1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
|
/* Induction variable canonicalization and loop peeling.
Copyright (C) 2004-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass detects the loops that iterate a constant number of times,
adds a canonical induction variable (step -1, tested against 0)
and replaces the exit test. This enables the less powerful rtl
level analysis to use this information.
This might spoil the code in some cases (by increasing register pressure).
Note that in the case the new variable is not needed, ivopts will get rid
of it, so it might only be a problem when there are no other linear induction
variables. In that case the created optimization possibilities are likely
to pay up.
We also perform
- complete unrolling (or peeling) when the loops is rolling few enough
times
- simple peeling (i.e. copying few initial iterations prior the loop)
when number of iteration estimate is known (typically by the profile
info). */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "profile.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "tree-inline.h"
#include "tree-cfgcleanup.h"
#include "builtins.h"
/* Specifies types of loops that may be unrolled. */
enum unroll_level
{
UL_SINGLE_ITER, /* Only loops that exit immediately in the first
iteration. */
UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
of code size. */
UL_ALL /* All suitable loops. */
};
/* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
is the exit edge whose condition is replaced. The ssa versions of the new
IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER
if they are not NULL. */
void
create_canonical_iv (struct loop *loop, edge exit, tree niter,
tree *var_before = NULL, tree *var_after = NULL)
{
edge in;
tree type, var;
gcond *cond;
gimple_stmt_iterator incr_at;
enum tree_code cmp;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
print_generic_expr (dump_file, niter, TDF_SLIM);
fprintf (dump_file, " iterations.\n");
}
cond = as_a <gcond *> (last_stmt (exit->src));
in = EDGE_SUCC (exit->src, 0);
if (in == exit)
in = EDGE_SUCC (exit->src, 1);
/* Note that we do not need to worry about overflows, since
type of niter is always unsigned and all comparisons are
just for equality/nonequality -- i.e. everything works
with a modulo arithmetics. */
type = TREE_TYPE (niter);
niter = fold_build2 (PLUS_EXPR, type,
niter,
build_int_cst (type, 1));
incr_at = gsi_last_bb (in->src);
create_iv (niter,
build_int_cst (type, -1),
NULL_TREE, loop,
&incr_at, false, var_before, &var);
if (var_after)
*var_after = var;
cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
gimple_cond_set_code (cond, cmp);
gimple_cond_set_lhs (cond, var);
gimple_cond_set_rhs (cond, build_int_cst (type, 0));
update_stmt (cond);
}
/* Describe size of loop as detected by tree_estimate_loop_size. */
struct loop_size
{
/* Number of instructions in the loop. */
int overall;
/* Number of instructions that will be likely optimized out in
peeled iterations of loop (i.e. computation based on induction
variable where induction variable starts at known constant.) */
int eliminated_by_peeling;
/* Same statistics for last iteration of loop: it is smaller because
instructions after exit are not executed. */
int last_iteration;
int last_iteration_eliminated_by_peeling;
/* If some IV computation will become constant. */
bool constant_iv;
/* Number of call stmts that are not a builtin and are pure or const
present on the hot path. */
int num_pure_calls_on_hot_path;
/* Number of call stmts that are not a builtin and are not pure nor const
present on the hot path. */
int num_non_pure_calls_on_hot_path;
/* Number of statements other than calls in the loop. */
int non_call_stmts_on_hot_path;
/* Number of branches seen on the hot path. */
int num_branches_on_hot_path;
};
/* Return true if OP in STMT will be constant after peeling LOOP. */
static bool
constant_after_peeling (tree op, gimple *stmt, struct loop *loop)
{
if (is_gimple_min_invariant (op))
return true;
/* We can still fold accesses to constant arrays when index is known. */
if (TREE_CODE (op) != SSA_NAME)
{
tree base = op;
/* First make fast look if we see constant array inside. */
while (handled_component_p (base))
base = TREE_OPERAND (base, 0);
if ((DECL_P (base)
&& ctor_for_folding (base) != error_mark_node)
|| CONSTANT_CLASS_P (base))
{
/* If so, see if we understand all the indices. */
base = op;
while (handled_component_p (base))
{
if (TREE_CODE (base) == ARRAY_REF
&& !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
return false;
base = TREE_OPERAND (base, 0);
}
return true;
}
return false;
}
/* Induction variables are constants when defined in loop. */
if (loop_containing_stmt (stmt) != loop)
return false;
tree ev = analyze_scalar_evolution (loop, op);
if (chrec_contains_undetermined (ev)
|| chrec_contains_symbols (ev))
return false;
return true;
}
/* Computes an estimated number of insns in LOOP.
EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
iteration of the loop.
EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
of loop.
Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
Stop estimating after UPPER_BOUND is met. Return true in this case. */
static bool
tree_estimate_loop_size (struct loop *loop, edge exit, edge edge_to_cancel,
struct loop_size *size, int upper_bound)
{
basic_block *body = get_loop_body (loop);
gimple_stmt_iterator gsi;
unsigned int i;
bool after_exit;
vec<basic_block> path = get_loop_hot_path (loop);
size->overall = 0;
size->eliminated_by_peeling = 0;
size->last_iteration = 0;
size->last_iteration_eliminated_by_peeling = 0;
size->num_pure_calls_on_hot_path = 0;
size->num_non_pure_calls_on_hot_path = 0;
size->non_call_stmts_on_hot_path = 0;
size->num_branches_on_hot_path = 0;
size->constant_iv = 0;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num);
for (i = 0; i < loop->num_nodes; i++)
{
if (edge_to_cancel && body[i] != edge_to_cancel->src
&& dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
after_exit = true;
else
after_exit = false;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index,
after_exit);
for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
int num = estimate_num_insns (stmt, &eni_size_weights);
bool likely_eliminated = false;
bool likely_eliminated_last = false;
bool likely_eliminated_peeled = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " size: %3i ", num);
print_gimple_stmt (dump_file, gsi_stmt (gsi), 0);
}
/* Look for reasons why we might optimize this stmt away. */
if (!gimple_has_side_effects (stmt))
{
/* Exit conditional. */
if (exit && body[i] == exit->src
&& stmt == last_stmt (exit->src))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Exit condition will be eliminated "
"in peeled copies.\n");
likely_eliminated_peeled = true;
}
if (edge_to_cancel && body[i] == edge_to_cancel->src
&& stmt == last_stmt (edge_to_cancel->src))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Exit condition will be eliminated "
"in last copy.\n");
likely_eliminated_last = true;
}
/* Sets of IV variables */
if (gimple_code (stmt) == GIMPLE_ASSIGN
&& constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Induction variable computation will"
" be folded away.\n");
likely_eliminated = true;
}
/* Assignments of IV variables. */
else if (gimple_code (stmt) == GIMPLE_ASSIGN
&& TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
&& constant_after_peeling (gimple_assign_rhs1 (stmt),
stmt, loop)
&& (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS
|| constant_after_peeling (gimple_assign_rhs2 (stmt),
stmt, loop)))
{
size->constant_iv = true;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Constant expression will be folded away.\n");
likely_eliminated = true;
}
/* Conditionals. */
else if ((gimple_code (stmt) == GIMPLE_COND
&& constant_after_peeling (gimple_cond_lhs (stmt), stmt,
loop)
&& constant_after_peeling (gimple_cond_rhs (stmt), stmt,
loop)
/* We don't simplify all constant compares so make sure
they are not both constant already. See PR70288. */
&& (! is_gimple_min_invariant (gimple_cond_lhs (stmt))
|| ! is_gimple_min_invariant
(gimple_cond_rhs (stmt))))
|| (gimple_code (stmt) == GIMPLE_SWITCH
&& constant_after_peeling (gimple_switch_index (
as_a <gswitch *>
(stmt)),
stmt, loop)
&& ! is_gimple_min_invariant
(gimple_switch_index
(as_a <gswitch *> (stmt)))))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Constant conditional.\n");
likely_eliminated = true;
}
}
size->overall += num;
if (likely_eliminated || likely_eliminated_peeled)
size->eliminated_by_peeling += num;
if (!after_exit)
{
size->last_iteration += num;
if (likely_eliminated || likely_eliminated_last)
size->last_iteration_eliminated_by_peeling += num;
}
if ((size->overall * 3 / 2 - size->eliminated_by_peeling
- size->last_iteration_eliminated_by_peeling) > upper_bound)
{
free (body);
path.release ();
return true;
}
}
}
while (path.length ())
{
basic_block bb = path.pop ();
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_code (stmt) == GIMPLE_CALL
&& !gimple_inexpensive_call_p (as_a <gcall *> (stmt)))
{
int flags = gimple_call_flags (stmt);
if (flags & (ECF_PURE | ECF_CONST))
size->num_pure_calls_on_hot_path++;
else
size->num_non_pure_calls_on_hot_path++;
size->num_branches_on_hot_path ++;
}
/* Count inexpensive calls as non-calls, because they will likely
expand inline. */
else if (gimple_code (stmt) != GIMPLE_DEBUG)
size->non_call_stmts_on_hot_path++;
if (((gimple_code (stmt) == GIMPLE_COND
&& (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
|| !constant_after_peeling (gimple_cond_rhs (stmt), stmt,
loop)))
|| (gimple_code (stmt) == GIMPLE_SWITCH
&& !constant_after_peeling (gimple_switch_index (
as_a <gswitch *> (stmt)),
stmt, loop)))
&& (!exit || bb != exit->src))
size->num_branches_on_hot_path++;
}
}
path.release ();
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall,
size->eliminated_by_peeling, size->last_iteration,
size->last_iteration_eliminated_by_peeling);
free (body);
return false;
}
/* Estimate number of insns of completely unrolled loop.
It is (NUNROLL + 1) * size of loop body with taking into account
the fact that in last copy everything after exit conditional
is dead and that some instructions will be eliminated after
peeling.
Loop body is likely going to simplify further, this is difficult
to guess, we just decrease the result by 1/3. */
static unsigned HOST_WIDE_INT
estimated_unrolled_size (struct loop_size *size,
unsigned HOST_WIDE_INT nunroll)
{
HOST_WIDE_INT unr_insns = ((nunroll)
* (HOST_WIDE_INT) (size->overall
- size->eliminated_by_peeling));
if (!nunroll)
unr_insns = 0;
unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
unr_insns = unr_insns * 2 / 3;
if (unr_insns <= 0)
unr_insns = 1;
return unr_insns;
}
/* Loop LOOP is known to not loop. See if there is an edge in the loop
body that can be remove to make the loop to always exit and at
the same time it does not make any code potentially executed
during the last iteration dead.
After complete unrolling we still may get rid of the conditional
on the exit in the last copy even if we have no idea what it does.
This is quite common case for loops of form
int a[5];
for (i=0;i<b;i++)
a[i]=0;
Here we prove the loop to iterate 5 times but we do not know
it from induction variable.
For now we handle only simple case where there is exit condition
just before the latch block and the latch block contains no statements
with side effect that may otherwise terminate the execution of loop
(such as by EH or by terminating the program or longjmp).
