1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
|
/* Generic SSA value propagation engine.
Copyright (C) 2004-2018 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "dumpfile.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "domwalk.h"
#include "cfgloop.h"
#include "tree-cfgcleanup.h"
#include "cfganal.h"
/* This file implements a generic value propagation engine based on
the same propagation used by the SSA-CCP algorithm [1].
Propagation is performed by simulating the execution of every
statement that produces the value being propagated. Simulation
proceeds as follows:
1- Initially, all edges of the CFG are marked not executable and
the CFG worklist is seeded with all the statements in the entry
basic block (block 0).
2- Every statement S is simulated with a call to the call-back
function SSA_PROP_VISIT_STMT. This evaluation may produce 3
results:
SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
interest and does not affect any of the work lists.
The statement may be simulated again if any of its input
operands change in future iterations of the simulator.
SSA_PROP_VARYING: The value produced by S cannot be determined
at compile time. Further simulation of S is not required.
If S is a conditional jump, all the outgoing edges for the
block are considered executable and added to the work
list.
SSA_PROP_INTERESTING: S produces a value that can be computed
at compile time. Its result can be propagated into the
statements that feed from S. Furthermore, if S is a
conditional jump, only the edge known to be taken is added
to the work list. Edges that are known not to execute are
never simulated.
3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
return value from SSA_PROP_VISIT_PHI has the same semantics as
described in #2.
4- Three work lists are kept. Statements are only added to these
lists if they produce one of SSA_PROP_INTERESTING or
SSA_PROP_VARYING.
CFG_BLOCKS contains the list of blocks to be simulated.
Blocks are added to this list if their incoming edges are
found executable.
SSA_EDGE_WORKLIST contains the list of statements that we
need to revisit.
5- Simulation terminates when all three work lists are drained.
Before calling ssa_propagate, it is important to clear
prop_simulate_again_p for all the statements in the program that
should be simulated. This initialization allows an implementation
to specify which statements should never be simulated.
It is also important to compute def-use information before calling
ssa_propagate.
References:
[1] Constant propagation with conditional branches,
Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
[2] Building an Optimizing Compiler,
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
[3] Advanced Compiler Design and Implementation,
Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
/* Worklists of control flow edge destinations. This contains
the CFG order number of the blocks so we can iterate in CFG
order by visiting in bit-order. We use two worklists to
first make forward progress before iterating. */
static bitmap cfg_blocks;
static bitmap cfg_blocks_back;
static int *bb_to_cfg_order;
static int *cfg_order_to_bb;
/* Worklists of SSA edges which will need reexamination as their
definition has changed. SSA edges are def-use edges in the SSA
web. For each D-U edge, we store the target statement or PHI node
UID in a bitmap. UIDs order stmts in execution order. We use
two worklists to first make forward progress before iterating. */
static bitmap ssa_edge_worklist;
static bitmap ssa_edge_worklist_back;
static vec<gimple *> uid_to_stmt;
/* Current RPO index in the iteration. */
static int curr_order;
/* We have just defined a new value for VAR. If IS_VARYING is true,
add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
them to INTERESTING_SSA_EDGES. */
static void
add_ssa_edge (tree var)
{
imm_use_iterator iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
{
gimple *use_stmt = USE_STMT (use_p);
if (!prop_simulate_again_p (use_stmt))
continue;
/* If we did not yet simulate the block wait for this to happen
and do not add the stmt to the SSA edge worklist. */
basic_block use_bb = gimple_bb (use_stmt);
if (! (use_bb->flags & BB_VISITED))
continue;
/* If this is a use on a not yet executable edge do not bother to
queue it. */
if (gimple_code (use_stmt) == GIMPLE_PHI
&& !(EDGE_PRED (use_bb, PHI_ARG_INDEX_FROM_USE (use_p))->flags
& EDGE_EXECUTABLE))
continue;
bitmap worklist;
if (bb_to_cfg_order[gimple_bb (use_stmt)->index] < curr_order)
worklist = ssa_edge_worklist_back;
else
worklist = ssa_edge_worklist;
if (bitmap_set_bit (worklist, gimple_uid (use_stmt)))
{
uid_to_stmt[gimple_uid (use_stmt)] = use_stmt;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "ssa_edge_worklist: adding SSA use in ");
print_gimple_stmt (dump_file, use_stmt, 0, TDF_SLIM);
}
}
}
}
/* Add edge E to the control flow worklist. */
static void
add_control_edge (edge e)
{
basic_block bb = e->dest;
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
return;
/* If the edge had already been executed, skip it. */
