1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// DWARF debug information entry parser.
// An entry is a sequence of data items of a given format.
// The first word in the entry is an index into what DWARF
// calls the ``abbreviation table.'' An abbreviation is really
// just a type descriptor: it's an array of attribute tag/value format pairs.
package dwarf
import (
"errors"
"strconv"
)
// a single entry's description: a sequence of attributes
type abbrev struct {
tag Tag
children bool
field []afield
}
type afield struct {
attr Attr
fmt format
class Class
}
// a map from entry format ids to their descriptions
type abbrevTable map[uint32]abbrev
// ParseAbbrev returns the abbreviation table that starts at byte off
// in the .debug_abbrev section.
func (d *Data) parseAbbrev(off uint64, vers int) (abbrevTable, error) {
if m, ok := d.abbrevCache[off]; ok {
return m, nil
}
data := d.abbrev
if off > uint64(len(data)) {
data = nil
} else {
data = data[off:]
}
b := makeBuf(d, unknownFormat{}, "abbrev", 0, data)
// Error handling is simplified by the buf getters
// returning an endless stream of 0s after an error.
m := make(abbrevTable)
for {
// Table ends with id == 0.
id := uint32(b.uint())
if id == 0 {
break
}
// Walk over attributes, counting.
n := 0
b1 := b // Read from copy of b.
b1.uint()
b1.uint8()
for {
tag := b1.uint()
fmt := b1.uint()
if tag == 0 && fmt == 0 {
break
}
n++
}
if b1.err != nil {
return nil, b1.err
}
// Walk over attributes again, this time writing them down.
var a abbrev
a.tag = Tag(b.uint())
a.children = b.uint8() != 0
a.field = make([]afield, n)
for i := range a.field {
a.field[i].attr = Attr(b.uint())
a.field[i].fmt = format(b.uint())
a.field[i].class = formToClass(a.field[i].fmt, a.field[i].attr, vers, &b)
}
b.uint()
b.uint()
m[id] = a
}
if b.err != nil {
return nil, b.err
}
d.abbrevCache[off] = m
return m, nil
}
// attrIsExprloc indicates attributes that allow exprloc values that
// are encoded as block values in DWARF 2 and 3. See DWARF 4, Figure
// 20.
var attrIsExprloc = map[Attr]bool{
AttrLocation: true,
AttrByteSize: true,
AttrBitOffset: true,
AttrBitSize: true,
AttrStringLength: true,
AttrLowerBound: true,
AttrReturnAddr: true,
AttrStrideSize: true,
AttrUpperBound: true,
AttrCount: true,
AttrDataMemberLoc: true,
AttrFrameBase: true,
AttrSegment: true,
AttrStaticLink: true,
AttrUseLocation: true,
AttrVtableElemLoc: true,
AttrAllocated: true,
AttrAssociated: true,
AttrDataLocation: true,
AttrStride: true,
}
// attrPtrClass indicates the *ptr class of attributes that have
// encoding formSecOffset in DWARF 4 or formData* in DWARF 2 and 3.
var attrPtrClass = map[Attr]Class{
AttrLocation: ClassLocListPtr,
AttrStmtList: ClassLinePtr,
AttrStringLength: ClassLocListPtr,
AttrReturnAddr: ClassLocListPtr,
AttrStartScope: ClassRangeListPtr,
AttrDataMemberLoc: ClassLocListPtr,
AttrFrameBase: ClassLocListPtr,
AttrMacroInfo: ClassMacPtr,
AttrSegment: ClassLocListPtr,
AttrStaticLink: ClassLocListPtr,
AttrUseLocation: ClassLocListPtr,
AttrVtableElemLoc: ClassLocListPtr,
AttrRanges: ClassRangeListPtr,
}
// formToClass returns the DWARF 4 Class for the given form. If the
// DWARF version is less then 4, it will disambiguate some forms
// depending on the attribute.
func formToClass(form format, attr Attr, vers int, b *buf) Class {
switch form {
default:
b.error("cannot determine class of unknown attribute form")
return 0
case formAddr:
return ClassAddress
case formDwarfBlock1, formDwarfBlock2, formDwarfBlock4, formDwarfBlock:
// In DWARF 2 and 3, ClassExprLoc was encoded as a
// block. DWARF 4 distinguishes ClassBlock and
// ClassExprLoc, but there are no attributes that can
// be both, so we also promote ClassBlock values in
// DWARF 4 that should be ClassExprLoc in case
// producers get this wrong.
