1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
|
/* SLP - Basic Block Vectorization
Copyright (C) 2007-2018 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
and Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "insn-config.h"
#include "recog.h" /* FIXME: for insn_data */
#include "params.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "gimple-iterator.h"
#include "cfgloop.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "gimple-walk.h"
#include "dbgcnt.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "gimple-fold.h"
#include "internal-fn.h"
/* Recursively free the memory allocated for the SLP tree rooted at NODE. */
static void
vect_free_slp_tree (slp_tree node)
{
int i;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_free_slp_tree (child);
gimple *stmt;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
/* After transform some stmts are removed and thus their vinfo is gone. */
if (vinfo_for_stmt (stmt))
{
gcc_assert (STMT_VINFO_NUM_SLP_USES (vinfo_for_stmt (stmt)) > 0);
STMT_VINFO_NUM_SLP_USES (vinfo_for_stmt (stmt))--;
}
SLP_TREE_CHILDREN (node).release ();
SLP_TREE_SCALAR_STMTS (node).release ();
SLP_TREE_VEC_STMTS (node).release ();
SLP_TREE_LOAD_PERMUTATION (node).release ();
free (node);
}
/* Free the memory allocated for the SLP instance. */
void
vect_free_slp_instance (slp_instance instance)
{
vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
SLP_INSTANCE_LOADS (instance).release ();
free (instance);
}
/* Create an SLP node for SCALAR_STMTS. */
static slp_tree
vect_create_new_slp_node (vec<gimple *> scalar_stmts)
{
slp_tree node;
gimple *stmt = scalar_stmts[0];
unsigned int nops;
if (is_gimple_call (stmt))
nops = gimple_call_num_args (stmt);
else if (is_gimple_assign (stmt))
{
nops = gimple_num_ops (stmt) - 1;
if (gimple_assign_rhs_code (stmt) == COND_EXPR)
nops++;
}
else if (gimple_code (stmt) == GIMPLE_PHI)
nops = 0;
else
return NULL;
node = XNEW (struct _slp_tree);
SLP_TREE_SCALAR_STMTS (node) = scalar_stmts;
SLP_TREE_VEC_STMTS (node).create (0);
SLP_TREE_CHILDREN (node).create (nops);
SLP_TREE_LOAD_PERMUTATION (node) = vNULL;
SLP_TREE_TWO_OPERATORS (node) = false;
SLP_TREE_DEF_TYPE (node) = vect_internal_def;
unsigned i;
FOR_EACH_VEC_ELT (scalar_stmts, i, stmt)
STMT_VINFO_NUM_SLP_USES (vinfo_for_stmt (stmt))++;
return node;
}
/* This structure is used in creation of an SLP tree. Each instance
corresponds to the same operand in a group of scalar stmts in an SLP
node. */
typedef struct _slp_oprnd_info
{
/* Def-stmts for the operands. */
vec<gimple *> def_stmts;
/* Information about the first statement, its vector def-type, type, the
operand itself in case it's constant, and an indication if it's a pattern
stmt. */
tree first_op_type;
enum vect_def_type first_dt;
bool first_pattern;
bool second_pattern;
} *slp_oprnd_info;
/* Allocate operands info for NOPS operands, and GROUP_SIZE def-stmts for each
operand. */
static vec<slp_oprnd_info>
vect_create_oprnd_info (int nops, int group_size)
{
int i;
slp_oprnd_info oprnd_info;
vec<slp_oprnd_info> oprnds_info;
oprnds_info.create (nops);
for (i = 0; i < nops; i++)
{
oprnd_info = XNEW (struct _slp_oprnd_info);
oprnd_info->def_stmts.create (group_size);
oprnd_info->first_dt = vect_uninitialized_def;
oprnd_info->first_op_type = NULL_TREE;
oprnd_info->first_pattern = false;
oprnd_info->second_pattern = false;
oprnds_info.quick_push (oprnd_info);
}
return oprnds_info;
}
/* Free operands info. */
static void
vect_free_oprnd_info (vec<slp_oprnd_info> &oprnds_info)
{
int i;
slp_oprnd_info oprnd_info;
FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
{
oprnd_info->def_stmts.release ();
XDELETE (oprnd_info);
}
oprnds_info.release ();
}
/* Find the place of the data-ref in STMT in the interleaving chain that starts
from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
int
vect_get_place_in_interleaving_chain (gimple *stmt, gimple *first_stmt)
{
gimple *next_stmt = first_stmt;
int result = 0;
if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
return -1;
do
{
if (next_stmt == stmt)
return result;
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
if (next_stmt)
result += GROUP_GAP (vinfo_for_stmt (next_stmt));
}
while (next_stmt);
return -1;
}
/* Check whether it is possible to load COUNT elements of type ELT_MODE
using the method implemented by duplicate_and_interleave. Return true
if so, returning the number of intermediate vectors in *NVECTORS_OUT
(if nonnull) and the type of each intermediate vector in *VECTOR_TYPE_OUT
(if nonnull). */
bool
can_duplicate_and_interleave_p (unsigned int count, machine_mode elt_mode,
unsigned int *nvectors_out,
tree *vector_type_out,
tree *permutes)
{
poly_int64 elt_bytes = count * GET_MODE_SIZE (elt_mode);
poly_int64 nelts;
unsigned int nvectors = 1;
for (;;)
{
scalar_int_mode int_mode;
poly_int64 elt_bits = elt_bytes * BITS_PER_UNIT;
if (multiple_p (current_vector_size, elt_bytes, &nelts)
&& int_mode_for_size (elt_bits, 0).exists (&int_mode))
{
tree int_type = build_nonstandard_integer_type
(GET_MODE_BITSIZE (int_mode), 1);
tree vector_type = build_vector_type (int_type, nelts);
if (VECTOR_MODE_P (TYPE_MODE (vector_type)))
{
vec_perm_builder sel1 (nelts, 2, 3);
vec_perm_builder sel2 (nelts, 2, 3);
poly_int64 half_nelts = exact_div (nelts, 2);
for (unsigned int i = 0; i < 3; ++i)
{
sel1.quick_push (i);
sel1.quick_push (i + nelts);
sel2.quick_push (half_nelts + i);
sel2.quick_push (half_nelts + i + nelts);
}
vec_perm_indices indices1 (sel1, 2, nelts);
vec_perm_indices indices2 (sel2, 2, nelts);
if (can_vec_perm_const_p (TYPE_MODE (vector_type), indices1)
&& can_vec_perm_const_p (TYPE_MODE (vector_type), indices2))
{
if (nvectors_out)
*nvectors_out = nvectors;
if (vector_type_out)
*vector_type_out = vector_type;
if (permutes)
{
permutes[0] = vect_gen_perm_mask_checked (vector_type,
indices1);
permutes[1] = vect_gen_perm_mask_checked (vector_type,
indices2);
}
return true;
}
}
}
if (!multiple_p (elt_bytes, 2, &elt_bytes))
return false;
nvectors *= 2;
}
}
/* Get the defs for the rhs of STMT (collect them in OPRNDS_INFO), check that
they are of a valid type and that they match the defs of the first stmt of
the SLP group (stored in OPRNDS_INFO). This function tries to match stmts
by swapping operands of STMTS[STMT_NUM] when possible. Non-zero *SWAP
indicates swap is required for cond_expr stmts. Specifically, *SWAP
is 1 if STMT is cond and operands of comparison need to be swapped;
*SWAP is 2 if STMT is cond and code of comparison needs to be inverted.
If there is any operand swap in this function, *SWAP is set to non-zero
value.
If there was a fatal error return -1; if the error could be corrected by
swapping operands of father node of this one, return 1; if everything is
ok return 0. */
static int
vect_get_and_check_slp_defs (vec_info *vinfo, unsigned char *swap,
vec<gimple *> stmts, unsigned stmt_num,
vec<slp_oprnd_info> *oprnds_info)
{
gimple *stmt = stmts[stmt_num];
tree oprnd;
unsigned int i, number_of_oprnds;
gimple *def_stmt;
enum vect_def_type dt = vect_uninitialized_def;
bool pattern = false;
slp_oprnd_info oprnd_info;
int first_op_idx = 1;
bool commutative = false;
bool first_op_cond = false;
bool first = stmt_num == 0;
bool second = stmt_num == 1;
if (is_gimple_call (stmt))
{
number_of_oprnds = gimple_call_num_args (stmt);
first_op_idx = 3;
}
else if (is_gimple_assign (stmt))
{
enum tree_code code = gimple_assign_rhs_code (stmt);
number_of_oprnds = gimple_num_ops (stmt) - 1;
/* Swap can only be done for cond_expr if asked to, otherwise we
could result in different comparison code to the first stmt. */
if (gimple_assign_rhs_code (stmt) == COND_EXPR
&& COMPARISON_CLASS_P (gimple_assign_rhs1 (stmt)))
{
first_op_cond = true;
number_of_oprnds++;
}
else
commutative = commutative_tree_code (code);
}
else
return -1;
bool swapped = (*swap != 0);
gcc_assert (!swapped || first_op_cond);
for (i = 0; i < number_of_oprnds; i++)
{
again:
if (first_op_cond)
{
/* Map indicating how operands of cond_expr should be swapped. */
int maps[3][4] = {{0, 1, 2, 3}, {1, 0, 2, 3}, {0, 1, 3, 2}};
int *map = maps[*swap];
if (i < 2)
oprnd = TREE_OPERAND (gimple_op (stmt, first_op_idx), map[i]);
else
oprnd = gimple_op (stmt, map[i]);
}
else
oprnd = gimple_op (stmt, first_op_idx + (swapped ? !i : i));
oprnd_info = (*oprnds_info)[i];
if (!vect_is_simple_use (oprnd, vinfo, &def_stmt, &dt))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: can't analyze def for ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return -1;
}
/* Check if DEF_STMT is a part of a pattern in LOOP and get the def stmt
from the pattern. Check that all the stmts of the node are in the
pattern. */
if (def_stmt && gimple_bb (def_stmt)
&& vect_stmt_in_region_p (vinfo, def_stmt)
&& vinfo_for_stmt (def_stmt)
&& STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (def_stmt))
&& !STMT_VINFO_RELEVANT (vinfo_for_stmt (def_stmt))
&& !STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
{
pattern = true;
if (!first && !oprnd_info->first_pattern
/* Allow different pattern state for the defs of the
first stmt in reduction chains. */
&& (oprnd_info->first_dt != vect_reduction_def
|| (!second && !oprnd_info->second_pattern)))
{
if (i == 0
&& !swapped
&& commutative)
{
swapped = true;
goto again;
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: some of the stmts"
" are in a pattern, and others are not ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return 1;
}
def_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
dt = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt));
if (dt == vect_unknown_def_type)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unsupported pattern.\n");
return -1;
}
switch (gimple_code (def_stmt))
{
case GIMPLE_PHI:
case GIMPLE_ASSIGN:
break;
default:
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported defining stmt:\n");
return -1;
}
}
if (second)
oprnd_info->second_pattern = pattern;
if (first)
{
oprnd_info->first_dt = dt;
oprnd_info->first_pattern = pattern;
oprnd_info->first_op_type = TREE_TYPE (oprnd);
}
else
{
/* Not first stmt of the group, check that the def-stmt/s match
the def-stmt/s of the first stmt. Allow different definition
types for reduction chains: the first stmt must be a
vect_reduction_def (a phi node), and the rest
vect_internal_def. */
tree type = TREE_TYPE (oprnd);
if ((oprnd_info->first_dt != dt
&& !(oprnd_info->first_dt == vect_reduction_def
&& dt == vect_internal_def)
&& !((oprnd_info->first_dt == vect_external_def
|| oprnd_info->first_dt == vect_constant_def)
&& (dt == vect_external_def
|| dt == vect_constant_def)))
|| !types_compatible_p (oprnd_info->first_op_type, type))
{
/* Try swapping operands if we got a mismatch. */
if (i == 0
&& !swapped
&& commutative)
{
swapped = true;
goto again;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different types\n");
return 1;
}
if ((dt == vect_constant_def
|| dt == vect_external_def)
&& !current_vector_size.is_constant ()
&& (TREE_CODE (type) == BOOLEAN_TYPE
|| !can_duplicate_and_interleave_p (stmts.length (),
TYPE_MODE (type))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: invalid type of def "
"for variable-length SLP ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return -1;
}
}
/* Check the types of the definitions. */
switch (dt)
{
case vect_constant_def:
case vect_external_def:
break;
case vect_reduction_def:
case vect_induction_def:
case vect_internal_def:
oprnd_info->def_stmts.quick_push (def_stmt);
break;
default:
/* FORNOW: Not supported. */
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: illegal type of def ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return -1;
}
}
/* Swap operands. */
if (swapped)
{
/* If there are already uses of this stmt in a SLP instance then
we've committed to the operand order and can't swap it. */
if (STMT_VINFO_NUM_SLP_USES (vinfo_for_stmt (stmt)) != 0)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: cannot swap operands of "
"shared stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
return -1;
}
if (first_op_cond)
{
tree cond = gimple_assign_rhs1 (stmt);
enum tree_code code = TREE_CODE (cond);
/* Swap. */
if (*swap == 1)
{
swap_ssa_operands (stmt, &TREE_OPERAND (cond, 0),
&TREE_OPERAND (cond, 1));
TREE_SET_CODE (cond, swap_tree_comparison (code));
}
/* Invert. */
else
{
swap_ssa_operands (stmt, gimple_assign_rhs2_ptr (stmt),
gimple_assign_rhs3_ptr (stmt));
bool honor_nans = HONOR_NANS (TREE_OPERAND (cond, 0));
code = invert_tree_comparison (TREE_CODE (cond), honor_nans);
gcc_assert (code != ERROR_MARK);
TREE_SET_CODE (cond, code);
}
}
else
swap_ssa_operands (stmt, gimple_assign_rhs1_ptr (stmt),
gimple_assign_rhs2_ptr (stmt));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"swapped operands to match def types in ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
}
*swap = swapped;
return 0;
}
/* A subroutine of vect_build_slp_tree for checking VECTYPE, which is the
caller's attempt to find the vector type in STMT with the narrowest
element type. Return true if VECTYPE is nonnull and if it is valid
for VINFO. When returning true, update MAX_NUNITS to reflect the
number of units in VECTYPE. VINFO, GORUP_SIZE and MAX_NUNITS are
as for vect_build_slp_tree. */
static bool
vect_record_max_nunits (vec_info *vinfo, gimple *stmt, unsigned int group_size,
tree vectype, poly_uint64 *max_nunits)
{
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unsupported data-type in ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
/* Fatal mismatch. */
return false;
}
/* If populating the vector type requires unrolling then fail
before adjusting *max_nunits for basic-block vectorization. */
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
unsigned HOST_WIDE_INT const_nunits;
if (is_a <bb_vec_info> (vinfo)
&& (!nunits.is_constant (&const_nunits)
|| const_nunits > group_size))
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unrolling required "
"in basic block SLP\n");
/* Fatal mismatch. */
return false;
}
/* In case of multiple types we need to detect the smallest type. */
vect_update_max_nunits (max_nunits, vectype);
return true;
}
/* Verify if the scalar stmts STMTS are isomorphic, require data
permutation or are of unsupported types of operation. Return
true if they are, otherwise return false and indicate in *MATCHES
which stmts are not isomorphic to the first one. If MATCHES[0]
is false then this indicates the comparison could not be
carried out or the stmts will never be vectorized by SLP.