if (e->flags & EDGE_EXECUTABLE)
return;
e->flags |= EDGE_EXECUTABLE;
int bb_order = bb_to_cfg_order[bb->index];
if (bb_order < curr_order)
bitmap_set_bit (cfg_blocks_back, bb_order);
else
bitmap_set_bit (cfg_blocks, bb_order);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Adding destination of edge (%d -> %d) to worklist\n",
e->src->index, e->dest->index);
}
/* Simulate the execution of STMT and update the work lists accordingly. */
void
ssa_propagation_engine::simulate_stmt (gimple *stmt)
{
enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
edge taken_edge = NULL;
tree output_name = NULL_TREE;
/* Pull the stmt off the SSA edge worklist. */
bitmap_clear_bit (ssa_edge_worklist, gimple_uid (stmt));
/* Don't bother visiting statements that are already
considered varying by the propagator. */
if (!prop_simulate_again_p (stmt))
return;
if (gimple_code (stmt) == GIMPLE_PHI)
{
val = visit_phi (as_a <gphi *> (stmt));
output_name = gimple_phi_result (stmt);
}
else
val = visit_stmt (stmt, &taken_edge, &output_name);
if (val == SSA_PROP_VARYING)
{
prop_set_simulate_again (stmt, false);
/* If the statement produced a new varying value, add the SSA
edges coming out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name);
/* If STMT transfers control out of its basic block, add
all outgoing edges to the work list. */
if (stmt_ends_bb_p (stmt))
{
edge e;
edge_iterator ei;
basic_block bb = gimple_bb (stmt);
FOR_EACH_EDGE (e, ei, bb->succs)
add_control_edge (e);
}
return;
}
else if (val == SSA_PROP_INTERESTING)
{
/* If the statement produced new value, add the SSA edges coming
out of OUTPUT_NAME. */
if (output_name)
add_ssa_edge (output_name);
/* If we know which edge is going to be taken out of this block,
add it to the CFG work list. */
if (taken_edge)
add_control_edge (taken_edge);
}
/* If there are no SSA uses on the stmt whose defs are simulated
again then this stmt will be never visited again. */
bool has_simulate_again_uses = false;
use_operand_p use_p;
ssa_op_iter iter;
if (gimple_code (stmt) == GIMPLE_PHI)
{
edge_iterator ei;
edge e;
tree arg;
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
if (!(e->flags & EDGE_EXECUTABLE)
|| ((arg = PHI_ARG_DEF_FROM_EDGE (stmt, e))
&& TREE_CODE (arg) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (arg)
&& prop_simulate_again_p (SSA_NAME_DEF_STMT (arg))))
{
has_simulate_again_uses = true;
break;
}
}
else
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
if (!gimple_nop_p (def_stmt)
&& prop_simulate_again_p (def_stmt))
{
has_simulate_again_uses = true;
break;
}
}
if (!has_simulate_again_uses)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "marking stmt to be not simulated again\n");
prop_set_simulate_again (stmt, false);
}
}
/* Simulate the execution of BLOCK. Evaluate the statement associated
with each variable reference inside the block. */
void
ssa_propagation_engine::simulate_block (basic_block block)
{
gimple_stmt_iterator gsi;
/* There is nothing to do for the exit block. */
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nSimulating block %d\n", block->index);
/* Always simulate PHI nodes, even if we have simulated this block
before. */
for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
simulate_stmt (gsi_stmt (gsi));
/* If this is the first time we've simulated this block, then we
must simulate each of its statements. */
if (! (block->flags & BB_VISITED))
{
gimple_stmt_iterator j;
unsigned int normal_edge_count;
edge e, normal_edge;
edge_iterator ei;
for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j))
simulate_stmt (gsi_stmt (j));
/* Note that we have simulated this block. */
block->flags |= BB_VISITED;
/* We can not predict when abnormal and EH edges will be executed, so
once a block is considered executable, we consider any
outgoing abnormal edges as executable.
TODO: This is not exactly true. Simplifying statement might
prove it non-throwing and also computed goto can be handled
when destination is known.
At the same time, if this block has only one successor that is
reached by non-abnormal edges, then add that successor to the
worklist. */
normal_edge_count = 0;
normal_edge = NULL;
FOR_EACH_EDGE (e, ei, block->succs)
{
if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
add_control_edge (e);
else
{
normal_edge_count++;
normal_edge = e;
}
}
if (normal_edge_count == 1)
add_control_edge (normal_edge);
}
}
/* Initialize local data structures and work lists. */
static void
ssa_prop_init (void)
{
edge e;
edge_iterator ei;
basic_block bb;
/* Worklists of SSA edges. */
ssa_edge_worklist = BITMAP_ALLOC (NULL);
ssa_edge_worklist_back = BITMAP_ALLOC (NULL);
/* Worklist of basic-blocks. */
bb_to_cfg_order = XNEWVEC (int, last_basic_block_for_fn (cfun) + 1);
cfg_order_to_bb = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
int n = pre_and_rev_post_order_compute_fn (cfun, NULL,
cfg_order_to_bb, false);
for (int i = 0; i < n; ++i)
bb_to_cfg_order[cfg_order_to_bb[i]] = i;
cfg_blocks = BITMAP_ALLOC (NULL);
cfg_blocks_back = BITMAP_ALLOC (NULL);
/* Initially assume that every edge in the CFG is not executable.
