->hash = DECL_UID (decl);
m->base.from = decl;
m->to = create_artificial_label (UNKNOWN_LOCATION);
LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
gcc_assert (*slot == NULL);
*slot = m;
return m->to;
}
/* Tree walker to replace the decls used inside value expressions by
duplicates. */
static tree
replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
{
struct replace_decls_d *rd = (struct replace_decls_d *)data;
switch (TREE_CODE (*tp))
{
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
break;
default:
break;
}
if (IS_TYPE_OR_DECL_P (*tp))
*walk_subtrees = false;
return NULL;
}
/* Change DECL_CONTEXT of all BLOCK_VARS in block, including
subblocks. */
static void
replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
tree to_context)
{
tree *tp, t;
for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
{
t = *tp;
if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
continue;
replace_by_duplicate_decl (&t, vars_map, to_context);
if (t != *tp)
{
if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
{
tree x = DECL_VALUE_EXPR (*tp);
struct replace_decls_d rd = { vars_map, to_context };
unshare_expr (x);
walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
SET_DECL_VALUE_EXPR (t, x);
DECL_HAS_VALUE_EXPR_P (t) = 1;
}
DECL_CHAIN (t) = DECL_CHAIN (*tp);
*tp = t;
}
}
for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
replace_block_vars_by_duplicates (block, vars_map, to_context);
}
/* Fixup the loop arrays and numbers after moving LOOP and its subloops
from FN1 to FN2. */
static void
fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
struct loop *loop)
{
/* Discard it from the old loop array. */
(*get_loops (fn1))[loop->num] = NULL;
/* Place it in the new loop array, assigning it a new number. */
loop->num = number_of_loops (fn2);
vec_safe_push (loops_for_fn (fn2)->larray, loop);
/* Recurse to children. */
for (loop = loop->inner; loop; loop = loop->next)
fixup_loop_arrays_after_move (fn1, fn2, loop);
}
/* Verify that the blocks in BBS_P are a single-entry, single-exit region
delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
DEBUG_FUNCTION void
verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
{
basic_block bb;
edge_iterator ei;
edge e;
bitmap bbs = BITMAP_ALLOC (NULL);
int i;
gcc_assert (entry != NULL);
gcc_assert (entry != exit);
gcc_assert (bbs_p != NULL);
gcc_assert (bbs_p->length () > 0);
FOR_EACH_VEC_ELT (*bbs_p, i, bb)
bitmap_set_bit (bbs, bb->index);
gcc_assert (bitmap_bit_p (bbs, entry->index));
gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
FOR_EACH_VEC_ELT (*bbs_p, i, bb)
{
if (bb == entry)
{
gcc_assert (single_pred_p (entry));
gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
}
else
for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
{
e = ei_edge (ei);
gcc_assert (bitmap_bit_p (bbs, e->src->index));
}
if (bb == exit)
{
gcc_assert (single_succ_p (exit));
gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
}
else
for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
{
e = ei_edge (ei);
gcc_assert (bitmap_bit_p (bbs, e->dest->index));
}
}
BITMAP_FREE (bbs);
}
/* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
bool
gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
{
bitmap release_names = (bitmap)data;
if (TREE_CODE (from) != SSA_NAME)
return true;
bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
return true;
}
/* Return LOOP_DIST_ALIAS call if present in BB. */
static gimple *
find_loop_dist_alias (basic_block bb)
{
gimple *g = last_stmt (bb);
if (g == NULL || gimple_code (g) != GIMPLE_COND)
return NULL;
gimple_stmt_iterator gsi = gsi_for_stmt (g);
gsi_prev (&gsi);
if (gsi_end_p (gsi))
return NULL;
g = gsi_stmt (gsi);
if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
return g;
return NULL;
}
/* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
to VALUE and update any immediate uses of it's LHS. */
void
fold_loop_internal_call (gimple *g, tree value)
{
tree lhs = gimple_call_lhs (g);
use_operand_p use_p;
imm_use_iterator iter;
gimple *use_stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (g);
update_call_from_tree (&gsi, value);
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, value);
update_stmt (use_stmt);
}
}
/* Move a single-entry, single-exit region delimited by ENTRY_BB and
EXIT_BB to function DEST_CFUN. The whole region is replaced by a
single basic block in the original CFG and the new basic block is
returned. DEST_CFUN must not have a CFG yet.
Note that the region need not be a pure SESE region. Blocks inside
the region may contain calls to abort/exit. The only restriction
is that ENTRY_BB should be the only entry point and it must
dominate EXIT_BB.
Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
functions outermost BLOCK, move all subblocks of ORIG_BLOCK
to the new function.
All local variables referenced in the region are assumed to be in
the corresponding BLOCK_VARS and unexpanded variable lists
associated with DEST_CFUN.
TODO: investigate whether we can reuse gimple_duplicate_sese_region to
reimplement move_sese_region_to_fn by duplicating the region rather than
moving it. */
basic_block
move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
basic_block exit_bb, tree orig_block)
{
vec<basic_block> bbs, dom_bbs;
basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
basic_block after, bb, *entry_pred, *exit_succ, abb;
struct function *saved_cfun = cfun;
int *entry_flag, *exit_flag;
profile_probability *entry_prob, *exit_prob;
unsigned i, num_entry_edges, num_exit_edges, num_nodes;
edge e;
edge_iterator ei;
htab_t new_label_map;
hash_map<void *, void *> *eh_map;
struct loop *loop = entry_bb->loop_father;
struct loop *loop0 = get_loop (saved_cfun, 0);
struct move_stmt_d d;
/* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
region. */
gcc_assert (entry_bb != exit_bb
&& (!exit_bb
|| dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
/* Collect all the blocks in the region. Manually add ENTRY_BB
because it won't be added by dfs_enumerate_from. */
bbs.create (0);
bbs.safe_push (entry_bb);
gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
if (flag_checking)
verify_sese (entry_bb, exit_bb, &bbs);
/* The blocks that used to be dominated by something in BBS will now be
dominated by the new block. */
dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
bbs.address (),
bbs.length ());
/* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
the predecessor edges to ENTRY_BB and the successor edges to
EXIT_BB so that we can re-attach them to the new basic block that
will replace the region. */
num_entry_edges = EDGE_COUNT (entry_bb->preds);
entry_pred = XNEWVEC (basic_block, num_entry_edges);
entry_flag = XNEWVEC (int, num_entry_edges);
entry_prob = XNEWVEC (profile_probability, num_entry_edges);
i = 0;
for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
{
entry_prob[i] = e->probability;
entry_flag[i] = e->flags;
entry_pred[i++] = e->src;
remove_edge (e);
}
if (exit_bb)
{
num_exit_edges = EDGE_COUNT (exit_bb->succs);
exit_succ = XNEWVEC (basic_block, num_exit_edges);
exit_flag = XNEWVEC (int, num_exit_edges);
exit_prob = XNEWVEC (profile_probability, num_exit_edges);
i = 0;
for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
{
exit_prob[i] = e->probability;
exit_flag[i] = e->flags;
