1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
|
/* Operations with very long integers.
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "selftest.h"
#define HOST_BITS_PER_HALF_WIDE_INT 32
#if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
# define HOST_HALF_WIDE_INT long
#elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
# define HOST_HALF_WIDE_INT int
#else
#error Please add support for HOST_HALF_WIDE_INT
#endif
#define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
/* Do not include longlong.h when compiler is clang-based. See PR61146. */
#if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
typedef unsigned HOST_HALF_WIDE_INT UHWtype;
typedef unsigned HOST_WIDE_INT UWtype;
typedef unsigned int UQItype __attribute__ ((mode (QI)));
typedef unsigned int USItype __attribute__ ((mode (SI)));
typedef unsigned int UDItype __attribute__ ((mode (DI)));
#if W_TYPE_SIZE == 32
typedef unsigned int UDWtype __attribute__ ((mode (DI)));
#else
typedef unsigned int UDWtype __attribute__ ((mode (TI)));
#endif
#include "longlong.h"
#endif
static const HOST_WIDE_INT zeros[WIDE_INT_MAX_ELTS] = {};
/*
* Internal utilities.
*/
/* Quantities to deal with values that hold half of a wide int. Used
in multiply and divide. */
#define HALF_INT_MASK ((HOST_WIDE_INT_1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
#define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
#define BLOCKS_NEEDED(PREC) \
(PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
#define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
/* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
based on the top existing bit of VAL. */
static unsigned HOST_WIDE_INT
safe_uhwi (const HOST_WIDE_INT *val, unsigned int len, unsigned int i)
{
return i < len ? val[i] : val[len - 1] < 0 ? HOST_WIDE_INT_M1 : 0;
}
/* Convert the integer in VAL to canonical form, returning its new length.
LEN is the number of blocks currently in VAL and PRECISION is the number
of bits in the integer it represents.
This function only changes the representation, not the value. */
static unsigned int
canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision)
{
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
HOST_WIDE_INT top;
int i;
if (len > blocks_needed)
len = blocks_needed;
if (len == 1)
return len;
top = val[len - 1];
if (len * HOST_BITS_PER_WIDE_INT > precision)
val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT);
if (top != 0 && top != (HOST_WIDE_INT)-1)
return len;
/* At this point we know that the top is either 0 or -1. Find the
first block that is not a copy of this. */
for (i = len - 2; i >= 0; i--)
{
HOST_WIDE_INT x = val[i];
if (x != top)
{
if (SIGN_MASK (x) == top)
return i + 1;
/* We need an extra block because the top bit block i does
not match the extension. */
return i + 2;
}
}
/* The number is 0 or -1. */
return 1;
}
/* VAL[0] is the unsigned result of an operation. Canonize it by adding
another 0 block if needed, and return number of blocks needed. */
static inline unsigned int
canonize_uhwi (HOST_WIDE_INT *val, unsigned int precision)
{
if (val[0] < 0 && precision > HOST_BITS_PER_WIDE_INT)
{
val[1] = 0;
return 2;
}
return 1;
}
/*
* Conversion routines in and out of wide_int.
*/
/* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
result for an integer with precision PRECISION. Return the length
of VAL (after any canonization. */
unsigned int
wi::from_array (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int precision, bool need_canon)
{
for (unsigned i = 0; i < xlen; i++)
val[i] = xval[i];
return need_canon ? canonize (val, xlen, precision) : xlen;
}
/* Construct a wide int from a buffer of length LEN. BUFFER will be
read according to byte endianness and word endianness of the target.
Only the lower BUFFER_LEN bytes of the result are set; the remaining
high bytes are cleared. */
wide_int
wi::from_buffer (const unsigned char *buffer, unsigned int buffer_len)
{
unsigned int precision = buffer_len * BITS_PER_UNIT;
wide_int result = wide_int::create (precision);
unsigned int words = buffer_len / UNITS_PER_WORD;
/* We have to clear all the bits ourself, as we merely or in values
below. */
unsigned int len = BLOCKS_NEEDED (precision);
HOST_WIDE_INT *val = result.write_val ();
for (unsigned int i = 0; i < len; ++i)
val[i] = 0;
for (unsigned int byte = 0; byte < buffer_len; byte++)
{
unsigned int offset;
unsigned int index;
unsigned int bitpos = byte * BITS_PER_UNIT;
unsigned HOST_WIDE_INT value;
if (buffer_len > UNITS_PER_WORD)
{
unsigned int word = byte / UNITS_PER_WORD;
if (WORDS_BIG_ENDIAN)
word = (words - 1) - word;
offset = word * UNITS_PER_WORD;
if (BYTES_BIG_ENDIAN)
offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
else
offset += byte % UNITS_PER_WORD;
}
else
offset = BYTES_BIG_ENDIAN ? (buffer_len - 1) - byte : byte;
value = (unsigned HOST_WIDE_INT) buffer[offset];
index = bitpos / HOST_BITS_PER_WIDE_INT;
val[index] |= value << (bitpos % HOST_BITS_PER_WIDE_INT);
}
result.set_len (canonize (val, len, precision));
return result;
}
/* Sets RESULT from X, the sign is taken according to SGN. */
void
wi::to_mpz (const wide_int_ref &x, mpz_t result, signop sgn)
{
int len = x.get_len ();
const HOST_WIDE_INT *v = x.get_val ();
int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision ();
if (wi::neg_p (x, sgn))
{
/* We use ones complement to avoid -x80..0 edge case that -
won't work on. */
HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
for (int i = 0; i < len; i++)
t[i] = ~v[i];
if (excess > 0)
t[len - 1] = (unsigned HOST_WIDE_INT) t[len - 1] << excess >> excess;
mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
mpz_com (result, result);
}
else if (excess > 0)
{
HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
for (int i = 0; i < len - 1; i++)
t[i] = v[i];
t[len - 1] = (unsigned HOST_WIDE_INT) v[len - 1] << excess >> excess;
mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
}
else
mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, v);
}
/* Returns X converted to TYPE. If WRAP is true, then out-of-range
values of VAL will be wrapped; otherwise, they will be set to the
appropriate minimum or maximum TYPE bound. */
wide_int
wi::from_mpz (const_tree type, mpz_t x, bool wrap)
{
size_t count, numb;
unsigned int prec = TYPE_PRECISION (type);
wide_int res = wide_int::create (prec);
if (!wrap)
{
mpz_t min, max;
mpz_init (min);
mpz_init (max);
get_type_static_bounds (type, min, max);
if (mpz_cmp (x, min) < 0)
mpz_set (x, min);
else if (mpz_cmp (x, max) > 0)
mpz_set (x, max);
mpz_clear (min);
mpz_clear (max);
}
/* Determine the number of unsigned HOST_WIDE_INTs that are required
for representing the absolute value. The code to calculate count is
extracted from the GMP manual, section "Integer Import and Export":
http://gmplib.org/manual/Integer-Import-and-Export.html */
numb = CHAR_BIT * sizeof (HOST_WIDE_INT);
count = (mpz_sizeinbase (x, 2) + numb - 1) / numb;
HOST_WIDE_INT *val = res.write_val ();
/* Read the absolute value.
Write directly to the wide_int storage if possible, otherwise leave
GMP to allocate the memory for us. It might be slightly more efficient
to use mpz_tdiv_r_2exp for the latter case, but the situation is
pathological and it seems safer to operate on the original mpz value
in all cases. */
void *valres = mpz_export (count <= WIDE_INT_MAX_ELTS ? val : 0,
&count, -1, sizeof (HOST_WIDE_INT), 0, 0, x);
if (count < 1)
{
val[0] = 0;
count = 1;
}
count = MIN (count, BLOCKS_NEEDED (prec));
if (valres != val)
{
memcpy (val, valres, count * sizeof (HOST_WIDE_INT));
free (valres);
}
/* Zero-extend the absolute value to PREC bits. */
if (count < BLOCKS_NEEDED (prec) && val[count - 1] < 0)
val[count++] = 0;
else
count = canonize (val, count, prec);
res.set_len (count);
if (mpz_sgn (x) < 0)
res = -res;
return res;
}
/*
* Largest and smallest values in a mode.
*/
/* Return the largest SGNed number that is representable in PRECISION bits.