In the general case we may want to cancel the paths leading to statements
loop-niter identified as having undefined effect in the last iteration.
The other cases are hopefully rare and will be cleaned up later. */
static edge
loop_edge_to_cancel (struct loop *loop)
{
vec<edge> exits;
unsigned i;
edge edge_to_cancel;
gimple_stmt_iterator gsi;
/* We want only one predecestor of the loop. */
if (EDGE_COUNT (loop->latch->preds) > 1)
return NULL;
exits = get_loop_exit_edges (loop);
FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
{
/* Find the other edge than the loop exit
leaving the conditoinal. */
if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
continue;
if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
else
edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
/* We only can handle conditionals. */
if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
continue;
/* We should never have conditionals in the loop latch. */
gcc_assert (edge_to_cancel->dest != loop->header);
/* Check that it leads to loop latch. */
if (edge_to_cancel->dest != loop->latch)
continue;
exits.release ();
/* Verify that the code in loop latch does nothing that may end program
execution without really reaching the exit. This may include
non-pure/const function calls, EH statements, volatile ASMs etc. */
for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi))
if (gimple_has_side_effects (gsi_stmt (gsi)))
return NULL;
return edge_to_cancel;
}
exits.release ();
return NULL;
}
/* Remove all tests for exits that are known to be taken after LOOP was
peeled NPEELED times. Put gcc_unreachable before every statement
known to not be executed. */
static bool
remove_exits_and_undefined_stmts (struct loop *loop, unsigned int npeeled)
{
struct nb_iter_bound *elt;
bool changed = false;
for (elt = loop->bounds; elt; elt = elt->next)
{
/* If statement is known to be undefined after peeling, turn it
into unreachable (or trap when debugging experience is supposed
to be good). */
if (!elt->is_exit
&& wi::ltu_p (elt->bound, npeeled))
{
gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
gcall *stmt = gimple_build_call
(builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
gimple_set_location (stmt, gimple_location (elt->stmt));
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
split_block (gimple_bb (stmt), stmt);
changed = true;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Forced statement unreachable: ");
print_gimple_stmt (dump_file, elt->stmt, 0);
}
}
/* If we know the exit will be taken after peeling, update. */
else if (elt->is_exit
&& wi::leu_p (elt->bound, npeeled))
{
basic_block bb = gimple_bb (elt->stmt);
edge exit_edge = EDGE_SUCC (bb, 0);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Forced exit to be taken: ");
print_gimple_stmt (dump_file, elt->stmt, 0);
}
if (!loop_exit_edge_p (loop, exit_edge))
exit_edge = EDGE_SUCC (bb, 1);
exit_edge->probability = profile_probability::always ();
gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
gcond *cond_stmt = as_a <gcond *> (elt->stmt);
if (exit_edge->flags & EDGE_TRUE_VALUE)
gimple_cond_make_true (cond_stmt);
else
gimple_cond_make_false (cond_stmt);
update_stmt (cond_stmt);
changed = true;
}
}
return changed;
}
/* Remove all exits that are known to be never taken because of the loop bound
discovered. */
static bool
remove_redundant_iv_tests (struct loop *loop)
{
struct nb_iter_bound *elt;
bool changed = false;
if (!loop->any_upper_bound)
return false;
for (elt = loop->bounds; elt; elt = elt->next)
{
/* Exit is pointless if it won't be taken before loop reaches
upper bound. */
if (elt->is_exit && loop->any_upper_bound
&& wi::ltu_p (loop->nb_iterations_upper_bound, elt->bound))
{
basic_block bb = gimple_bb (elt->stmt);
edge exit_edge = EDGE_SUCC (bb, 0);
struct tree_niter_desc niter;
if (!loop_exit_edge_p (loop, exit_edge))
exit_edge = EDGE_SUCC (bb, 1);
/* Only when we know the actual number of iterations, not
just a bound, we can remove the exit. */
if (!number_of_iterations_exit (loop, exit_edge,
&niter, false, false)
|| !integer_onep (niter.assumptions)
|| !integer_zerop (niter.may_be_zero)
|| !niter.niter
|| TREE_CODE (niter.niter) != INTEGER_CST
|| !wi::ltu_p (loop->nb_iterations_upper_bound,
wi::to_widest (niter.niter)))
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Removed pointless exit: ");
print_gimple_stmt (dump_file, elt->stmt, 0);
}
gcond *cond_stmt = as_a <gcond *> (elt->stmt);
if (exit_edge->flags & EDGE_TRUE_VALUE)
gimple_cond_make_false (cond_stmt);
else
gimple_cond_make_true (cond_stmt);
update_stmt (cond_stmt);
changed = true;
}
}
return changed;
}
/* Stores loops that will be unlooped and edges that will be removed
after we process whole loop tree. */
static vec<loop_p> loops_to_unloop;
static vec<int> loops_to_unloop_nunroll;
static vec<edge> edges_to_remove;
/* Stores loops that has been peeled. */
static bitmap peeled_loops;
/* Cancel all fully unrolled loops by putting __builtin_unreachable
on the latch edge.
We do it after all unrolling since unlooping moves basic blocks
across loop boundaries trashing loop closed SSA form as well
as SCEV info needed to be intact during unrolling.
IRRED_INVALIDATED is used to bookkeep if information about
irreducible regions may become invalid as a result
of the transformation.
LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
when we need to go into loop closed SSA form. */
static void
unloop_loops (bitmap loop_closed_ssa_invalidated,
bool *irred_invalidated)
{
while (loops_to_unloop.length ())
{
struct loop *loop = loops_to_unloop.pop ();
int n_unroll = loops_to_unloop_nunroll.pop ();
basic_block latch = loop->latch;
edge latch_edge = loop_latch_edge (loop);
int flags = latch_edge->flags;
location_t locus = latch_edge->goto_locus;
gcall *stmt;
gimple_stmt_iterator gsi;
remove_exits_and_undefined_stmts (loop, n_unroll);
/* Unloop destroys the latch edge. */
unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
/* Create new basic block for the latch edge destination and wire
it in. */
stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
latch_edge->probability = profile_probability::never ();
latch_edge->flags |= flags;
latch_edge->goto_locus = locus;
add_bb_to_loop (latch_edge->dest, current_loops->tree_root);
latch_edge->dest->count = profile_count::zero ();
set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
gsi = gsi_start_bb (latch_edge->dest);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
}
loops_to_unloop.release ();
loops_to_unloop_nunroll.release ();
/* Remove edges in peeled copies. Given remove_path removes dominated
regions we need to cope with removal of already removed paths. */
unsigned i;
edge e;
auto_vec<int, 20> src_bbs;
src_bbs.reserve_exact (edges_to_remove.length ());
FOR_EACH_VEC_ELT (edges_to_remove, i, e)
src_bbs.quick_push (e->src->index);
FOR_EACH_VEC_ELT (edges_to_remove, i, e)
if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i]))
{
bool ok = remove_path (e, irred_invalidated,
loop_closed_ssa_invalidated);
gcc_assert (ok);
}
edges_to_remove.release ();
}
/* Tries to unroll LOOP completely, i.e. NITER times.
UL determines which loops we are allowed to unroll.
EXIT is the exit of the loop that should be eliminated.
MAXITER specfy bound on number of iterations, -1 if it is
not known or too large for HOST_WIDE_INT. The location
LOCUS corresponding to the loop is used when emitting
a summary of the unroll to the dump file. */
static bool
try_unroll_loop_completely (struct loop *loop,
edge exit, tree niter, bool may_be_zero,
enum unroll_level ul,
HOST_WIDE_INT maxiter,
location_t locus, bool allow_peel)
{
unsigned HOST_WIDE_INT n_unroll = 0;
bool n_unroll_found = false;
edge edge_to_cancel = NULL;
/* See if we proved number of iterations to be low constant.
EXIT is an edge that will be removed in all but last iteration of
the loop.
EDGE_TO_CACNEL is an edge that will be removed from the last iteration
of the unrolled sequence and is expected to make the final loop not
rolling.
If the number of execution of loop is determined by standard induction
variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
from the iv test. */
if (tree_fits_uhwi_p (niter))
{
n_unroll = tree_to_uhwi (niter);
n_unroll_found = true;
edge_to_cancel = EDGE_SUCC (exit->src, 0);
if (edge_to_cancel == exit)
edge_to_cancel = EDGE_SUCC (exit->src, 1);
}
/* We do not know the number of iterations and thus we can not eliminate
the EXIT edge. */
else
exit = NULL;
/* See if we can improve our estimate by using recorded loop bounds. */
if ((allow_peel || maxiter == 0 || ul == UL_NO_GROWTH)
&& maxiter >= 0
&& (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
{
n_unroll = maxiter;
n_unroll_found = true;
/* Loop terminates before the IV variable test, so we can not
remove it in the last iteration. */
edge_to_cancel = NULL;
}
if (!n_unroll_found)
return false;
if (!loop->unroll
&& n_unroll > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d "
"(--param max-completely-peel-times limit reached).\n",
loop->num);
return false;
}
if (!edge_to_cancel)
edge_to_cancel = loop_edge_to_cancel (loop);
if (n_unroll)
{
if (ul == UL_SINGLE_ITER)
return false;
if (loop->unroll)
{
/* If the unrolling factor is too large, bail out. */
if (n_unroll > (unsigned)loop->unroll)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Not unrolling loop %d: "
"user didn't want it unrolled completely.\n",
loop->num);
return false;
}
}
else
{
struct loop_size size;
/* EXIT can be removed only if we are sure it passes first N_UNROLL
iterations. */
bool remove_exit = (exit && niter
&& TREE_CODE (niter) == INTEGER_CST
&& wi::leu_p (n_unroll, wi::to_widest (niter)));
bool large
= tree_estimate_loop_size
(loop, remove_exit ? exit : NULL, edge_to_cancel, &size,
PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS));
if (large)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: it is too large.\n",
loop->num);
return false;
}
unsigned HOST_WIDE_INT ninsns = size.overall;
unsigned HOST_WIDE_INT unr_insns
= estimated_unrolled_size (&size, n_unroll);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " Loop size: %d\n", (int) ninsns);
fprintf (dump_file, " Estimated size after unrolling: %d\n",
(int) unr_insns);
}
/* If the code is going to shrink, we don't need to be extra
cautious on guessing if the unrolling is going to be
profitable. */
if (unr_insns
/* If there is IV variable that will become constant, we
save one instruction in the loop prologue we do not
account otherwise. */
<= ninsns + (size.constant_iv != false))
;
/* We unroll only inner loops, because we do not consider it
profitable otheriwse. We still can cancel loopback edge
of not rolling loop; this is always a good idea. */