(including the edges coming out of the entry block). Mark blocks
as not visited, blocks not yet visited will have all their statements
simulated once an incoming edge gets executable. */
set_gimple_stmt_max_uid (cfun, 0);
for (int i = 0; i < n; ++i)
{
gimple_stmt_iterator si;
bb = BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb[i]);
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
}
bb->flags &= ~BB_VISITED;
FOR_EACH_EDGE (e, ei, bb->succs)
e->flags &= ~EDGE_EXECUTABLE;
}
uid_to_stmt.safe_grow (gimple_stmt_max_uid (cfun));
/* Seed the algorithm by adding the successors of the entry block to the
edge worklist. */
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
{
e->flags &= ~EDGE_EXECUTABLE;
add_control_edge (e);
}
}
/* Free allocated storage. */
static void
ssa_prop_fini (void)
{
BITMAP_FREE (cfg_blocks);
BITMAP_FREE (cfg_blocks_back);
free (bb_to_cfg_order);
free (cfg_order_to_bb);
BITMAP_FREE (ssa_edge_worklist);
BITMAP_FREE (ssa_edge_worklist_back);
uid_to_stmt.release ();
}
/* Return true if EXPR is an acceptable right-hand-side for a
GIMPLE assignment. We validate the entire tree, not just
the root node, thus catching expressions that embed complex
operands that are not permitted in GIMPLE. This function
is needed because the folding routines in fold-const.c
may return such expressions in some cases, e.g., an array
access with an embedded index addition. It may make more
sense to have folding routines that are sensitive to the
constraints on GIMPLE operands, rather than abandoning any
any attempt to fold if the usual folding turns out to be too
aggressive. */
bool
valid_gimple_rhs_p (tree expr)
{
enum tree_code code = TREE_CODE (expr);
switch (TREE_CODE_CLASS (code))
{
case tcc_declaration:
if (!is_gimple_variable (expr))
return false;
break;
case tcc_constant:
/* All constants are ok. */
break;
case tcc_comparison:
/* GENERIC allows comparisons with non-boolean types, reject
those for GIMPLE. Let vector-typed comparisons pass - rules
for GENERIC and GIMPLE are the same here. */
if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
&& (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
|| TYPE_PRECISION (TREE_TYPE (expr)) == 1))
&& ! VECTOR_TYPE_P (TREE_TYPE (expr)))
return false;
/* Fallthru. */
case tcc_binary:
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
return false;
break;
case tcc_unary:
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
return false;
break;
case tcc_expression:
switch (code)
{
case ADDR_EXPR:
{
tree t;
if (is_gimple_min_invariant (expr))
return true;
t = TREE_OPERAND (expr, 0);
while (handled_component_p (t))
{
/* ??? More checks needed, see the GIMPLE verifier. */
if ((TREE_CODE (t) == ARRAY_REF
|| TREE_CODE (t) == ARRAY_RANGE_REF)
&& !is_gimple_val (TREE_OPERAND (t, 1)))
return false;
t = TREE_OPERAND (t, 0);
}
if (!is_gimple_id (t))
return false;
}
break;
default:
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
{
if (((code == VEC_COND_EXPR || code == COND_EXPR)
? !is_gimple_condexpr (TREE_OPERAND (expr, 0))
: !is_gimple_val (TREE_OPERAND (expr, 0)))
|| !is_gimple_val (TREE_OPERAND (expr, 1))
|| !is_gimple_val (TREE_OPERAND (expr, 2)))
return false;
break;
}
return false;
}
break;
case tcc_vl_exp:
return false;
case tcc_exceptional:
if (code == CONSTRUCTOR)
{
unsigned i;
tree elt;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
if (!is_gimple_val (elt))
return false;
return true;
}
if (code != SSA_NAME)
return false;
break;
case tcc_reference:
if (code == BIT_FIELD_REF)
return is_gimple_val (TREE_OPERAND (expr, 0));
return false;
default:
return false;
}
return true;
}
/* Return true if EXPR is a CALL_EXPR suitable for representation
as a single GIMPLE_CALL statement. If the arguments require
further gimplification, return false. */
static bool
valid_gimple_call_p (tree expr)
{
unsigned i, nargs;
if (TREE_CODE (expr) != CALL_EXPR)
return false;
nargs = call_expr_nargs (expr);
for (i = 0; i < nargs; i++)
{
tree arg = CALL_EXPR_ARG (expr, i);
if (is_gimple_reg_type (TREE_TYPE (arg)))
{
if (!is_gimple_val (arg))
return false;
}
else
if (!is_gimple_lvalue (arg))
return false;
}
return true;
}
/* Make SSA names defined by OLD_STMT point to NEW_STMT
as their defining statement. */
void
move_ssa_defining_stmt_for_defs (gimple *new_stmt, gimple *old_stmt)
{
tree var;
ssa_op_iter iter;
if (gimple_in_ssa_p (cfun))
{
/* Make defined SSA_NAMEs point to the new
statement as their definition. */
FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS)
{
if (TREE_CODE (var) == SSA_NAME)
SSA_NAME_DEF_STMT (var) = new_stmt;
}
}
}
/* Helper function for update_gimple_call and update_call_from_tree.