TODO: There is still code from the double_int era that trys to
make up for the fact that double int's could not represent the
min and max values of all types. This code should be removed
because the min and max values can always be represented in
wide_ints and int-csts. */
wide_int
wi::max_value (unsigned int precision, signop sgn)
{
gcc_checking_assert (precision != 0);
if (sgn == UNSIGNED)
/* The unsigned max is just all ones. */
return shwi (-1, precision);
else
/* The signed max is all ones except the top bit. This must be
explicitly represented. */
return mask (precision - 1, false, precision);
}
/* Return the largest SGNed number that is representable in PRECISION bits. */
wide_int
wi::min_value (unsigned int precision, signop sgn)
{
gcc_checking_assert (precision != 0);
if (sgn == UNSIGNED)
return uhwi (0, precision);
else
/* The signed min is all zeros except the top bit. This must be
explicitly represented. */
return wi::set_bit_in_zero (precision - 1, precision);
}
/*
* Public utilities.
*/
/* Convert the number represented by XVAL, XLEN and XPRECISION, which has
signedness SGN, to an integer that has PRECISION bits. Store the blocks
in VAL and return the number of blocks used.
This function can handle both extension (PRECISION > XPRECISION)
and truncation (PRECISION < XPRECISION). */
unsigned int
wi::force_to_size (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int xprecision,
unsigned int precision, signop sgn)
{
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
unsigned int len = blocks_needed < xlen ? blocks_needed : xlen;
for (unsigned i = 0; i < len; i++)
val[i] = xval[i];
if (precision > xprecision)
{
unsigned int small_xprecision = xprecision % HOST_BITS_PER_WIDE_INT;
/* Expanding. */
if (sgn == UNSIGNED)
{
if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
else if (val[len - 1] < 0)
{
while (len < BLOCKS_NEEDED (xprecision))
val[len++] = -1;
if (small_xprecision)
val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
else
val[len++] = 0;
}
}
else
{
if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
val[len - 1] = sext_hwi (val[len - 1], small_xprecision);
}
}
len = canonize (val, len, precision);
return len;
}
/* This function hides the fact that we cannot rely on the bits beyond
the precision. This issue comes up in the relational comparisions
where we do allow comparisons of values of different precisions. */
static inline HOST_WIDE_INT
selt (const HOST_WIDE_INT *a, unsigned int len,
unsigned int blocks_needed, unsigned int small_prec,
unsigned int index, signop sgn)
{
HOST_WIDE_INT val;
if (index < len)
val = a[index];
else if (index < blocks_needed || sgn == SIGNED)
/* Signed or within the precision. */
val = SIGN_MASK (a[len - 1]);
else
/* Unsigned extension beyond the precision. */
val = 0;
if (small_prec && index == blocks_needed - 1)
return (sgn == SIGNED
? sext_hwi (val, small_prec)
: zext_hwi (val, small_prec));
else
return val;
}
/* Find the highest bit represented in a wide int. This will in
general have the same value as the sign bit. */
static inline HOST_WIDE_INT
top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec)
{
int excess = len * HOST_BITS_PER_WIDE_INT - prec;
unsigned HOST_WIDE_INT val = a[len - 1];
if (excess > 0)
val <<= excess;
return val >> (HOST_BITS_PER_WIDE_INT - 1);
}
/*
* Comparisons, note that only equality is an operator. The other
* comparisons cannot be operators since they are inherently signed or
* unsigned and C++ has no such operators.
*/
/* Return true if OP0 == OP1. */
bool
wi::eq_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
const HOST_WIDE_INT *op1, unsigned int op1len,
unsigned int prec)
{
int l0 = op0len - 1;
unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
if (op0len != op1len)
return false;
if (op0len == BLOCKS_NEEDED (prec) && small_prec)
{
/* It does not matter if we zext or sext here, we just have to
do both the same way. */
if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec))
return false;
l0--;
}
while (l0 >= 0)
if (op0[l0] != op1[l0])
return false;
else
l0--;
return true;
}
/* Return true if OP0 < OP1 using signed comparisons. */
bool
wi::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
unsigned int precision,
const HOST_WIDE_INT *op1, unsigned int op1len)
{
HOST_WIDE_INT s0, s1;
unsigned HOST_WIDE_INT u0, u1;
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
/* Only the top block is compared as signed. The rest are unsigned
comparisons. */
s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
if (s0 < s1)
return true;
if (s0 > s1)
return false;
l--;
while (l >= 0)
{
u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
if (u0 < u1)
return true;
if (u0 > u1)
return false;
l--;
}
return false;
}
/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
signed compares. */
int
wi::cmps_large (const HOST_WIDE_INT *op0, unsigned int op0len,
unsigned int precision,
const HOST_WIDE_INT *op1, unsigned int op1len)
{
HOST_WIDE_INT s0, s1;
unsigned HOST_WIDE_INT u0, u1;
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
/* Only the top block is compared as signed. The rest are unsigned
comparisons. */
s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
if (s0 < s1)
return -1;
if (s0 > s1)
return 1;
l--;
while (l >= 0)
{
u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
if (u0 < u1)
return -1;
if (u0 > u1)
return 1;
l--;
}
return 0;
}
/* Return true if OP0 < OP1 using unsigned comparisons. */
bool
wi::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
unsigned int precision,
const HOST_WIDE_INT *op1, unsigned int op1len)
{
unsigned HOST_WIDE_INT x0;
unsigned HOST_WIDE_INT x1;
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
while (l >= 0)
{
x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
if (x0 < x1)
return true;
if (x0 > x1)
return false;
l--;
}
return false;
}
/* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
unsigned compares. */
int
wi::cmpu_large (const HOST_WIDE_INT *op0, unsigned int op0len,
unsigned int precision,
const HOST_WIDE_INT *op1, unsigned int op1len)
{
unsigned HOST_WIDE_INT x0;
unsigned HOST_WIDE_INT x1;
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
int l = MAX (op0len - 1, op1len - 1);
while (l >= 0)
{
x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
if (x0 < x1)
return -1;
if (x0 > x1)
return 1;
l--;
}
return 0;
}
/*
* Extension.
*/
/* Sign-extend the number represented by XVAL and XLEN into VAL,
starting at OFFSET. Return the number of blocks in VAL. Both XVAL
and VAL have PRECISION bits. */
unsigned int
wi::sext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int precision, unsigned int offset)
{
unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
/* Extending beyond the precision is a no-op. If we have only stored
OFFSET bits or fewer, the rest are already signs. */
if (offset >= precision || len >= xlen)
{
for (unsigned i = 0; i < xlen; ++i)
val[i] = xval[i];
return xlen;
}
unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
for (unsigned int i = 0; i < len; i++)
val[i] = xval[i];
if (suboffset > 0)
{
val[len] = sext_hwi (xval[len], suboffset);
len += 1;
}
return canonize (val, len, precision);
}
/* Zero-extend the number represented by XVAL and XLEN into VAL,
starting at OFFSET. Return the number of blocks in VAL. Both XVAL
and VAL have PRECISION bits. */
unsigned int
wi::zext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int precision, unsigned int offset)
{
unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
/* Extending beyond the precision is a no-op. If we have only stored
OFFSET bits or fewer, and the upper stored bit is zero, then there
is nothing to do. */
if (offset >= precision || (len >= xlen && xval[xlen - 1] >= 0))
{
for (unsigned i = 0; i < xlen; ++i)
val[i] = xval[i];
return xlen;
}
unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
for (unsigned int i = 0; i < len; i++)
val[i] = i < xlen ? xval[i] : -1;
if (suboffset > 0)
val[len] = zext_hwi (len < xlen ? xval[len] : -1, suboffset);
else
val[len] = 0;
return canonize (val, len + 1, precision);
}
/*
* Masking, inserting, shifting, rotating.