Note COND_EXPR is possibly ismorphic to another one after swapping its
operands. Set SWAP[i] to 1 if stmt I is COND_EXPR and isomorphic to
the first stmt by swapping the two operands of comparison; set SWAP[i]
to 2 if stmt I is isormorphic to the first stmt by inverting the code
of comparison. Take A1 >= B1 ? X1 : Y1 as an exmple, it can be swapped
to (B1 <= A1 ? X1 : Y1); or be inverted to (A1 < B1) ? Y1 : X1. */
static bool
vect_build_slp_tree_1 (vec_info *vinfo, unsigned char *swap,
vec<gimple *> stmts, unsigned int group_size,
unsigned nops, poly_uint64 *max_nunits,
bool *matches, bool *two_operators)
{
unsigned int i;
gimple *first_stmt = stmts[0], *stmt = stmts[0];
enum tree_code first_stmt_code = ERROR_MARK;
enum tree_code alt_stmt_code = ERROR_MARK;
enum tree_code rhs_code = ERROR_MARK;
enum tree_code first_cond_code = ERROR_MARK;
tree lhs;
bool need_same_oprnds = false;
tree vectype = NULL_TREE, scalar_type, first_op1 = NULL_TREE;
optab optab;
int icode;
machine_mode optab_op2_mode;
machine_mode vec_mode;
HOST_WIDE_INT dummy;
gimple *first_load = NULL, *prev_first_load = NULL;
/* For every stmt in NODE find its def stmt/s. */
FOR_EACH_VEC_ELT (stmts, i, stmt)
{
swap[i] = 0;
matches[i] = false;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Build SLP for ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
/* Fail to vectorize statements marked as unvectorizable. */
if (!STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unvectorizable statement ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
/* Fatal mismatch. */
matches[0] = false;
return false;
}
lhs = gimple_get_lhs (stmt);
if (lhs == NULL_TREE)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: not GIMPLE_ASSIGN nor "
"GIMPLE_CALL ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
/* Fatal mismatch. */
matches[0] = false;
return false;
}
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vect_record_max_nunits (vinfo, stmt, group_size, vectype,
max_nunits))
{
/* Fatal mismatch. */
matches[0] = false;
return false;
}
if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
{
rhs_code = CALL_EXPR;
if (gimple_call_internal_p (call_stmt)
|| gimple_call_tail_p (call_stmt)
|| gimple_call_noreturn_p (call_stmt)
|| !gimple_call_nothrow_p (call_stmt)
|| gimple_call_chain (call_stmt))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unsupported call type ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
call_stmt, 0);
}
/* Fatal mismatch. */
matches[0] = false;
return false;
}
}
else
rhs_code = gimple_assign_rhs_code (stmt);
/* Check the operation. */
if (i == 0)
{
first_stmt_code = rhs_code;
/* Shift arguments should be equal in all the packed stmts for a
vector shift with scalar shift operand. */
if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
|| rhs_code == LROTATE_EXPR
|| rhs_code == RROTATE_EXPR)
{
vec_mode = TYPE_MODE (vectype);
/* First see if we have a vector/vector shift. */
optab = optab_for_tree_code (rhs_code, vectype,
optab_vector);
if (!optab
|| optab_handler (optab, vec_mode) == CODE_FOR_nothing)
{
/* No vector/vector shift, try for a vector/scalar shift. */
optab = optab_for_tree_code (rhs_code, vectype,
optab_scalar);
if (!optab)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: no optab.\n");
/* Fatal mismatch. */
matches[0] = false;
return false;
}
icode = (int) optab_handler (optab, vec_mode);
if (icode == CODE_FOR_nothing)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: "
"op not supported by target.\n");
/* Fatal mismatch. */
matches[0] = false;
return false;
}
optab_op2_mode = insn_data[icode].operand[2].mode;
if (!VECTOR_MODE_P (optab_op2_mode))
{
need_same_oprnds = true;
first_op1 = gimple_assign_rhs2 (stmt);
}
}
}
else if (rhs_code == WIDEN_LSHIFT_EXPR)
{
need_same_oprnds = true;
first_op1 = gimple_assign_rhs2 (stmt);
}
}
else
{
if (first_stmt_code != rhs_code
&& alt_stmt_code == ERROR_MARK)
alt_stmt_code = rhs_code;
if (first_stmt_code != rhs_code
&& (first_stmt_code != IMAGPART_EXPR
|| rhs_code != REALPART_EXPR)
&& (first_stmt_code != REALPART_EXPR
|| rhs_code != IMAGPART_EXPR)
/* Handle mismatches in plus/minus by computing both
and merging the results. */
&& !((first_stmt_code == PLUS_EXPR
|| first_stmt_code == MINUS_EXPR)
&& (alt_stmt_code == PLUS_EXPR
|| alt_stmt_code == MINUS_EXPR)
&& rhs_code == alt_stmt_code)
&& !(STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
&& (first_stmt_code == ARRAY_REF
|| first_stmt_code == BIT_FIELD_REF
|| first_stmt_code == INDIRECT_REF
|| first_stmt_code == COMPONENT_REF
|| first_stmt_code == MEM_REF)))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different operation "
"in stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"original stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
first_stmt, 0);
}
/* Mismatch. */
continue;
}
if (need_same_oprnds
&& !operand_equal_p (first_op1, gimple_assign_rhs2 (stmt), 0))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different shift "
"arguments in ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
/* Mismatch. */
continue;
}
if (rhs_code == CALL_EXPR)
{
gimple *first_stmt = stmts[0];
if (gimple_call_num_args (stmt) != nops
|| !operand_equal_p (gimple_call_fn (first_stmt),
gimple_call_fn (stmt), 0)
|| gimple_call_fntype (first_stmt)
!= gimple_call_fntype (stmt))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different calls in ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
stmt, 0);
}
/* Mismatch. */
continue;
}
}
}
/* Grouped store or load. */
if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt)))
{
if (REFERENCE_CLASS_P (lhs))
{
/* Store. */
;
}
else
{
/* Load. */
first_load = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
if (prev_first_load)
{
/* Check that there are no loads from different interleaving
chains in the same node. */
if (prev_first_load != first_load)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION,
vect_location,
"Build SLP failed: different "
"interleaving chains in one node ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
stmt, 0);
}
/* Mismatch. */
continue;
}
}
else
prev_first_load = first_load;
}
} /* Grouped access. */
else
{
if (TREE_CODE_CLASS (rhs_code) == tcc_reference)
{
/* Not grouped load. */
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: not grouped load ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
/* FORNOW: Not grouped loads are not supported. */
/* Fatal mismatch. */
matches[0] = false;
return false;
}
/* Not memory operation. */
if (TREE_CODE_CLASS (rhs_code) != tcc_binary
&& TREE_CODE_CLASS (rhs_code) != tcc_unary
&& TREE_CODE_CLASS (rhs_code) != tcc_expression
&& TREE_CODE_CLASS (rhs_code) != tcc_comparison
&& rhs_code != CALL_EXPR)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: operation");
dump_printf (MSG_MISSED_OPTIMIZATION, " unsupported ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
/* Fatal mismatch. */
matches[0] = false;
return false;
}
if (rhs_code == COND_EXPR)
{
tree cond_expr = gimple_assign_rhs1 (stmt);
enum tree_code cond_code = TREE_CODE (cond_expr);
enum tree_code swap_code = ERROR_MARK;
enum tree_code invert_code = ERROR_MARK;
if (i == 0)
first_cond_code = TREE_CODE (cond_expr);
else if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
{
bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
swap_code = swap_tree_comparison (cond_code);
invert_code = invert_tree_comparison (cond_code, honor_nans);
}
if (first_cond_code == cond_code)
;
/* Isomorphic can be achieved by swapping. */
else if (first_cond_code == swap_code)
swap[i] = 1;
/* Isomorphic can be achieved by inverting. */
else if (first_cond_code == invert_code)
swap[i] = 2;
else
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different"
" operation");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
stmt, 0);
}
/* Mismatch. */
continue;
}
}
}
matches[i] = true;
}
for (i = 0; i < group_size; ++i)
if (!matches[i])
return false;
/* If we allowed a two-operation SLP node verify the target can cope
with the permute we are going to use. */
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (alt_stmt_code != ERROR_MARK
&& TREE_CODE_CLASS (alt_stmt_code) != tcc_reference)
{
unsigned HOST_WIDE_INT count;
if (!nunits.is_constant (&count))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different operations "
"not allowed with variable-length SLP.\n");
return false;
}
vec_perm_builder sel (count, count, 1);
for (i = 0; i < count; ++i)
{
unsigned int elt = i;
if (gimple_assign_rhs_code (stmts[i % group_size]) == alt_stmt_code)
elt += count;
sel.quick_push (elt);
}
vec_perm_indices indices (sel, 2, count);
if (!can_vec_perm_const_p (TYPE_MODE (vectype), indices))
{
for (i = 0; i < group_size; ++i)
if (gimple_assign_rhs_code (stmts[i]) == alt_stmt_code)
{
matches[i] = false;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: different operation "
"in stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
stmts[i], 0);
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"original stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
first_stmt, 0);
}
}
return false;
}
*two_operators = true;
}
return true;
}
/* Traits for the hash_set to record failed SLP builds for a stmt set.
Note we never remove apart from at destruction time so we do not
need a special value for deleted that differs from empty. */
struct bst_traits
{
typedef vec <gimple *> value_type;
typedef vec <gimple *> compare_type;
static inline hashval_t hash (value_type);
static inline bool equal (value_type existing, value_type candidate);
static inline bool is_empty (value_type x) { return !x.exists (); }
static inline bool is_deleted (value_type x) { return !x.exists (); }
static inline void mark_empty (value_type &x) { x.release (); }
static inline void mark_deleted (value_type &x) { x.release (); }
static inline void remove (value_type &x) { x.release (); }
};
inline hashval_t
bst_traits::hash (value_type x)
{
inchash::hash h;
for (unsigned i = 0; i < x.length (); ++i)
h.add_int (gimple_uid (x[i]));
return h.end ();
}
inline bool
bst_traits::equal (value_type existing, value_type candidate)
{
if (existing.length () != candidate.length ())
return false;
for (unsigned i = 0; i < existing.length (); ++i)
if (existing[i] != candidate[i])
return false;
return true;
}
typedef hash_set <vec <gimple *>, bst_traits> scalar_stmts_set_t;
static scalar_stmts_set_t *bst_fail;
static slp_tree
vect_build_slp_tree_2 (vec_info *vinfo,
vec<gimple *> stmts, unsigned int group_size,
poly_uint64 *max_nunits,
vec<slp_tree> *loads,
bool *matches, unsigned *npermutes, unsigned *tree_size,
unsigned max_tree_size);
static slp_tree
vect_build_slp_tree (vec_info *vinfo,
vec<gimple *> stmts, unsigned int group_size,
poly_uint64 *max_nunits, vec<slp_tree> *loads,
bool *matches, unsigned *npermutes, unsigned *tree_size,
unsigned max_tree_size)
{
if (bst_fail->contains (stmts))
return NULL;
slp_tree res = vect_build_slp_tree_2 (vinfo, stmts, group_size, max_nunits,
loads, matches, npermutes, tree_size,
max_tree_size);
/* When SLP build fails for stmts record this, otherwise SLP build
can be exponential in time when we allow to construct parts from
scalars, see PR81723. */
if (! res)
{
vec <gimple *> x;
x.create (stmts.length ());
x.splice (stmts);
bst_fail->add (x);
}
return res;
}
/* Recursively build an SLP tree starting from NODE.
Fail (and return a value not equal to zero) if def-stmts are not
isomorphic, require data permutation or are of unsupported types of
operation. Otherwise, return 0.
The value returned is the depth in the SLP tree where a mismatch
was found. */
static slp_tree
vect_build_slp_tree_2 (vec_info *vinfo,
vec<gimple *> stmts, unsigned int group_size,
poly_uint64 *max_nunits,
vec<slp_tree> *loads,
bool *matches, unsigned *npermutes, unsigned *tree_size,
unsigned max_tree_size)
{
unsigned nops, i, this_tree_size = 0;
poly_uint64 this_max_nunits = *max_nunits;
gimple *stmt;
slp_tree node;
matches[0] = false;
stmt = stmts[0];
if (is_gimple_call (stmt))
nops = gimple_call_num_args (stmt);
else if (is_gimple_assign (stmt))
{
nops = gimple_num_ops (stmt) - 1;
if (gimple_assign_rhs_code (stmt) == COND_EXPR)
nops++;
}
else if (gimple_code (stmt) == GIMPLE_PHI)
nops = 0;
else
return NULL;
/* If the SLP node is a PHI (induction or reduction), terminate
the recursion. */
if (gimple_code (stmt) == GIMPLE_PHI)
{
tree scalar_type = TREE_TYPE (PHI_RESULT (stmt));
tree vectype = get_vectype_for_scalar_type (scalar_type);
if (!vect_record_max_nunits (vinfo, stmt, group_size, vectype,
max_nunits))
return NULL;
vect_def_type def_type = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt));
/* Induction from different IVs is not supported. */
if (def_type == vect_induction_def)
{
FOR_EACH_VEC_ELT (stmts, i, stmt)
if (stmt != stmts[0])
return NULL;
}
else
{
/* Else def types have to match. */
FOR_EACH_VEC_ELT (stmts, i, stmt)
{
/* But for reduction chains only check on the first stmt. */
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
&& GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) != stmt)
continue;
if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != def_type)
return NULL;
}
}
node = vect_create_new_slp_node (stmts);
return node;
}
bool two_operators = false;
unsigned char *swap = XALLOCAVEC (unsigned char, group_size);
if (!vect_build_slp_tree_1 (vinfo, swap,
stmts, group_size, nops,
&this_max_nunits, matches, &two_operators))
return NULL;
/* If the SLP node is a load, terminate the recursion. */
if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
&& DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
{
*max_nunits = this_max_nunits;
node = vect_create_new_slp_node (stmts);
loads->safe_push (node);
return node;
}
/* Get at the operands, verifying they are compatible. */
vec<slp_oprnd_info> oprnds_info = vect_create_oprnd_info (nops, group_size);
slp_oprnd_info oprnd_info;
FOR_EACH_VEC_ELT (stmts, i, stmt)
{
int res = vect_get_and_check_slp_defs (vinfo, &swap[i],
stmts, i, &oprnds_info);
if (res != 0)
matches[(res == -1) ? 0 : i] = false;
if (!matches[0])
break;
}
for (i = 0; i < group_size; ++i)
if (!matches[i])
{
vect_free_oprnd_info (oprnds_info);
return NULL;
}
auto_vec<slp_tree, 4> children;
auto_vec<slp_tree> this_loads;
stmt = stmts[0];
if (tree_size)
max_tree_size -= *tree_size;
/* Create SLP_TREE nodes for the definition node/s. */
FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
{
slp_tree child;
unsigned old_nloads = this_loads.length ();
unsigned old_tree_size = this_tree_size;
unsigned int j;
if (oprnd_info->first_dt != vect_internal_def
&& oprnd_info->first_dt != vect_reduction_def
&& oprnd_info->first_dt != vect_induction_def)
continue;
if (++this_tree_size > max_tree_size)
{
FOR_EACH_VEC_ELT (children, j, child)
vect_free_slp_tree (child);
vect_free_oprnd_info (oprnds_info);
return NULL;
}
if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts,
group_size, &this_max_nunits,
&this_loads, matches, npermutes,
&this_tree_size,
max_tree_size)) != NULL)
{
/* If we have all children of child built up from scalars then just
throw that away and build it up this node from scalars. */
if (!SLP_TREE_CHILDREN (child).is_empty ()
/* ??? Rejecting patterns this way doesn't work. We'd have to
do extra work to cancel the pattern so the uses see the
scalar version. */
&& !is_pattern_stmt_p
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0])))
{
slp_tree grandchild;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
if (SLP_TREE_DEF_TYPE (grandchild) == vect_internal_def)
break;
if (!grandchild)
{
/* Roll back. */
this_loads.truncate (old_nloads);
this_tree_size = old_tree_size;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
vect_free_slp_tree (grandchild);
SLP_TREE_CHILDREN (child).truncate (0);
dump_printf_loc (MSG_NOTE, vect_location,
"Building parent vector operands from "
"scalars instead\n");
oprnd_info->def_stmts = vNULL;
SLP_TREE_DEF_TYPE (child) = vect_external_def;
children.safe_push (child);
continue;
}
}
oprnd_info->def_stmts = vNULL;
children.safe_push (child);
continue;
}
/* If the SLP build failed fatally and we analyze a basic-block
simply treat nodes we fail to build as externally defined
(and thus build vectors from the scalar defs).