exit_succ[i++] = e->dest;
remove_edge (e);
}
}
else
{
num_exit_edges = 0;
exit_succ = NULL;
exit_flag = NULL;
exit_prob = NULL;
}
/* Switch context to the child function to initialize DEST_FN's CFG. */
gcc_assert (dest_cfun->cfg == NULL);
push_cfun (dest_cfun);
init_empty_tree_cfg ();
/* Initialize EH information for the new function. */
eh_map = NULL;
new_label_map = NULL;
if (saved_cfun->eh)
{
eh_region region = NULL;
bool all = false;
FOR_EACH_VEC_ELT (bbs, i, bb)
{
region = find_outermost_region_in_block (saved_cfun, bb, region, &all);
if (all)
break;
}
init_eh_for_function ();
if (region != NULL || all)
{
new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
eh_map = duplicate_eh_regions (saved_cfun, region, 0,
new_label_mapper, new_label_map);
}
}
/* Initialize an empty loop tree. */
struct loops *loops = ggc_cleared_alloc<struct loops> ();
init_loops_structure (dest_cfun, loops, 1);
loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
set_loops_for_fn (dest_cfun, loops);
vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
/* Move the outlined loop tree part. */
num_nodes = bbs.length ();
FOR_EACH_VEC_ELT (bbs, i, bb)
{
if (bb->loop_father->header == bb)
{
struct loop *this_loop = bb->loop_father;
struct loop *outer = loop_outer (this_loop);
if (outer == loop
/* If the SESE region contains some bbs ending with
a noreturn call, those are considered to belong
to the outermost loop in saved_cfun, rather than
the entry_bb's loop_father. */
|| outer == loop0)
{
if (outer != loop)
num_nodes -= this_loop->num_nodes;
flow_loop_tree_node_remove (bb->loop_father);
flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
}
}
else if (bb->loop_father == loop0 && loop0 != loop)
num_nodes--;
/* Remove loop exits from the outlined region. */
if (loops_for_fn (saved_cfun)->exits)
FOR_EACH_EDGE (e, ei, bb->succs)
{
struct loops *l = loops_for_fn (saved_cfun);
loop_exit **slot
= l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
NO_INSERT);
if (slot)
l->exits->clear_slot (slot);
}
}
/* Adjust the number of blocks in the tree root of the outlined part. */
get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
/* Setup a mapping to be used by move_block_to_fn. */
loop->aux = current_loops->tree_root;
loop0->aux = current_loops->tree_root;
/* Fix up orig_loop_num. If the block referenced in it has been moved
to dest_cfun, update orig_loop_num field, otherwise clear it. */
struct loop *dloop;
signed char *moved_orig_loop_num = NULL;
FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
if (dloop->orig_loop_num)
{
if (moved_orig_loop_num == NULL)
moved_orig_loop_num
= XCNEWVEC (signed char, vec_safe_length (larray));
if ((*larray)[dloop->orig_loop_num] != NULL
&& get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
{
if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
&& moved_orig_loop_num[dloop->orig_loop_num] < 2)
moved_orig_loop_num[dloop->orig_loop_num]++;
dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
}
else
{
moved_orig_loop_num[dloop->orig_loop_num] = -1;
dloop->orig_loop_num = 0;
}
}
pop_cfun ();
if (moved_orig_loop_num)
{
FOR_EACH_VEC_ELT (bbs, i, bb)
{
gimple *g = find_loop_dist_alias (bb);
if (g == NULL)
continue;
int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
gcc_assert (orig_loop_num
&& (unsigned) orig_loop_num < vec_safe_length (larray));
if (moved_orig_loop_num[orig_loop_num] == 2)
{
/* If we have moved both loops with this orig_loop_num into
dest_cfun and the LOOP_DIST_ALIAS call is being moved there
too, update the first argument. */
gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
&& (get_loop (saved_cfun, dloop->orig_loop_num)
== NULL));
tree t = build_int_cst (integer_type_node,
(*larray)[dloop->orig_loop_num]->num);
gimple_call_set_arg (g, 0, t);
update_stmt (g);
/* Make sure the following loop will not update it. */
moved_orig_loop_num[orig_loop_num] = 0;
}
else
/* Otherwise at least one of the loops stayed in saved_cfun.
Remove the LOOP_DIST_ALIAS call. */
fold_loop_internal_call (g, gimple_call_arg (g, 1));
}
FOR_EACH_BB_FN (bb, saved_cfun)
{
gimple *g = find_loop_dist_alias (bb);
if (g == NULL)
continue;
int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
gcc_assert (orig_loop_num
&& (unsigned) orig_loop_num < vec_safe_length (larray));
if (moved_orig_loop_num[orig_loop_num])
/* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
of the corresponding loops was moved, remove it. */
fold_loop_internal_call (g, gimple_call_arg (g, 1));
}
XDELETEVEC (moved_orig_loop_num);
}
ggc_free (larray);
/* Move blocks from BBS into DEST_CFUN. */
gcc_assert (bbs.length () >= 2);
after = dest_cfun->cfg->x_entry_block_ptr;
hash_map<tree, tree> vars_map;
memset (&d, 0, sizeof (d));
d.orig_block = orig_block;
d.new_block = DECL_INITIAL (dest_cfun->decl);
d.from_context = cfun->decl;
d.to_context = dest_cfun->decl;
d.vars_map = &vars_map;
d.new_label_map = new_label_map;
d.eh_map = eh_map;
d.remap_decls_p = true;
if (gimple_in_ssa_p (cfun))
for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
{
tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
set_ssa_default_def (dest_cfun, arg, narg);
vars_map.put (arg, narg);
}
FOR_EACH_VEC_ELT (bbs, i, bb)
{
/* No need to update edge counts on the last block. It has
already been updated earlier when we detached the region from
the original CFG. */
move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
after = bb;
}
loop->aux = NULL;
loop0->aux = NULL;
/* Loop sizes are no longer correct, fix them up. */
loop->num_nodes -= num_nodes;
for (struct loop *outer = loop_outer (loop);
outer; outer = loop_outer (outer))
outer->num_nodes -= num_nodes;
loop0->num_nodes -= bbs.length () - num_nodes;
if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
{
struct loop *aloop;
for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
if (aloop != NULL)
{
if (aloop->simduid)
{
replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
d.to_context);
dest_cfun->has_simduid_loops = true;
}
if (aloop->force_vectorize)
dest_cfun->has_force_vectorize_loops = true;
}
}
/* Rewire BLOCK_SUBBLOCKS of orig_block. */
if (orig_block)
{
tree block;
gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
== NULL_TREE);
BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
= BLOCK_SUBBLOCKS (orig_block);
for (block = BLOCK_SUBBLOCKS (orig_block);
block; block = BLOCK_CHAIN (block))
BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
}
replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
&vars_map, dest_cfun->decl);
if (new_label_map)
htab_delete (new_label_map);
if (eh_map)
delete eh_map;
if (gimple_in_ssa_p (cfun))
{
/* We need to release ssa-names in a defined order, so first find them,
and then iterate in ascending version order. */
bitmap release_names = BITMAP_ALLOC (NULL);
vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
bitmap_iterator bi;
unsigned i;
EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
release_ssa_name (ssa_name (i));
BITMAP_FREE (release_names);
}
/* Rewire the entry and exit blocks. The successor to the entry
block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
the child function. Similarly, the predecessor of DEST_FN's
EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
various CFG manipulation function get to the right CFG.