if attrIsExprloc[attr] {
return ClassExprLoc
}
return ClassBlock
case formData1, formData2, formData4, formData8, formSdata, formUdata:
// In DWARF 2 and 3, ClassPtr was encoded as a
// constant. Unlike ClassExprLoc/ClassBlock, some
// DWARF 4 attributes need to distinguish Class*Ptr
// from ClassConstant, so we only do this promotion
// for versions 2 and 3.
if class, ok := attrPtrClass[attr]; vers < 4 && ok {
return class
}
return ClassConstant
case formFlag, formFlagPresent:
return ClassFlag
case formRefAddr, formRef1, formRef2, formRef4, formRef8, formRefUdata:
return ClassReference
case formRefSig8:
return ClassReferenceSig
case formString, formStrp:
return ClassString
case formSecOffset:
// DWARF 4 defines four *ptr classes, but doesn't
// distinguish them in the encoding. Disambiguate
// these classes using the attribute.
if class, ok := attrPtrClass[attr]; ok {
return class
}
return ClassUnknown
case formExprloc:
return ClassExprLoc
case formGnuRefAlt:
return ClassReferenceAlt
case formGnuStrpAlt:
return ClassStringAlt
}
}
// An entry is a sequence of attribute/value pairs.
type Entry struct {
Offset Offset // offset of Entry in DWARF info
Tag Tag // tag (kind of Entry)
Children bool // whether Entry is followed by children
Field []Field
}
// A Field is a single attribute/value pair in an Entry.
//
// A value can be one of several "attribute classes" defined by DWARF.
// The Go types corresponding to each class are:
//
// DWARF class Go type Class
// ----------- ------- -----
// address uint64 ClassAddress
// block []byte ClassBlock
// constant int64 ClassConstant
// flag bool ClassFlag
// reference
// to info dwarf.Offset ClassReference
// to type unit uint64 ClassReferenceSig
// string string ClassString
// exprloc []byte ClassExprLoc
// lineptr int64 ClassLinePtr
// loclistptr int64 ClassLocListPtr
// macptr int64 ClassMacPtr
// rangelistptr int64 ClassRangeListPtr
//
// For unrecognized or vendor-defined attributes, Class may be
// ClassUnknown.
type Field struct {
Attr Attr
Val interface{}
Class Class
}
// A Class is the DWARF 4 class of an attribute value.
//
// In general, a given attribute's value may take on one of several
// possible classes defined by DWARF, each of which leads to a
// slightly different interpretation of the attribute.
//
// DWARF version 4 distinguishes attribute value classes more finely
// than previous versions of DWARF. The reader will disambiguate
// coarser classes from earlier versions of DWARF into the appropriate
// DWARF 4 class. For example, DWARF 2 uses "constant" for constants
// as well as all types of section offsets, but the reader will
// canonicalize attributes in DWARF 2 files that refer to section
// offsets to one of the Class*Ptr classes, even though these classes
// were only defined in DWARF 3.
type Class int
const (
// ClassUnknown represents values of unknown DWARF class.
ClassUnknown Class = iota
// ClassAddress represents values of type uint64 that are
// addresses on the target machine.
ClassAddress
// ClassBlock represents values of type []byte whose
// interpretation depends on the attribute.
ClassBlock
// ClassConstant represents values of type int64 that are
// constants. The interpretation of this constant depends on
// the attribute.
ClassConstant
// ClassExprLoc represents values of type []byte that contain
// an encoded DWARF expression or location description.
ClassExprLoc
// ClassFlag represents values of type bool.
ClassFlag
// ClassLinePtr represents values that are an int64 offset
// into the "line" section.
ClassLinePtr
// ClassLocListPtr represents values that are an int64 offset
// into the "loclist" section.
ClassLocListPtr
// ClassMacPtr represents values that are an int64 offset into
// the "mac" section.
ClassMacPtr
// ClassMacPtr represents values that are an int64 offset into
// the "rangelist" section.