A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
static void
finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt,
gimple *stmt)
{
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
gimple_set_location (new_stmt, gimple_location (stmt));
if (gimple_block (new_stmt) == NULL_TREE)
gimple_set_block (new_stmt, gimple_block (stmt));
gsi_replace (si_p, new_stmt, false);
}
/* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
with number of arguments NARGS, where the arguments in GIMPLE form
follow NARGS argument. */
bool
update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
{
va_list ap;
gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p));
gcc_assert (is_gimple_call (stmt));
va_start (ap, nargs);
new_stmt = gimple_build_call_valist (fn, nargs, ap);
finish_update_gimple_call (si_p, new_stmt, stmt);
va_end (ap);
return true;
}
/* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
value of EXPR, which is expected to be the result of folding the
call. This can only be done if EXPR is a CALL_EXPR with valid
GIMPLE operands as arguments, or if it is a suitable RHS expression
for a GIMPLE_ASSIGN. More complex expressions will require
gimplification, which will introduce additional statements. In this
event, no update is performed, and the function returns false.
Note that we cannot mutate a GIMPLE_CALL in-place, so we always
replace the statement at *SI_P with an entirely new statement.
The new statement need not be a call, e.g., if the original call
folded to a constant. */
bool
update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
{
gimple *stmt = gsi_stmt (*si_p);
if (valid_gimple_call_p (expr))
{
/* The call has simplified to another call. */
tree fn = CALL_EXPR_FN (expr);
unsigned i;
unsigned nargs = call_expr_nargs (expr);
vec<tree> args = vNULL;
gcall *new_stmt;
if (nargs > 0)
{
args.create (nargs);
args.safe_grow_cleared (nargs);
for (i = 0; i < nargs; i++)
args[i] = CALL_EXPR_ARG (expr, i);
}
new_stmt = gimple_build_call_vec (fn, args);
finish_update_gimple_call (si_p, new_stmt, stmt);
args.release ();
return true;
}
else if (valid_gimple_rhs_p (expr))
{
tree lhs = gimple_call_lhs (stmt);
gimple *new_stmt;
/* The call has simplified to an expression
that cannot be represented as a GIMPLE_CALL. */
if (lhs)
{
/* A value is expected.
Introduce a new GIMPLE_ASSIGN statement. */
STRIP_USELESS_TYPE_CONVERSION (expr);
new_stmt = gimple_build_assign (lhs, expr);
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
}
else if (!TREE_SIDE_EFFECTS (expr))
{
/* No value is expected, and EXPR has no effect.
Replace it with an empty statement. */
new_stmt = gimple_build_nop ();
if (gimple_in_ssa_p (cfun))
{
unlink_stmt_vdef (stmt);
release_defs (stmt);
}
}
else
{
/* No value is expected, but EXPR has an effect,
e.g., it could be a reference to a volatile
variable. Create an assignment statement
with a dummy (unused) lhs variable. */
STRIP_USELESS_TYPE_CONVERSION (expr);
if (gimple_in_ssa_p (cfun))
lhs = make_ssa_name (TREE_TYPE (expr));
else
lhs = create_tmp_var (TREE_TYPE (expr));
new_stmt = gimple_build_assign (lhs, expr);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_vdef (new_stmt, gimple_vdef (stmt));
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
}
gimple_set_location (new_stmt, gimple_location (stmt));
gsi_replace (si_p, new_stmt, false);
return true;
}
else
/* The call simplified to an expression that is
not a valid GIMPLE RHS. */
return false;
}
/* Entry point to the propagation engine.