FIXME, this is silly. The CFG ought to become a parameter to
these helpers. */
push_cfun (dest_cfun);
ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
if (exit_bb)
{
make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
}
else
EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
pop_cfun ();
/* Back in the original function, the SESE region has disappeared,
create a new basic block in its place. */
bb = create_empty_bb (entry_pred[0]);
if (current_loops)
add_bb_to_loop (bb, loop);
for (i = 0; i < num_entry_edges; i++)
{
e = make_edge (entry_pred[i], bb, entry_flag[i]);
e->probability = entry_prob[i];
}
for (i = 0; i < num_exit_edges; i++)
{
e = make_edge (bb, exit_succ[i], exit_flag[i]);
e->probability = exit_prob[i];
}
set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
FOR_EACH_VEC_ELT (dom_bbs, i, abb)
set_immediate_dominator (CDI_DOMINATORS, abb, bb);
dom_bbs.release ();
if (exit_bb)
{
free (exit_prob);
free (exit_flag);
free (exit_succ);
}
free (entry_prob);
free (entry_flag);
free (entry_pred);
bbs.release ();
return bb;
}
/* Dump default def DEF to file FILE using FLAGS and indentation
SPC. */
static void
dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
{
for (int i = 0; i < spc; ++i)
fprintf (file, " ");
dump_ssaname_info_to_file (file, def, spc);
print_generic_expr (file, TREE_TYPE (def), flags);
fprintf (file, " ");
print_generic_expr (file, def, flags);
fprintf (file, " = ");
print_generic_expr (file, SSA_NAME_VAR (def), flags);
fprintf (file, ";\n");
}
/* Print no_sanitize attribute to FILE for a given attribute VALUE. */
static void
print_no_sanitize_attr_value (FILE *file, tree value)
{
unsigned int flags = tree_to_uhwi (value);
bool first = true;
for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
{
if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
{
if (!first)
fprintf (file, " | ");
fprintf (file, "%s", sanitizer_opts[i].name);
first = false;
}
}
}
/* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
*/
void
dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
{
tree arg, var, old_current_fndecl = current_function_decl;
struct function *dsf;
bool ignore_topmost_bind = false, any_var = false;
basic_block bb;
tree chain;
bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
&& decl_is_tm_clone (fndecl));
struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
{
fprintf (file, "__attribute__((");
bool first = true;
tree chain;
for (chain = DECL_ATTRIBUTES (fndecl); chain;
first = false, chain = TREE_CHAIN (chain))
{
if (!first)
fprintf (file, ", ");
tree name = get_attribute_name (chain);
print_generic_expr (file, name, dump_flags);
if (TREE_VALUE (chain) != NULL_TREE)
{
fprintf (file, " (");
if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
print_no_sanitize_attr_value (file, TREE_VALUE (chain));
else
print_generic_expr (file, TREE_VALUE (chain), dump_flags);
fprintf (file, ")");
}
}
fprintf (file, "))\n");
}
current_function_decl = fndecl;
if (flags & TDF_GIMPLE)
{
print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
dump_flags | TDF_SLIM);
fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
}
else
fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
arg = DECL_ARGUMENTS (fndecl);
while (arg)
{
print_generic_expr (file, TREE_TYPE (arg), dump_flags);
fprintf (file, " ");
print_generic_expr (file, arg, dump_flags);
if (DECL_CHAIN (arg))
fprintf (file, ", ");
arg = DECL_CHAIN (arg);
}
fprintf (file, ")\n");
dsf = DECL_STRUCT_FUNCTION (fndecl);
if (dsf && (flags & TDF_EH))
dump_eh_tree (file, dsf);
if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
{
dump_node (fndecl, TDF_SLIM | flags, file);
current_function_decl = old_current_fndecl;
return;
}
/* When GIMPLE is lowered, the variables are no longer available in
BIND_EXPRs, so display them separately. */
if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
{
unsigned ix;
ignore_topmost_bind = true;
fprintf (file, "{\n");
if (gimple_in_ssa_p (fun)
&& (flags & TDF_ALIAS))
{
for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
arg = DECL_CHAIN (arg))
{
tree def = ssa_default_def (fun, arg);
if (def)
dump_default_def (file, def, 2, flags);
}
tree res = DECL_RESULT (fun->decl);
if (res != NULL_TREE
&& DECL_BY_REFERENCE (res))
{
tree def = ssa_default_def (fun, res);
if (def)
dump_default_def (file, def, 2, flags);
}
tree static_chain = fun->static_chain_decl;
if (static_chain != NULL_TREE)
{
tree def = ssa_default_def (fun, static_chain);
if (def)
dump_default_def (file, def, 2, flags);
}
}
if (!vec_safe_is_empty (fun->local_decls))
FOR_EACH_LOCAL_DECL (fun, ix, var)
{
print_generic_decl (file, var, flags);
fprintf (file, "\n");
any_var = true;
}
tree name;
if (gimple_in_ssa_p (cfun))
FOR_EACH_SSA_NAME (ix, name, cfun)
{
if (!SSA_NAME_VAR (name))
{
fprintf (file, " ");
print_generic_expr (file, TREE_TYPE (name), flags);
fprintf (file, " ");
print_generic_expr (file, name, flags);
fprintf (file, ";\n");
any_var = true;
}
}
}
if (fun && fun->decl == fndecl
&& fun->cfg
&& basic_block_info_for_fn (fun))
{
/* If the CFG has been built, emit a CFG-based dump. */
if (!ignore_topmost_bind)
fprintf (file, "{\n");
if (any_var && n_basic_blocks_for_fn (fun))
fprintf (file, "\n");
FOR_EACH_BB_FN (bb, fun)
dump_bb (file, bb, 2, flags);
fprintf (file, "}\n");
}
else if (fun->curr_properties & PROP_gimple_any)
{
/* The function is now in GIMPLE form but the CFG has not been
built yet. Emit the single sequence of GIMPLE statements
that make up its body. */
gimple_seq body = gimple_body (fndecl);
if (gimple_seq_first_stmt (body)
&& gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
&& gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
print_gimple_seq (file, body, 0, flags);
else
{
if (!ignore_topmost_bind)
fprintf (file, "{\n");
if (any_var)
fprintf (file, "\n");
print_gimple_seq (file, body, 2, flags);
fprintf (file, "}\n");
}
}
else
{
int indent;
/* Make a tree based dump. */
chain = DECL_SAVED_TREE (fndecl);
if (chain && TREE_CODE (chain) == BIND_EXPR)
{
if (ignore_topmost_bind)
{
chain = BIND_EXPR_BODY (chain);
indent = 2;
}
else
indent = 0;
}
else
{
if (!ignore_topmost_bind)
{
fprintf (file, "{\n");
/* No topmost bind, pretend it's ignored for later. */
ignore_topmost_bind = true;
}
indent = 2;
}
if (any_var)
fprintf (file, "\n");
print_generic_stmt_indented (file, chain, flags, indent);
if (ignore_topmost_bind)
fprintf (file, "}\n");
}
if (flags & TDF_ENUMERATE_LOCALS)
dump_enumerated_decls (file, flags);
fprintf (file, "\n\n");
current_function_decl = old_current_fndecl;
}
/* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
DEBUG_FUNCTION void
debug_function (tree fn, dump_flags_t flags)
{
dump_function_to_file (fn, stderr, flags);
}
/* Print on FILE the indexes for the predecessors of basic_block BB. */
static void
print_pred_bbs (FILE *file, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
fprintf (file, "bb_%d ", e->src->index);
}
/* Print on FILE the indexes for the successors of basic_block BB. */
static void
print_succ_bbs (FILE *file, basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
fprintf (file, "bb_%d ", e->dest->index);
}
/* Print to FILE the basic block BB following the VERBOSITY level. */
void
print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
{
char *s_indent = (char *) alloca ((size_t) indent + 1);
memset ((void *) s_indent, ' ', (size_t) indent);
s_indent[indent] = '\0';
/* Print basic_block's header. */
if (verbosity >= 2)
{
fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
print_pred_bbs (file, bb);
fprintf (file, "}, succs = {");
print_succ_bbs (file, bb);
fprintf (file, "})\n");
}
/* Print basic_block's body. */
if (verbosity >= 3)
{
fprintf (file, "%s {\n", s_indent);
dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
fprintf (file, "%s }\n", s_indent);
}
}
static void print_loop_and_siblings (FILE *, struct loop *, int, int);
/* Pretty print LOOP on FILE, indented INDENT spaces. Following
VERBOSITY level this outputs the contents of the loop, or just its
structure. */
static void
print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
{
char *s_indent;
basic_block bb;
if (loop == NULL)
return;
s_indent = (char *) alloca ((size_t) indent + 1);
memset ((void *) s_indent, ' ', (size_t) indent);
s_indent[indent] = '\0';
/* Print loop's header. */
fprintf (file, "%sloop_%d (", s_indent, loop->num);
if (loop->header)
fprintf (file, "header = %d", loop->header->index);
else
{
fprintf (file, "deleted)\n");
return;
}
if (loop->latch)
fprintf (file, ", latch = %d", loop->latch->index);
else
fprintf (file, ", multiple latches");
fprintf (file, ", niter = ");
print_generic_expr (file, loop->nb_iterations);
if (loop->any_upper_bound)
{
fprintf (file, ", upper_bound = ");
print_decu (loop->nb_iterations_upper_bound, file);
}
if (loop->any_likely_upper_bound)
{
fprintf (file, ", likely_upper_bound = ");
print_decu (loop->nb_iterations_likely_upper_bound, file);
}
if (loop->any_estimate)
{
fprintf (file, ", estimate = ");
print_decu (loop->nb_iterations_estimate, file);
}
if (loop->unroll)
fprintf (file, ", unroll = %d", loop->unroll);
fprintf (file, ")\n");
/* Print loop's body. */
if (verbosity >= 1)
{
fprintf (file, "%s{\n", s_indent);
FOR_EACH_BB_FN (bb, cfun)
if (bb->loop_father == loop)
print_loops_bb (file, bb, indent, verbosity);
print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
fprintf (file, "%s}\n", s_indent);
}
}
/* Print the LOOP and its sibling loops on FILE, indented INDENT
spaces. Following VERBOSITY level this outputs the contents of the
loop, or just its structure. */
static void
print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
int verbosity)
{
if (loop == NULL)
return;
print_loop (file, loop, indent, verbosity);
print_loop_and_siblings (file, loop->next, indent, verbosity);
}
/* Follow a CFG edge from the entry point of the program, and on entry
of a loop, pretty print the loop structure on FILE. */
void
print_loops (FILE *file, int verbosity)
{
basic_block bb;
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
fprintf (file, "\nLoops in function: %s\n", current_function_name ());
if (bb && bb->loop_father)
print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
}
/* Dump a loop. */
DEBUG_FUNCTION void
debug (struct loop &ref)
{
print_loop (stderr, &ref, 0, /*verbosity*/0);
}
DEBUG_FUNCTION void
debug (struct loop *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Dump a loop verbosely. */
DEBUG_FUNCTION void
debug_verbose (struct loop &ref)
{
print_loop (stderr, &ref, 0, /*verbosity*/3);
}
DEBUG_FUNCTION void
debug_verbose (struct loop *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
/* Debugging loops structure at tree level, at some VERBOSITY level. */
DEBUG_FUNCTION void
debug_loops (int verbosity)
{
print_loops (stderr, verbosity);
}
/* Print on stderr the code of LOOP, at some VERBOSITY level. */
DEBUG_FUNCTION void
debug_loop (struct loop *loop, int verbosity)
{
print_loop (stderr, loop, 0, verbosity);
}
/* Print on stderr the code of loop number NUM, at some VERBOSITY
level. */
DEBUG_FUNCTION void
debug_loop_num (unsigned num, int verbosity)
{
debug_loop (get_loop (cfun, num), verbosity);
}
/* Return true if BB ends with a call, possibly followed by some
instructions that must stay with the call. Return false,
otherwise. */
static bool
gimple_block_ends_with_call_p (basic_block bb)
{
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
}
/* Return true if BB ends with a conditional branch. Return false,
otherwise. */
static bool
gimple_block_ends_with_condjump_p (const_basic_block bb)
{
gimple *stmt = last_stmt (CONST_CAST_BB (bb));
return (stmt && gimple_code (stmt) == GIMPLE_COND);
}
/* Return true if statement T may terminate execution of BB in ways not
explicitly represtented in the CFG. */
bool
stmt_can_terminate_bb_p (gimple *t)
{
tree fndecl = NULL_TREE;
int call_flags = 0;
/* Eh exception not handled internally terminates execution of the whole
function. */
if (stmt_can_throw_external (t))
return true;
/* NORETURN and LONGJMP calls already have an edge to exit.