ClassRangeListPtr
// ClassReference represents values that are an Offset offset
// of an Entry in the info section (for use with Reader.Seek).
// The DWARF specification combines ClassReference and
// ClassReferenceSig into class "reference".
ClassReference
// ClassReferenceSig represents values that are a uint64 type
// signature referencing a type Entry.
ClassReferenceSig
// ClassString represents values that are strings. If the
// compilation unit specifies the AttrUseUTF8 flag (strongly
// recommended), the string value will be encoded in UTF-8.
// Otherwise, the encoding is unspecified.
ClassString
// ClassReferenceAlt represents values of type int64 that are
// an offset into the DWARF "info" section of an alternate
// object file.
ClassReferenceAlt
// ClassStringAlt represents values of type int64 that are an
// offset into the DWARF string section of an alternate object
// file.
ClassStringAlt
)
//go:generate stringer -type=Class
func (i Class) GoString() string {
return "dwarf." + i.String()
}
// Val returns the value associated with attribute Attr in Entry,
// or nil if there is no such attribute.
//
// A common idiom is to merge the check for nil return with
// the check that the value has the expected dynamic type, as in:
// v, ok := e.Val(AttrSibling).(int64)
//
func (e *Entry) Val(a Attr) interface{} {
if f := e.AttrField(a); f != nil {
return f.Val
}
return nil
}
// AttrField returns the Field associated with attribute Attr in
// Entry, or nil if there is no such attribute.
func (e *Entry) AttrField(a Attr) *Field {
for i, f := range e.Field {
if f.Attr == a {
return &e.Field[i]
}
}
return nil
}
// An Offset represents the location of an Entry within the DWARF info.
// (See Reader.Seek.)
type Offset uint32
// Entry reads a single entry from buf, decoding
// according to the given abbreviation table.
func (b *buf) entry(atab abbrevTable, ubase Offset) *Entry {
off := b.off
id := uint32(b.uint())
if id == 0 {
return &Entry{}
}
a, ok := atab[id]
if !ok {
b.error("unknown abbreviation table index")
return nil
}
e := &Entry{
Offset: off,
Tag: a.tag,
Children: a.children,
Field: make([]Field, len(a.field)),
}
for i := range e.Field {
e.Field[i].Attr = a.field[i].attr
e.Field[i].Class = a.field[i].class
fmt := a.field[i].fmt
if fmt == formIndirect {
fmt = format(b.uint())
}
var val interface{}
switch fmt {
default:
b.error("unknown entry attr format 0x" + strconv.FormatInt(int64(fmt), 16))
// address
case formAddr:
val = b.addr()
// block
case formDwarfBlock1:
val = b.bytes(int(b.uint8()))
case formDwarfBlock2:
val = b.bytes(int(b.uint16()))
case formDwarfBlock4:
val = b.bytes(int(b.uint32()))
case formDwarfBlock:
val = b.bytes(int(b.uint()))
// constant
case formData1:
val = int64(b.uint8())
case formData2:
val = int64(b.uint16())
case formData4:
val = int64(b.uint32())
case formData8:
val = int64(b.uint64())
case formSdata:
val = int64(b.int())
case formUdata:
val = int64(b.uint())
// flag
case formFlag:
val = b.uint8() == 1
// New in DWARF 4.
case formFlagPresent:
// The attribute is implicitly indicated as present, and no value is
// encoded in the debugging information entry itself.
val = true
// reference to other entry
case formRefAddr:
vers := b.format.version()
if vers == 0 {
b.error("unknown version for DW_FORM_ref_addr")
} else if vers == 2 {
val = Offset(b.addr())
} else {
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for DW_FORM_ref_addr")
} else if is64 {
val = Offset(b.uint64())
} else {
val = Offset(b.uint32())
}
}
case formRef1:
val = Offset(b.uint8()) + ubase
case formRef2:
val = Offset(b.uint16()) + ubase
case formRef4:
val = Offset(b.uint32()) + ubase
case formRef8:
val = Offset(b.uint64()) + ubase
case formRefUdata:
val = Offset(b.uint()) + ubase
// string
case formString:
val = b.string()
case formStrp:
var off uint64 // offset into .debug_str
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for DW_FORM_strp")
} else if is64 {
off = b.uint64()
} else {
off = uint64(b.uint32())
}
if uint64(int(off)) != off {
b.error("DW_FORM_strp offset out of range")
}
if b.err != nil {
return nil
}
b1 := makeBuf(b.dwarf, unknownFormat{}, "str", 0, b.dwarf.str)
b1.skip(int(off))
val = b1.string()
if b1.err != nil {
b.err = b1.err
return nil
}
// lineptr, loclistptr, macptr, rangelistptr
// New in DWARF 4, but clang can generate them with -gdwarf-2.