The VISIT_STMT virtual function is called for every statement
visited and the VISIT_PHI virtual function is called for every PHI
node visited. */
void
ssa_propagation_engine::ssa_propagate (void)
{
ssa_prop_init ();
curr_order = 0;
/* Iterate until the worklists are empty. We iterate both blocks
and stmts in RPO order, using sets of two worklists to first
complete the current iteration before iterating over backedges. */
while (1)
{
int next_block_order = (bitmap_empty_p (cfg_blocks)
? -1 : bitmap_first_set_bit (cfg_blocks));
int next_stmt_uid = (bitmap_empty_p (ssa_edge_worklist)
? -1 : bitmap_first_set_bit (ssa_edge_worklist));
if (next_block_order == -1 && next_stmt_uid == -1)
{
if (bitmap_empty_p (cfg_blocks_back)
&& bitmap_empty_p (ssa_edge_worklist_back))
break;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Regular worklists empty, now processing "
"backedge destinations\n");
std::swap (cfg_blocks, cfg_blocks_back);
std::swap (ssa_edge_worklist, ssa_edge_worklist_back);
continue;
}
int next_stmt_bb_order = -1;
gimple *next_stmt = NULL;
if (next_stmt_uid != -1)
{
next_stmt = uid_to_stmt[next_stmt_uid];
next_stmt_bb_order = bb_to_cfg_order[gimple_bb (next_stmt)->index];
}
/* Pull the next block to simulate off the worklist if it comes first. */
if (next_block_order != -1
&& (next_stmt_bb_order == -1
|| next_block_order <= next_stmt_bb_order))
{
curr_order = next_block_order;
bitmap_clear_bit (cfg_blocks, next_block_order);
basic_block bb
= BASIC_BLOCK_FOR_FN (cfun, cfg_order_to_bb [next_block_order]);
simulate_block (bb);
}
/* Else simulate from the SSA edge worklist. */
else
{
curr_order = next_stmt_bb_order;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nSimulating statement: ");
print_gimple_stmt (dump_file, next_stmt, 0, dump_flags);
}
simulate_stmt (next_stmt);
}
}
ssa_prop_fini ();
}
/* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
is a non-volatile pointer dereference, a structure reference or a
reference to a single _DECL. Ignore volatile memory references
because they are not interesting for the optimizers. */
bool
stmt_makes_single_store (gimple *stmt)
{
tree lhs;
if (gimple_code (stmt) != GIMPLE_ASSIGN
&& gimple_code (stmt) != GIMPLE_CALL)
return false;
if (!gimple_vdef (stmt))
return false;
lhs = gimple_get_lhs (stmt);
/* A call statement may have a null LHS. */
if (!lhs)
return false;
return (!TREE_THIS_VOLATILE (lhs)
&& (DECL_P (lhs)
|| REFERENCE_CLASS_P (lhs)));
}
/* Propagation statistics. */
struct prop_stats_d
{
long num_const_prop;
long num_copy_prop;
long num_stmts_folded;
long num_dce;
};
static struct prop_stats_d prop_stats;
/* Replace USE references in statement STMT with the values stored in
PROP_VALUE. Return true if at least one reference was replaced. */
bool
substitute_and_fold_engine::replace_uses_in (gimple *stmt)
{
bool replaced = false;
use_operand_p use;
ssa_op_iter iter;
FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
{
tree tuse = USE_FROM_PTR (use);
tree val = get_value (tuse);
if (val == tuse || val == NULL_TREE)
continue;
if (gimple_code (stmt) == GIMPLE_ASM
&& !may_propagate_copy_into_asm (tuse))
continue;
if (!may_propagate_copy (tuse, val))
continue;
if (TREE_CODE (val) != SSA_NAME)
prop_stats.num_const_prop++;
else
prop_stats.num_copy_prop++;
propagate_value (use, val);
replaced = true;
}
return replaced;
}
/* Replace propagated values into all the arguments for PHI using the
values from PROP_VALUE. */
bool
substitute_and_fold_engine::replace_phi_args_in (gphi *phi)
{
size_t i;
bool replaced = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Folding PHI node: ");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
}
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = gimple_phi_arg_def (phi, i);
if (TREE_CODE (arg) == SSA_NAME)
{
tree val = get_value (arg);
if (val && val != arg && may_propagate_copy (arg, val))
{
edge e = gimple_phi_arg_edge (phi, i);
if (TREE_CODE (val) != SSA_NAME)
prop_stats.num_const_prop++;
else
prop_stats.num_copy_prop++;
propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
replaced = true;
/* If we propagated a copy and this argument flows
through an abnormal edge, update the replacement
accordingly. */
if (TREE_CODE (val) == SSA_NAME
&& e->flags & EDGE_ABNORMAL
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
{
/* This can only occur for virtual operands, since
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
would prevent replacement. */
gcc_checking_assert (virtual_operand_p (val));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
}
}
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (!replaced)
fprintf (dump_file, "No folding possible\n");
else
{
fprintf (dump_file, "Folded into: ");
print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
}
return replaced;
}