CONST and PURE calls do not need one.
We don't currently check for CONST and PURE here, although
it would be a good idea, because those attributes are
figured out from the RTL in mark_constant_function, and
the counter incrementation code from -fprofile-arcs
leads to different results from -fbranch-probabilities. */
if (is_gimple_call (t))
{
fndecl = gimple_call_fndecl (t);
call_flags = gimple_call_flags (t);
}
if (is_gimple_call (t)
&& fndecl
&& DECL_BUILT_IN (fndecl)
&& (call_flags & ECF_NOTHROW)
&& !(call_flags & ECF_RETURNS_TWICE)
/* fork() doesn't really return twice, but the effect of
wrapping it in __gcov_fork() which calls __gcov_flush()
and clears the counters before forking has the same
effect as returning twice. Force a fake edge. */
&& !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
return false;
if (is_gimple_call (t))
{
edge_iterator ei;
edge e;
basic_block bb;
if (call_flags & (ECF_PURE | ECF_CONST)
&& !(call_flags & ECF_LOOPING_CONST_OR_PURE))
return false;
/* Function call may do longjmp, terminate program or do other things.
Special case noreturn that have non-abnormal edges out as in this case
the fact is sufficiently represented by lack of edges out of T. */
if (!(call_flags & ECF_NORETURN))
return true;
bb = gimple_bb (t);
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & EDGE_FAKE) == 0)
return true;
}
if (gasm *asm_stmt = dyn_cast <gasm *> (t))
if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
return true;
return false;
}
/* Add fake edges to the function exit for any non constant and non
noreturn calls (or noreturn calls with EH/abnormal edges),
volatile inline assembly in the bitmap of blocks specified by BLOCKS
or to the whole CFG if BLOCKS is zero. Return the number of blocks
that were split.
The goal is to expose cases in which entering a basic block does
not imply that all subsequent instructions must be executed. */
static int
gimple_flow_call_edges_add (sbitmap blocks)
{
int i;
int blocks_split = 0;
int last_bb = last_basic_block_for_fn (cfun);
bool check_last_block = false;
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
return 0;
if (! blocks)
check_last_block = true;
else
check_last_block = bitmap_bit_p (blocks,
EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
/* In the last basic block, before epilogue generation, there will be
a fallthru edge to EXIT. Special care is required if the last insn
of the last basic block is a call because make_edge folds duplicate
edges, which would result in the fallthru edge also being marked
fake, which would result in the fallthru edge being removed by
remove_fake_edges, which would result in an invalid CFG.
Moreover, we can't elide the outgoing fake edge, since the block
profiler needs to take this into account in order to solve the minimal
spanning tree in the case that the call doesn't return.
Handle this by adding a dummy instruction in a new last basic block. */
if (check_last_block)
{
basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
gimple *t = NULL;
if (!gsi_end_p (gsi))
t = gsi_stmt (gsi);
if (t && stmt_can_terminate_bb_p (t))
{
edge e;
e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
if (e)
{
gsi_insert_on_edge (e, gimple_build_nop ());
gsi_commit_edge_inserts ();
}
}
}
/* Now add fake edges to the function exit for any non constant
calls since there is no way that we can determine if they will
return or not... */
for (i = 0; i < last_bb; i++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
gimple_stmt_iterator gsi;
gimple *stmt, *last_stmt;
if (!bb)
continue;
if (blocks && !bitmap_bit_p (blocks, i))
continue;
gsi = gsi_last_nondebug_bb (bb);
if (!gsi_end_p (gsi))
{
last_stmt = gsi_stmt (gsi);
do
{
stmt = gsi_stmt (gsi);
if (stmt_can_terminate_bb_p (stmt))
{
edge e;
/* The handling above of the final block before the
epilogue should be enough to verify that there is
no edge to the exit block in CFG already.
Calling make_edge in such case would cause us to
mark that edge as fake and remove it later. */
if (flag_checking && stmt == last_stmt)
{
e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
gcc_assert (e == NULL);
}
/* Note that the following may create a new basic block
and renumber the existing basic blocks. */
if (stmt != last_stmt)
{
e = split_block (bb, stmt);
if (e)
blocks_split++;
}
e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
e->probability = profile_probability::guessed_never ();
}
gsi_prev (&gsi);
}
while (!gsi_end_p (gsi));
}
}
if (blocks_split)
checking_verify_flow_info ();
return blocks_split;
}
/* Removes edge E and all the blocks dominated by it, and updates dominance
information. The IL in E->src needs to be updated separately.
If dominance info is not available, only the edge E is removed.*/
void
remove_edge_and_dominated_blocks (edge e)
{
vec<basic_block> bbs_to_remove = vNULL;
vec<basic_block> bbs_to_fix_dom = vNULL;
edge f;
edge_iterator ei;
bool none_removed = false;
unsigned i;
basic_block bb, dbb;
bitmap_iterator bi;
/* If we are removing a path inside a non-root loop that may change
loop ownership of blocks or remove loops. Mark loops for fixup. */
if (current_loops
&& loop_outer (e->src->loop_father) != NULL
&& e->src->loop_father == e->dest->loop_father)
loops_state_set (LOOPS_NEED_FIXUP);
if (!dom_info_available_p (CDI_DOMINATORS))
{
remove_edge (e);
return;
}
/* No updating is needed for edges to exit. */
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
{
if (cfgcleanup_altered_bbs)
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
remove_edge (e);
return;
}
/* First, we find the basic blocks to remove. If E->dest has a predecessor
that is not dominated by E->dest, then this set is empty. Otherwise,
all the basic blocks dominated by E->dest are removed.