// Section reference, replacing use of formData4 and formData8.
case formSecOffset, formGnuRefAlt, formGnuStrpAlt:
is64, known := b.format.dwarf64()
if !known {
b.error("unknown size for form 0x" + strconv.FormatInt(int64(fmt), 16))
} else if is64 {
val = int64(b.uint64())
} else {
val = int64(b.uint32())
}
// exprloc
// New in DWARF 4.
case formExprloc:
val = b.bytes(int(b.uint()))
// reference
// New in DWARF 4.
case formRefSig8:
// 64-bit type signature.
val = b.uint64()
}
e.Field[i].Val = val
}
if b.err != nil {
return nil
}
return e
}
// A Reader allows reading Entry structures from a DWARF ``info'' section.
// The Entry structures are arranged in a tree. The Reader's Next function
// return successive entries from a pre-order traversal of the tree.
// If an entry has children, its Children field will be true, and the children
// follow, terminated by an Entry with Tag 0.
type Reader struct {
b buf
d *Data
err error
unit int
lastChildren bool // .Children of last entry returned by Next
lastSibling Offset // .Val(AttrSibling) of last entry returned by Next
}
// Reader returns a new Reader for Data.
// The reader is positioned at byte offset 0 in the DWARF ``info'' section.
func (d *Data) Reader() *Reader {
r := &Reader{d: d}
r.Seek(0)
return r
}
// AddressSize returns the size in bytes of addresses in the current compilation
// unit.
func (r *Reader) AddressSize() int {
return r.d.unit[r.unit].asize
}
// Seek positions the Reader at offset off in the encoded entry stream.
// Offset 0 can be used to denote the first entry.
func (r *Reader) Seek(off Offset) {
d := r.d
r.err = nil
r.lastChildren = false
if off == 0 {
if len(d.unit) == 0 {
return
}
u := &d.unit[0]
r.unit = 0
r.b = makeBuf(r.d, u, "info", u.off, u.data)
return
}
i := d.offsetToUnit(off)
if i == -1 {
r.err = errors.New("offset out of range")
return
}
u := &d.unit[i]
r.unit = i
r.b = makeBuf(r.d, u, "info", off, u.data[off-u.off:])
}
// maybeNextUnit advances to the next unit if this one is finished.
func (r *Reader) maybeNextUnit() {
for len(r.b.data) == 0 && r.unit+1 < len(r.d.unit) {
r.unit++
u := &r.d.unit[r.unit]
r.b = makeBuf(r.d, u, "info", u.off, u.data)
}
}
// Next reads the next entry from the encoded entry stream.
// It returns nil, nil when it reaches the end of the section.
// It returns an error if the current offset is invalid or the data at the
// offset cannot be decoded as a valid Entry.
func (r *Reader) Next() (*Entry, error) {
if r.err != nil {
return nil, r.err
}
r.maybeNextUnit()
if len(r.b.data) == 0 {
return nil, nil
}
u := &r.d.unit[r.unit]
e := r.b.entry(u.atable, u.base)
if r.b.err != nil {
r.err = r.b.err
return nil, r.err
}
if e != nil {
r.lastChildren = e.Children
if r.lastChildren {
r.lastSibling, _ = e.Val(AttrSibling).(Offset)
}
} else {
r.lastChildren = false
}
return e, nil
}
// SkipChildren skips over the child entries associated with
// the last Entry returned by Next. If that Entry did not have
// children or Next has not been called, SkipChildren is a no-op.
func (r *Reader) SkipChildren() {
if r.err != nil || !r.lastChildren {
return
}
// If the last entry had a sibling attribute,
// that attribute gives the offset of the next
// sibling, so we can avoid decoding the
// child subtrees.