class substitute_and_fold_dom_walker : public dom_walker
{
public:
substitute_and_fold_dom_walker (cdi_direction direction,
class substitute_and_fold_engine *engine)
: dom_walker (direction),
something_changed (false),
substitute_and_fold_engine (engine)
{
stmts_to_remove.create (0);
stmts_to_fixup.create (0);
need_eh_cleanup = BITMAP_ALLOC (NULL);
}
~substitute_and_fold_dom_walker ()
{
stmts_to_remove.release ();
stmts_to_fixup.release ();
BITMAP_FREE (need_eh_cleanup);
}
virtual edge before_dom_children (basic_block);
virtual void after_dom_children (basic_block) {}
bool something_changed;
vec<gimple *> stmts_to_remove;
vec<gimple *> stmts_to_fixup;
bitmap need_eh_cleanup;
class substitute_and_fold_engine *substitute_and_fold_engine;
};
edge
substitute_and_fold_dom_walker::before_dom_children (basic_block bb)
{
/* Propagate known values into PHI nodes. */
for (gphi_iterator i = gsi_start_phis (bb);
!gsi_end_p (i);
gsi_next (&i))
{
gphi *phi = i.phi ();
tree res = gimple_phi_result (phi);
if (virtual_operand_p (res))
continue;
if (res && TREE_CODE (res) == SSA_NAME)
{
tree sprime = substitute_and_fold_engine->get_value (res);
if (sprime
&& sprime != res
&& may_propagate_copy (res, sprime))
{
stmts_to_remove.safe_push (phi);
continue;
}
}
something_changed |= substitute_and_fold_engine->replace_phi_args_in (phi);
}
/* Propagate known values into stmts. In some case it exposes
more trivially deletable stmts to walk backward. */
for (gimple_stmt_iterator i = gsi_start_bb (bb);
!gsi_end_p (i);
gsi_next (&i))
{
bool did_replace;
gimple *stmt = gsi_stmt (i);
/* No point propagating into a stmt we have a value for we
can propagate into all uses. Mark it for removal instead. */
tree lhs = gimple_get_lhs (stmt);
if (lhs && TREE_CODE (lhs) == SSA_NAME)
{
tree sprime = substitute_and_fold_engine->get_value (lhs);
if (sprime
&& sprime != lhs
&& may_propagate_copy (lhs, sprime)
&& !stmt_could_throw_p (stmt)
&& !gimple_has_side_effects (stmt)
/* We have to leave ASSERT_EXPRs around for jump-threading. */
&& (!is_gimple_assign (stmt)
|| gimple_assign_rhs_code (stmt) != ASSERT_EXPR))
{
stmts_to_remove.safe_push (stmt);
continue;
}
}
/* Replace the statement with its folded version and mark it
folded. */
did_replace = false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Folding statement: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
gimple *old_stmt = stmt;
bool was_noreturn = (is_gimple_call (stmt)
&& gimple_call_noreturn_p (stmt));
/* Replace real uses in the statement. */
did_replace |= substitute_and_fold_engine->replace_uses_in (stmt);
/* If we made a replacement, fold the statement. */
if (did_replace)
{
fold_stmt (&i, follow_single_use_edges);
stmt = gsi_stmt (i);
gimple_set_modified (stmt, true);
}
/* Some statements may be simplified using propagator
specific information. Do this before propagating
into the stmt to not disturb pass specific information. */
update_stmt_if_modified (stmt);
if (substitute_and_fold_engine->fold_stmt(&i))
{
did_replace = true;
prop_stats.num_stmts_folded++;
stmt = gsi_stmt (i);
gimple_set_modified (stmt, true);
}
/* If this is a control statement the propagator left edges
unexecuted on force the condition in a way consistent with
that. See PR66945 for cases where the propagator can end
up with a different idea of a taken edge than folding
(once undefined behavior is involved). */
if (gimple_code (stmt) == GIMPLE_COND)
{
if ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE)
^ (EDGE_SUCC (bb, 1)->flags & EDGE_EXECUTABLE))
{
if (((EDGE_SUCC (bb, 0)->flags & EDGE_TRUE_VALUE) != 0)
== ((EDGE_SUCC (bb, 0)->flags & EDGE_EXECUTABLE) != 0))
gimple_cond_make_true (as_a <gcond *> (stmt));
else
gimple_cond_make_false (as_a <gcond *> (stmt));
gimple_set_modified (stmt, true);
did_replace = true;
}
}
/* Now cleanup. */
if (did_replace)
{
/* If we cleaned up EH information from the statement,
remove EH edges. */
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
bitmap_set_bit (need_eh_cleanup, bb->index);
/* If we turned a not noreturn call into a noreturn one
schedule it for fixup. */
if (!was_noreturn
&& is_gimple_call (stmt)
&& gimple_call_noreturn_p (stmt))
stmts_to_fixup.safe_push (stmt);
if (gimple_assign_single_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
if (TREE_CODE (rhs) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (rhs);
}
/* Determine what needs to be done to update the SSA form. */
update_stmt_if_modified (stmt);
if (!is_gimple_debug (stmt))
something_changed = true;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (did_replace)
{
fprintf (dump_file, "Folded into: ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, "\n");
}
else
fprintf (dump_file, "Not folded\n");
}
}
return NULL;
}
/* Perform final substitution and folding of propagated values.