The cost model will reject outright expensive cases.
??? This doesn't treat cases where permutation ultimatively
fails (or we don't try permutation below). Ideally we'd
even compute a permutation that will end up with the maximum
SLP tree size... */
if (is_a <bb_vec_info> (vinfo)
&& !matches[0]
/* ??? Rejecting patterns this way doesn't work. We'd have to
do extra work to cancel the pattern so the uses see the
scalar version. */
&& !is_pattern_stmt_p (vinfo_for_stmt (stmt)))
{
dump_printf_loc (MSG_NOTE, vect_location,
"Building vector operands from scalars\n");
child = vect_create_new_slp_node (oprnd_info->def_stmts);
SLP_TREE_DEF_TYPE (child) = vect_external_def;
children.safe_push (child);
oprnd_info->def_stmts = vNULL;
continue;
}
/* If the SLP build for operand zero failed and operand zero
and one can be commutated try that for the scalar stmts
that failed the match. */
if (i == 0
/* A first scalar stmt mismatch signals a fatal mismatch. */
&& matches[0]
/* ??? For COND_EXPRs we can swap the comparison operands
as well as the arms under some constraints. */
&& nops == 2
&& oprnds_info[1]->first_dt == vect_internal_def
&& is_gimple_assign (stmt)
/* Do so only if the number of not successful permutes was nor more
than a cut-ff as re-trying the recursive match on
possibly each level of the tree would expose exponential
behavior. */
&& *npermutes < 4)
{
/* See whether we can swap the matching or the non-matching
stmt operands. */
bool swap_not_matching = true;
do
{
for (j = 0; j < group_size; ++j)
{
if (matches[j] != !swap_not_matching)
continue;
gimple *stmt = stmts[j];
/* Verify if we can swap operands of this stmt. */
if (!is_gimple_assign (stmt)
|| !commutative_tree_code (gimple_assign_rhs_code (stmt)))
{
if (!swap_not_matching)
goto fail;
swap_not_matching = false;
break;
}
/* Verify if we can safely swap or if we committed to a
specific operand order already.
??? Instead of modifying GIMPLE stmts here we could
record whether we want to swap operands in the SLP
node and temporarily do that when processing it
(or wrap operand accessors in a helper). */
else if (swap[j] != 0
|| STMT_VINFO_NUM_SLP_USES (vinfo_for_stmt (stmt)))
{
if (!swap_not_matching)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION,
vect_location,
"Build SLP failed: cannot swap "
"operands of shared stmt ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION,
TDF_SLIM, stmts[j], 0);
}
goto fail;
}
swap_not_matching = false;
break;
}
}
}
while (j != group_size);
/* Swap mismatched definition stmts. */
dump_printf_loc (MSG_NOTE, vect_location,
"Re-trying with swapped operands of stmts ");
for (j = 0; j < group_size; ++j)
if (matches[j] == !swap_not_matching)
{
std::swap (oprnds_info[0]->def_stmts[j],
oprnds_info[1]->def_stmts[j]);
dump_printf (MSG_NOTE, "%d ", j);
}
dump_printf (MSG_NOTE, "\n");
/* And try again with scratch 'matches' ... */
bool *tem = XALLOCAVEC (bool, group_size);
if ((child = vect_build_slp_tree (vinfo, oprnd_info->def_stmts,
group_size, &this_max_nunits,
&this_loads, tem, npermutes,
&this_tree_size,
max_tree_size)) != NULL)
{
/* ... so if successful we can apply the operand swapping
to the GIMPLE IL. This is necessary because for example
vect_get_slp_defs uses operand indexes and thus expects
canonical operand order. This is also necessary even
if we end up building the operand from scalars as
we'll continue to process swapped operand two. */
for (j = 0; j < group_size; ++j)
{
gimple *stmt = stmts[j];
gimple_set_plf (stmt, GF_PLF_1, false);
}
for (j = 0; j < group_size; ++j)
{
gimple *stmt = stmts[j];
if (matches[j] == !swap_not_matching)
{
/* Avoid swapping operands twice. */
if (gimple_plf (stmt, GF_PLF_1))
continue;
swap_ssa_operands (stmt, gimple_assign_rhs1_ptr (stmt),
gimple_assign_rhs2_ptr (stmt));
gimple_set_plf (stmt, GF_PLF_1, true);
}
}
/* Verify we swap all duplicates or none. */
if (flag_checking)
for (j = 0; j < group_size; ++j)
{
gimple *stmt = stmts[j];
gcc_assert (gimple_plf (stmt, GF_PLF_1)
== (matches[j] == !swap_not_matching));
}
/* If we have all children of child built up from scalars then
just throw that away and build it up this node from scalars. */
if (!SLP_TREE_CHILDREN (child).is_empty ()
/* ??? Rejecting patterns this way doesn't work. We'd have
to do extra work to cancel the pattern so the uses see the
scalar version. */
&& !is_pattern_stmt_p
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0])))
{
unsigned int j;
slp_tree grandchild;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
if (SLP_TREE_DEF_TYPE (grandchild) == vect_internal_def)
break;
if (!grandchild)
{
/* Roll back. */
this_loads.truncate (old_nloads);
this_tree_size = old_tree_size;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
vect_free_slp_tree (grandchild);
SLP_TREE_CHILDREN (child).truncate (0);
dump_printf_loc (MSG_NOTE, vect_location,
"Building parent vector operands from "
"scalars instead\n");
oprnd_info->def_stmts = vNULL;
SLP_TREE_DEF_TYPE (child) = vect_external_def;
children.safe_push (child);
continue;
}
}
oprnd_info->def_stmts = vNULL;
children.safe_push (child);
continue;
}
++*npermutes;
}
fail:
gcc_assert (child == NULL);
FOR_EACH_VEC_ELT (children, j, child)
vect_free_slp_tree (child);
vect_free_oprnd_info (oprnds_info);
return NULL;
}
vect_free_oprnd_info (oprnds_info);
if (tree_size)
*tree_size += this_tree_size;
*max_nunits = this_max_nunits;
loads->safe_splice (this_loads);
node = vect_create_new_slp_node (stmts);
SLP_TREE_TWO_OPERATORS (node) = two_operators;
SLP_TREE_CHILDREN (node).splice (children);
return node;
}
/* Dump a slp tree NODE using flags specified in DUMP_KIND. */
static void
vect_print_slp_tree (dump_flags_t dump_kind, location_t loc, slp_tree node)
{
int i;
gimple *stmt;
slp_tree child;
dump_printf_loc (dump_kind, loc, "node%s\n",
SLP_TREE_DEF_TYPE (node) != vect_internal_def
? " (external)" : "");
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
{
dump_printf_loc (dump_kind, loc, "\tstmt %d ", i);
dump_gimple_stmt (dump_kind, TDF_SLIM, stmt, 0);
}
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_print_slp_tree (dump_kind, loc, child);
}
/* Mark the tree rooted at NODE with MARK (PURE_SLP or HYBRID).
If MARK is HYBRID, it refers to a specific stmt in NODE (the stmt at index
J). Otherwise, MARK is PURE_SLP and J is -1, which indicates that all the
stmts in NODE are to be marked. */
static void
vect_mark_slp_stmts (slp_tree node, enum slp_vect_type mark, int j)
{
int i;
gimple *stmt;
slp_tree child;
if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
return;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
if (j < 0 || i == j)
STMT_SLP_TYPE (vinfo_for_stmt (stmt)) = mark;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_mark_slp_stmts (child, mark, j);
}
/* Mark the statements of the tree rooted at NODE as relevant (vect_used). */
static void
vect_mark_slp_stmts_relevant (slp_tree node)
{
int i;
gimple *stmt;
stmt_vec_info stmt_info;
slp_tree child;
if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
return;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
{
stmt_info = vinfo_for_stmt (stmt);
gcc_assert (!STMT_VINFO_RELEVANT (stmt_info)
|| STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope);
STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope;
}
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_mark_slp_stmts_relevant (child);
}
/* Rearrange the statements of NODE according to PERMUTATION. */
static void
vect_slp_rearrange_stmts (slp_tree node, unsigned int group_size,
vec<unsigned> permutation)
{
gimple *stmt;
vec<gimple *> tmp_stmts;
unsigned int i;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_slp_rearrange_stmts (child, group_size, permutation);
gcc_assert (group_size == SLP_TREE_SCALAR_STMTS (node).length ());
tmp_stmts.create (group_size);
tmp_stmts.quick_grow_cleared (group_size);
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
tmp_stmts[permutation[i]] = stmt;
SLP_TREE_SCALAR_STMTS (node).release ();
SLP_TREE_SCALAR_STMTS (node) = tmp_stmts;
}
/* Attempt to reorder stmts in a reduction chain so that we don't
require any load permutation. Return true if that was possible,
otherwise return false. */
static bool
vect_attempt_slp_rearrange_stmts (slp_instance slp_instn)
{
unsigned int group_size = SLP_INSTANCE_GROUP_SIZE (slp_instn);
unsigned int i, j;
unsigned int lidx;
slp_tree node, load;
/* Compare all the permutation sequences to the first one. We know
that at least one load is permuted. */
node = SLP_INSTANCE_LOADS (slp_instn)[0];
if (!node->load_permutation.exists ())
return false;
for (i = 1; SLP_INSTANCE_LOADS (slp_instn).iterate (i, &load); ++i)
{
if (!load->load_permutation.exists ())
return false;
FOR_EACH_VEC_ELT (load->load_permutation, j, lidx)
if (lidx != node->load_permutation[j])
return false;
}
/* Check that the loads in the first sequence are different and there
are no gaps between them. */
auto_sbitmap load_index (group_size);
bitmap_clear (load_index);
FOR_EACH_VEC_ELT (node->load_permutation, i, lidx)
{
if (lidx >= group_size)
return false;
if (bitmap_bit_p (load_index, lidx))
return false;
bitmap_set_bit (load_index, lidx);
}
for (i = 0; i < group_size; i++)
if (!bitmap_bit_p (load_index, i))
return false;
/* This permutation is valid for reduction. Since the order of the
statements in the nodes is not important unless they are memory
accesses, we can rearrange the statements in all the nodes
according to the order of the loads. */
vect_slp_rearrange_stmts (SLP_INSTANCE_TREE (slp_instn), group_size,
node->load_permutation);
/* We are done, no actual permutations need to be generated. */
poly_uint64 unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_instn);
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
{
gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0];
first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt));
/* But we have to keep those permutations that are required because
of handling of gaps. */
if (known_eq (unrolling_factor, 1U)
|| (group_size == GROUP_SIZE (vinfo_for_stmt (first_stmt))
&& GROUP_GAP (vinfo_for_stmt (first_stmt)) == 0))
SLP_TREE_LOAD_PERMUTATION (node).release ();
else
for (j = 0; j < SLP_TREE_LOAD_PERMUTATION (node).length (); ++j)
SLP_TREE_LOAD_PERMUTATION (node)[j] = j;
}
return true;
}
/* Check if the required load permutations in the SLP instance
SLP_INSTN are supported. */
static bool
vect_supported_load_permutation_p (slp_instance slp_instn)
{
unsigned int group_size = SLP_INSTANCE_GROUP_SIZE (slp_instn);
unsigned int i, j, k, next;
slp_tree node;
gimple *stmt, *load, *next_load;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Load permutation ");
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
if (node->load_permutation.exists ())
FOR_EACH_VEC_ELT (node->load_permutation, j, next)
dump_printf (MSG_NOTE, "%d ", next);
else
for (k = 0; k < group_size; ++k)
dump_printf (MSG_NOTE, "%d ", k);
dump_printf (MSG_NOTE, "\n");
}
/* In case of reduction every load permutation is allowed, since the order
of the reduction statements is not important (as opposed to the case of
grouped stores). The only condition we need to check is that all the
load nodes are of the same size and have the same permutation (and then
rearrange all the nodes of the SLP instance according to this
permutation). */
/* Check that all the load nodes are of the same size. */
/* ??? Can't we assert this? */
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
if (SLP_TREE_SCALAR_STMTS (node).length () != (unsigned) group_size)
return false;
node = SLP_INSTANCE_TREE (slp_instn);
stmt = SLP_TREE_SCALAR_STMTS (node)[0];
/* Reduction (there are no data-refs in the root).
In reduction chain the order of the loads is not important. */
if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))
&& !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
vect_attempt_slp_rearrange_stmts (slp_instn);
/* In basic block vectorization we allow any subchain of an interleaving
chain.