else if (ul == UL_NO_GROWTH)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: size would grow.\n",
loop->num);
return false;
}
/* Outer loops tend to be less interesting candidates for
complete unrolling unless we can do a lot of propagation
into the inner loop body. For now we disable outer loop
unrolling when the code would grow. */
else if (loop->inner)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: "
"it is not innermost and code would grow.\n",
loop->num);
return false;
}
/* If there is call on a hot path through the loop, then
there is most probably not much to optimize. */
else if (size.num_non_pure_calls_on_hot_path)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: "
"contains call and code would grow.\n",
loop->num);
return false;
}
/* If there is pure/const call in the function, then we can
still optimize the unrolled loop body if it contains some
other interesting code than the calls and code storing or
cumulating the return value. */
else if (size.num_pure_calls_on_hot_path
/* One IV increment, one test, one ivtmp store and
one useful stmt. That is about minimal loop
doing pure call. */
&& (size.non_call_stmts_on_hot_path
<= 3 + size.num_pure_calls_on_hot_path))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: "
"contains just pure calls and code would grow.\n",
loop->num);
return false;
}
/* Complete unrolling is major win when control flow is
removed and one big basic block is created. If the loop
contains control flow the optimization may still be a win
because of eliminating the loop overhead but it also may
blow the branch predictor tables. Limit number of
branches on the hot path through the peeled sequence. */
else if (size.num_branches_on_hot_path * (int)n_unroll
> PARAM_VALUE (PARAM_MAX_PEEL_BRANCHES))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: "
"number of branches on hot path in the unrolled "
"sequence reaches --param max-peel-branches limit.\n",
loop->num);
return false;
}
else if (unr_insns
> (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Not unrolling loop %d: "
"number of insns in the unrolled sequence reaches "
"--param max-completely-peeled-insns limit.\n",
loop->num);
return false;
}
}
initialize_original_copy_tables ();
auto_sbitmap wont_exit (n_unroll + 1);
if (exit && niter
&& TREE_CODE (niter) == INTEGER_CST
&& wi::leu_p (n_unroll, wi::to_widest (niter)))
{
bitmap_ones (wont_exit);
if (wi::eq_p (wi::to_widest (niter), n_unroll)
|| edge_to_cancel)
bitmap_clear_bit (wont_exit, 0);
}
else
{
exit = NULL;
bitmap_clear (wont_exit);
}
if (may_be_zero)
bitmap_clear_bit (wont_exit, 1);
if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
n_unroll, wont_exit,
exit, &edges_to_remove,
DLTHE_FLAG_UPDATE_FREQ
| DLTHE_FLAG_COMPLETTE_PEEL))
{
free_original_copy_tables ();
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Failed to duplicate the loop\n");
return false;
}
free_original_copy_tables ();
}
/* Remove the conditional from the last copy of the loop. */
if (edge_to_cancel)
{
gcond *cond = as_a <gcond *> (last_stmt (edge_to_cancel->src));
force_edge_cold (edge_to_cancel, true);
if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
gimple_cond_make_false (cond);
else
gimple_cond_make_true (cond);
update_stmt (cond);
/* Do not remove the path, as doing so may remove outer loop and
confuse bookkeeping code in tree_unroll_loops_completely. */
}
/* Store the loop for later unlooping and exit removal. */
loops_to_unloop.safe_push (loop);
loops_to_unloop_nunroll.safe_push (n_unroll);
if (dump_enabled_p ())
{
if (!n_unroll)
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
"loop turned into non-loop; it never loops\n");
else
{
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
"loop with %d iterations completely unrolled",
(int) n_unroll);
if (loop->header->count.initialized_p ())
dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
" (header execution count %d)",
(int)loop->header->count.to_gcov_type ());
dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (exit)
fprintf (dump_file, "Exit condition of peeled iterations was "
"eliminated.\n");
if (edge_to_cancel)
fprintf (dump_file, "Last iteration exit edge was proved true.\n");
else
fprintf (dump_file, "Latch of last iteration was marked by "
"__builtin_unreachable ().\n");
}
return true;
}
/* Return number of instructions after peeling. */
static unsigned HOST_WIDE_INT
estimated_peeled_sequence_size (struct loop_size *size,
unsigned HOST_WIDE_INT npeel)
{
return MAX (npeel * (HOST_WIDE_INT) (size->overall
- size->eliminated_by_peeling), 1);
}
/* If the loop is expected to iterate N times and is
small enough, duplicate the loop body N+1 times before
the loop itself. This way the hot path will never
enter the loop.
Parameters are the same as for try_unroll_loops_completely */
static bool
try_peel_loop (struct loop *loop,
edge exit, tree niter, bool may_be_zero,
HOST_WIDE_INT maxiter)
{
HOST_WIDE_INT npeel;
struct loop_size size;
int peeled_size;
if (!flag_peel_loops
|| PARAM_VALUE (PARAM_MAX_PEEL_TIMES) <= 0
|| !peeled_loops)
return false;
if (bitmap_bit_p (peeled_loops, loop->num))
{
if (dump_file)
fprintf (dump_file, "Not peeling: loop is already peeled\n");
return false;
}
/* We don't peel loops that will be unrolled as this can duplicate a
loop more times than the user requested. */
if (loop->unroll)
{
if (dump_file)
fprintf (dump_file, "Not peeling: user didn't want it peeled.\n");
return false;
}
/* Peel only innermost loops.