Also, to DF_IDOM we store the immediate dominators of the blocks in
the dominance frontier of E (i.e., of the successors of the
removed blocks, if there are any, and of E->dest otherwise). */
FOR_EACH_EDGE (f, ei, e->dest->preds)
{
if (f == e)
continue;
if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
{
none_removed = true;
break;
}
}
auto_bitmap df, df_idom;
if (none_removed)
bitmap_set_bit (df_idom,
get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
else
{
bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
{
FOR_EACH_EDGE (f, ei, bb->succs)
{
if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
bitmap_set_bit (df, f->dest->index);
}
}
FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
bitmap_clear_bit (df, bb->index);
EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
{
bb = BASIC_BLOCK_FOR_FN (cfun, i);
bitmap_set_bit (df_idom,
get_immediate_dominator (CDI_DOMINATORS, bb)->index);
}
}
if (cfgcleanup_altered_bbs)
{
/* Record the set of the altered basic blocks. */
bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
bitmap_ior_into (cfgcleanup_altered_bbs, df);
}
/* Remove E and the cancelled blocks. */
if (none_removed)
remove_edge (e);
else
{
/* Walk backwards so as to get a chance to substitute all
released DEFs into debug stmts. See
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
details. */
for (i = bbs_to_remove.length (); i-- > 0; )
delete_basic_block (bbs_to_remove[i]);
}
/* Update the dominance information. The immediate dominator may change only
for blocks whose immediate dominator belongs to DF_IDOM:
Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
removal. Let Z the arbitrary block such that idom(Z) = Y and
Z dominates X after the removal. Before removal, there exists a path P
from Y to X that avoids Z. Let F be the last edge on P that is
removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
dominates W, and because of P, Z does not dominate W), and W belongs to
the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
{
bb = BASIC_BLOCK_FOR_FN (cfun, i);
for (dbb = first_dom_son (CDI_DOMINATORS, bb);
dbb;
dbb = next_dom_son (CDI_DOMINATORS, dbb))
bbs_to_fix_dom.safe_push (dbb);
}
iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
bbs_to_remove.release ();
bbs_to_fix_dom.release ();
}
/* Purge dead EH edges from basic block BB. */
bool
gimple_purge_dead_eh_edges (basic_block bb)
{
bool changed = false;
edge e;
edge_iterator ei;
gimple *stmt = last_stmt (bb);
if (stmt && stmt_can_throw_internal (stmt))
return false;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (e->flags & EDGE_EH)
{
remove_edge_and_dominated_blocks (e);
changed = true;
}
else
ei_next (&ei);
}
return changed;
}
/* Purge dead EH edges from basic block listed in BLOCKS. */
bool
gimple_purge_all_dead_eh_edges (const_bitmap blocks)
{
bool changed = false;
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
/* Earlier gimple_purge_dead_eh_edges could have removed
this basic block already. */
gcc_assert (bb || changed);
if (bb != NULL)
changed |= gimple_purge_dead_eh_edges (bb);
}
return changed;
}
/* Purge dead abnormal call edges from basic block BB. */
bool
gimple_purge_dead_abnormal_call_edges (basic_block bb)
{
bool changed = false;
edge e;
edge_iterator ei;
gimple *stmt = last_stmt (bb);
if (!cfun->has_nonlocal_label
&& !cfun->calls_setjmp)
return false;
if (stmt && stmt_can_make_abnormal_goto (stmt))
return false;
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
{
if (e->flags & EDGE_ABNORMAL)
{
if (e->flags & EDGE_FALLTHRU)
e->flags &= ~EDGE_ABNORMAL;
else
remove_edge_and_dominated_blocks (e);
changed = true;
}
else
ei_next (&ei);
}
return changed;
}
/* Purge dead abnormal call edges from basic block listed in BLOCKS. */
bool
gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
{
bool changed = false;
unsigned i;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
/* Earlier gimple_purge_dead_abnormal_call_edges could have removed
this basic block already. */
gcc_assert (bb || changed);
if (bb != NULL)
changed |= gimple_purge_dead_abnormal_call_edges (bb);
}
return changed;
}
/* This function is called whenever a new edge is created or
redirected. */
static void
gimple_execute_on_growing_pred (edge e)
{
basic_block bb = e->dest;
if (!gimple_seq_empty_p (phi_nodes (bb)))
reserve_phi_args_for_new_edge (bb);
}
/* This function is called immediately before edge E is removed from
the edge vector E->dest->preds. */
static void
gimple_execute_on_shrinking_pred (edge e)
{
if (!gimple_seq_empty_p (phi_nodes (e->dest)))
remove_phi_args (e);
}
/*---------------------------------------------------------------------------
Helper functions for Loop versioning
---------------------------------------------------------------------------*/
/* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
of 'first'. Both of them are dominated by 'new_head' basic block. When
'new_head' was created by 'second's incoming edge it received phi arguments
on the edge by split_edge(). Later, additional edge 'e' was created to
connect 'new_head' and 'first'. Now this routine adds phi args on this
additional edge 'e' that new_head to second edge received as part of edge
splitting. */
static void
gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
basic_block new_head, edge e)
{
gphi *phi1, *phi2;
gphi_iterator psi1, psi2;
tree def;
edge e2 = find_edge (new_head, second);
/* Because NEW_HEAD has been created by splitting SECOND's incoming
edge, we should always have an edge from NEW_HEAD to SECOND. */
gcc_assert (e2 != NULL);
/* Browse all 'second' basic block phi nodes and add phi args to
edge 'e' for 'first' head. PHI args are always in correct order. */
for (psi2 = gsi_start_phis (second),
psi1 = gsi_start_phis (first);
!gsi_end_p (psi2) && !gsi_end_p (psi1);
gsi_next (&psi2), gsi_next (&psi1))
{
phi1 = psi1.phi ();
phi2 = psi2.phi ();
def = PHI_ARG_DEF (phi2, e2->dest_idx);
add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
}
}
/* Adds a if else statement to COND_BB with condition COND_EXPR.
SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
the destination of the ELSE part. */
static void
gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
basic_block second_head ATTRIBUTE_UNUSED,
basic_block cond_bb, void *cond_e)
{
gimple_stmt_iterator gsi;
gimple *new_cond_expr;
tree cond_expr = (tree) cond_e;
edge e0;
/* Build new conditional expr */
new_cond_expr = gimple_build_cond_from_tree (cond_expr,
NULL_TREE, NULL_TREE);
/* Add new cond in cond_bb. */
gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
/* Adjust edges appropriately to connect new head with first head
as well as second head. */
e0 = single_succ_edge (cond_bb);
e0->flags &= ~EDGE_FALLTHRU;
e0->flags |= EDGE_FALSE_VALUE;
}
/* Do book-keeping of basic block BB for the profile consistency checker.
If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
then do post-pass accounting. Store the counting in RECORD. */
static void
gimple_account_profile_record (basic_block bb, int after_pass,
struct profile_record *record)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
{
record->size[after_pass]
+= estimate_num_insns (gsi_stmt (i), &eni_size_weights);
if (bb->count.initialized_p ())
record->time[after_pass]
+= estimate_num_insns (gsi_stmt (i),
&eni_time_weights) * bb->count.to_gcov_type ();
else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
record->time[after_pass]
+= estimate_num_insns (gsi_stmt (i),
&eni_time_weights) * bb->count.to_frequency (cfun);
}
}
struct cfg_hooks gimple_cfg_hooks = {
"gimple",
gimple_verify_flow_info,
gimple_dump_bb, /* dump_bb */
gimple_dump_bb_for_graph, /* dump_bb_for_graph */
create_bb, /* create_basic_block */
gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
gimple_can_remove_branch_p, /* can_remove_branch_p */
remove_bb, /* delete_basic_block */
gimple_split_block, /* split_block */
gimple_move_block_after, /* move_block_after */
gimple_can_merge_blocks_p, /* can_merge_blocks_p */
gimple_merge_blocks, /* merge_blocks */
gimple_predict_edge, /* predict_edge */
gimple_predicted_by_p, /* predicted_by_p */
gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
gimple_duplicate_bb, /* duplicate_block */
gimple_split_edge, /* split_edge */
gimple_make_forwarder_block, /* make_forward_block */
NULL, /* tidy_fallthru_edge */
NULL, /* force_nonfallthru */
gimple_block_ends_with_call_p,/* block_ends_with_call_p */
gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
gimple_flow_call_edges_add, /* flow_call_edges_add */
gimple_execute_on_growing_pred, /* execute_on_growing_pred */
gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
extract_true_false_edges_from_block, /* extract_cond_bb_edges */
flush_pending_stmts, /* flush_pending_stmts */
gimple_empty_block_p, /* block_empty_p */
gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
gimple_account_profile_record,
};
/* Split all critical edges. */
unsigned int
split_critical_edges (void)
{
basic_block bb;
edge e;
edge_iterator ei;
/* split_edge can redirect edges out of SWITCH_EXPRs, which can get
expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
mappings around the calls to split_edge. */
start_recording_case_labels ();
FOR_ALL_BB_FN (bb, cfun)
{
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
split_edge (e);
/* PRE inserts statements to edges and expects that
since split_critical_edges was done beforehand, committing edge
insertions will not split more edges. In addition to critical
edges we must split edges that have multiple successors and
end by control flow statements, such as RESX.