*/
/* Insert WIDTH bits from Y into X starting at START. */
wide_int
wi::insert (const wide_int &x, const wide_int &y, unsigned int start,
unsigned int width)
{
wide_int result;
wide_int mask;
wide_int tmp;
unsigned int precision = x.get_precision ();
if (start >= precision)
return x;
gcc_checking_assert (precision >= width);
if (start + width >= precision)
width = precision - start;
mask = wi::shifted_mask (start, width, false, precision);
tmp = wi::lshift (wide_int::from (y, precision, UNSIGNED), start);
result = tmp & mask;
tmp = wi::bit_and_not (x, mask);
result = result | tmp;
return result;
}
/* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
bits. */
unsigned int
wi::set_bit_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int precision, unsigned int bit)
{
unsigned int block = bit / HOST_BITS_PER_WIDE_INT;
unsigned int subbit = bit % HOST_BITS_PER_WIDE_INT;
if (block + 1 >= xlen)
{
/* The operation either affects the last current block or needs
a new block. */
unsigned int len = block + 1;
for (unsigned int i = 0; i < len; i++)
val[i] = safe_uhwi (xval, xlen, i);
val[block] |= HOST_WIDE_INT_1U << subbit;
/* If the bit we just set is at the msb of the block, make sure
that any higher bits are zeros. */
if (bit + 1 < precision && subbit == HOST_BITS_PER_WIDE_INT - 1)
val[len++] = 0;
return len;
}
else
{
for (unsigned int i = 0; i < xlen; i++)
val[i] = xval[i];
val[block] |= HOST_WIDE_INT_1U << subbit;
return canonize (val, xlen, precision);
}
}
/* bswap THIS. */
wide_int
wide_int_storage::bswap () const
{
wide_int result = wide_int::create (precision);
unsigned int i, s;
unsigned int len = BLOCKS_NEEDED (precision);
unsigned int xlen = get_len ();
const HOST_WIDE_INT *xval = get_val ();
HOST_WIDE_INT *val = result.write_val ();
/* This is not a well defined operation if the precision is not a
multiple of 8. */
gcc_assert ((precision & 0x7) == 0);
for (i = 0; i < len; i++)
val[i] = 0;
/* Only swap the bytes that are not the padding. */
for (s = 0; s < precision; s += 8)
{
unsigned int d = precision - s - 8;
unsigned HOST_WIDE_INT byte;
unsigned int block = s / HOST_BITS_PER_WIDE_INT;
unsigned int offset = s & (HOST_BITS_PER_WIDE_INT - 1);
byte = (safe_uhwi (xval, xlen, block) >> offset) & 0xff;
block = d / HOST_BITS_PER_WIDE_INT;
offset = d & (HOST_BITS_PER_WIDE_INT - 1);
val[block] |= byte << offset;
}
result.set_len (canonize (val, len, precision));
return result;
}
/* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
above that up to PREC are zeros. The result is inverted if NEGATE
is true. Return the number of blocks in VAL. */
unsigned int
wi::mask (HOST_WIDE_INT *val, unsigned int width, bool negate,
unsigned int prec)
{
if (width >= prec)
{
val[0] = negate ? 0 : -1;
return 1;
}
else if (width == 0)
{
val[0] = negate ? -1 : 0;
return 1;
}
unsigned int i = 0;
while (i < width / HOST_BITS_PER_WIDE_INT)
val[i++] = negate ? 0 : -1;
unsigned int shift = width & (HOST_BITS_PER_WIDE_INT - 1);
if (shift != 0)
{
HOST_WIDE_INT last = (HOST_WIDE_INT_1U << shift) - 1;
val[i++] = negate ? ~last : last;
}
else
val[i++] = negate ? -1 : 0;
return i;
}
/* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
bits are ones, and the bits above that up to PREC are zeros. The result
is inverted if NEGATE is true. Return the number of blocks in VAL. */
unsigned int
wi::shifted_mask (HOST_WIDE_INT *val, unsigned int start, unsigned int width,
bool negate, unsigned int prec)
{
if (start >= prec || width == 0)
{
val[0] = negate ? -1 : 0;
return 1;
}
if (width > prec - start)
width = prec - start;
unsigned int end = start + width;
unsigned int i = 0;
while (i < start / HOST_BITS_PER_WIDE_INT)
val[i++] = negate ? -1 : 0;
unsigned int shift = start & (HOST_BITS_PER_WIDE_INT - 1);
if (shift)
{
HOST_WIDE_INT block = (HOST_WIDE_INT_1U << shift) - 1;
shift += width;
if (shift < HOST_BITS_PER_WIDE_INT)
{
/* case 000111000 */
block = (HOST_WIDE_INT_1U << shift) - block - 1;
val[i++] = negate ? ~block : block;
return i;
}
else
/* ...111000 */
val[i++] = negate ? block : ~block;
}
while (i < end / HOST_BITS_PER_WIDE_INT)
/* 1111111 */
val[i++] = negate ? 0 : -1;
shift = end & (HOST_BITS_PER_WIDE_INT - 1);
if (shift != 0)
{
/* 000011111 */
HOST_WIDE_INT block = (HOST_WIDE_INT_1U << shift) - 1;
val[i++] = negate ? ~block : block;
}
else if (end < prec)
val[i++] = negate ? -1 : 0;
return i;
}
/*
* logical operations.
*/
/* Set VAL to OP0 & OP1. Return the number of blocks used. */
unsigned int
wi::and_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec)
{
int l0 = op0len - 1;
int l1 = op1len - 1;
bool need_canon = true;
unsigned int len = MAX (op0len, op1len);
if (l0 > l1)
{
HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
if (op1mask == 0)
{
l0 = l1;
len = l1 + 1;
}
else
{
need_canon = false;
while (l0 > l1)
{
val[l0] = op0[l0];
l0--;
}
}
}
else if (l1 > l0)
{
HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
if (op0mask == 0)
len = l0 + 1;
else
{
need_canon = false;
while (l1 > l0)
{
val[l1] = op1[l1];
l1--;
}
}
}
while (l0 >= 0)
{
val[l0] = op0[l0] & op1[l0];
l0--;
}
if (need_canon)
len = canonize (val, len, prec);
return len;
}
/* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
unsigned int
wi::and_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec)
{
wide_int result;
int l0 = op0len - 1;
int l1 = op1len - 1;
bool need_canon = true;
unsigned int len = MAX (op0len, op1len);
if (l0 > l1)
{
HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
if (op1mask != 0)
{
l0 = l1;
len = l1 + 1;
}
else
{
need_canon = false;
while (l0 > l1)
{
val[l0] = op0[l0];
l0--;
}
}
}
else if (l1 > l0)
{
HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
if (op0mask == 0)
len = l0 + 1;
else
{
need_canon = false;
while (l1 > l0)
{
val[l1] = ~op1[l1];
l1--;
}
}
}
while (l0 >= 0)
{
val[l0] = op0[l0] & ~op1[l0];
l0--;
}
if (need_canon)
len = canonize (val, len, prec);
return len;
}
/* Set VAL to OP0 | OP1. Return the number of blocks used. */
unsigned int
wi::or_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec)
{
wide_int result;
int l0 = op0len - 1;
int l1 = op1len - 1;
bool need_canon = true;
unsigned int len = MAX (op0len, op1len);
if (l0 > l1)
{
HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
if (op1mask != 0)
{
l0 = l1;
len = l1 + 1;
}
else
{
need_canon = false;
while (l0 > l1)
{
val[l0] = op0[l0];
l0--;
}
}
}
else if (l1 > l0)
{
HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
if (op0mask != 0)
len = l0 + 1;
else
{
need_canon = false;
while (l1 > l0)
{
val[l1] = op1[l1];
l1--;
}
}
}
while (l0 >= 0)
{
val[l0] = op0[l0] | op1[l0];
l0--;
}
if (need_canon)
len = canonize (val, len, prec);
return len;
}
/* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
unsigned int
wi::or_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec)
{
wide_int result;
int l0 = op0len - 1;
int l1 = op1len - 1;