While the code is perfectly capable of peeling non-innermost loops,
the heuristics would probably need some improvements. */
if (loop->inner)
{
if (dump_file)
fprintf (dump_file, "Not peeling: outer loop\n");
return false;
}
if (!optimize_loop_for_speed_p (loop))
{
if (dump_file)
fprintf (dump_file, "Not peeling: cold loop\n");
return false;
}
/* Check if there is an estimate on the number of iterations. */
npeel = estimated_loop_iterations_int (loop);
if (npeel < 0)
npeel = likely_max_loop_iterations_int (loop);
if (npeel < 0)
{
if (dump_file)
fprintf (dump_file, "Not peeling: number of iterations is not "
"estimated\n");
return false;
}
if (maxiter >= 0 && maxiter <= npeel)
{
if (dump_file)
fprintf (dump_file, "Not peeling: upper bound is known so can "
"unroll completely\n");
return false;
}
/* We want to peel estimated number of iterations + 1 (so we never
enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES
and be sure to avoid overflows. */
if (npeel > PARAM_VALUE (PARAM_MAX_PEEL_TIMES) - 1)
{
if (dump_file)
fprintf (dump_file, "Not peeling: rolls too much "
"(%i + 1 > --param max-peel-times)\n", (int) npeel);
return false;
}
npeel++;
/* Check peeled loops size. */
tree_estimate_loop_size (loop, exit, NULL, &size,
PARAM_VALUE (PARAM_MAX_PEELED_INSNS));
if ((peeled_size = estimated_peeled_sequence_size (&size, (int) npeel))
> PARAM_VALUE (PARAM_MAX_PEELED_INSNS))
{
if (dump_file)
fprintf (dump_file, "Not peeling: peeled sequence size is too large "
"(%i insns > --param max-peel-insns)", peeled_size);
return false;
}
/* Duplicate possibly eliminating the exits. */
initialize_original_copy_tables ();
auto_sbitmap wont_exit (npeel + 1);
if (exit && niter
&& TREE_CODE (niter) == INTEGER_CST
&& wi::leu_p (npeel, wi::to_widest (niter)))
{
bitmap_ones (wont_exit);
bitmap_clear_bit (wont_exit, 0);
}
else
{
exit = NULL;
bitmap_clear (wont_exit);
}
if (may_be_zero)
bitmap_clear_bit (wont_exit, 1);
if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
npeel, wont_exit,
exit, &edges_to_remove,
DLTHE_FLAG_UPDATE_FREQ))
{
free_original_copy_tables ();
return false;
}
free_original_copy_tables ();
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Peeled loop %d, %i times.\n",
loop->num, (int) npeel);
}
if (loop->any_estimate)
{
if (wi::ltu_p (npeel, loop->nb_iterations_estimate))
loop->nb_iterations_estimate -= npeel;
else
loop->nb_iterations_estimate = 0;
}
if (loop->any_upper_bound)
{
if (wi::ltu_p (npeel, loop->nb_iterations_upper_bound))
loop->nb_iterations_upper_bound -= npeel;
else
loop->nb_iterations_upper_bound = 0;
}
if (loop->any_likely_upper_bound)
{
if (wi::ltu_p (npeel, loop->nb_iterations_likely_upper_bound))
loop->nb_iterations_likely_upper_bound -= npeel;
else
{
loop->any_estimate = true;
loop->nb_iterations_estimate = 0;
loop->nb_iterations_likely_upper_bound = 0;
}
}
profile_count entry_count = profile_count::zero ();
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, loop->header->preds)
if (e->src != loop->latch)
{
if (e->src->count.initialized_p ())
entry_count = e->src->count + e->src->count;
gcc_assert (!flow_bb_inside_loop_p (loop, e->src));
}
profile_probability p = profile_probability::very_unlikely ();
p = entry_count.probability_in (loop->header->count);
scale_loop_profile (loop, p, 0);
bitmap_set_bit (peeled_loops, loop->num);
return true;
}
/* Adds a canonical induction variable to LOOP if suitable.
CREATE_IV is true if we may create a new iv. UL determines
which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
to determine the number of iterations of a loop by direct evaluation.
Returns true if cfg is changed. */
static bool
canonicalize_loop_induction_variables (struct loop *loop,
bool create_iv, enum unroll_level ul,
bool try_eval, bool allow_peel)
{
edge exit = NULL;
tree niter;
HOST_WIDE_INT maxiter;
bool modified = false;
location_t locus = UNKNOWN_LOCATION;
struct tree_niter_desc niter_desc;
bool may_be_zero = false;
/* For unrolling allow conditional constant or zero iterations, thus
perform loop-header copying on-the-fly. */
exit = single_exit (loop);
niter = chrec_dont_know;
if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
{
niter = niter_desc.niter;
may_be_zero
= niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero);
}
if (TREE_CODE (niter) == INTEGER_CST)
locus = gimple_location (last_stmt (exit->src));
else
{
/* For non-constant niter fold may_be_zero into niter again. */
if (may_be_zero)
{
if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
niter = fold_build3 (COND_EXPR, TREE_TYPE (niter),
niter_desc.may_be_zero,
build_int_cst (TREE_TYPE (niter), 0), niter);
else
niter = chrec_dont_know;
may_be_zero = false;
}
/* If the loop has more than one exit, try checking all of them
for # of iterations determinable through scev. */
if (!exit)
niter = find_loop_niter (loop, &exit);
/* Finally if everything else fails, try brute force evaluation. */
if (try_eval
&& (chrec_contains_undetermined (niter)
|| TREE_CODE (niter) != INTEGER_CST))
niter = find_loop_niter_by_eval (loop, &exit);
if (exit)
locus = gimple_location (last_stmt (exit->src));
if (TREE_CODE (niter) != INTEGER_CST)
exit = NULL;
}
/* We work exceptionally hard here to estimate the bound
by find_loop_niter_by_eval. Be sure to keep it for future. */
if (niter && TREE_CODE (niter) == INTEGER_CST)
{
record_niter_bound (loop, wi::to_widest (niter),
exit == single_likely_exit (loop), true);
}
/* Force re-computation of loop bounds so we can remove redundant exits. */
maxiter = max_loop_iterations_int (loop);
if (dump_file && (dump_flags & TDF_DETAILS)
&& TREE_CODE (niter) == INTEGER_CST)
{
fprintf (dump_file, "Loop %d iterates ", loop->num);
print_generic_expr (dump_file, niter, TDF_SLIM);
fprintf (dump_file, " times.\n");
}
if (dump_file && (dump_flags & TDF_DETAILS)
&& maxiter >= 0)
{
fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num,
(int)maxiter);
}
if (dump_file && (dump_flags & TDF_DETAILS)
&& likely_max_loop_iterations_int (loop) >= 0)
{
fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
loop->num, (int)likely_max_loop_iterations_int (loop));
}
/* Remove exits that are known to be never taken based on loop bound.