Go ahead and split them too. This matches the logic in
gimple_find_edge_insert_loc. */
else if ((!single_pred_p (e->dest)
|| !gimple_seq_empty_p (phi_nodes (e->dest))
|| e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
&& e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
&& !(e->flags & EDGE_ABNORMAL))
{
gimple_stmt_iterator gsi;
gsi = gsi_last_bb (e->src);
if (!gsi_end_p (gsi)
&& stmt_ends_bb_p (gsi_stmt (gsi))
&& (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
&& !gimple_call_builtin_p (gsi_stmt (gsi),
BUILT_IN_RETURN)))
split_edge (e);
}
}
}
end_recording_case_labels ();
return 0;
}
namespace {
const pass_data pass_data_split_crit_edges =
{
GIMPLE_PASS, /* type */
"crited", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_SPLIT_EDGES, /* tv_id */
PROP_cfg, /* properties_required */
PROP_no_crit_edges, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_split_crit_edges : public gimple_opt_pass
{
public:
pass_split_crit_edges (gcc::context *ctxt)
: gimple_opt_pass (pass_data_split_crit_edges, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return split_critical_edges (); }
opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
}; // class pass_split_crit_edges
} // anon namespace
gimple_opt_pass *
make_pass_split_crit_edges (gcc::context *ctxt)
{
return new pass_split_crit_edges (ctxt);
}
/* Insert COND expression which is GIMPLE_COND after STMT
in basic block BB with appropriate basic block split
and creation of a new conditionally executed basic block.
Update profile so the new bb is visited with probability PROB.
Return created basic block. */
basic_block
insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
profile_probability prob)
{
edge fall = split_block (bb, stmt);
gimple_stmt_iterator iter = gsi_last_bb (bb);
basic_block new_bb;
/* Insert cond statement. */
gcc_assert (gimple_code (cond) == GIMPLE_COND);
if (gsi_end_p (iter))
gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
else
gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
/* Create conditionally executed block. */
new_bb = create_empty_bb (bb);
edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
e->probability = prob;
new_bb->count = e->count ();
make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
/* Fix edge for split bb. */
fall->flags = EDGE_FALSE_VALUE;
fall->probability -= e->probability;
/* Update dominance info. */
if (dom_info_available_p (CDI_DOMINATORS))
{
set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
}
/* Update loop info. */
if (current_loops)
add_bb_to_loop (new_bb, bb->loop_father);
return new_bb;
}
/* Build a ternary operation and gimplify it. Emit code before GSI.
Return the gimple_val holding the result. */
tree
gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
tree type, tree a, tree b, tree c)
{
tree ret;
location_t loc = gimple_location (gsi_stmt (*gsi));
ret = fold_build3_loc (loc, code, type, a, b, c);
STRIP_NOPS (ret);
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
GSI_SAME_STMT);
}
/* Build a binary operation and gimplify it. Emit code before GSI.
Return the gimple_val holding the result. */
tree
gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
tree type, tree a, tree b)
{
tree ret;
ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
STRIP_NOPS (ret);
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
GSI_SAME_STMT);
}
/* Build a unary operation and gimplify it. Emit code before GSI.
Return the gimple_val holding the result. */
tree
gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
tree a)
{
tree ret;
ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
STRIP_NOPS (ret);
return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
GSI_SAME_STMT);
}
/* Given a basic block B which ends with a conditional and has
precisely two successors, determine which of the edges is taken if
the conditional is true and which is taken if the conditional is
false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
void
extract_true_false_edges_from_block (basic_block b,
edge *true_edge,
edge *false_edge)
{
edge e = EDGE_SUCC (b, 0);
if (e->flags & EDGE_TRUE_VALUE)
{
*true_edge = e;
*false_edge = EDGE_SUCC (b, 1);
}
else
{
*false_edge = e;
*true_edge = EDGE_SUCC (b, 1);
}
}
/* From a controlling predicate in the immediate dominator DOM of
PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
predicate evaluates to true and false and store them to
*TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
they are non-NULL. Returns true if the edges can be determined,
else return false. */
bool
extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
edge *true_controlled_edge,
edge *false_controlled_edge)
{
basic_block bb = phiblock;
edge true_edge, false_edge, tem;
edge e0 = NULL, e1 = NULL;
/* We have to verify that one edge into the PHI node is dominated
by the true edge of the predicate block and the other edge
dominated by the false edge. This ensures that the PHI argument
we are going to take is completely determined by the path we
take from the predicate block.
We can only use BB dominance checks below if the destination of
the true/false edges are dominated by their edge, thus only
have a single predecessor. */
extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
tem = EDGE_PRED (bb, 0);
if (tem == true_edge
|| (single_pred_p (true_edge->dest)
&& (tem->src == true_edge->dest
|| dominated_by_p (CDI_DOMINATORS,
tem->src, true_edge->dest))))
e0 = tem;
else if (tem == false_edge
|| (single_pred_p (false_edge->dest)
&& (tem->src == false_edge->dest
|| dominated_by_p (CDI_DOMINATORS,
tem->src, false_edge->dest))))
e1 = tem;
else
return false;
tem = EDGE_PRED (bb, 1);
if (tem == true_edge
|| (single_pred_p (true_edge->dest)
&& (tem->src == true_edge->dest
|| dominated_by_p (CDI_DOMINATORS,
tem->src, true_edge->dest))))
e0 = tem;
else if (tem == false_edge
|| (single_pred_p (false_edge->dest)
&& (tem->src == false_edge->dest
|| dominated_by_p (CDI_DOMINATORS,
tem->src, false_edge->dest))))
e1 = tem;
else
return false;
if (!e0 || !e1)
return false;
if (true_controlled_edge)
*true_controlled_edge = e0;
if (false_controlled_edge)
*false_controlled_edge = e1;
return true;
}
/* Generate a range test LHS CODE RHS that determines whether INDEX is in the
range [low, high]. Place associated stmts before *GSI. */
void
generate_range_test (basic_block bb, tree index, tree low, tree high,
tree *lhs, tree *rhs)
{
tree type = TREE_TYPE (index);
tree utype = unsigned_type_for (type);
low = fold_convert (utype, low);
high = fold_convert (utype, high);
gimple_seq seq = NULL;
index = gimple_convert (&seq, utype, index);
*lhs = gimple_build (&seq, MINUS_EXPR, utype, index, low);
*rhs = const_binop (MINUS_EXPR, utype, high, low);
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
}
/* Emit return warnings. */
namespace {
const pass_data pass_data_warn_function_return =
{
GIMPLE_PASS, /* type */
"*warn_function_return", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_warn_function_return : public gimple_opt_pass
{
public:
pass_warn_function_return (gcc::context *ctxt)
: gimple_opt_pass (pass_data_warn_function_return, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_warn_function_return
unsigned int
pass_warn_function_return::execute (function *fun)
{
source_location location;
gimple *last;
edge e;
edge_iterator ei;
if (!targetm.warn_func_return (fun->decl))
return 0;
/* If we have a path to EXIT, then we do return. */
if (TREE_THIS_VOLATILE (fun->decl)
&& EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
{
location = UNKNOWN_LOCATION;
for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
(e = ei_safe_edge (ei)); )
{
last = last_stmt (e->src);
if ((gimple_code (last) == GIMPLE_RETURN
|| gimple_call_builtin_p (last, BUILT_IN_RETURN))
&& location == UNKNOWN_LOCATION
&& ((location = LOCATION_LOCUS (gimple_location (last)))
!= UNKNOWN_LOCATION)
&& !optimize)
break;
/* When optimizing, replace return stmts in noreturn functions
with __builtin_unreachable () call. */
if (optimize && gimple_code (last) == GIMPLE_RETURN)
{
tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
gimple *new_stmt = gimple_build_call (fndecl, 0);
gimple_set_location (new_stmt, gimple_location (last));
gimple_stmt_iterator gsi = gsi_for_stmt (last);
gsi_replace (&gsi, new_stmt, true);
remove_edge (e);
}
else
ei_next (&ei);
}
if (location == UNKNOWN_LOCATION)
location = cfun->function_end_locus;
warning_at (location, 0, "%<noreturn%> function does return");
}
/* If we see "return;" in some basic block, then we do reach the end
without returning a value. */
else if (warn_return_type > 0
&& !TREE_NO_WARNING (fun->decl)
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
{
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
{
gimple *last = last_stmt (e->src);
greturn *return_stmt = dyn_cast <greturn *> (last);
if (return_stmt
&& gimple_return_retval (return_stmt) == NULL
&& !gimple_no_warning_p (last))
{
location = gimple_location (last);
if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
location = fun->function_end_locus;
warning_at (location, OPT_Wreturn_type,
"control reaches end of non-void function");
TREE_NO_WARNING (fun->decl) = 1;
break;
}
}
/* The C++ FE turns fallthrough from the end of non-void function
into __builtin_unreachable () call with BUILTINS_LOCATION.