bool need_canon = true;
unsigned int len = MAX (op0len, op1len);
if (l0 > l1)
{
HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
if (op1mask == 0)
{
l0 = l1;
len = l1 + 1;
}
else
{
need_canon = false;
while (l0 > l1)
{
val[l0] = op0[l0];
l0--;
}
}
}
else if (l1 > l0)
{
HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
if (op0mask != 0)
len = l0 + 1;
else
{
need_canon = false;
while (l1 > l0)
{
val[l1] = ~op1[l1];
l1--;
}
}
}
while (l0 >= 0)
{
val[l0] = op0[l0] | ~op1[l0];
l0--;
}
if (need_canon)
len = canonize (val, len, prec);
return len;
}
/* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
unsigned int
wi::xor_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec)
{
wide_int result;
int l0 = op0len - 1;
int l1 = op1len - 1;
unsigned int len = MAX (op0len, op1len);
if (l0 > l1)
{
HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
while (l0 > l1)
{
val[l0] = op0[l0] ^ op1mask;
l0--;
}
}
if (l1 > l0)
{
HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
while (l1 > l0)
{
val[l1] = op0mask ^ op1[l1];
l1--;
}
}
while (l0 >= 0)
{
val[l0] = op0[l0] ^ op1[l0];
l0--;
}
return canonize (val, len, prec);
}
/*
* math
*/
/* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
whether the result overflows when OP0 and OP1 are treated as having
signedness SGN. Return the number of blocks in VAL. */
unsigned int
wi::add_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec,
signop sgn, bool *overflow)
{
unsigned HOST_WIDE_INT o0 = 0;
unsigned HOST_WIDE_INT o1 = 0;
unsigned HOST_WIDE_INT x = 0;
unsigned HOST_WIDE_INT carry = 0;
unsigned HOST_WIDE_INT old_carry = 0;
unsigned HOST_WIDE_INT mask0, mask1;
unsigned int i;
unsigned int len = MAX (op0len, op1len);
mask0 = -top_bit_of (op0, op0len, prec);
mask1 = -top_bit_of (op1, op1len, prec);
/* Add all of the explicitly defined elements. */
for (i = 0; i < len; i++)
{
o0 = i < op0len ? (unsigned HOST_WIDE_INT) op0[i] : mask0;
o1 = i < op1len ? (unsigned HOST_WIDE_INT) op1[i] : mask1;
x = o0 + o1 + carry;
val[i] = x;
old_carry = carry;
carry = carry == 0 ? x < o0 : x <= o0;
}
if (len * HOST_BITS_PER_WIDE_INT < prec)
{
val[len] = mask0 + mask1 + carry;
len++;
if (overflow)
*overflow = (sgn == UNSIGNED && carry);
}
else if (overflow)
{
unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
if (sgn == SIGNED)
{
unsigned HOST_WIDE_INT x = (val[len - 1] ^ o0) & (val[len - 1] ^ o1);
*overflow = (HOST_WIDE_INT) (x << shift) < 0;
}
else
{
/* Put the MSB of X and O0 and in the top of the HWI. */
x <<= shift;
o0 <<= shift;
if (old_carry)
*overflow = (x <= o0);
else
*overflow = (x < o0);
}
}
return canonize (val, len, prec);
}
/* Subroutines of the multiplication and division operations. Unpack
the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
uncompressing the top bit of INPUT[IN_LEN - 1]. */
static void
wi_unpack (unsigned HOST_HALF_WIDE_INT *result, const HOST_WIDE_INT *input,
unsigned int in_len, unsigned int out_len,
unsigned int prec, signop sgn)
{
unsigned int i;
unsigned int j = 0;
unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
unsigned int blocks_needed = BLOCKS_NEEDED (prec);
HOST_WIDE_INT mask;
if (sgn == SIGNED)
{
mask = -top_bit_of ((const HOST_WIDE_INT *) input, in_len, prec);
mask &= HALF_INT_MASK;
}
else
mask = 0;
for (i = 0; i < blocks_needed - 1; i++)
{
HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
result[j++] = x;
result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
}
HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
if (small_prec)
{
if (sgn == SIGNED)
x = sext_hwi (x, small_prec);
else
x = zext_hwi (x, small_prec);
}
result[j++] = x;
result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
/* Smear the sign bit. */
while (j < out_len)
result[j++] = mask;
}
/* The inverse of wi_unpack. IN_LEN is the number of input
blocks and PRECISION is the precision of the result. Return the
number of blocks in the canonicalized result. */
static unsigned int
wi_pack (HOST_WIDE_INT *result,
const unsigned HOST_HALF_WIDE_INT *input,
unsigned int in_len, unsigned int precision)
{
unsigned int i = 0;
unsigned int j = 0;
unsigned int blocks_needed = BLOCKS_NEEDED (precision);
while (i + 1 < in_len)
{
result[j++] = ((unsigned HOST_WIDE_INT) input[i]
| ((unsigned HOST_WIDE_INT) input[i + 1]
<< HOST_BITS_PER_HALF_WIDE_INT));
i += 2;
}
/* Handle the case where in_len is odd. For this we zero extend. */
if (in_len & 1)
result[j++] = (unsigned HOST_WIDE_INT) input[i];
else if (j < blocks_needed)
result[j++] = 0;
return canonize (result, j, precision);
}
/* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
result is returned.
If HIGH is not set, throw away the upper half after the check is
made to see if it overflows. Unfortunately there is no better way
to check for overflow than to do this. If OVERFLOW is nonnull,
record in *OVERFLOW whether the result overflowed. SGN controls
the signedness and is used to check overflow or if HIGH is set. */
unsigned int
wi::mul_internal (HOST_WIDE_INT *val, const HOST_WIDE_INT *op1val,
unsigned int op1len, const HOST_WIDE_INT *op2val,
unsigned int op2len, unsigned int prec, signop sgn,
bool *overflow, bool high)
{
unsigned HOST_WIDE_INT o0, o1, k, t;
unsigned int i;
unsigned int j;
unsigned int blocks_needed = BLOCKS_NEEDED (prec);
unsigned int half_blocks_needed = blocks_needed * 2;
/* The sizes here are scaled to support a 2x largest mode by 2x
largest mode yielding a 4x largest mode result. This is what is
needed by vpn. */
unsigned HOST_HALF_WIDE_INT
u[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
unsigned HOST_HALF_WIDE_INT
v[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
/* The '2' in 'R' is because we are internally doing a full
multiply. */
unsigned HOST_HALF_WIDE_INT
r[2 * 4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1;
/* If the top level routine did not really pass in an overflow, then
just make sure that we never attempt to set it. */
bool needs_overflow = (overflow != 0);
if (needs_overflow)
*overflow = false;
wide_int_ref op1 = wi::storage_ref (op1val, op1len, prec);
wide_int_ref op2 = wi::storage_ref (op2val, op2len, prec);
/* This is a surprisingly common case, so do it first. */
if (op1 == 0 || op2 == 0)
{
val[0] = 0;
return 1;
}
#ifdef umul_ppmm
if (sgn == UNSIGNED)
{
/* If the inputs are single HWIs and the output has room for at
least two HWIs, we can use umul_ppmm directly. */
if (prec >= HOST_BITS_PER_WIDE_INT * 2
&& wi::fits_uhwi_p (op1)
&& wi::fits_uhwi_p (op2))
{
/* This case never overflows. */
if (high)
{
val[0] = 0;
return 1;
}
umul_ppmm (val[1], val[0], op1.ulow (), op2.ulow ());
if (val[1] < 0 && prec > HOST_BITS_PER_WIDE_INT * 2)
{
val[2] = 0;
return 3;
}
return 1 + (val[1] != 0 || val[0] < 0);
}
/* Likewise if the output is a full single HWI, except that the
upper HWI of the result is only used for determining overflow.