FORNOW: not supported in loop SLP because of realignment compications. */
if (STMT_VINFO_BB_VINFO (vinfo_for_stmt (stmt)))
{
/* Check whether the loads in an instance form a subchain and thus
no permutation is necessary. */
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
{
if (!SLP_TREE_LOAD_PERMUTATION (node).exists ())
continue;
bool subchain_p = true;
next_load = NULL;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load)
{
if (j != 0
&& (next_load != load
|| GROUP_GAP (vinfo_for_stmt (load)) != 1))
{
subchain_p = false;
break;
}
next_load = GROUP_NEXT_ELEMENT (vinfo_for_stmt (load));
}
if (subchain_p)
SLP_TREE_LOAD_PERMUTATION (node).release ();
else
{
stmt_vec_info group_info
= vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
group_info = vinfo_for_stmt (GROUP_FIRST_ELEMENT (group_info));
unsigned HOST_WIDE_INT nunits;
unsigned k, maxk = 0;
FOR_EACH_VEC_ELT (SLP_TREE_LOAD_PERMUTATION (node), j, k)
if (k > maxk)
maxk = k;
/* In BB vectorization we may not actually use a loaded vector
accessing elements in excess of GROUP_SIZE. */
tree vectype = STMT_VINFO_VECTYPE (group_info);
if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)
|| maxk >= (GROUP_SIZE (group_info) & ~(nunits - 1)))
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"BB vectorization with gaps at the end of "
"a load is not supported\n");
return false;
}
/* Verify the permutation can be generated. */
vec<tree> tem;
unsigned n_perms;
if (!vect_transform_slp_perm_load (node, tem, NULL,
1, slp_instn, true, &n_perms))
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION,
vect_location,
"unsupported load permutation\n");
return false;
}
}
}
return true;
}
/* For loop vectorization verify we can generate the permutation. Be
conservative about the vectorization factor, there are permutations
that will use three vector inputs only starting from a specific factor
and the vectorization factor is not yet final.
??? The SLP instance unrolling factor might not be the maximum one. */
unsigned n_perms;
poly_uint64 test_vf
= force_common_multiple (SLP_INSTANCE_UNROLLING_FACTOR (slp_instn),
LOOP_VINFO_VECT_FACTOR
(STMT_VINFO_LOOP_VINFO (vinfo_for_stmt (stmt))));
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
if (node->load_permutation.exists ()
&& !vect_transform_slp_perm_load (node, vNULL, NULL, test_vf,
slp_instn, true, &n_perms))
return false;
return true;
}
/* Find the last store in SLP INSTANCE. */
gimple *
vect_find_last_scalar_stmt_in_slp (slp_tree node)
{
gimple *last = NULL, *stmt;
for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt); i++)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
if (is_pattern_stmt_p (stmt_vinfo))
last = get_later_stmt (STMT_VINFO_RELATED_STMT (stmt_vinfo), last);
else
last = get_later_stmt (stmt, last);
}
return last;
}
/* Compute the cost for the SLP node NODE in the SLP instance INSTANCE. */
static void
vect_analyze_slp_cost_1 (slp_instance instance, slp_tree node,
stmt_vector_for_cost *prologue_cost_vec,
stmt_vector_for_cost *body_cost_vec,
unsigned ncopies_for_cost,
scalar_stmts_set_t* visited)
{
unsigned i, j;
slp_tree child;
gimple *stmt;
stmt_vec_info stmt_info;
tree lhs;
/* If we already costed the exact same set of scalar stmts we're done.
We share the generated vector stmts for those. */
if (visited->contains (SLP_TREE_SCALAR_STMTS (node)))
return;
visited->add (SLP_TREE_SCALAR_STMTS (node).copy ());
/* Recurse down the SLP tree. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def)
vect_analyze_slp_cost_1 (instance, child, prologue_cost_vec,
body_cost_vec, ncopies_for_cost, visited);
/* Look at the first scalar stmt to determine the cost. */
stmt = SLP_TREE_SCALAR_STMTS (node)[0];
stmt_info = vinfo_for_stmt (stmt);
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
vect_memory_access_type memory_access_type
= (STMT_VINFO_STRIDED_P (stmt_info)
? VMAT_STRIDED_SLP
: VMAT_CONTIGUOUS);
if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)))
vect_model_store_cost (stmt_info, ncopies_for_cost,
memory_access_type, VLS_STORE,
node, prologue_cost_vec, body_cost_vec);
else
{
gcc_checking_assert (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)));
if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
{
/* If the load is permuted then the alignment is determined by
the first group element not by the first scalar stmt DR. */
stmt = GROUP_FIRST_ELEMENT (stmt_info);
stmt_info = vinfo_for_stmt (stmt);
/* Record the cost for the permutation. */
unsigned n_perms;
vect_transform_slp_perm_load (node, vNULL, NULL,
ncopies_for_cost, instance, true,
&n_perms);
record_stmt_cost (body_cost_vec, n_perms, vec_perm,
stmt_info, 0, vect_body);
unsigned assumed_nunits
= vect_nunits_for_cost (STMT_VINFO_VECTYPE (stmt_info));
/* And adjust the number of loads performed. This handles
redundancies as well as loads that are later dead. */
auto_sbitmap perm (GROUP_SIZE (stmt_info));
bitmap_clear (perm);
for (i = 0; i < SLP_TREE_LOAD_PERMUTATION (node).length (); ++i)
bitmap_set_bit (perm, SLP_TREE_LOAD_PERMUTATION (node)[i]);
ncopies_for_cost = 0;
bool load_seen = false;
for (i = 0; i < GROUP_SIZE (stmt_info); ++i)
{
if (i % assumed_nunits == 0)
{
if (load_seen)
ncopies_for_cost++;
load_seen = false;
}
if (bitmap_bit_p (perm, i))
load_seen = true;
}
if (load_seen)
ncopies_for_cost++;
gcc_assert (ncopies_for_cost
<= (GROUP_SIZE (stmt_info) - GROUP_GAP (stmt_info)
+ assumed_nunits - 1) / assumed_nunits);
poly_uint64 uf = SLP_INSTANCE_UNROLLING_FACTOR (instance);
ncopies_for_cost *= estimated_poly_value (uf);
}
/* Record the cost for the vector loads. */
vect_model_load_cost (stmt_info, ncopies_for_cost,
memory_access_type, node, prologue_cost_vec,
body_cost_vec);
return;
}
}
else if (STMT_VINFO_TYPE (stmt_info) == induc_vec_info_type)
{
/* ncopies_for_cost is the number of IVs we generate. */
record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
stmt_info, 0, vect_body);
/* Prologue cost for the initial values and step vector. */
record_stmt_cost (prologue_cost_vec, ncopies_for_cost,
CONSTANT_CLASS_P
(STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED
(stmt_info))
? vector_load : vec_construct,
stmt_info, 0, vect_prologue);
record_stmt_cost (prologue_cost_vec, 1,
CONSTANT_CLASS_P
(STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info))
? vector_load : vec_construct,
stmt_info, 0, vect_prologue);
/* ??? No easy way to get at the actual number of vector stmts
to be geneated and thus the derived IVs. */
}
else
{
record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
stmt_info, 0, vect_body);
if (SLP_TREE_TWO_OPERATORS (node))
{
record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
stmt_info, 0, vect_body);
record_stmt_cost (body_cost_vec, ncopies_for_cost, vec_perm,
stmt_info, 0, vect_body);
}
}
/* Push SLP node def-type to stmts. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (child), j, stmt)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) = SLP_TREE_DEF_TYPE (child);
/* Scan operands and account for prologue cost of constants/externals.
??? This over-estimates cost for multiple uses and should be
re-engineered. */
stmt = SLP_TREE_SCALAR_STMTS (node)[0];
lhs = gimple_get_lhs (stmt);
for (i = 0; i < gimple_num_ops (stmt); ++i)
{
tree op = gimple_op (stmt, i);
gimple *def_stmt;
enum vect_def_type dt;
if (!op || op == lhs)
continue;
if (vect_is_simple_use (op, stmt_info->vinfo, &def_stmt, &dt)
&& (dt == vect_constant_def || dt == vect_external_def))
{
/* Without looking at the actual initializer a vector of
constants can be implemented as load from the constant pool.
When all elements are the same we can use a splat. */
tree vectype = get_vectype_for_scalar_type (TREE_TYPE (op));
unsigned group_size = SLP_TREE_SCALAR_STMTS (node).length ();
unsigned num_vects_to_check;
unsigned HOST_WIDE_INT const_nunits;
unsigned nelt_limit;
if (TYPE_VECTOR_SUBPARTS (vectype).is_constant (&const_nunits)
&& ! multiple_p (const_nunits, group_size))
{
num_vects_to_check = SLP_TREE_NUMBER_OF_VEC_STMTS (node);
nelt_limit = const_nunits;
}
else
{
/* If either the vector has variable length or the vectors
are composed of repeated whole groups we only need to
cost construction once. All vectors will be the same. */
num_vects_to_check = 1;
nelt_limit = group_size;
}
tree elt = NULL_TREE;
unsigned nelt = 0;
for (unsigned j = 0; j < num_vects_to_check * nelt_limit; ++j)
{
unsigned si = j % group_size;
if (nelt == 0)
elt = gimple_op (SLP_TREE_SCALAR_STMTS (node)[si], i);
/* ??? We're just tracking whether all operands of a single
vector initializer are the same, ideally we'd check if
we emitted the same one already. */
else if (elt != gimple_op (SLP_TREE_SCALAR_STMTS (node)[si], i))
elt = NULL_TREE;
nelt++;
if (nelt == nelt_limit)
{
/* ??? We need to pass down stmt_info for a vector type
even if it points to the wrong stmt. */
record_stmt_cost (prologue_cost_vec, 1,
dt == vect_external_def
? (elt ? scalar_to_vec : vec_construct)
: vector_load,
stmt_info, 0, vect_prologue);
nelt = 0;
}
}
}
}
/* Restore stmt def-types. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (child), j, stmt)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) = vect_internal_def;
}
/* Compute the cost for the SLP instance INSTANCE. */
static void
vect_analyze_slp_cost (slp_instance instance, void *data, scalar_stmts_set_t *visited)
{
stmt_vector_for_cost body_cost_vec, prologue_cost_vec;
unsigned ncopies_for_cost;
stmt_info_for_cost *si;
unsigned i;
/* Calculate the number of vector stmts to create based on the unrolling
factor (number of vectors is 1 if NUNITS >= GROUP_SIZE, and is
GROUP_SIZE / NUNITS otherwise. */
unsigned group_size = SLP_INSTANCE_GROUP_SIZE (instance);
slp_tree node = SLP_INSTANCE_TREE (instance);
stmt_vec_info stmt_info = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
/* Get the estimated vectorization factor, which is always one for
basic-block vectorization. */
unsigned int assumed_vf;
if (STMT_VINFO_LOOP_VINFO (stmt_info))
assumed_vf = vect_vf_for_cost (STMT_VINFO_LOOP_VINFO (stmt_info));
else
assumed_vf = 1;
/* For reductions look at a reduction operand in case the reduction
operation is widening like DOT_PROD or SAD. */
tree vectype_for_cost = STMT_VINFO_VECTYPE (stmt_info);
if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
gimple *stmt = SLP_TREE_SCALAR_STMTS (node)[0];
switch (gimple_assign_rhs_code (stmt))
{
case DOT_PROD_EXPR:
case SAD_EXPR:
vectype_for_cost = get_vectype_for_scalar_type
(TREE_TYPE (gimple_assign_rhs1 (stmt)));
break;
default:;
}
}
unsigned int assumed_nunits = vect_nunits_for_cost (vectype_for_cost);
ncopies_for_cost = (least_common_multiple (assumed_nunits,
group_size * assumed_vf)
/ assumed_nunits);
prologue_cost_vec.create (10);
body_cost_vec.create (10);
vect_analyze_slp_cost_1 (instance, SLP_INSTANCE_TREE (instance),
&prologue_cost_vec, &body_cost_vec,
ncopies_for_cost, visited);
/* Record the prologue costs, which were delayed until we were
sure that SLP was successful. */
FOR_EACH_VEC_ELT (prologue_cost_vec, i, si)
{
struct _stmt_vec_info *stmt_info
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
si->misalign, vect_prologue);
}
/* Record the instance's instructions in the target cost model. */
FOR_EACH_VEC_ELT (body_cost_vec, i, si)
{
struct _stmt_vec_info *stmt_info
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
si->misalign, vect_body);
}
prologue_cost_vec.release ();
body_cost_vec.release ();
}
/* Splits a group of stores, currently beginning at FIRST_STMT, into two groups:
one (still beginning at FIRST_STMT) of size GROUP1_SIZE (also containing
the first GROUP1_SIZE stmts, since stores are consecutive), the second
containing the remainder.
Return the first stmt in the second group. */
static gimple *
vect_split_slp_store_group (gimple *first_stmt, unsigned group1_size)
{
stmt_vec_info first_vinfo = vinfo_for_stmt (first_stmt);
gcc_assert (GROUP_FIRST_ELEMENT (first_vinfo) == first_stmt);
gcc_assert (group1_size > 0);
int group2_size = GROUP_SIZE (first_vinfo) - group1_size;
gcc_assert (group2_size > 0);
GROUP_SIZE (first_vinfo) = group1_size;
gimple *stmt = first_stmt;
for (unsigned i = group1_size; i > 1; i--)
{
stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
gcc_assert (GROUP_GAP (vinfo_for_stmt (stmt)) == 1);
}
/* STMT is now the last element of the first group. */
gimple *group2 = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt)) = 0;
GROUP_SIZE (vinfo_for_stmt (group2)) = group2_size;
for (stmt = group2; stmt; stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt)))
{
GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = group2;
gcc_assert (GROUP_GAP (vinfo_for_stmt (stmt)) == 1);
}
/* For the second group, the GROUP_GAP is that before the original group,
plus skipping over the first vector. */
GROUP_GAP (vinfo_for_stmt (group2)) =
GROUP_GAP (first_vinfo) + group1_size;
/* GROUP_GAP of the first group now has to skip over the second group too. */
GROUP_GAP (first_vinfo) += group2_size;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Split group into %d and %d\n",
group1_size, group2_size);
return group2;
}
/* Calculate the unrolling factor for an SLP instance with GROUP_SIZE
statements and a vector of NUNITS elements. */
static poly_uint64
calculate_unrolling_factor (poly_uint64 nunits, unsigned int group_size)
{
return exact_div (common_multiple (nunits, group_size), group_size);
}
/* Analyze an SLP instance starting from a group of grouped stores. Call
vect_build_slp_tree to build a tree of packed stmts if possible.