if r.lastSibling >= r.b.off {
r.Seek(r.lastSibling)
return
}
for {
e, err := r.Next()
if err != nil || e == nil || e.Tag == 0 {
break
}
if e.Children {
r.SkipChildren()
}
}
}
// clone returns a copy of the reader. This is used by the typeReader
// interface.
func (r *Reader) clone() typeReader {
return r.d.Reader()
}
// offset returns the current buffer offset. This is used by the
// typeReader interface.
func (r *Reader) offset() Offset {
return r.b.off
}
// SeekPC returns the Entry for the compilation unit that includes pc,
// and positions the reader to read the children of that unit. If pc
// is not covered by any unit, SeekPC returns ErrUnknownPC and the
// position of the reader is undefined.
//
// Because compilation units can describe multiple regions of the
// executable, in the worst case SeekPC must search through all the
// ranges in all the compilation units. Each call to SeekPC starts the
// search at the compilation unit of the last call, so in general
// looking up a series of PCs will be faster if they are sorted. If
// the caller wishes to do repeated fast PC lookups, it should build
// an appropriate index using the Ranges method.
func (r *Reader) SeekPC(pc uint64) (*Entry, error) {
unit := r.unit
for i := 0; i < len(r.d.unit); i++ {
if unit >= len(r.d.unit) {
unit = 0
}
r.err = nil
r.lastChildren = false
r.unit = unit
u := &r.d.unit[unit]
r.b = makeBuf(r.d, u, "info", u.off, u.data)
e, err := r.Next()
if err != nil {
return nil, err
}
ranges, err := r.d.Ranges(e)
if err != nil {
return nil, err
}
for _, pcs := range ranges {
if pcs[0] <= pc && pc < pcs[1] {
return e, nil
}
}
unit++
}
return nil, ErrUnknownPC
}
// Ranges returns the PC ranges covered by e, a slice of [low,high) pairs.
// Only some entry types, such as TagCompileUnit or TagSubprogram, have PC
// ranges; for others, this will return nil with no error.
func (d *Data) Ranges(e *Entry) ([][2]uint64, error) {
var ret [][2]uint64
low, lowOK := e.Val(AttrLowpc).(uint64)
var high uint64
var highOK bool
highField := e.AttrField(AttrHighpc)
if highField != nil {
switch highField.Class {
case ClassAddress:
high, highOK = highField.Val.(uint64)
case ClassConstant:
off, ok := highField.Val.(int64)
if ok {
high = low + uint64(off)
highOK = true
}
}
}
if lowOK && highOK {
ret = append(ret, [2]uint64{low, high})
}
ranges, rangesOK := e.Val(AttrRanges).(int64)
if rangesOK && d.ranges != nil {
// The initial base address is the lowpc attribute
// of the enclosing compilation unit.
// Although DWARF specifies the lowpc attribute,
// comments in gdb/dwarf2read.c say that some versions
// of GCC use the entrypc attribute, so we check that too.
var cu *Entry
if e.Tag == TagCompileUnit {
cu = e
} else {
i := d.offsetToUnit(e.Offset)
if i == -1 {
return nil, errors.New("no unit for entry")
}
u := &d.unit[i]
b := makeBuf(d, u, "info", u.off, u.data)
cu = b.entry(u.atable, u.base)
if b.err != nil {
return nil, b.err
}
}
var base uint64
if cuEntry, cuEntryOK := cu.Val(AttrEntrypc).(uint64); cuEntryOK {
base = cuEntry
} else if cuLow, cuLowOK := cu.Val(AttrLowpc).(uint64); cuLowOK {
base = cuLow
}
u := &d.unit[d.offsetToUnit(e.Offset)]
buf := makeBuf(d, u, "ranges", Offset(ranges), d.ranges[ranges:])
for len(buf.data) > 0 {
low = buf.addr()
high = buf.addr()
if low == 0 && high == 0 {
break
}
if low == ^uint64(0)>>uint((8-u.addrsize())*8) {
base = high
} else {
ret = append(ret, [2]uint64{base + low, base + high})
}
}
}
return ret, nil
}
|