(We handle this case inline when overflow isn't needed.) */
else if (prec == HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT upper;
umul_ppmm (upper, val[0], op1.ulow (), op2.ulow ());
if (needs_overflow)
*overflow = (upper != 0);
if (high)
val[0] = upper;
return 1;
}
}
#endif
/* Handle multiplications by 1. */
if (op1 == 1)
{
if (high)
{
val[0] = wi::neg_p (op2, sgn) ? -1 : 0;
return 1;
}
for (i = 0; i < op2len; i++)
val[i] = op2val[i];
return op2len;
}
if (op2 == 1)
{
if (high)
{
val[0] = wi::neg_p (op1, sgn) ? -1 : 0;
return 1;
}
for (i = 0; i < op1len; i++)
val[i] = op1val[i];
return op1len;
}
/* If we need to check for overflow, we can only do half wide
multiplies quickly because we need to look at the top bits to
check for the overflow. */
if ((high || needs_overflow)
&& (prec <= HOST_BITS_PER_HALF_WIDE_INT))
{
unsigned HOST_WIDE_INT r;
if (sgn == SIGNED)
{
o0 = op1.to_shwi ();
o1 = op2.to_shwi ();
}
else
{
o0 = op1.to_uhwi ();
o1 = op2.to_uhwi ();
}
r = o0 * o1;
if (needs_overflow)
{
if (sgn == SIGNED)
{
if ((HOST_WIDE_INT) r != sext_hwi (r, prec))
*overflow = true;
}
else
{
if ((r >> prec) != 0)
*overflow = true;
}
}
val[0] = high ? r >> prec : r;
return 1;
}
/* We do unsigned mul and then correct it. */
wi_unpack (u, op1val, op1len, half_blocks_needed, prec, SIGNED);
wi_unpack (v, op2val, op2len, half_blocks_needed, prec, SIGNED);
/* The 2 is for a full mult. */
memset (r, 0, half_blocks_needed * 2
* HOST_BITS_PER_HALF_WIDE_INT / CHAR_BIT);
for (j = 0; j < half_blocks_needed; j++)
{
k = 0;
for (i = 0; i < half_blocks_needed; i++)
{
t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j]
+ r[i + j] + k);
r[i + j] = t & HALF_INT_MASK;
k = t >> HOST_BITS_PER_HALF_WIDE_INT;
}
r[j + half_blocks_needed] = k;
}
/* We did unsigned math above. For signed we must adjust the
product (assuming we need to see that). */
if (sgn == SIGNED && (high || needs_overflow))
{
unsigned HOST_WIDE_INT b;
if (wi::neg_p (op1))
{
b = 0;
for (i = 0; i < half_blocks_needed; i++)
{
t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
- (unsigned HOST_WIDE_INT)v[i] - b;
r[i + half_blocks_needed] = t & HALF_INT_MASK;
b = t >> (HOST_BITS_PER_WIDE_INT - 1);
}
}
if (wi::neg_p (op2))
{
b = 0;
for (i = 0; i < half_blocks_needed; i++)
{
t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
- (unsigned HOST_WIDE_INT)u[i] - b;
r[i + half_blocks_needed] = t & HALF_INT_MASK;
b = t >> (HOST_BITS_PER_WIDE_INT - 1);
}
}
}
if (needs_overflow)
{
HOST_WIDE_INT top;
/* For unsigned, overflow is true if any of the top bits are set.
For signed, overflow is true if any of the top bits are not equal
to the sign bit. */
if (sgn == UNSIGNED)
top = 0;
else
{
top = r[(half_blocks_needed) - 1];
top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2));
top &= mask;
}
for (i = half_blocks_needed; i < half_blocks_needed * 2; i++)
if (((HOST_WIDE_INT)(r[i] & mask)) != top)
*overflow = true;
}
int r_offset = high ? half_blocks_needed : 0;
return wi_pack (val, &r[r_offset], half_blocks_needed, prec);
}
/* Compute the population count of X. */
int
wi::popcount (const wide_int_ref &x)
{
unsigned int i;
int count;
/* The high order block is special if it is the last block and the
precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
have to clear out any ones above the precision before doing
popcount on this block. */
count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
unsigned int stop = x.len;
if (count < 0)
{
count = popcount_hwi (x.uhigh () << -count);
stop -= 1;
}
else
{
if (x.sign_mask () >= 0)
count = 0;
}
for (i = 0; i < stop; ++i)
count += popcount_hwi (x.val[i]);
return count;
}
/* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
whether the result overflows when OP0 and OP1 are treated as having
signedness SGN. Return the number of blocks in VAL. */
unsigned int
wi::sub_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
unsigned int op0len, const HOST_WIDE_INT *op1,
unsigned int op1len, unsigned int prec,
signop sgn, bool *overflow)
{
unsigned HOST_WIDE_INT o0 = 0;
unsigned HOST_WIDE_INT o1 = 0;
unsigned HOST_WIDE_INT x = 0;
/* We implement subtraction as an in place negate and add. Negation
is just inversion and add 1, so we can do the add of 1 by just
starting the borrow in of the first element at 1. */
unsigned HOST_WIDE_INT borrow = 0;
unsigned HOST_WIDE_INT old_borrow = 0;
unsigned HOST_WIDE_INT mask0, mask1;
unsigned int i;
unsigned int len = MAX (op0len, op1len);
mask0 = -top_bit_of (op0, op0len, prec);
mask1 = -top_bit_of (op1, op1len, prec);
/* Subtract all of the explicitly defined elements. */
for (i = 0; i < len; i++)
{
o0 = i < op0len ? (unsigned HOST_WIDE_INT)op0[i] : mask0;
o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
x = o0 - o1 - borrow;
val[i] = x;
old_borrow = borrow;
borrow = borrow == 0 ? o0 < o1 : o0 <= o1;
}
if (len * HOST_BITS_PER_WIDE_INT < prec)
{
val[len] = mask0 - mask1 - borrow;
len++;
if (overflow)
*overflow = (sgn == UNSIGNED && borrow);
}
else if (overflow)
{
unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
if (sgn == SIGNED)
{
unsigned HOST_WIDE_INT x = (o0 ^ o1) & (val[len - 1] ^ o0);
*overflow = (HOST_WIDE_INT) (x << shift) < 0;
}
else
{
/* Put the MSB of X and O0 and in the top of the HWI. */
x <<= shift;
o0 <<= shift;
if (old_borrow)
*overflow = (x >= o0);
else
*overflow = (x > o0);
}
}
return canonize (val, len, prec);
}
/*
* Division and Mod
*/
/* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
algorithm is a small modification of the algorithm in Hacker's
Delight by Warren, which itself is a small modification of Knuth's
algorithm. M is the number of significant elements of U however
there needs to be at least one extra element of B_DIVIDEND
allocated, N is the number of elements of B_DIVISOR. */
static void
divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient,
unsigned HOST_HALF_WIDE_INT *b_remainder,
unsigned HOST_HALF_WIDE_INT *b_dividend,
unsigned HOST_HALF_WIDE_INT *b_divisor,
int m, int n)
{
/* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
HOST_WIDE_INT and stored in the lower bits of each word. This
algorithm should work properly on both 32 and 64 bit
machines. */
unsigned HOST_WIDE_INT b
= (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT;
unsigned HOST_WIDE_INT qhat; /* Estimate of quotient digit. */
unsigned HOST_WIDE_INT rhat; /* A remainder. */
unsigned HOST_WIDE_INT p; /* Product of two digits. */
HOST_WIDE_INT t, k;
int i, j, s;
/* Single digit divisor. */
if (n == 1)
{
k = 0;
for (j = m - 1; j >= 0; j--)
{
b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0];
k = ((k * b + b_dividend[j])
- ((unsigned HOST_WIDE_INT)b_quotient[j]
* (unsigned HOST_WIDE_INT)b_divisor[0]));
}
b_remainder[0] = k;
return;
}
s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */
if (s)
{
/* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
algorithm, we can overwrite b_dividend and b_divisor, so we do
that. */
for (i = n - 1; i > 0; i--)
b_divisor[i] = (b_divisor[i] << s)
| (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
b_divisor[0] = b_divisor[0] << s;
b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s);
for (i = m - 1; i > 0; i--)
b_dividend[i] = (b_dividend[i] << s)
| (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
b_dividend[0] = b_dividend[0] << s;
}
/* Main loop. */
for (j = m - n; j >= 0; j--)
{
qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1];
rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1];
again:
if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2])
{
qhat -= 1;
rhat += b_divisor[n-1];
if (rhat < b)
goto again;
}
/* Multiply and subtract. */
k = 0;
for (i = 0; i < n; i++)
{
p = qhat * b_divisor[i];
t = b_dividend[i+j] - k - (p & HALF_INT_MASK);
b_dividend[i + j] = t;
k = ((p >> HOST_BITS_PER_HALF_WIDE_INT)
- (t >> HOST_BITS_PER_HALF_WIDE_INT));
}
t = b_dividend[j+n] - k;
b_dividend[j+n] = t;
b_quotient[j] = qhat;
if (t < 0)
{
b_quotient[j] -= 1;
k = 0;
for (i = 0; i < n; i++)
{
t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k;
b_dividend[i+j] = t;
k = t >> HOST_BITS_PER_HALF_WIDE_INT;
}
b_dividend[j+n] += k;
}
}
if (s)
for (i = 0; i < n; i++)
b_remainder[i] = (b_dividend[i] >> s)
| (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s));
else
for (i = 0; i < n; i++)
b_remainder[i] = b_dividend[i];
}
/* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
the result. If QUOTIENT is nonnull, store the value of the quotient
there and return the number of blocks in it. The return value is
not defined otherwise. If REMAINDER is nonnull, store the value
of the remainder there and store the number of blocks in
*REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
the division overflowed. */
unsigned int
wi::divmod_internal (HOST_WIDE_INT *quotient, unsigned int *remainder_len,
HOST_WIDE_INT *remainder,
const HOST_WIDE_INT *dividend_val,
unsigned int dividend_len, unsigned int dividend_prec,
const HOST_WIDE_INT *divisor_val, unsigned int divisor_len,
unsigned int divisor_prec, signop sgn,
bool *oflow)
{
unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec);
unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec);
unsigned HOST_HALF_WIDE_INT
b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
unsigned HOST_HALF_WIDE_INT
b_remainder[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
unsigned HOST_HALF_WIDE_INT
b_dividend[(4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1];
unsigned HOST_HALF_WIDE_INT
b_divisor[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
unsigned int m, n;
bool dividend_neg = false;
bool divisor_neg = false;
bool overflow = false;
wide_int neg_dividend, neg_divisor;
wide_int_ref dividend = wi::storage_ref (dividend_val, dividend_len,
dividend_prec);
wide_int_ref divisor = wi::storage_ref (divisor_val, divisor_len,
divisor_prec);
if (divisor == 0)
overflow = true;
/* The smallest signed number / -1 causes overflow. The dividend_len
check is for speed rather than correctness. */
if (sgn == SIGNED
&& dividend_len == BLOCKS_NEEDED (dividend_prec)
&& divisor == -1
&& wi::only_sign_bit_p (dividend))
overflow = true;
/* Handle the overflow cases. Viewed as unsigned value, the quotient of
(signed min / -1) has the same representation as the orignal dividend.