Return FALSE if it's impossible to SLP any stmt in the loop. */
static bool
vect_analyze_slp_instance (vec_info *vinfo,
gimple *stmt, unsigned max_tree_size)
{
slp_instance new_instance;
slp_tree node;
unsigned int group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
tree vectype, scalar_type = NULL_TREE;
gimple *next;
unsigned int i;
vec<slp_tree> loads;
struct data_reference *dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
vec<gimple *> scalar_stmts;
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
{
if (dr)
{
scalar_type = TREE_TYPE (DR_REF (dr));
vectype = get_vectype_for_scalar_type (scalar_type);
}
else
{
gcc_assert (is_a <loop_vec_info> (vinfo));
vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
}
group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
}
else
{
gcc_assert (is_a <loop_vec_info> (vinfo));
vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
group_size = as_a <loop_vec_info> (vinfo)->reductions.length ();
}
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unsupported data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, scalar_type);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return false;
}
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
/* Create a node (a root of the SLP tree) for the packed grouped stores. */
scalar_stmts.create (group_size);
next = stmt;
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
{
/* Collect the stores and store them in SLP_TREE_SCALAR_STMTS. */
while (next)
{
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next))
&& STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)))
scalar_stmts.safe_push (
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)));
else
scalar_stmts.safe_push (next);
next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
}
/* Mark the first element of the reduction chain as reduction to properly
transform the node. In the reduction analysis phase only the last
element of the chain is marked as reduction. */
if (!STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt)))
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) = vect_reduction_def;
}
else
{
/* Collect reduction statements. */
vec<gimple *> reductions = as_a <loop_vec_info> (vinfo)->reductions;
for (i = 0; reductions.iterate (i, &next); i++)
scalar_stmts.safe_push (next);
}
loads.create (group_size);
/* Build the tree for the SLP instance. */
bool *matches = XALLOCAVEC (bool, group_size);
unsigned npermutes = 0;
bst_fail = new scalar_stmts_set_t ();
poly_uint64 max_nunits = nunits;
node = vect_build_slp_tree (vinfo, scalar_stmts, group_size,
&max_nunits, &loads, matches, &npermutes,
NULL, max_tree_size);
delete bst_fail;
if (node != NULL)
{
/* Calculate the unrolling factor based on the smallest type. */
poly_uint64 unrolling_factor
= calculate_unrolling_factor (max_nunits, group_size);
if (maybe_ne (unrolling_factor, 1U)
&& is_a <bb_vec_info> (vinfo))
{
unsigned HOST_WIDE_INT const_max_nunits;
if (!max_nunits.is_constant (&const_max_nunits)
|| const_max_nunits > group_size)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: store group "
"size not a multiple of the vector size "
"in basic block SLP\n");
vect_free_slp_tree (node);
loads.release ();
return false;
}
/* Fatal mismatch. */
matches[group_size / const_max_nunits * const_max_nunits] = false;
vect_free_slp_tree (node);
loads.release ();
}
else
{
/* Create a new SLP instance. */
new_instance = XNEW (struct _slp_instance);
SLP_INSTANCE_TREE (new_instance) = node;
SLP_INSTANCE_GROUP_SIZE (new_instance) = group_size;
SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
SLP_INSTANCE_LOADS (new_instance) = loads;
/* Compute the load permutation. */
slp_tree load_node;
bool loads_permuted = false;
FOR_EACH_VEC_ELT (loads, i, load_node)
{
vec<unsigned> load_permutation;
int j;
gimple *load, *first_stmt;
bool this_load_permuted = false;
load_permutation.create (group_size);
first_stmt = GROUP_FIRST_ELEMENT
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (load_node)[0]));
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load)
{
int load_place = vect_get_place_in_interleaving_chain
(load, first_stmt);
gcc_assert (load_place != -1);
if (load_place != j)
this_load_permuted = true;
load_permutation.safe_push (load_place);
}
if (!this_load_permuted
/* The load requires permutation when unrolling exposes
a gap either because the group is larger than the SLP
group-size or because there is a gap between the groups. */
&& (known_eq (unrolling_factor, 1U)
|| (group_size == GROUP_SIZE (vinfo_for_stmt (first_stmt))
&& GROUP_GAP (vinfo_for_stmt (first_stmt)) == 0)))
{
load_permutation.release ();
continue;
}
SLP_TREE_LOAD_PERMUTATION (load_node) = load_permutation;
loads_permuted = true;
}
if (loads_permuted)
{
if (!vect_supported_load_permutation_p (new_instance))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Build SLP failed: unsupported load "
"permutation ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION,
TDF_SLIM, stmt, 0);
}
vect_free_slp_instance (new_instance);
return false;
}
}
/* If the loads and stores can be handled with load/store-lan
instructions do not generate this SLP instance. */
if (is_a <loop_vec_info> (vinfo)
&& loads_permuted
&& dr && vect_store_lanes_supported (vectype, group_size, false))
{
slp_tree load_node;
FOR_EACH_VEC_ELT (loads, i, load_node)
{
gimple *first_stmt = GROUP_FIRST_ELEMENT
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (load_node)[0]));
stmt_vec_info stmt_vinfo = vinfo_for_stmt (first_stmt);
/* Use SLP for strided accesses (or if we
can't load-lanes). */
if (STMT_VINFO_STRIDED_P (stmt_vinfo)
|| ! vect_load_lanes_supported
(STMT_VINFO_VECTYPE (stmt_vinfo),
GROUP_SIZE (stmt_vinfo), false))
break;
}
if (i == loads.length ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Built SLP cancelled: can use "
"load/store-lanes\n");
vect_free_slp_instance (new_instance);
return false;
}
}
vinfo->slp_instances.safe_push (new_instance);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Final SLP tree for instance:\n");
vect_print_slp_tree (MSG_NOTE, vect_location, node);
}
return true;
}
}
else
{
/* Failed to SLP. */
/* Free the allocated memory. */
scalar_stmts.release ();
loads.release ();
}
/* For basic block SLP, try to break the group up into multiples of the
vector size. */
unsigned HOST_WIDE_INT const_nunits;
if (is_a <bb_vec_info> (vinfo)
&& GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
&& STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
&& nunits.is_constant (&const_nunits))
{
/* We consider breaking the group only on VF boundaries from the existing
start. */
for (i = 0; i < group_size; i++)
if (!matches[i]) break;
if (i >= const_nunits && i < group_size)
{
/* Split into two groups at the first vector boundary before i. */
gcc_assert ((const_nunits & (const_nunits - 1)) == 0);
unsigned group1_size = i & ~(const_nunits - 1);
gimple *rest = vect_split_slp_store_group (stmt, group1_size);
bool res = vect_analyze_slp_instance (vinfo, stmt, max_tree_size);
/* If the first non-match was in the middle of a vector,
skip the rest of that vector. */
if (group1_size < i)
{
i = group1_size + const_nunits;
if (i < group_size)
rest = vect_split_slp_store_group (rest, const_nunits);
}
if (i < group_size)
res |= vect_analyze_slp_instance (vinfo, rest, max_tree_size);
return res;
}
/* Even though the first vector did not all match, we might be able to SLP
(some) of the remainder. FORNOW ignore this possibility. */
}
return false;
}
/* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
trees of packed scalar stmts if SLP is possible. */
bool
vect_analyze_slp (vec_info *vinfo, unsigned max_tree_size)
{
unsigned int i;
gimple *first_element;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_slp ===\n");
/* Find SLP sequences starting from groups of grouped stores. */
FOR_EACH_VEC_ELT (vinfo->grouped_stores, i, first_element)
vect_analyze_slp_instance (vinfo, first_element, max_tree_size);
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
{
if (loop_vinfo->reduction_chains.length () > 0)
{
/* Find SLP sequences starting from reduction chains. */
FOR_EACH_VEC_ELT (loop_vinfo->reduction_chains, i, first_element)
if (! vect_analyze_slp_instance (vinfo, first_element,
max_tree_size))
{
/* Dissolve reduction chain group. */
gimple *next, *stmt = first_element;
while (stmt)
{
stmt_vec_info vinfo = vinfo_for_stmt (stmt);
next = GROUP_NEXT_ELEMENT (vinfo);
GROUP_FIRST_ELEMENT (vinfo) = NULL;
GROUP_NEXT_ELEMENT (vinfo) = NULL;
stmt = next;
}
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (first_element))
= vect_internal_def;
}
}
/* Find SLP sequences starting from groups of reductions. */
if (loop_vinfo->reductions.length () > 1)
vect_analyze_slp_instance (vinfo, loop_vinfo->reductions[0],
max_tree_size);
}
return true;
}
/* For each possible SLP instance decide whether to SLP it and calculate overall
unrolling factor needed to SLP the loop. Return TRUE if decided to SLP at
least one instance. */
bool
vect_make_slp_decision (loop_vec_info loop_vinfo)
{
unsigned int i;
poly_uint64 unrolling_factor = 1;
vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
slp_instance instance;
int decided_to_slp = 0;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "=== vect_make_slp_decision ==="
"\n");
FOR_EACH_VEC_ELT (slp_instances, i, instance)
{
/* FORNOW: SLP if you can. */
/* All unroll factors have the form current_vector_size * X for some
rational X, so they must have a common multiple. */
unrolling_factor
= force_common_multiple (unrolling_factor,
SLP_INSTANCE_UNROLLING_FACTOR (instance));
/* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we
call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and
loop-based vectorization. Such stmts will be marked as HYBRID. */
vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
decided_to_slp++;
}
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;
if (decided_to_slp && dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Decided to SLP %d instances. Unrolling factor ",
decided_to_slp);
dump_dec (MSG_NOTE, unrolling_factor);
dump_printf (MSG_NOTE, "\n");
}
return (decided_to_slp > 0);
}
/* Find stmts that must be both vectorized and SLPed (since they feed stmts that
can't be SLPed) in the tree rooted at NODE. Mark such stmts as HYBRID. */
static void
vect_detect_hybrid_slp_stmts (slp_tree node, unsigned i, slp_vect_type stype)
{
gimple *stmt = SLP_TREE_SCALAR_STMTS (node)[i];
imm_use_iterator imm_iter;
gimple *use_stmt;
stmt_vec_info use_vinfo, stmt_vinfo = vinfo_for_stmt (stmt);
slp_tree child;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int j;
/* Propagate hybrid down the SLP tree. */
if (stype == hybrid)
;
else if (HYBRID_SLP_STMT (stmt_vinfo))
stype = hybrid;
else
{
/* Check if a pure SLP stmt has uses in non-SLP stmts. */
gcc_checking_assert (PURE_SLP_STMT (stmt_vinfo));
/* If we get a pattern stmt here we have to use the LHS of the
original stmt for immediate uses. */
if (! STMT_VINFO_IN_PATTERN_P (stmt_vinfo)
&& STMT_VINFO_RELATED_STMT (stmt_vinfo))
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
tree def;
if (gimple_code (stmt) == GIMPLE_PHI)
def = gimple_phi_result (stmt);
else
def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
if (def)
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
{
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
continue;
use_vinfo = vinfo_for_stmt (use_stmt);
if (STMT_VINFO_IN_PATTERN_P (use_vinfo)
&& STMT_VINFO_RELATED_STMT (use_vinfo))
use_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (use_vinfo));
if (!STMT_SLP_TYPE (use_vinfo)
&& (STMT_VINFO_RELEVANT (use_vinfo)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (use_vinfo)))
&& !(gimple_code (use_stmt) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (use_vinfo) == vect_reduction_def))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "use of SLP "
"def in non-SLP stmt: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, use_stmt, 0);
}
stype = hybrid;
}
}
}
if (stype == hybrid
&& !HYBRID_SLP_STMT (stmt_vinfo))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "marking hybrid: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
STMT_SLP_TYPE (stmt_vinfo) = hybrid;
}
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
if (SLP_TREE_DEF_TYPE (child) != vect_external_def)
vect_detect_hybrid_slp_stmts (child, i, stype);
}
/* Helpers for vect_detect_hybrid_slp walking pattern stmt uses. */
static tree
vect_detect_hybrid_slp_1 (tree *tp, int *, void *data)
{
walk_stmt_info *wi = (walk_stmt_info *)data;
struct loop *loopp = (struct loop *)wi->info;
if (wi->is_lhs)
return NULL_TREE;
if (TREE_CODE (*tp) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (*tp))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (*tp);
if (flow_bb_inside_loop_p (loopp, gimple_bb (def_stmt))
&& PURE_SLP_STMT (vinfo_for_stmt (def_stmt)))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "marking hybrid: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
}
STMT_SLP_TYPE (vinfo_for_stmt (def_stmt)) = hybrid;
}
}
return NULL_TREE;
}
static tree
vect_detect_hybrid_slp_2 (gimple_stmt_iterator *gsi, bool *handled,
walk_stmt_info *)
{
stmt_vec_info use_vinfo = vinfo_for_stmt (gsi_stmt (*gsi));
/* If the stmt is in a SLP instance then this isn't a reason
to mark use definitions in other SLP instances as hybrid. */
if (! STMT_SLP_TYPE (use_vinfo)
&& (STMT_VINFO_RELEVANT (use_vinfo)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (use_vinfo)))
&& ! (gimple_code (gsi_stmt (*gsi)) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (use_vinfo) == vect_reduction_def))
;
else
*handled = true;
return NULL_TREE;
}
/* Find stmts that must be both vectorized and SLPed. */
void
vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
{
unsigned int i;
vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
slp_instance instance;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "=== vect_detect_hybrid_slp ==="
"\n");
/* First walk all pattern stmt in the loop and mark defs of uses as
hybrid because immediate uses in them are not recorded. */
for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
{
basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
walk_stmt_info wi;
memset (&wi, 0, sizeof (wi));
wi.info = LOOP_VINFO_LOOP (loop_vinfo);
gimple_stmt_iterator gsi2
= gsi_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
walk_gimple_stmt (&gsi2, vect_detect_hybrid_slp_2,
vect_detect_hybrid_slp_1, &wi);
walk_gimple_seq (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
vect_detect_hybrid_slp_2,
vect_detect_hybrid_slp_1, &wi);
}
}
}
/* Then walk the SLP instance trees marking stmts with uses in
non-SLP stmts as hybrid, also propagating hybrid down the
SLP tree, collecting the above info on-the-fly. */
FOR_EACH_VEC_ELT (slp_instances, i, instance)
{
for (unsigned i = 0; i < SLP_INSTANCE_GROUP_SIZE (instance); ++i)
vect_detect_hybrid_slp_stmts (SLP_INSTANCE_TREE (instance),
i, pure_slp);
}
}
/* Initialize a bb_vec_info struct for the statements between
REGION_BEGIN_IN (inclusive) and REGION_END_IN (exclusive). */
_bb_vec_info::_bb_vec_info (gimple_stmt_iterator region_begin_in,
gimple_stmt_iterator region_end_in)
: vec_info (vec_info::bb, init_cost (NULL)),
bb (gsi_bb (region_begin_in)),
region_begin (region_begin_in),
region_end (region_end_in)
{
gimple_stmt_iterator gsi;
for (gsi = region_begin; gsi_stmt (gsi) != gsi_stmt (region_end);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
gimple_set_uid (stmt, 0);
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, this));
}
bb->aux = this;
}
/* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the basic block. */
_bb_vec_info::~_bb_vec_info ()
{
for (gimple_stmt_iterator si = region_begin;
gsi_stmt (si) != gsi_stmt (region_end); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
if (stmt_info)
/* Free stmt_vec_info. */
free_stmt_vec_info (stmt);
/* Reset region marker. */
gimple_set_uid (stmt, -1);
}
bb->aux = NULL;
}
/* Analyze statements contained in SLP tree NODE after recursively analyzing
the subtree. NODE_INSTANCE contains NODE and VINFO contains INSTANCE.