Recognize those too. */
basic_block bb;
if (!TREE_NO_WARNING (fun->decl))
FOR_EACH_BB_FN (bb, fun)
if (EDGE_COUNT (bb->succs) == 0)
{
gimple *last = last_stmt (bb);
const enum built_in_function ubsan_missing_ret
= BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
if (last
&& ((LOCATION_LOCUS (gimple_location (last))
== BUILTINS_LOCATION
&& gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
|| gimple_call_builtin_p (last, ubsan_missing_ret)))
{
gimple_stmt_iterator gsi = gsi_for_stmt (last);
gsi_prev_nondebug (&gsi);
gimple *prev = gsi_stmt (gsi);
if (prev == NULL)
location = UNKNOWN_LOCATION;
else
location = gimple_location (prev);
if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
location = fun->function_end_locus;
warning_at (location, OPT_Wreturn_type,
"control reaches end of non-void function");
TREE_NO_WARNING (fun->decl) = 1;
break;
}
}
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_warn_function_return (gcc::context *ctxt)
{
return new pass_warn_function_return (ctxt);
}
/* Walk a gimplified function and warn for functions whose return value is
ignored and attribute((warn_unused_result)) is set. This is done before
inlining, so we don't have to worry about that. */
static void
do_warn_unused_result (gimple_seq seq)
{
tree fdecl, ftype;
gimple_stmt_iterator i;
for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
{
gimple *g = gsi_stmt (i);
switch (gimple_code (g))
{
case GIMPLE_BIND:
do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
break;
case GIMPLE_TRY:
do_warn_unused_result (gimple_try_eval (g));
do_warn_unused_result (gimple_try_cleanup (g));
break;
case GIMPLE_CATCH:
do_warn_unused_result (gimple_catch_handler (
as_a <gcatch *> (g)));
break;
case GIMPLE_EH_FILTER:
do_warn_unused_result (gimple_eh_filter_failure (g));
break;
case GIMPLE_CALL:
if (gimple_call_lhs (g))
break;
if (gimple_call_internal_p (g))
break;
/* This is a naked call, as opposed to a GIMPLE_CALL with an
LHS. All calls whose value is ignored should be
represented like this. Look for the attribute. */
fdecl = gimple_call_fndecl (g);
ftype = gimple_call_fntype (g);
if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
{
location_t loc = gimple_location (g);
if (fdecl)
warning_at (loc, OPT_Wunused_result,
"ignoring return value of %qD, "
"declared with attribute warn_unused_result",
fdecl);
else
warning_at (loc, OPT_Wunused_result,
"ignoring return value of function "
"declared with attribute warn_unused_result");
}
break;
default:
/* Not a container, not a call, or a call whose value is used. */
break;
}
}
}
namespace {
const pass_data pass_data_warn_unused_result =
{
GIMPLE_PASS, /* type */
"*warn_unused_result", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_gimple_any, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_warn_unused_result : public gimple_opt_pass
{
public:
pass_warn_unused_result (gcc::context *ctxt)
: gimple_opt_pass (pass_data_warn_unused_result, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_warn_unused_result; }
virtual unsigned int execute (function *)
{
do_warn_unused_result (gimple_body (current_function_decl));
return 0;
}
}; // class pass_warn_unused_result
} // anon namespace
gimple_opt_pass *
make_pass_warn_unused_result (gcc::context *ctxt)
{
return new pass_warn_unused_result (ctxt);
}
/* IPA passes, compilation of earlier functions or inlining
might have changed some properties, such as marked functions nothrow,
pure, const or noreturn.
Remove redundant edges and basic blocks, and create new ones if necessary.
This pass can't be executed as stand alone pass from pass manager, because
in between inlining and this fixup the verify_flow_info would fail. */
unsigned int
execute_fixup_cfg (void)
{
basic_block bb;
gimple_stmt_iterator gsi;
int todo = 0;
cgraph_node *node = cgraph_node::get (current_function_decl);
profile_count num = node->count;
profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
bool scale = num.initialized_p () && !(num == den);
if (scale)
{
profile_count::adjust_for_ipa_scaling (&num, &den);
ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
EXIT_BLOCK_PTR_FOR_FN (cfun)->count
= EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
}
FOR_EACH_BB_FN (bb, cfun)
{
if (scale)
bb->count = bb->count.apply_scale (num, den);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
tree decl = is_gimple_call (stmt)
? gimple_call_fndecl (stmt)
: NULL;
if (decl)
{
int flags = gimple_call_flags (stmt);
if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
{
if (gimple_purge_dead_abnormal_call_edges (bb))
todo |= TODO_cleanup_cfg;
if (gimple_in_ssa_p (cfun))
{
todo |= TODO_update_ssa | TODO_cleanup_cfg;
update_stmt (stmt);
}
}
if (flags & ECF_NORETURN
&& fixup_noreturn_call (stmt))
todo |= TODO_cleanup_cfg;
}
/* Remove stores to variables we marked write-only.
Keep access when store has side effect, i.e. in case when source
is volatile. */
if (gimple_store_p (stmt)
&& !gimple_has_side_effects (stmt))
{
tree lhs = get_base_address (gimple_get_lhs (stmt));
if (VAR_P (lhs)
&& (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
&& varpool_node::get (lhs)->writeonly)
{
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
todo |= TODO_update_ssa | TODO_cleanup_cfg;
continue;
}
}
/* For calls we can simply remove LHS when it is known
to be write-only. */
if (is_gimple_call (stmt)
&& gimple_get_lhs (stmt))
{
tree lhs = get_base_address (gimple_get_lhs (stmt));
if (VAR_P (lhs)
&& (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
&& varpool_node::get (lhs)->writeonly)
{
gimple_call_set_lhs (stmt, NULL);
update_stmt (stmt);
todo |= TODO_update_ssa | TODO_cleanup_cfg;
}
}
if (maybe_clean_eh_stmt (stmt)
&& gimple_purge_dead_eh_edges (bb))
todo |= TODO_cleanup_cfg;
gsi_next (&gsi);
}
/* If we have a basic block with no successors that does not
end with a control statement or a noreturn call end it with
a call to __builtin_unreachable. This situation can occur
when inlining a noreturn call that does in fact return. */
if (EDGE_COUNT (bb->succs) == 0)
{
gimple *stmt = last_stmt (bb);
if (!stmt
|| (!is_ctrl_stmt (stmt)
&& (!is_gimple_call (stmt)
|| !gimple_call_noreturn_p (stmt))))
{
if (stmt && is_gimple_call (stmt))
gimple_call_set_ctrl_altering (stmt, false);
tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
stmt = gimple_build_call (fndecl, 0);
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
if (!cfun->after_inlining)
{
gcall *call_stmt = dyn_cast <gcall *> (stmt);
node->create_edge (cgraph_node::get_create (fndecl),
call_stmt, bb->count);
}
}
}
}
if (scale)
compute_function_frequency ();
if (current_loops
&& (todo & TODO_cleanup_cfg))
loops_state_set (LOOPS_NEED_FIXUP);
return todo;
}
namespace {
const pass_data pass_data_fixup_cfg =
{
GIMPLE_PASS, /* type */
"fixup_cfg", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_fixup_cfg : public gimple_opt_pass
{
public:
pass_fixup_cfg (gcc::context *ctxt)
: gimple_opt_pass (pass_data_fixup_cfg, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
}; // class pass_fixup_cfg
} // anon namespace
gimple_opt_pass *
make_pass_fixup_cfg (gcc::context *ctxt)
{
return new pass_fixup_cfg (ctxt);
}
/* Garbage collection support for edge_def. */
extern void gt_ggc_mx (tree&);
extern void gt_ggc_mx (gimple *&);
extern void gt_ggc_mx (rtx&);
extern void gt_ggc_mx (basic_block&);
static void
gt_ggc_mx (rtx_insn *& x)
{
if (x)
gt_ggc_mx_rtx_def ((void *) x);
}
void
gt_ggc_mx (edge_def *e)
{
tree block = LOCATION_BLOCK (e->goto_locus);
gt_ggc_mx (e->src);
gt_ggc_mx (e->dest);
if (current_ir_type () == IR_GIMPLE)
gt_ggc_mx (e->insns.g);
else
gt_ggc_mx (e->insns.r);
gt_ggc_mx (block);
}
/* PCH support for edge_def. */
extern void gt_pch_nx (tree&);
extern void gt_pch_nx (gimple *&);
extern void gt_pch_nx (rtx&);
extern void gt_pch_nx (basic_block&);
static void
gt_pch_nx (rtx_insn *& x)
{
if (x)
gt_pch_nx_rtx_def ((void *) x);
}
void
gt_pch_nx (edge_def *e)
{
tree block = LOCATION_BLOCK (e->goto_locus);
gt_pch_nx (e->src);
gt_pch_nx (e->dest);
if (current_ir_type () == IR_GIMPLE)
gt_pch_nx (e->insns.g);
else
gt_pch_nx (e->insns.r);
gt_pch_nx (block);
}
void
gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
{
tree block = LOCATION_BLOCK (e->goto_locus);
op (&(e->src), cookie);
op (&(e->dest), cookie);
if (current_ir_type () == IR_GIMPLE)
op (&(e->insns.g), cookie);
else
op (&(e->insns.r), cookie);
op (&(block), cookie);
}
#if CHECKING_P
namespace selftest {
/* Helper function for CFG selftests: create a dummy function decl
and push it as cfun. */
static tree
push_fndecl (const char *name)
{
tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
/* FIXME: this uses input_location: */
tree fndecl = build_fn_decl (name, fn_type);
tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
NULL_TREE, integer_type_node);
DECL_RESULT (fndecl) = retval;
push_struct_function (fndecl);
function *fun = DECL_STRUCT_FUNCTION (fndecl);
ASSERT_TRUE (fun != NULL);
init_empty_tree_cfg_for_function (fun);
ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
ASSERT_EQ (0, n_edges_for_fn (fun));
return fndecl;
}
/* These tests directly create CFGs.