We have traditionally made division by zero act as division by one,
so there too we use the original dividend. */
if (overflow)
{
if (remainder)
{
*remainder_len = 1;
remainder[0] = 0;
}
if (oflow != 0)
*oflow = true;
if (quotient)
for (unsigned int i = 0; i < dividend_len; ++i)
quotient[i] = dividend_val[i];
return dividend_len;
}
if (oflow)
*oflow = false;
/* Do it on the host if you can. */
if (sgn == SIGNED
&& wi::fits_shwi_p (dividend)
&& wi::fits_shwi_p (divisor))
{
HOST_WIDE_INT o0 = dividend.to_shwi ();
HOST_WIDE_INT o1 = divisor.to_shwi ();
if (o0 == HOST_WIDE_INT_MIN && o1 == -1)
{
gcc_checking_assert (dividend_prec > HOST_BITS_PER_WIDE_INT);
if (quotient)
{
quotient[0] = HOST_WIDE_INT_MIN;
quotient[1] = 0;
}
if (remainder)
{
remainder[0] = 0;
*remainder_len = 1;
}
return 2;
}
else
{
if (quotient)
quotient[0] = o0 / o1;
if (remainder)
{
remainder[0] = o0 % o1;
*remainder_len = 1;
}
return 1;
}
}
if (sgn == UNSIGNED
&& wi::fits_uhwi_p (dividend)
&& wi::fits_uhwi_p (divisor))
{
unsigned HOST_WIDE_INT o0 = dividend.to_uhwi ();
unsigned HOST_WIDE_INT o1 = divisor.to_uhwi ();
unsigned int quotient_len = 1;
if (quotient)
{
quotient[0] = o0 / o1;
quotient_len = canonize_uhwi (quotient, dividend_prec);
}
if (remainder)
{
remainder[0] = o0 % o1;
*remainder_len = canonize_uhwi (remainder, dividend_prec);
}
return quotient_len;
}
/* Make the divisor and dividend positive and remember what we
did. */
if (sgn == SIGNED)
{
if (wi::neg_p (dividend))
{
neg_dividend = -dividend;
dividend = neg_dividend;
dividend_neg = true;
}
if (wi::neg_p (divisor))
{
neg_divisor = -divisor;
divisor = neg_divisor;
divisor_neg = true;
}
}
wi_unpack (b_dividend, dividend.get_val (), dividend.get_len (),
dividend_blocks_needed, dividend_prec, sgn);
wi_unpack (b_divisor, divisor.get_val (), divisor.get_len (),
divisor_blocks_needed, divisor_prec, sgn);
m = dividend_blocks_needed;
b_dividend[m] = 0;
while (m > 1 && b_dividend[m - 1] == 0)
m--;
n = divisor_blocks_needed;
while (n > 1 && b_divisor[n - 1] == 0)
n--;
memset (b_quotient, 0, sizeof (b_quotient));
divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n);
unsigned int quotient_len = 0;
if (quotient)
{
quotient_len = wi_pack (quotient, b_quotient, m, dividend_prec);
/* The quotient is neg if exactly one of the divisor or dividend is
neg. */
if (dividend_neg != divisor_neg)
quotient_len = wi::sub_large (quotient, zeros, 1, quotient,
quotient_len, dividend_prec,
UNSIGNED, 0);
}
if (remainder)
{
*remainder_len = wi_pack (remainder, b_remainder, n, dividend_prec);
/* The remainder is always the same sign as the dividend. */
if (dividend_neg)
*remainder_len = wi::sub_large (remainder, zeros, 1, remainder,
*remainder_len, dividend_prec,
UNSIGNED, 0);
}
return quotient_len;
}
/*
* Shifting, rotating and extraction.
*/
/* Left shift XVAL by SHIFT and store the result in VAL. Return the
number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
unsigned int
wi::lshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int precision,
unsigned int shift)
{
/* Split the shift into a whole-block shift and a subblock shift. */
unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
/* The whole-block shift fills with zeros. */
unsigned int len = BLOCKS_NEEDED (precision);
for (unsigned int i = 0; i < skip; ++i)
val[i] = 0;
/* It's easier to handle the simple block case specially. */
if (small_shift == 0)
for (unsigned int i = skip; i < len; ++i)
val[i] = safe_uhwi (xval, xlen, i - skip);
else
{
/* The first unfilled output block is a left shift of the first
block in XVAL. The other output blocks contain bits from two
consecutive input blocks. */
unsigned HOST_WIDE_INT carry = 0;
for (unsigned int i = skip; i < len; ++i)
{
unsigned HOST_WIDE_INT x = safe_uhwi (xval, xlen, i - skip);
val[i] = (x << small_shift) | carry;
carry = x >> (-small_shift % HOST_BITS_PER_WIDE_INT);
}
}
return canonize (val, len, precision);
}
/* Right shift XVAL by SHIFT and store the result in VAL. Return the
number of blocks in VAL. The input has XPRECISION bits and the
output has XPRECISION - SHIFT bits. */
static unsigned int
rshift_large_common (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int xprecision,
unsigned int shift)
{
/* Split the shift into a whole-block shift and a subblock shift. */
unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
/* Work out how many blocks are needed to store the significant bits
(excluding the upper zeros or signs). */
unsigned int len = BLOCKS_NEEDED (xprecision - shift);
/* It's easier to handle the simple block case specially. */
if (small_shift == 0)
for (unsigned int i = 0; i < len; ++i)
val[i] = safe_uhwi (xval, xlen, i + skip);
else
{
/* Each output block but the last is a combination of two input blocks.
The last block is a right shift of the last block in XVAL. */
unsigned HOST_WIDE_INT curr = safe_uhwi (xval, xlen, skip);
for (unsigned int i = 0; i < len; ++i)
{
val[i] = curr >> small_shift;
curr = safe_uhwi (xval, xlen, i + skip + 1);
val[i] |= curr << (-small_shift % HOST_BITS_PER_WIDE_INT);
}
}
return len;
}
/* Logically right shift XVAL by SHIFT and store the result in VAL.
Return the number of blocks in VAL. XVAL has XPRECISION bits and
VAL has PRECISION bits. */
unsigned int
wi::lrshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int xprecision,
unsigned int precision, unsigned int shift)
{
unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
/* The value we just created has precision XPRECISION - SHIFT.