PROP_VALUE[I] contains the single value that should be substituted
at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
substituted.
If FOLD_FN is non-NULL the function will be invoked on all statements
before propagating values for pass specific simplification.
DO_DCE is true if trivially dead stmts can be removed.
If DO_DCE is true, the statements within a BB are walked from
last to first element. Otherwise we scan from first to last element.
Return TRUE when something changed. */
bool
substitute_and_fold_engine::substitute_and_fold (void)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nSubstituting values and folding statements\n\n");
memset (&prop_stats, 0, sizeof (prop_stats));
calculate_dominance_info (CDI_DOMINATORS);
substitute_and_fold_dom_walker walker (CDI_DOMINATORS, this);
walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
/* We cannot remove stmts during the BB walk, especially not release
SSA names there as that destroys the lattice of our callers.
Remove stmts in reverse order to make debug stmt creation possible. */
while (!walker.stmts_to_remove.is_empty ())
{
gimple *stmt = walker.stmts_to_remove.pop ();
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Removing dead stmt ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
prop_stats.num_dce++;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
if (gimple_code (stmt) == GIMPLE_PHI)
remove_phi_node (&gsi, true);
else
{
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
release_defs (stmt);
}
}
if (!bitmap_empty_p (walker.need_eh_cleanup))
gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
/* Fixup stmts that became noreturn calls. This may require splitting
blocks and thus isn't possible during the dominator walk. Do this
in reverse order so we don't inadvertedly remove a stmt we want to
fixup by visiting a dominating now noreturn call first. */
while (!walker.stmts_to_fixup.is_empty ())
{
gimple *stmt = walker.stmts_to_fixup.pop ();
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Fixing up noreturn call ");
print_gimple_stmt (dump_file, stmt, 0);
fprintf (dump_file, "\n");
}
fixup_noreturn_call (stmt);
}
statistics_counter_event (cfun, "Constants propagated",
prop_stats.num_const_prop);
statistics_counter_event (cfun, "Copies propagated",
prop_stats.num_copy_prop);
statistics_counter_event (cfun, "Statements folded",
prop_stats.num_stmts_folded);
statistics_counter_event (cfun, "Statements deleted",
prop_stats.num_dce);
return walker.something_changed;
}
/* Return true if we may propagate ORIG into DEST, false otherwise. */
bool
may_propagate_copy (tree dest, tree orig)
{
tree type_d = TREE_TYPE (dest);
tree type_o = TREE_TYPE (orig);
/* If ORIG is a default definition which flows in from an abnormal edge
then the copy can be propagated. It is important that we do so to avoid
uninitialized copies. */
if (TREE_CODE (orig) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig)
&& SSA_NAME_IS_DEFAULT_DEF (orig)
&& (SSA_NAME_VAR (orig) == NULL_TREE
|| TREE_CODE (SSA_NAME_VAR (orig)) == VAR_DECL))
;
/* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
be propagated. */
else if (TREE_CODE (orig) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
return false;
/* Similarly if DEST flows in from an abnormal edge then the copy cannot be
propagated. */
else if (TREE_CODE (dest) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
return false;
/* Do not copy between types for which we *do* need a conversion. */
if (!useless_type_conversion_p (type_d, type_o))
return false;
/* Generally propagating virtual operands is not ok as that may
create overlapping life-ranges. */
if (TREE_CODE (dest) == SSA_NAME && virtual_operand_p (dest))
return false;
/* Anything else is OK. */
return true;
}
/* Like may_propagate_copy, but use as the destination expression
the principal expression (typically, the RHS) contained in
statement DEST. This is more efficient when working with the
gimple tuples representation. */
bool
may_propagate_copy_into_stmt (gimple *dest, tree orig)
{
tree type_d;
tree type_o;
/* If the statement is a switch or a single-rhs assignment,
then the expression to be replaced by the propagation may