Needs to be called after compilation of max_loop_iterations_int that
populates the loop bounds. */
modified |= remove_redundant_iv_tests (loop);
if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul,
maxiter, locus, allow_peel))
return true;
if (create_iv
&& niter && !chrec_contains_undetermined (niter)
&& exit && just_once_each_iteration_p (loop, exit->src))
{
tree iv_niter = niter;
if (may_be_zero)
{
if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter),
niter_desc.may_be_zero,
build_int_cst (TREE_TYPE (iv_niter), 0),
iv_niter);
else
iv_niter = NULL_TREE;
}
if (iv_niter)
create_canonical_iv (loop, exit, iv_niter);
}
if (ul == UL_ALL)
modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter);
return modified;
}
/* The main entry point of the pass. Adds canonical induction variables
to the suitable loops. */
unsigned int
canonicalize_induction_variables (void)
{
struct loop *loop;
bool changed = false;
bool irred_invalidated = false;
bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
estimate_numbers_of_iterations (cfun);
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
{
changed |= canonicalize_loop_induction_variables (loop,
true, UL_SINGLE_ITER,
true, false);
}
gcc_assert (!need_ssa_update_p (cfun));
unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
if (irred_invalidated
&& loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
mark_irreducible_loops ();
/* Clean up the information about numbers of iterations, since brute force
evaluation could reveal new information. */
free_numbers_of_iterations_estimates (cfun);
scev_reset ();
if (!bitmap_empty_p (loop_closed_ssa_invalidated))
{
gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
}
BITMAP_FREE (loop_closed_ssa_invalidated);
if (changed)
return TODO_cleanup_cfg;
return 0;
}
/* Propagate constant SSA_NAMEs defined in basic block BB. */
static void
propagate_constants_for_unrolling (basic_block bb)
{
/* Look for degenerate PHI nodes with constant argument. */
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
{
gphi *phi = gsi.phi ();
tree result = gimple_phi_result (phi);
tree arg = gimple_phi_arg_def (phi, 0);
if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (result)
&& gimple_phi_num_args (phi) == 1
&& CONSTANT_CLASS_P (arg))
{
replace_uses_by (result, arg);
gsi_remove (&gsi, true);
release_ssa_name (result);
}
else
gsi_next (&gsi);
}
/* Look for assignments to SSA names with constant RHS. */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
{
gimple *stmt = gsi_stmt (gsi);
tree lhs;
if (is_gimple_assign (stmt)
&& TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_constant
&& (lhs = gimple_assign_lhs (stmt), TREE_CODE (lhs) == SSA_NAME)
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
{
replace_uses_by (lhs, gimple_assign_rhs1 (stmt));
gsi_remove (&gsi, true);
release_ssa_name (lhs);
}
else
gsi_next (&gsi);
}
}
/* Process loops from innermost to outer, stopping at the innermost
loop we unrolled. */
static bool
tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
bitmap father_bbs, struct loop *loop)
{
struct loop *loop_father;
bool changed = false;
struct loop *inner;
enum unroll_level ul;
unsigned num = number_of_loops (cfun);
/* Process inner loops first. Don't walk loops added by the recursive
calls because SSA form is not up-to-date. They can be handled in the
next iteration. */
for (inner = loop->inner; inner != NULL; inner = inner->next)
if ((unsigned) inner->num < num)
changed |= tree_unroll_loops_completely_1 (may_increase_size,
unroll_outer, father_bbs,
inner);
/* If we changed an inner loop we cannot process outer loops in this
iteration because SSA form is not up-to-date. Continue with
siblings of outer loops instead. */
if (changed)
return true;
/* Don't unroll #pragma omp simd loops until the vectorizer
attempts to vectorize those. */
if (loop->force_vectorize)
return false;
/* Try to unroll this loop. */
loop_father = loop_outer (loop);
if (!loop_father)
return false;
if (loop->unroll > 1)
ul = UL_ALL;
else if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
/* Unroll outermost loops only if asked to do so or they do
not cause code growth. */
&& (unroll_outer || loop_outer (loop_father)))
ul = UL_ALL;
else
ul = UL_NO_GROWTH;
if (canonicalize_loop_induction_variables
(loop, false, ul, !flag_tree_loop_ivcanon, unroll_outer))
{
/* If we'll continue unrolling, we need to propagate constants
within the new basic blocks to fold away induction variable
computations; otherwise, the size might blow up before the
iteration is complete and the IR eventually cleaned up. */
if (loop_outer (loop_father))
bitmap_set_bit (father_bbs, loop_father->header->index);
return true;
}
return false;
}
/* Unroll LOOPS completely if they iterate just few times. Unless
MAY_INCREASE_SIZE is true, perform the unrolling only if the
size of the code does not increase. */
static unsigned int
tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
{
bitmap father_bbs = BITMAP_ALLOC (NULL);
bool changed;
int iteration = 0;
bool irred_invalidated = false;
estimate_numbers_of_iterations (cfun);
do
{
changed = false;
bitmap loop_closed_ssa_invalidated = NULL;
if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
free_numbers_of_iterations_estimates (cfun);
estimate_numbers_of_iterations (cfun);
changed = tree_unroll_loops_completely_1 (may_increase_size,
unroll_outer, father_bbs,
current_loops->tree_root);
if (changed)
{
unsigned i;
unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
/* We can not use TODO_update_ssa_no_phi because VOPS gets confused. */
if (loop_closed_ssa_invalidated
&& !bitmap_empty_p (loop_closed_ssa_invalidated))
rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
TODO_update_ssa);
else
update_ssa (TODO_update_ssa);
/* father_bbs is a bitmap of loop father header BB indices.