Zero-extend it to wider precisions. */
if (precision > xprecision - shift)
{
unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
if (small_prec)
val[len - 1] = zext_hwi (val[len - 1], small_prec);
else if (val[len - 1] < 0)
{
/* Add a new block with a zero. */
val[len++] = 0;
return len;
}
}
return canonize (val, len, precision);
}
/* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
Return the number of blocks in VAL. XVAL has XPRECISION bits and
VAL has PRECISION bits. */
unsigned int
wi::arshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
unsigned int xlen, unsigned int xprecision,
unsigned int precision, unsigned int shift)
{
unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
/* The value we just created has precision XPRECISION - SHIFT.
Sign-extend it to wider types. */
if (precision > xprecision - shift)
{
unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
if (small_prec)
val[len - 1] = sext_hwi (val[len - 1], small_prec);
}
return canonize (val, len, precision);
}
/* Return the number of leading (upper) zeros in X. */
int
wi::clz (const wide_int_ref &x)
{
/* Calculate how many bits there above the highest represented block. */
int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
unsigned HOST_WIDE_INT high = x.uhigh ();
if (count < 0)
/* The upper -COUNT bits of HIGH are not part of the value.
Clear them out. */
high = (high << -count) >> -count;
else if (x.sign_mask () < 0)
/* The upper bit is set, so there are no leading zeros. */
return 0;
/* We don't need to look below HIGH. Either HIGH is nonzero,
or the top bit of the block below is nonzero; clz_hwi is
HOST_BITS_PER_WIDE_INT in the latter case. */
return count + clz_hwi (high);
}
/* Return the number of redundant sign bits in X. (That is, the number
of bits immediately below the sign bit that have the same value as
the sign bit.) */
int
wi::clrsb (const wide_int_ref &x)
{
/* Calculate how many bits there above the highest represented block. */
int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
unsigned HOST_WIDE_INT high = x.uhigh ();
unsigned HOST_WIDE_INT mask = -1;
if (count < 0)
{
/* The upper -COUNT bits of HIGH are not part of the value.
Clear them from both MASK and HIGH. */
mask >>= -count;
high &= mask;
}
/* If the top bit is 1, count the number of leading 1s. If the top
bit is zero, count the number of leading zeros. */
if (high > mask / 2)
high ^= mask;
/* There are no sign bits below the top block, so we don't need to look
beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
HIGH is 0. */
return count + clz_hwi (high) - 1;
}
/* Return the number of trailing (lower) zeros in X. */
int
wi::ctz (const wide_int_ref &x)
{
if (x.len == 1 && x.ulow () == 0)
return x.precision;
/* Having dealt with the zero case, there must be a block with a
nonzero bit. We don't care about the bits above the first 1. */
unsigned int i = 0;
while (x.val[i] == 0)
++i;
return i * HOST_BITS_PER_WIDE_INT + ctz_hwi (x.val[i]);
}
/* If X is an exact power of 2, return the base-2 logarithm, otherwise
return -1. */
int
wi::exact_log2 (const wide_int_ref &x)
{
/* Reject cases where there are implicit -1 blocks above HIGH. */
if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0)
return -1;
/* Set CRUX to the index of the entry that should be nonzero.
If the top block is zero then the next lowest block (if any)
must have the high bit set. */
unsigned int crux = x.len - 1;
if (crux > 0 && x.val[crux] == 0)
crux -= 1;
/* Check that all lower blocks are zero. */
for (unsigned int i = 0; i < crux; ++i)
if (x.val[i] != 0)
return -1;
/* Get a zero-extended form of block CRUX. */
unsigned HOST_WIDE_INT hwi = x.val[crux];
if ((crux + 1) * HOST_BITS_PER_WIDE_INT > x.precision)
hwi = zext_hwi (hwi, x.precision % HOST_BITS_PER_WIDE_INT);
/* Now it's down to whether HWI is a power of 2. */
int res = ::exact_log2 (hwi);
if (res >= 0)
res += crux * HOST_BITS_PER_WIDE_INT;
return res;
}
/* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
int
wi::floor_log2 (const wide_int_ref &x)
{
return x.precision - 1 - clz (x);
}
/* Return the index of the first (lowest) set bit in X, counting from 1.
Return 0 if X is 0. */
int
wi::ffs (const wide_int_ref &x)
{
return eq_p (x, 0) ? 0 : ctz (x) + 1;
}
/* Return true if sign-extending X to have precision PRECISION would give
the minimum signed value at that precision. */
bool
wi::only_sign_bit_p (const wide_int_ref &x, unsigned int precision)
{
return ctz (x) + 1 == int (precision);
}
/* Return true if X represents the minimum signed value. */
bool
wi::only_sign_bit_p (const wide_int_ref &x)
{
return only_sign_bit_p (x, x.precision);
}
/* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
down to the previous value that has no bits set outside MASK.
This rounding wraps for signed values if VAL is negative and
the top bit of MASK is clear.
For example, round_down_for_mask (6, 0xf1) would give 1 and
round_down_for_mask (24, 0xf1) would give 17. */
wide_int
wi::round_down_for_mask (const wide_int &val, const wide_int &mask)
{
/* Get the bits in VAL that are outside the mask. */
wide_int extra_bits = wi::bit_and_not (val, mask);
if (extra_bits == 0)
return val;
/* Get a mask that includes the top bit in EXTRA_BITS and is all 1s
below that bit. */
unsigned int precision = val.get_precision ();
wide_int lower_mask = wi::mask (precision - wi::clz (extra_bits),
false, precision);
/* Clear the bits that aren't in MASK, but ensure that all bits
in MASK below the top cleared bit are set. */
return (val & mask) | (mask & lower_mask);
}
/* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
up to the next value that has no bits set outside MASK. The rounding
wraps if there are no suitable values greater than VAL.
For example, round_up_for_mask (6, 0xf1) would give 16 and
round_up_for_mask (24, 0xf1) would give 32. */
wide_int
wi::round_up_for_mask (const wide_int &val, const wide_int &mask)
{
/* Get the bits in VAL that are outside the mask. */
wide_int extra_bits = wi::bit_and_not (val, mask);
if (extra_bits == 0)
return val;
/* Get a mask that is all 1s above the top bit in EXTRA_BITS. */
unsigned int precision = val.get_precision ();
wide_int upper_mask = wi::mask (precision - wi::clz (extra_bits),
true, precision);
/* Get the bits of the mask that are above the top bit in EXTRA_BITS. */
upper_mask &= mask;
/* Conceptually we need to:
- clear bits of VAL outside UPPER_MASK
- add the lowest bit in UPPER_MASK to VAL (or add 0 if UPPER_MASK is 0)
- propagate the carry through the bits of VAL in UPPER_MASK
If (~VAL & UPPER_MASK) is nonzero, the carry eventually
reaches that bit and the process leaves all lower bits clear.
If (~VAL & UPPER_MASK) is zero then the result is also zero. */
wide_int tmp = wi::bit_and_not (upper_mask, val);
return (val | tmp) & -tmp;
}
/*
* Private utilities.