Return true if the operations are supported. */
static bool
vect_slp_analyze_node_operations (vec_info *vinfo, slp_tree node,
slp_instance node_instance)
{
bool dummy;
int i, j;
gimple *stmt;
slp_tree child;
if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
return true;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (!vect_slp_analyze_node_operations (vinfo, child, node_instance))
return false;
stmt = SLP_TREE_SCALAR_STMTS (node)[0];
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
gcc_assert (STMT_SLP_TYPE (stmt_info) != loop_vect);
/* For BB vectorization vector types are assigned here.
Memory accesses already got their vector type assigned
in vect_analyze_data_refs. */
bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
if (bb_vinfo
&& ! STMT_VINFO_DATA_REF (stmt_info))
{
gcc_assert (PURE_SLP_STMT (stmt_info));
tree scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
dump_printf (MSG_NOTE, "\n");
}
tree vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not SLPed: unsupported data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
scalar_type);
dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
}
return false;
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
dump_printf (MSG_NOTE, "\n");
}
gimple *sstmt;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, sstmt)
STMT_VINFO_VECTYPE (vinfo_for_stmt (sstmt)) = vectype;
}
/* Calculate the number of vector statements to be created for the
scalar stmts in this node. For SLP reductions it is equal to the
number of vector statements in the children (which has already been
calculated by the recursive call). Otherwise it is the number of
scalar elements in one scalar iteration (GROUP_SIZE) multiplied by
VF divided by the number of elements in a vector. */
if (GROUP_FIRST_ELEMENT (stmt_info)
&& !STMT_VINFO_GROUPED_ACCESS (stmt_info))
SLP_TREE_NUMBER_OF_VEC_STMTS (node)
= SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_CHILDREN (node)[0]);
else
{
poly_uint64 vf;
if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
vf = loop_vinfo->vectorization_factor;
else
vf = 1;
unsigned int group_size = SLP_INSTANCE_GROUP_SIZE (node_instance);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
SLP_TREE_NUMBER_OF_VEC_STMTS (node)
= vect_get_num_vectors (vf * group_size, vectype);
}
/* ??? We have to catch the case late where two first scalar stmts appear
in multiple SLP children with different def type and fail. Remember
original def types first since SLP_TREE_DEF_TYPE doesn't necessarily
match it when that is vect_internal_def. */
auto_vec<vect_def_type, 4> dt;
dt.safe_grow (SLP_TREE_CHILDREN (node).length ());
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
dt[j]
= STMT_VINFO_DEF_TYPE (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0]));
/* Push SLP node def-type to stmt operands. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0]))
= SLP_TREE_DEF_TYPE (child);
/* Check everything worked out. */
bool res = true;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
{
if (STMT_VINFO_DEF_TYPE
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0]))
!= SLP_TREE_DEF_TYPE (child))
res = false;
}
else if (STMT_VINFO_DEF_TYPE
(vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0])) != dt[j])
res = false;
if (!res && dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: same operand with different "
"def type in stmt.\n");
if (res)
res = vect_analyze_stmt (stmt, &dummy, node, node_instance);
/* Restore def-types. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (child)[0]))
= dt[j];
return res;
}
/* Analyze statements in SLP instances of VINFO. Return true if the
operations are supported. */
bool
vect_slp_analyze_operations (vec_info *vinfo)
{
slp_instance instance;
int i;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_slp_analyze_operations ===\n");
for (i = 0; vinfo->slp_instances.iterate (i, &instance); )
{
if (!vect_slp_analyze_node_operations (vinfo,
SLP_INSTANCE_TREE (instance),
instance))
{
dump_printf_loc (MSG_NOTE, vect_location,
"removing SLP instance operations starting from: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
SLP_TREE_SCALAR_STMTS
(SLP_INSTANCE_TREE (instance))[0], 0);
vect_free_slp_instance (instance);
vinfo->slp_instances.ordered_remove (i);
}
else
i++;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_analyze_slp_cost ===\n");
/* Compute the costs of the SLP instances. */
scalar_stmts_set_t *visited = new scalar_stmts_set_t ();
for (i = 0; vinfo->slp_instances.iterate (i, &instance); ++i)
vect_analyze_slp_cost (instance, vinfo->target_cost_data, visited);
delete visited;
return !vinfo->slp_instances.is_empty ();
}
/* Compute the scalar cost of the SLP node NODE and its children
and return it. Do not account defs that are marked in LIFE and
update LIFE according to uses of NODE. */
static unsigned
vect_bb_slp_scalar_cost (basic_block bb,
slp_tree node, vec<bool, va_heap> *life)
{
unsigned scalar_cost = 0;
unsigned i;
gimple *stmt;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
{
unsigned stmt_cost;
ssa_op_iter op_iter;
def_operand_p def_p;
stmt_vec_info stmt_info;
if ((*life)[i])
continue;
/* If there is a non-vectorized use of the defs then the scalar
stmt is kept live in which case we do not account it or any
required defs in the SLP children in the scalar cost. This
way we make the vectorization more costly when compared to
the scalar cost. */
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
{
imm_use_iterator use_iter;
gimple *use_stmt;
FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
if (!is_gimple_debug (use_stmt)
&& (! vect_stmt_in_region_p (vinfo_for_stmt (stmt)->vinfo,
use_stmt)
|| ! PURE_SLP_STMT (vinfo_for_stmt (use_stmt))))
{
(*life)[i] = true;
BREAK_FROM_IMM_USE_STMT (use_iter);
}
}
if ((*life)[i])
continue;
/* Count scalar stmts only once. */
if (gimple_visited_p (stmt))
continue;
gimple_set_visited (stmt, true);
stmt_info = vinfo_for_stmt (stmt);
if (STMT_VINFO_DATA_REF (stmt_info))
{
if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
stmt_cost = vect_get_stmt_cost (scalar_load);
else
stmt_cost = vect_get_stmt_cost (scalar_store);
}
else
stmt_cost = vect_get_stmt_cost (scalar_stmt);
scalar_cost += stmt_cost;
}
auto_vec<bool, 20> subtree_life;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
{
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def)
{
/* Do not directly pass LIFE to the recursive call, copy it to
confine changes in the callee to the current child/subtree. */
subtree_life.safe_splice (*life);
scalar_cost += vect_bb_slp_scalar_cost (bb, child, &subtree_life);
subtree_life.truncate (0);
}
}
return scalar_cost;
}
/* Check if vectorization of the basic block is profitable. */
static bool
vect_bb_vectorization_profitable_p (bb_vec_info bb_vinfo)
{
vec<slp_instance> slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
slp_instance instance;
int i;
unsigned int vec_inside_cost = 0, vec_outside_cost = 0, scalar_cost = 0;
unsigned int vec_prologue_cost = 0, vec_epilogue_cost = 0;
/* Calculate scalar cost. */
FOR_EACH_VEC_ELT (slp_instances, i, instance)
{
auto_vec<bool, 20> life;
life.safe_grow_cleared (SLP_INSTANCE_GROUP_SIZE (instance));
scalar_cost += vect_bb_slp_scalar_cost (BB_VINFO_BB (bb_vinfo),
SLP_INSTANCE_TREE (instance),
&life);
}
/* Unset visited flag. */
for (gimple_stmt_iterator gsi = bb_vinfo->region_begin;
gsi_stmt (gsi) != gsi_stmt (bb_vinfo->region_end); gsi_next (&gsi))
gimple_set_visited (gsi_stmt (gsi), false);
/* Complete the target-specific cost calculation. */
finish_cost (BB_VINFO_TARGET_COST_DATA (bb_vinfo), &vec_prologue_cost,
&vec_inside_cost, &vec_epilogue_cost);
vec_outside_cost = vec_prologue_cost + vec_epilogue_cost;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
dump_printf (MSG_NOTE, " Vector inside of basic block cost: %d\n",
vec_inside_cost);
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n", vec_prologue_cost);
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n", vec_epilogue_cost);
dump_printf (MSG_NOTE, " Scalar cost of basic block: %d\n", scalar_cost);
}
/* Vectorization is profitable if its cost is more than the cost of scalar
version. Note that we err on the vector side for equal cost because
the cost estimate is otherwise quite pessimistic (constant uses are
free on the scalar side but cost a load on the vector side for
example). */
if (vec_outside_cost + vec_inside_cost > scalar_cost)
return false;
return true;
}
/* Check if the basic block can be vectorized. Returns a bb_vec_info
if so and sets fatal to true if failure is independent of
current_vector_size. */
static bb_vec_info
vect_slp_analyze_bb_1 (gimple_stmt_iterator region_begin,
gimple_stmt_iterator region_end,
vec<data_reference_p> datarefs, int n_stmts,
bool &fatal)
{
bb_vec_info bb_vinfo;
slp_instance instance;
int i;
poly_uint64 min_vf = 2;
/* The first group of checks is independent of the vector size. */
fatal = true;
if (n_stmts > PARAM_VALUE (PARAM_SLP_MAX_INSNS_IN_BB))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: too many instructions in "
"basic block.\n");
free_data_refs (datarefs);
return NULL;
}
bb_vinfo = new _bb_vec_info (region_begin, region_end);
if (!bb_vinfo)
return NULL;
BB_VINFO_DATAREFS (bb_vinfo) = datarefs;
/* Analyze the data references. */
if (!vect_analyze_data_refs (bb_vinfo, &min_vf))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unhandled data-ref in basic "
"block.\n");
delete bb_vinfo;
return NULL;
}
if (BB_VINFO_DATAREFS (bb_vinfo).length () < 2)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: not enough data-refs in "
"basic block.\n");
delete bb_vinfo;
return NULL;
}
if (!vect_analyze_data_ref_accesses (bb_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unhandled data access in "
"basic block.\n");
delete bb_vinfo;
return NULL;
}
/* If there are no grouped stores in the region there is no need
to continue with pattern recog as vect_analyze_slp will fail
anyway. */
if (bb_vinfo->grouped_stores.is_empty ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: no grouped stores in "
"basic block.\n");
delete bb_vinfo;
return NULL;
}
/* While the rest of the analysis below depends on it in some way. */
fatal = false;
vect_pattern_recog (bb_vinfo);
/* Check the SLP opportunities in the basic block, analyze and build SLP
trees. */
if (!vect_analyze_slp (bb_vinfo, n_stmts))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Failed to SLP the basic block.\n");
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: failed to find SLP opportunities "
"in basic block.\n");
}
delete bb_vinfo;
return NULL;
}
vect_record_base_alignments (bb_vinfo);
/* Analyze and verify the alignment of data references and the
dependence in the SLP instances. */
for (i = 0; BB_VINFO_SLP_INSTANCES (bb_vinfo).iterate (i, &instance); )
{
if (! vect_slp_analyze_and_verify_instance_alignment (instance)
|| ! vect_slp_analyze_instance_dependence (instance))
{
dump_printf_loc (MSG_NOTE, vect_location,
"removing SLP instance operations starting from: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
SLP_TREE_SCALAR_STMTS
(SLP_INSTANCE_TREE (instance))[0], 0);
vect_free_slp_instance (instance);
BB_VINFO_SLP_INSTANCES (bb_vinfo).ordered_remove (i);
continue;
}
/* Mark all the statements that we want to vectorize as pure SLP and
relevant. */
vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance));
i++;
}
if (! BB_VINFO_SLP_INSTANCES (bb_vinfo).length ())
{
delete bb_vinfo;
return NULL;
}
if (!vect_slp_analyze_operations (bb_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: bad operation in basic block.\n");
delete bb_vinfo;
return NULL;
}
/* Cost model: check if the vectorization is worthwhile. */
if (!unlimited_cost_model (NULL)
&& !vect_bb_vectorization_profitable_p (bb_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization is not "
"profitable.\n");
delete bb_vinfo;
return NULL;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Basic block will be vectorized using SLP\n");
return bb_vinfo;
}
/* Main entry for the BB vectorizer. Analyze and transform BB, returns
true if anything in the basic-block was vectorized. */
bool
vect_slp_bb (basic_block bb)
{
bb_vec_info bb_vinfo;
gimple_stmt_iterator gsi;
bool any_vectorized = false;
auto_vector_sizes vector_sizes;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "===vect_slp_analyze_bb===\n");
/* Autodetect first vector size we try. */
current_vector_size = 0;
targetm.vectorize.autovectorize_vector_sizes (&vector_sizes);
unsigned int next_size = 0;
gsi = gsi_start_bb (bb);
poly_uint64 autodetected_vector_size = 0;
while (1)
{
if (gsi_end_p (gsi))
break;
gimple_stmt_iterator region_begin = gsi;
vec<data_reference_p> datarefs = vNULL;
int insns = 0;
for (; !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
insns++;
if (gimple_location (stmt) != UNKNOWN_LOCATION)
vect_location = gimple_location (stmt);
if (!find_data_references_in_stmt (NULL, stmt, &datarefs))
break;
}
/* Skip leading unhandled stmts. */
if (gsi_stmt (region_begin) == gsi_stmt (gsi))
{
gsi_next (&gsi);
continue;
}
gimple_stmt_iterator region_end = gsi;
bool vectorized = false;
bool fatal = false;
bb_vinfo = vect_slp_analyze_bb_1 (region_begin, region_end,
datarefs, insns, fatal);
if (bb_vinfo
&& dbg_cnt (vect_slp))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "SLPing BB part\n");
vect_schedule_slp (bb_vinfo);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"basic block part vectorized\n");
vectorized = true;
}
delete bb_vinfo;
any_vectorized |= vectorized;
if (next_size == 0)
autodetected_vector_size = current_vector_size;
if (next_size < vector_sizes.length ()
&& known_eq (vector_sizes[next_size], autodetected_vector_size))
next_size += 1;
if (vectorized
|| next_size == vector_sizes.length ()
|| known_eq (current_vector_size, 0U)
/* If vect_slp_analyze_bb_1 signaled that analysis for all
vector sizes will fail do not bother iterating. */
|| fatal)
{
if (gsi_end_p (region_end))
break;
/* Skip the unhandled stmt. */
gsi_next (&gsi);
/* And reset vector sizes. */
current_vector_size = 0;
next_size = 0;
}
else
{
/* Try the next biggest vector size. */
current_vector_size = vector_sizes[next_size++];
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis with "
"vector size ");
dump_dec (MSG_NOTE, current_vector_size);
dump_printf (MSG_NOTE, "\n");
}
/* Start over. */
gsi = region_begin;
}
}
return any_vectorized;
}
/* Return 1 if vector type of boolean constant which is OPNUM
operand in statement STMT is a boolean vector. */
static bool
vect_mask_constant_operand_p (gimple *stmt, int opnum)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
enum tree_code code = gimple_expr_code (stmt);
tree op, vectype;
gimple *def_stmt;
enum vect_def_type dt;
/* For comparison and COND_EXPR type is chosen depending
on the other comparison operand. */
if (TREE_CODE_CLASS (code) == tcc_comparison)
{
if (opnum)
op = gimple_assign_rhs1 (stmt);
else
op = gimple_assign_rhs2 (stmt);
if (!vect_is_simple_use (op, stmt_vinfo->vinfo, &def_stmt,
&dt, &vectype))
gcc_unreachable ();
return !vectype || VECTOR_BOOLEAN_TYPE_P (vectype);
}
if (code == COND_EXPR)
{
tree cond = gimple_assign_rhs1 (stmt);
if (TREE_CODE (cond) == SSA_NAME)
op = cond;
else if (opnum)
op = TREE_OPERAND (cond, 1);
else
op = TREE_OPERAND (cond, 0);
if (!vect_is_simple_use (op, stmt_vinfo->vinfo, &def_stmt,
&dt, &vectype))
gcc_unreachable ();
return !vectype || VECTOR_BOOLEAN_TYPE_P (vectype);
}
return VECTOR_BOOLEAN_TYPE_P (STMT_VINFO_VECTYPE (stmt_vinfo));
}
/* Build a variable-length vector in which the elements in ELTS are repeated
to a fill NRESULTS vectors of type VECTOR_TYPE. Store the vectors in
RESULTS and add any new instructions to SEQ.