be an SSA_NAME. Fortunately, there is an explicit tree
for the expression, so we delegate to may_propagate_copy. */
if (gimple_assign_single_p (dest))
return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
else if (gswitch *dest_swtch = dyn_cast <gswitch *> (dest))
return may_propagate_copy (gimple_switch_index (dest_swtch), orig);
/* In other cases, the expression is not materialized, so there
is no destination to pass to may_propagate_copy. On the other
hand, the expression cannot be an SSA_NAME, so the analysis
is much simpler. */
if (TREE_CODE (orig) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
return false;
if (is_gimple_assign (dest))
type_d = TREE_TYPE (gimple_assign_lhs (dest));
else if (gimple_code (dest) == GIMPLE_COND)
type_d = boolean_type_node;
else if (is_gimple_call (dest)
&& gimple_call_lhs (dest) != NULL_TREE)
type_d = TREE_TYPE (gimple_call_lhs (dest));
else
gcc_unreachable ();
type_o = TREE_TYPE (orig);
if (!useless_type_conversion_p (type_d, type_o))
return false;
return true;
}
/* Similarly, but we know that we're propagating into an ASM_EXPR. */
bool
may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED)
{
return true;
}
/* Common code for propagate_value and replace_exp.
Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
replacement is done to propagate a value or not. */
static void
replace_exp_1 (use_operand_p op_p, tree val,
bool for_propagation ATTRIBUTE_UNUSED)
{
if (flag_checking)
{
tree op = USE_FROM_PTR (op_p);
gcc_assert (!(for_propagation
&& TREE_CODE (op) == SSA_NAME
&& TREE_CODE (val) == SSA_NAME
&& !may_propagate_copy (op, val)));
}
if (TREE_CODE (val) == SSA_NAME)
SET_USE (op_p, val);
else
SET_USE (op_p, unshare_expr (val));
}
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
into the operand pointed to by OP_P.
Use this version for const/copy propagation as it will perform additional
checks to ensure validity of the const/copy propagation. */
void
propagate_value (use_operand_p op_p, tree val)
{
replace_exp_1 (op_p, val, true);
}
/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
Use this version when not const/copy propagating values. For example,
PRE uses this version when building expressions as they would appear
in specific blocks taking into account actions of PHI nodes.
The statement in which an expression has been replaced should be
folded using fold_stmt_inplace. */
void
replace_exp (use_operand_p op_p, tree val)
{
replace_exp_1 (op_p, val, false);
}
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
into the tree pointed to by OP_P.
Use this version for const/copy propagation when SSA operands are not
available. It will perform the additional checks to ensure validity of
the const/copy propagation, but will not update any operand information.
Be sure to mark the stmt as modified. */
void
propagate_tree_value (tree *op_p, tree val)
{
if (TREE_CODE (val) == SSA_NAME)
*op_p = val;
else
*op_p = unshare_expr (val);
}
/* Like propagate_tree_value, but use as the operand to replace
the principal expression (typically, the RHS) contained in the
statement referenced by iterator GSI. Note that it is not
always possible to update the statement in-place, so a new
statement may be created to replace the original. */
void
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
{
gimple *stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
tree expr = NULL_TREE;
if (gimple_assign_single_p (stmt))
expr = gimple_assign_rhs1 (stmt);
propagate_tree_value (&expr, val);
gimple_assign_set_rhs_from_tree (gsi, expr);
}
else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
{
tree lhs = NULL_TREE;
tree rhs = build_zero_cst (TREE_TYPE (val));
propagate_tree_value (&lhs, val);
gimple_cond_set_code (cond_stmt, NE_EXPR);
gimple_cond_set_lhs (cond_stmt, lhs);
gimple_cond_set_rhs (cond_stmt, rhs);
}
else if (is_gimple_call (stmt)
&& gimple_call_lhs (stmt) != NULL_TREE)
{
tree expr = NULL_TREE;
bool res;
propagate_tree_value (&expr, val);
res = update_call_from_tree (gsi, expr);
gcc_assert (res);
}
else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
propagate_tree_value (gimple_switch_index_ptr (swtch_stmt), val);
else
gcc_unreachable ();
}
|