*/
void gt_ggc_mx (widest_int *) { }
void gt_pch_nx (widest_int *, void (*) (void *, void *), void *) { }
void gt_pch_nx (widest_int *) { }
template void wide_int::dump () const;
template void generic_wide_int <wide_int_ref_storage <false> >::dump () const;
template void generic_wide_int <wide_int_ref_storage <true> >::dump () const;
template void offset_int::dump () const;
template void widest_int::dump () const;
/* We could add all the above ::dump variants here, but wide_int and
widest_int should handle the common cases. Besides, you can always
call the dump method directly. */
DEBUG_FUNCTION void
debug (const wide_int &ref)
{
ref.dump ();
}
DEBUG_FUNCTION void
debug (const wide_int *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
DEBUG_FUNCTION void
debug (const widest_int &ref)
{
ref.dump ();
}
DEBUG_FUNCTION void
debug (const widest_int *ptr)
{
if (ptr)
debug (*ptr);
else
fprintf (stderr, "<nil>\n");
}
#if CHECKING_P
namespace selftest {
/* Selftests for wide ints. We run these multiple times, once per type. */
/* Helper function for building a test value. */
template <class VALUE_TYPE>
static VALUE_TYPE
from_int (int i);
/* Specializations of the fixture for each wide-int type. */
/* Specialization for VALUE_TYPE == wide_int. */
template <>
wide_int
from_int (int i)
{
return wi::shwi (i, 32);
}
/* Specialization for VALUE_TYPE == offset_int. */
template <>
offset_int
from_int (int i)
{
return offset_int (i);
}
/* Specialization for VALUE_TYPE == widest_int. */
template <>
widest_int
from_int (int i)
{
return widest_int (i);
}
/* Verify that print_dec (WI, ..., SGN) gives the expected string
representation (using base 10). */
static void
assert_deceq (const char *expected, const wide_int_ref &wi, signop sgn)
{
char buf[WIDE_INT_PRINT_BUFFER_SIZE];
print_dec (wi, buf, sgn);
ASSERT_STREQ (expected, buf);
}
/* Likewise for base 16. */
static void
assert_hexeq (const char *expected, const wide_int_ref &wi)
{
char buf[WIDE_INT_PRINT_BUFFER_SIZE];
print_hex (wi, buf);
ASSERT_STREQ (expected, buf);
}
/* Test cases. */
/* Verify that print_dec and print_hex work for VALUE_TYPE. */
template <class VALUE_TYPE>
static void
test_printing ()
{
VALUE_TYPE a = from_int<VALUE_TYPE> (42);
assert_deceq ("42", a, SIGNED);
assert_hexeq ("0x2a", a);
assert_hexeq ("0x1fffffffffffffffff", wi::shwi (-1, 69));
assert_hexeq ("0xffffffffffffffff", wi::mask (64, false, 69));
assert_hexeq ("0xffffffffffffffff", wi::mask <widest_int> (64, false));
if (WIDE_INT_MAX_PRECISION > 128)
{
assert_hexeq ("0x20000000000000000fffffffffffffffe",
wi::lshift (1, 129) + wi::lshift (1, 64) - 2);
assert_hexeq ("0x200000000000004000123456789abcdef",
wi::lshift (1, 129) + wi::lshift (1, 74)
+ wi::lshift (0x1234567, 32) + 0x89abcdef);
}
}
/* Verify that various operations work correctly for VALUE_TYPE,
unary and binary, using both function syntax, and
overloaded-operators. */
template <class VALUE_TYPE>
static void
test_ops ()
{
VALUE_TYPE a = from_int<VALUE_TYPE> (7);
VALUE_TYPE b = from_int<VALUE_TYPE> (3);
/* Using functions. */
assert_deceq ("-7", wi::neg (a), SIGNED);
assert_deceq ("10", wi::add (a, b), SIGNED);
assert_deceq ("4", wi::sub (a, b), SIGNED);
assert_deceq ("-4", wi::sub (b, a), SIGNED);
assert_deceq ("21", wi::mul (a, b), SIGNED);
/* Using operators. */
assert_deceq ("-7", -a, SIGNED);
assert_deceq ("10", a + b, SIGNED);
assert_deceq ("4", a - b, SIGNED);
assert_deceq ("-4", b - a, SIGNED);
assert_deceq ("21", a * b, SIGNED);
}
/* Verify that various comparisons work correctly for VALUE_TYPE. */
template <class VALUE_TYPE>
static void
test_comparisons ()
{
VALUE_TYPE a = from_int<VALUE_TYPE> (7);
VALUE_TYPE b = from_int<VALUE_TYPE> (3);
/* == */
ASSERT_TRUE (wi::eq_p (a, a));
ASSERT_FALSE (wi::eq_p (a, b));
/* != */
ASSERT_TRUE (wi::ne_p (a, b));
ASSERT_FALSE (wi::ne_p (a, a));
/* < */
ASSERT_FALSE (wi::lts_p (a, a));
ASSERT_FALSE (wi::lts_p (a, b));
ASSERT_TRUE (wi::lts_p (b, a));
/* <= */
ASSERT_TRUE (wi::les_p (a, a));
ASSERT_FALSE (wi::les_p (a, b));
ASSERT_TRUE (wi::les_p (b, a));
/* > */
ASSERT_FALSE (wi::gts_p (a, a));
ASSERT_TRUE (wi::gts_p (a, b));
ASSERT_FALSE (wi::gts_p (b, a));
/* >= */
ASSERT_TRUE (wi::ges_p (a, a));
ASSERT_TRUE (wi::ges_p (a, b));
ASSERT_FALSE (wi::ges_p (b, a));
/* comparison */
ASSERT_EQ (-1, wi::cmps (b, a));
ASSERT_EQ (0, wi::cmps (a, a));
ASSERT_EQ (1, wi::cmps (a, b));
}
/* Run all of the selftests, using the given VALUE_TYPE. */
template <class VALUE_TYPE>
static void run_all_wide_int_tests ()
{
test_printing <VALUE_TYPE> ();
test_ops <VALUE_TYPE> ();
test_comparisons <VALUE_TYPE> ();
}
/* Test overflow conditions. */
static void
test_overflow ()
{
static int precs[] = { 31, 32, 33, 63, 64, 65, 127, 128 };
static int offsets[] = { 16, 1, 0 };
for (unsigned int i = 0; i < ARRAY_SIZE (precs); ++i)
for (unsigned int j = 0; j < ARRAY_SIZE (offsets); ++j)
{
int prec = precs[i];
int offset = offsets[j];
bool overflow;
wide_int sum, diff;
sum = wi::add (wi::max_value (prec, UNSIGNED) - offset, 1,
UNSIGNED, &overflow);
ASSERT_EQ (sum, -offset);
ASSERT_EQ (overflow, offset == 0);
sum = wi::add (1, wi::max_value (prec, UNSIGNED) - offset,
UNSIGNED, &overflow);
ASSERT_EQ (sum, -offset);
ASSERT_EQ (overflow, offset == 0);
diff = wi::sub (wi::max_value (prec, UNSIGNED) - offset,
wi::max_value (prec, UNSIGNED),
UNSIGNED, &overflow);
ASSERT_EQ (diff, -offset);
ASSERT_EQ (overflow, offset != 0);
diff = wi::sub (wi::max_value (prec, UNSIGNED) - offset,
wi::max_value (prec, UNSIGNED) - 1,
UNSIGNED, &overflow);
ASSERT_EQ (diff, 1 - offset);
ASSERT_EQ (overflow, offset > 1);
}
}
/* Test the round_{down,up}_for_mask functions. */
static void
test_round_for_mask ()
{
unsigned int prec = 18;
ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (17, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (17, wi::round_up_for_mask (wi::shwi (17, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (1, wi::round_down_for_mask (wi::shwi (6, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (16, wi::round_up_for_mask (wi::shwi (6, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (24, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (32, wi::round_up_for_mask (wi::shwi (24, prec),
wi::shwi (0xf1, prec)));
ASSERT_EQ (0x011, wi::round_down_for_mask (wi::shwi (0x22, prec),
wi::shwi (0x111, prec)));
ASSERT_EQ (0x100, wi::round_up_for_mask (wi::shwi (0x22, prec),
wi::shwi (0x111, prec)));
ASSERT_EQ (100, wi::round_down_for_mask (wi::shwi (101, prec),
wi::shwi (0xfc, prec)));
ASSERT_EQ (104, wi::round_up_for_mask (wi::shwi (101, prec),
wi::shwi (0xfc, prec)));
ASSERT_EQ (0x2bc, wi::round_down_for_mask (wi::shwi (0x2c2, prec),
wi::shwi (0xabc, prec)));
ASSERT_EQ (0x800, wi::round_up_for_mask (wi::shwi (0x2c2, prec),
wi::shwi (0xabc, prec)));
ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0xabd, prec),
wi::shwi (0xabc, prec)));
ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0xabd, prec),
wi::shwi (0xabc, prec)));
ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0x1000, prec),
wi::shwi (0xabc, prec)));
ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0x1000, prec),
wi::shwi (0xabc, prec)));
}
/* Run all of the selftests within this file, for all value types. */
void
wide_int_cc_tests ()
{
run_all_wide_int_tests <wide_int> ();
run_all_wide_int_tests <offset_int> ();
run_all_wide_int_tests <widest_int> ();
test_overflow ();
test_round_for_mask ();
}
} // namespace selftest
#endif /* CHECKING_P */
|