Compare with the static fns within tree-cfg.c:
- build_gimple_cfg
- make_blocks: calls create_basic_block (seq, bb);
- make_edges. */
/* Verify a simple cfg of the form:
ENTRY -> A -> B -> C -> EXIT. */
static void
test_linear_chain ()
{
gimple_register_cfg_hooks ();
tree fndecl = push_fndecl ("cfg_test_linear_chain");
function *fun = DECL_STRUCT_FUNCTION (fndecl);
/* Create some empty blocks. */
basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
basic_block bb_b = create_empty_bb (bb_a);
basic_block bb_c = create_empty_bb (bb_b);
ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
ASSERT_EQ (0, n_edges_for_fn (fun));
/* Create some edges: a simple linear chain of BBs. */
make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
make_edge (bb_a, bb_b, 0);
make_edge (bb_b, bb_c, 0);
make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
/* Verify the edges. */
ASSERT_EQ (4, n_edges_for_fn (fun));
ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
ASSERT_EQ (1, bb_a->preds->length ());
ASSERT_EQ (1, bb_a->succs->length ());
ASSERT_EQ (1, bb_b->preds->length ());
ASSERT_EQ (1, bb_b->succs->length ());
ASSERT_EQ (1, bb_c->preds->length ());
ASSERT_EQ (1, bb_c->succs->length ());
ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
/* Verify the dominance information
Each BB in our simple chain should be dominated by the one before
it. */
calculate_dominance_info (CDI_DOMINATORS);
ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
ASSERT_EQ (1, dom_by_b.length ());
ASSERT_EQ (bb_c, dom_by_b[0]);
free_dominance_info (CDI_DOMINATORS);
dom_by_b.release ();
/* Similarly for post-dominance: each BB in our chain is post-dominated
by the one after it. */
calculate_dominance_info (CDI_POST_DOMINATORS);
ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
ASSERT_EQ (1, postdom_by_b.length ());
ASSERT_EQ (bb_a, postdom_by_b[0]);
free_dominance_info (CDI_POST_DOMINATORS);
postdom_by_b.release ();
pop_cfun ();
}
/* Verify a simple CFG of the form:
ENTRY
|
A
/ \
/t \f
B C
\ /
\ /
D
|
EXIT. */
static void
test_diamond ()
{
gimple_register_cfg_hooks ();
tree fndecl = push_fndecl ("cfg_test_diamond");
function *fun = DECL_STRUCT_FUNCTION (fndecl);
/* Create some empty blocks. */
basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
basic_block bb_b = create_empty_bb (bb_a);
basic_block bb_c = create_empty_bb (bb_a);
basic_block bb_d = create_empty_bb (bb_b);
ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
ASSERT_EQ (0, n_edges_for_fn (fun));
/* Create the edges. */
make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
make_edge (bb_b, bb_d, 0);
make_edge (bb_c, bb_d, 0);
make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
/* Verify the edges. */
ASSERT_EQ (6, n_edges_for_fn (fun));
ASSERT_EQ (1, bb_a->preds->length ());
ASSERT_EQ (2, bb_a->succs->length ());
ASSERT_EQ (1, bb_b->preds->length ());
ASSERT_EQ (1, bb_b->succs->length ());
ASSERT_EQ (1, bb_c->preds->length ());
ASSERT_EQ (1, bb_c->succs->length ());
ASSERT_EQ (2, bb_d->preds->length ());
ASSERT_EQ (1, bb_d->succs->length ());
/* Verify the dominance information. */
calculate_dominance_info (CDI_DOMINATORS);
ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
dom_by_a.release ();
vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
ASSERT_EQ (0, dom_by_b.length ());
dom_by_b.release ();
free_dominance_info (CDI_DOMINATORS);
/* Similarly for post-dominance. */
calculate_dominance_info (CDI_POST_DOMINATORS);
ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
postdom_by_d.release ();
vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
ASSERT_EQ (0, postdom_by_b.length ());
postdom_by_b.release ();
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
}
/* Verify that we can handle a CFG containing a "complete" aka
fully-connected subgraph (where A B C D below all have edges
pointing to each other node, also to themselves).
e.g.:
ENTRY EXIT
| ^
| /
| /
| /
V/
A<--->B
^^ ^^
| \ / |
| X |
| / \ |
VV VV
C<--->D
*/
static void
test_fully_connected ()
{
gimple_register_cfg_hooks ();
tree fndecl = push_fndecl ("cfg_fully_connected");
function *fun = DECL_STRUCT_FUNCTION (fndecl);
const int n = 4;
/* Create some empty blocks. */
auto_vec <basic_block> subgraph_nodes;
for (int i = 0; i < n; i++)
subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
ASSERT_EQ (0, n_edges_for_fn (fun));
/* Create the edges. */
make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
/* Verify the edges. */
ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
/* The first one is linked to ENTRY/EXIT as well as itself and
everything else. */
ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
/* The other ones in the subgraph are linked to everything in
the subgraph (including themselves). */
for (int i = 1; i < n; i++)
{
ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
}
/* Verify the dominance information. */
calculate_dominance_info (CDI_DOMINATORS);
/* The initial block in the subgraph should be dominated by ENTRY. */
ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
get_immediate_dominator (CDI_DOMINATORS,
subgraph_nodes[0]));
/* Every other block in the subgraph should be dominated by the
initial block. */
for (int i = 1; i < n; i++)
ASSERT_EQ (subgraph_nodes[0],
get_immediate_dominator (CDI_DOMINATORS,
subgraph_nodes[i]));
free_dominance_info (CDI_DOMINATORS);
/* Similarly for post-dominance. */
calculate_dominance_info (CDI_POST_DOMINATORS);
/* The initial block in the subgraph should be postdominated by EXIT. */
ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
get_immediate_dominator (CDI_POST_DOMINATORS,
subgraph_nodes[0]));
/* Every other block in the subgraph should be postdominated by the
initial block, since that leads to EXIT. */
for (int i = 1; i < n; i++)
ASSERT_EQ (subgraph_nodes[0],
get_immediate_dominator (CDI_POST_DOMINATORS,
subgraph_nodes[i]));
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
}
/* Run all of the selftests within this file. */
void
tree_cfg_c_tests ()
{
test_linear_chain ();
test_diamond ();
test_fully_connected ();
}
} // namespace selftest
/* TODO: test the dominator/postdominator logic with various graphs/nodes:
- loop
- nested loops
- switch statement (a block with many out-edges)
- something that jumps to itself
- etc */
#endif /* CHECKING_P */
|