The approach we use is:
(1) Find a vector mode VM with integer elements of mode IM.
(2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of
ELTS' has mode IM. This involves creating NELTS' VIEW_CONVERT_EXPRs
from small vectors to IM.
(3) Duplicate each ELTS'[I] into a vector of mode VM.
(4) Use a tree of interleaving VEC_PERM_EXPRs to create VMs with the
correct byte contents.
(5) Use VIEW_CONVERT_EXPR to cast the final VMs to the required type.
We try to find the largest IM for which this sequence works, in order
to cut down on the number of interleaves. */
void
duplicate_and_interleave (gimple_seq *seq, tree vector_type, vec<tree> elts,
unsigned int nresults, vec<tree> &results)
{
unsigned int nelts = elts.length ();
tree element_type = TREE_TYPE (vector_type);
/* (1) Find a vector mode VM with integer elements of mode IM. */
unsigned int nvectors = 1;
tree new_vector_type;
tree permutes[2];
if (!can_duplicate_and_interleave_p (nelts, TYPE_MODE (element_type),
&nvectors, &new_vector_type,
permutes))
gcc_unreachable ();
/* Get a vector type that holds ELTS[0:NELTS/NELTS']. */
unsigned int partial_nelts = nelts / nvectors;
tree partial_vector_type = build_vector_type (element_type, partial_nelts);
tree_vector_builder partial_elts;
auto_vec<tree, 32> pieces (nvectors * 2);
pieces.quick_grow (nvectors * 2);
for (unsigned int i = 0; i < nvectors; ++i)
{
/* (2) Replace ELTS[0:NELTS] with ELTS'[0:NELTS'], where each element of
ELTS' has mode IM. */
partial_elts.new_vector (partial_vector_type, partial_nelts, 1);
for (unsigned int j = 0; j < partial_nelts; ++j)
partial_elts.quick_push (elts[i * partial_nelts + j]);
tree t = gimple_build_vector (seq, &partial_elts);
t = gimple_build (seq, VIEW_CONVERT_EXPR,
TREE_TYPE (new_vector_type), t);
/* (3) Duplicate each ELTS'[I] into a vector of mode VM. */
pieces[i] = gimple_build_vector_from_val (seq, new_vector_type, t);
}
/* (4) Use a tree of VEC_PERM_EXPRs to create a single VM with the
correct byte contents.
We need to repeat the following operation log2(nvectors) times:
out[i * 2] = VEC_PERM_EXPR (in[i], in[i + hi_start], lo_permute);
out[i * 2 + 1] = VEC_PERM_EXPR (in[i], in[i + hi_start], hi_permute);
However, if each input repeats every N elements and the VF is
a multiple of N * 2, the HI result is the same as the LO. */
unsigned int in_start = 0;
unsigned int out_start = nvectors;
unsigned int hi_start = nvectors / 2;
/* A bound on the number of outputs needed to produce NRESULTS results
in the final iteration. */
unsigned int noutputs_bound = nvectors * nresults;
for (unsigned int in_repeat = 1; in_repeat < nvectors; in_repeat *= 2)
{
noutputs_bound /= 2;
unsigned int limit = MIN (noutputs_bound, nvectors);
for (unsigned int i = 0; i < limit; ++i)
{
if ((i & 1) != 0
&& multiple_p (TYPE_VECTOR_SUBPARTS (new_vector_type),
2 * in_repeat))
{
pieces[out_start + i] = pieces[out_start + i - 1];
continue;
}
tree output = make_ssa_name (new_vector_type);
tree input1 = pieces[in_start + (i / 2)];
tree input2 = pieces[in_start + (i / 2) + hi_start];
gassign *stmt = gimple_build_assign (output, VEC_PERM_EXPR,
input1, input2,
permutes[i & 1]);
gimple_seq_add_stmt (seq, stmt);
pieces[out_start + i] = output;
}
std::swap (in_start, out_start);
}
/* (5) Use VIEW_CONVERT_EXPR to cast the final VM to the required type. */
results.reserve (nresults);
for (unsigned int i = 0; i < nresults; ++i)
if (i < nvectors)
results.quick_push (gimple_build (seq, VIEW_CONVERT_EXPR, vector_type,
pieces[in_start + i]));
else
results.quick_push (results[i - nvectors]);
}
/* For constant and loop invariant defs of SLP_NODE this function returns
(vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.
OP_NUM determines if we gather defs for operand 0 or operand 1 of the RHS of
scalar stmts. NUMBER_OF_VECTORS is the number of vector defs to create.
REDUC_INDEX is the index of the reduction operand in the statements, unless
it is -1. */
static void
vect_get_constant_vectors (tree op, slp_tree slp_node,
vec<tree> *vec_oprnds,
unsigned int op_num, unsigned int number_of_vectors)
{
vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
gimple *stmt = stmts[0];
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
unsigned HOST_WIDE_INT nunits;
tree vec_cst;
unsigned j, number_of_places_left_in_vector;
tree vector_type;
tree vop;
int group_size = stmts.length ();
unsigned int vec_num, i;
unsigned number_of_copies = 1;
vec<tree> voprnds;
voprnds.create (number_of_vectors);
bool constant_p, is_store;
tree neutral_op = NULL;
enum tree_code code = gimple_expr_code (stmt);
gimple_seq ctor_seq = NULL;
auto_vec<tree, 16> permute_results;
/* Check if vector type is a boolean vector. */
if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op))
&& vect_mask_constant_operand_p (stmt, op_num))
vector_type
= build_same_sized_truth_vector_type (STMT_VINFO_VECTYPE (stmt_vinfo));
else
vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
if (STMT_VINFO_DATA_REF (stmt_vinfo))
{
is_store = true;
op = gimple_assign_rhs1 (stmt);
}
else
is_store = false;
gcc_assert (op);
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
created vectors. It is greater than 1 if unrolling is performed.
For example, we have two scalar operands, s1 and s2 (e.g., group of
strided accesses of size two), while NUNITS is four (i.e., four scalars
of this type can be packed in a vector). The output vector will contain
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
will be 2).
If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
containing the operands.
For example, NUNITS is four as before, and the group size is 8
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
{s5, s6, s7, s8}. */
/* When using duplicate_and_interleave, we just need one element for
each scalar statement. */
if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
nunits = group_size;
number_of_copies = nunits * number_of_vectors / group_size;
number_of_places_left_in_vector = nunits;
constant_p = true;
tree_vector_builder elts (vector_type, nunits, 1);
elts.quick_grow (nunits);
bool place_after_defs = false;
for (j = 0; j < number_of_copies; j++)
{
for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
{
if (is_store)
op = gimple_assign_rhs1 (stmt);
else
{
switch (code)
{
case COND_EXPR:
{
tree cond = gimple_assign_rhs1 (stmt);
if (TREE_CODE (cond) == SSA_NAME)
op = gimple_op (stmt, op_num + 1);
else if (op_num == 0 || op_num == 1)
op = TREE_OPERAND (cond, op_num);
else
{
if (op_num == 2)
op = gimple_assign_rhs2 (stmt);
else
op = gimple_assign_rhs3 (stmt);
}
}
break;
case CALL_EXPR:
op = gimple_call_arg (stmt, op_num);
break;
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
op = gimple_op (stmt, op_num + 1);
/* Unlike the other binary operators, shifts/rotates have
the shift count being int, instead of the same type as
the lhs, so make sure the scalar is the right type if
we are dealing with vectors of
long long/long/short/char. */
if (op_num == 1 && TREE_CODE (op) == INTEGER_CST)
op = fold_convert (TREE_TYPE (vector_type), op);
break;
default:
op = gimple_op (stmt, op_num + 1);
break;
}
}
/* Create 'vect_ = {op0,op1,...,opn}'. */
number_of_places_left_in_vector--;
tree orig_op = op;
if (!types_compatible_p (TREE_TYPE (vector_type), TREE_TYPE (op)))
{
if (CONSTANT_CLASS_P (op))
{
if (VECTOR_BOOLEAN_TYPE_P (vector_type))
{
/* Can't use VIEW_CONVERT_EXPR for booleans because
of possibly different sizes of scalar value and
vector element. */
if (integer_zerop (op))
op = build_int_cst (TREE_TYPE (vector_type), 0);
else if (integer_onep (op))
op = build_all_ones_cst (TREE_TYPE (vector_type));
else
gcc_unreachable ();
}
else
op = fold_unary (VIEW_CONVERT_EXPR,
TREE_TYPE (vector_type), op);
gcc_assert (op && CONSTANT_CLASS_P (op));
}
else
{
tree new_temp = make_ssa_name (TREE_TYPE (vector_type));
gimple *init_stmt;
if (VECTOR_BOOLEAN_TYPE_P (vector_type))
{
tree true_val
= build_all_ones_cst (TREE_TYPE (vector_type));
tree false_val
= build_zero_cst (TREE_TYPE (vector_type));
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (op)));
init_stmt = gimple_build_assign (new_temp, COND_EXPR,
op, true_val,
false_val);
}
else
{
op = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type),
op);
init_stmt
= gimple_build_assign (new_temp, VIEW_CONVERT_EXPR,
op);
}
gimple_seq_add_stmt (&ctor_seq, init_stmt);
op = new_temp;
}
}
elts[number_of_places_left_in_vector] = op;
if (!CONSTANT_CLASS_P (op))
constant_p = false;
if (TREE_CODE (orig_op) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (orig_op)
&& STMT_VINFO_BB_VINFO (stmt_vinfo)
&& (STMT_VINFO_BB_VINFO (stmt_vinfo)->bb
== gimple_bb (SSA_NAME_DEF_STMT (orig_op))))
place_after_defs = true;
if (number_of_places_left_in_vector == 0)
{
if (constant_p
? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
: known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
vec_cst = gimple_build_vector (&ctor_seq, &elts);
else
{
if (vec_oprnds->is_empty ())
duplicate_and_interleave (&ctor_seq, vector_type, elts,
number_of_vectors,
permute_results);
vec_cst = permute_results[number_of_vectors - j - 1];
}
tree init;
gimple_stmt_iterator gsi;
if (place_after_defs)
{
gsi = gsi_for_stmt
(vect_find_last_scalar_stmt_in_slp (slp_node));
init = vect_init_vector (stmt, vec_cst, vector_type, &gsi);
}
else
init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
if (ctor_seq != NULL)
{
gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
gsi_insert_seq_before (&gsi, ctor_seq, GSI_SAME_STMT);
ctor_seq = NULL;
}
voprnds.quick_push (init);
place_after_defs = false;
number_of_places_left_in_vector = nunits;
constant_p = true;
elts.new_vector (vector_type, nunits, 1);
elts.quick_grow (nunits);
}
}
}
/* Since the vectors are created in the reverse order, we should invert
them. */
vec_num = voprnds.length ();
for (j = vec_num; j != 0; j--)
{
vop = voprnds[j - 1];
vec_oprnds->quick_push (vop);
}
voprnds.release ();
/* In case that VF is greater than the unrolling factor needed for the SLP
group of stmts, NUMBER_OF_VECTORS to be created is greater than
NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
to replicate the vectors. */
while (number_of_vectors > vec_oprnds->length ())
{
tree neutral_vec = NULL;
if (neutral_op)
{
if (!neutral_vec)
neutral_vec = build_vector_from_val (vector_type, neutral_op);
vec_oprnds->quick_push (neutral_vec);
}
else
{
for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
vec_oprnds->quick_push (vop);
}
}
}
/* Get vectorized definitions from SLP_NODE that contains corresponding
vectorized def-stmts. */
static void
vect_get_slp_vect_defs (slp_tree slp_node, vec<tree> *vec_oprnds)
{
tree vec_oprnd;
gimple *vec_def_stmt;
unsigned int i;
gcc_assert (SLP_TREE_VEC_STMTS (slp_node).exists ());
FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt)
{
gcc_assert (vec_def_stmt);
if (gimple_code (vec_def_stmt) == GIMPLE_PHI)
vec_oprnd = gimple_phi_result (vec_def_stmt);
else
vec_oprnd = gimple_get_lhs (vec_def_stmt);
vec_oprnds->quick_push (vec_oprnd);
}
}
/* Get vectorized definitions for SLP_NODE.
If the scalar definitions are loop invariants or constants, collect them and
call vect_get_constant_vectors() to create vector stmts.
Otherwise, the def-stmts must be already vectorized and the vectorized stmts
must be stored in the corresponding child of SLP_NODE, and we call
vect_get_slp_vect_defs () to retrieve them. */
void
vect_get_slp_defs (vec<tree> ops, slp_tree slp_node,
vec<vec<tree> > *vec_oprnds)
{
gimple *first_stmt;
int number_of_vects = 0, i;
unsigned int child_index = 0;
HOST_WIDE_INT lhs_size_unit, rhs_size_unit;
slp_tree child = NULL;
vec<tree> vec_defs;
tree oprnd;
bool vectorized_defs;
first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
FOR_EACH_VEC_ELT (ops, i, oprnd)
{
/* For each operand we check if it has vectorized definitions in a child
node or we need to create them (for invariants and constants). We
check if the LHS of the first stmt of the next child matches OPRND.