Translate that to what non-root loops these BBs belong to now. */
bitmap_iterator bi;
bitmap fathers = BITMAP_ALLOC (NULL);
EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi)
{
basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i);
if (! unrolled_loop_bb)
continue;
if (loop_outer (unrolled_loop_bb->loop_father))
bitmap_set_bit (fathers,
unrolled_loop_bb->loop_father->num);
}
bitmap_clear (father_bbs);
/* Propagate the constants within the new basic blocks. */
EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi)
{
loop_p father = get_loop (cfun, i);
basic_block *body = get_loop_body_in_dom_order (father);
for (unsigned j = 0; j < father->num_nodes; j++)
propagate_constants_for_unrolling (body[j]);
free (body);
}
BITMAP_FREE (fathers);
/* This will take care of removing completely unrolled loops
from the loop structures so we can continue unrolling now
innermost loops. */
if (cleanup_tree_cfg ())
update_ssa (TODO_update_ssa_only_virtuals);
/* Clean up the information about numbers of iterations, since
complete unrolling might have invalidated it. */
scev_reset ();
if (flag_checking && loops_state_satisfies_p (LOOP_CLOSED_SSA))
verify_loop_closed_ssa (true);
}
if (loop_closed_ssa_invalidated)
BITMAP_FREE (loop_closed_ssa_invalidated);
}
while (changed
&& ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS));
BITMAP_FREE (father_bbs);
if (irred_invalidated
&& loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
mark_irreducible_loops ();
return 0;
}
/* Canonical induction variable creation pass. */
namespace {
const pass_data pass_data_iv_canon =
{
GIMPLE_PASS, /* type */
"ivcanon", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_TREE_LOOP_IVCANON, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_iv_canon : public gimple_opt_pass
{
public:
pass_iv_canon (gcc::context *ctxt)
: gimple_opt_pass (pass_data_iv_canon, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_tree_loop_ivcanon != 0; }
virtual unsigned int execute (function *fun);
}; // class pass_iv_canon
unsigned int
pass_iv_canon::execute (function *fun)
{
if (number_of_loops (fun) <= 1)
return 0;
return canonicalize_induction_variables ();
}
} // anon namespace
gimple_opt_pass *
make_pass_iv_canon (gcc::context *ctxt)
{
return new pass_iv_canon (ctxt);
}
/* Complete unrolling of loops. */
namespace {
const pass_data pass_data_complete_unroll =
{
GIMPLE_PASS, /* type */
"cunroll", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_COMPLETE_UNROLL, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_complete_unroll : public gimple_opt_pass
{
public:
pass_complete_unroll (gcc::context *ctxt)
: gimple_opt_pass (pass_data_complete_unroll, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_complete_unroll
unsigned int
pass_complete_unroll::execute (function *fun)
{
if (number_of_loops (fun) <= 1)
return 0;
/* If we ever decide to run loop peeling more than once, we will need to
track loops already peeled in loop structures themselves to avoid
re-peeling the same loop multiple times. */
if (flag_peel_loops)
peeled_loops = BITMAP_ALLOC (NULL);
unsigned int val = tree_unroll_loops_completely (flag_unroll_loops
|| flag_peel_loops
|| optimize >= 3, true);
if (peeled_loops)
{
BITMAP_FREE (peeled_loops);
peeled_loops = NULL;
}
return val;
}
} // anon namespace
gimple_opt_pass *
make_pass_complete_unroll (gcc::context *ctxt)
{
return new pass_complete_unroll (ctxt);
}
/* Complete unrolling of inner loops. */
namespace {
const pass_data pass_data_complete_unrolli =
{
GIMPLE_PASS, /* type */
"cunrolli", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_COMPLETE_UNROLL, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_complete_unrolli : public gimple_opt_pass
{
public:
pass_complete_unrolli (gcc::context *ctxt)
: gimple_opt_pass (pass_data_complete_unrolli, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return optimize >= 2; }
virtual unsigned int execute (function *);
}; // class pass_complete_unrolli
unsigned int
pass_complete_unrolli::execute (function *fun)
{
unsigned ret = 0;
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
if (number_of_loops (fun) > 1)
{
scev_initialize ();
ret = tree_unroll_loops_completely (optimize >= 3, false);
scev_finalize ();
}
loop_optimizer_finalize ();
return ret;
}
} // anon namespace
gimple_opt_pass *
make_pass_complete_unrolli (gcc::context *ctxt)
{
return new pass_complete_unrolli (ctxt);
}
|