If it does, we found the correct child. Otherwise, we call
vect_get_constant_vectors (), and not advance CHILD_INDEX in order
to check this child node for the next operand. */
vectorized_defs = false;
if (SLP_TREE_CHILDREN (slp_node).length () > child_index)
{
child = SLP_TREE_CHILDREN (slp_node)[child_index];
/* We have to check both pattern and original def, if available. */
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def)
{
gimple *first_def = SLP_TREE_SCALAR_STMTS (child)[0];
gimple *related
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first_def));
tree first_def_op;
if (gimple_code (first_def) == GIMPLE_PHI)
first_def_op = gimple_phi_result (first_def);
else
first_def_op = gimple_get_lhs (first_def);
if (operand_equal_p (oprnd, first_def_op, 0)
|| (related
&& operand_equal_p (oprnd, gimple_get_lhs (related), 0)))
{
/* The number of vector defs is determined by the number of
vector statements in the node from which we get those
statements. */
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (child);
vectorized_defs = true;
child_index++;
}
}
else
child_index++;
}
if (!vectorized_defs)
{
if (i == 0)
{
number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
/* Number of vector stmts was calculated according to LHS in
vect_schedule_slp_instance (), fix it by replacing LHS with
RHS, if necessary. See vect_get_smallest_scalar_type () for
details. */
vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
&rhs_size_unit);
if (rhs_size_unit != lhs_size_unit)
{
number_of_vects *= rhs_size_unit;
number_of_vects /= lhs_size_unit;
}
}
}
/* Allocate memory for vectorized defs. */
vec_defs = vNULL;
vec_defs.create (number_of_vects);
/* For reduction defs we call vect_get_constant_vectors (), since we are
looking for initial loop invariant values. */
if (vectorized_defs)
/* The defs are already vectorized. */
vect_get_slp_vect_defs (child, &vec_defs);
else
/* Build vectors from scalar defs. */
vect_get_constant_vectors (oprnd, slp_node, &vec_defs, i,
number_of_vects);
vec_oprnds->quick_push (vec_defs);
}
}
/* Generate vector permute statements from a list of loads in DR_CHAIN.
If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
permute statements for the SLP node NODE of the SLP instance
SLP_NODE_INSTANCE. */
bool
vect_transform_slp_perm_load (slp_tree node, vec<tree> dr_chain,
gimple_stmt_iterator *gsi, poly_uint64 vf,
slp_instance slp_node_instance, bool analyze_only,
unsigned *n_perms)
{
gimple *stmt = SLP_TREE_SCALAR_STMTS (node)[0];
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree mask_element_type = NULL_TREE, mask_type;
int vec_index = 0;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
unsigned int mask_element;
machine_mode mode;
unsigned HOST_WIDE_INT nunits, const_vf;
if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
return false;
stmt_info = vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info));
mode = TYPE_MODE (vectype);
/* At the moment, all permutations are represented using per-element
indices, so we can't cope with variable vector lengths or
vectorization factors. */
if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits)
|| !vf.is_constant (&const_vf))
return false;
/* The generic VEC_PERM_EXPR code always uses an integral type of the
same size as the vector element being permuted. */
mask_element_type = lang_hooks.types.type_for_mode
(int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))).require (), 1);
mask_type = get_vectype_for_scalar_type (mask_element_type);
vec_perm_builder mask (nunits, nunits, 1);
mask.quick_grow (nunits);
vec_perm_indices indices;
/* Initialize the vect stmts of NODE to properly insert the generated
stmts later. */
if (! analyze_only)
for (unsigned i = SLP_TREE_VEC_STMTS (node).length ();
i < SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
SLP_TREE_VEC_STMTS (node).quick_push (NULL);
/* Generate permutation masks for every NODE. Number of masks for each NODE
is equal to GROUP_SIZE.
E.g., we have a group of three nodes with three loads from the same
location in each node, and the vector size is 4. I.e., we have a
a0b0c0a1b1c1... sequence and we need to create the following vectors:
for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
...
The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9}.
The last mask is illegal since we assume two operands for permute
operation, and the mask element values can't be outside that range.
Hence, the last mask must be converted into {2,5,5,5}.
For the first two permutations we need the first and the second input
vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
we need the second and the third vectors: {b1,c1,a2,b2} and
{c2,a3,b3,c3}. */
int vect_stmts_counter = 0;
unsigned int index = 0;
int first_vec_index = -1;
int second_vec_index = -1;
bool noop_p = true;
*n_perms = 0;
for (unsigned int j = 0; j < const_vf; j++)
{
for (int k = 0; k < group_size; k++)
{
unsigned int i = (SLP_TREE_LOAD_PERMUTATION (node)[k]
+ j * STMT_VINFO_GROUP_SIZE (stmt_info));
vec_index = i / nunits;
mask_element = i % nunits;
if (vec_index == first_vec_index
|| first_vec_index == -1)
{
first_vec_index = vec_index;
}
else if (vec_index == second_vec_index
|| second_vec_index == -1)
{
second_vec_index = vec_index;
mask_element += nunits;
}
else
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"permutation requires at "
"least three vectors ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
stmt, 0);
}
gcc_assert (analyze_only);
return false;
}
gcc_assert (mask_element < 2 * nunits);
if (mask_element != index)
noop_p = false;
mask[index++] = mask_element;
if (index == nunits && !noop_p)
{
indices.new_vector (mask, 2, nunits);
if (!can_vec_perm_const_p (mode, indices))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION,
vect_location,
"unsupported vect permute { ");
for (i = 0; i < nunits; ++i)
{
dump_dec (MSG_MISSED_OPTIMIZATION, mask[i]);
dump_printf (MSG_MISSED_OPTIMIZATION, " ");
}
dump_printf (MSG_MISSED_OPTIMIZATION, "}\n");
}
gcc_assert (analyze_only);
return false;
}
++*n_perms;
}
if (index == nunits)
{
if (!analyze_only)
{
tree mask_vec = NULL_TREE;
if (! noop_p)
mask_vec = vec_perm_indices_to_tree (mask_type, indices);
if (second_vec_index == -1)
second_vec_index = first_vec_index;
/* Generate the permute statement if necessary. */
tree first_vec = dr_chain[first_vec_index];
tree second_vec = dr_chain[second_vec_index];
gimple *perm_stmt;
if (! noop_p)
{
tree perm_dest
= vect_create_destination_var (gimple_assign_lhs (stmt),
vectype);
perm_dest = make_ssa_name (perm_dest);
perm_stmt = gimple_build_assign (perm_dest,
VEC_PERM_EXPR,
first_vec, second_vec,
mask_vec);
vect_finish_stmt_generation (stmt, perm_stmt, gsi);
}
else
/* If mask was NULL_TREE generate the requested
identity transform. */
perm_stmt = SSA_NAME_DEF_STMT (first_vec);
/* Store the vector statement in NODE. */
SLP_TREE_VEC_STMTS (node)[vect_stmts_counter++] = perm_stmt;
}
index = 0;
first_vec_index = -1;
second_vec_index = -1;
noop_p = true;
}
}
}
return true;
}
typedef hash_map <vec <gimple *>, slp_tree,
simple_hashmap_traits <bst_traits, slp_tree> >
scalar_stmts_to_slp_tree_map_t;
/* Vectorize SLP instance tree in postorder. */
static bool
vect_schedule_slp_instance (slp_tree node, slp_instance instance,
scalar_stmts_to_slp_tree_map_t *bst_map)
{
gimple *stmt;
bool grouped_store, is_store;
gimple_stmt_iterator si;
stmt_vec_info stmt_info;
unsigned int group_size;
tree vectype;
int i, j;
slp_tree child;
if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
return false;
/* See if we have already vectorized the same set of stmts and reuse their
vectorized stmts. */
if (slp_tree *leader = bst_map->get (SLP_TREE_SCALAR_STMTS (node)))
{
SLP_TREE_VEC_STMTS (node).safe_splice (SLP_TREE_VEC_STMTS (*leader));
SLP_TREE_NUMBER_OF_VEC_STMTS (node)
= SLP_TREE_NUMBER_OF_VEC_STMTS (*leader);
return false;
}
bst_map->put (SLP_TREE_SCALAR_STMTS (node).copy (), node);
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_schedule_slp_instance (child, instance, bst_map);
/* Push SLP node def-type to stmts. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (child), j, stmt)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) = SLP_TREE_DEF_TYPE (child);
stmt = SLP_TREE_SCALAR_STMTS (node)[0];
stmt_info = vinfo_for_stmt (stmt);
/* VECTYPE is the type of the destination. */
vectype = STMT_VINFO_VECTYPE (stmt_info);
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
group_size = SLP_INSTANCE_GROUP_SIZE (instance);
if (!SLP_TREE_VEC_STMTS (node).exists ())
SLP_TREE_VEC_STMTS (node).create (SLP_TREE_NUMBER_OF_VEC_STMTS (node));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE,vect_location,
"------>vectorizing SLP node starting from: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
/* Vectorized stmts go before the last scalar stmt which is where
all uses are ready. */
si = gsi_for_stmt (vect_find_last_scalar_stmt_in_slp (node));
/* Mark the first element of the reduction chain as reduction to properly
transform the node. In the analysis phase only the last element of the
chain is marked as reduction. */
if (GROUP_FIRST_ELEMENT (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)
&& GROUP_FIRST_ELEMENT (stmt_info) == stmt)
{
STMT_VINFO_DEF_TYPE (stmt_info) = vect_reduction_def;
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
}
/* Handle two-operation SLP nodes by vectorizing the group with
both operations and then performing a merge. */
if (SLP_TREE_TWO_OPERATORS (node))
{
enum tree_code code0 = gimple_assign_rhs_code (stmt);
enum tree_code ocode = ERROR_MARK;
gimple *ostmt;
vec_perm_builder mask (group_size, group_size, 1);
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, ostmt)
if (gimple_assign_rhs_code (ostmt) != code0)
{
mask.quick_push (1);
ocode = gimple_assign_rhs_code (ostmt);
}
else
mask.quick_push (0);
if (ocode != ERROR_MARK)
{
vec<gimple *> v0;
vec<gimple *> v1;
unsigned j;
tree tmask = NULL_TREE;
vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
v0 = SLP_TREE_VEC_STMTS (node).copy ();
SLP_TREE_VEC_STMTS (node).truncate (0);
gimple_assign_set_rhs_code (stmt, ocode);
vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
gimple_assign_set_rhs_code (stmt, code0);
v1 = SLP_TREE_VEC_STMTS (node).copy ();
SLP_TREE_VEC_STMTS (node).truncate (0);
tree meltype = build_nonstandard_integer_type
(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype))), 1);
tree mvectype = get_same_sized_vectype (meltype, vectype);
unsigned k = 0, l;
for (j = 0; j < v0.length (); ++j)
{
/* Enforced by vect_build_slp_tree, which rejects variable-length
vectors for SLP_TREE_TWO_OPERATORS. */
unsigned int const_nunits = nunits.to_constant ();
tree_vector_builder melts (mvectype, const_nunits, 1);
for (l = 0; l < const_nunits; ++l)
{
if (k >= group_size)
k = 0;
tree t = build_int_cst (meltype,
mask[k++] * const_nunits + l);
melts.quick_push (t);
}
tmask = melts.build ();
/* ??? Not all targets support a VEC_PERM_EXPR with a
constant mask that would translate to a vec_merge RTX
(with their vec_perm_const_ok). We can either not
vectorize in that case or let veclower do its job.
Unfortunately that isn't too great and at least for
plus/minus we'd eventually like to match targets
vector addsub instructions. */
gimple *vstmt;
vstmt = gimple_build_assign (make_ssa_name (vectype),
VEC_PERM_EXPR,
gimple_assign_lhs (v0[j]),
gimple_assign_lhs (v1[j]), tmask);
vect_finish_stmt_generation (stmt, vstmt, &si);
SLP_TREE_VEC_STMTS (node).quick_push (vstmt);
}
v0.release ();
v1.release ();
return false;
}
}
is_store = vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
/* Restore stmt def-types. */
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
if (SLP_TREE_DEF_TYPE (child) != vect_internal_def)
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (child), j, stmt)
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) = vect_internal_def;
return is_store;
}
/* Replace scalar calls from SLP node NODE with setting of their lhs to zero.
For loop vectorization this is done in vectorizable_call, but for SLP
it needs to be deferred until end of vect_schedule_slp, because multiple
SLP instances may refer to the same scalar stmt. */
static void
vect_remove_slp_scalar_calls (slp_tree node)
{
gimple *stmt, *new_stmt;
gimple_stmt_iterator gsi;
int i;
slp_tree child;
tree lhs;
stmt_vec_info stmt_info;
if (SLP_TREE_DEF_TYPE (node) != vect_internal_def)
return;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
vect_remove_slp_scalar_calls (child);
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
{
if (!is_gimple_call (stmt) || gimple_bb (stmt) == NULL)
continue;
stmt_info = vinfo_for_stmt (stmt);
if (stmt_info == NULL
|| is_pattern_stmt_p (stmt_info)
|| !PURE_SLP_STMT (stmt_info))
continue;
lhs = gimple_call_lhs (stmt);
new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
set_vinfo_for_stmt (new_stmt, stmt_info);
set_vinfo_for_stmt (stmt, NULL);
STMT_VINFO_STMT (stmt_info) = new_stmt;
gsi = gsi_for_stmt (stmt);
gsi_replace (&gsi, new_stmt, false);
SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
}
}
/* Generate vector code for all SLP instances in the loop/basic block. */
bool
vect_schedule_slp (vec_info *vinfo)
{
vec<slp_instance> slp_instances;
slp_instance instance;
unsigned int i;
bool is_store = false;
scalar_stmts_to_slp_tree_map_t *bst_map
= new scalar_stmts_to_slp_tree_map_t ();
slp_instances = vinfo->slp_instances;
FOR_EACH_VEC_ELT (slp_instances, i, instance)
{
/* Schedule the tree of INSTANCE. */
is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
instance, bst_map);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vectorizing stmts using SLP.\n");
}
delete bst_map;
FOR_EACH_VEC_ELT (slp_instances, i, instance)
{
slp_tree root = SLP_INSTANCE_TREE (instance);
gimple *store;
unsigned int j;
gimple_stmt_iterator gsi;
/* Remove scalar call stmts. Do not do this for basic-block
vectorization as not all uses may be vectorized.
??? Why should this be necessary? DCE should be able to
remove the stmts itself.
??? For BB vectorization we can as well remove scalar
stmts starting from the SLP tree root if they have no
uses. */
if (is_a <loop_vec_info> (vinfo))
vect_remove_slp_scalar_calls (root);
for (j = 0; SLP_TREE_SCALAR_STMTS (root).iterate (j, &store)
&& j < SLP_INSTANCE_GROUP_SIZE (instance); j++)
{
if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (store)))
break;
if (is_pattern_stmt_p (vinfo_for_stmt (store)))
store = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (store));
/* Free the attached stmt_vec_info and remove the stmt. */
gsi = gsi_for_stmt (store);
unlink_stmt_vdef (store);
gsi_remove (&gsi, true);
release_defs (store);
free_stmt_vec_info (store);
}
}
return is_store;
}
|