1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"encoding"
"errors"
"fmt"
"os"
"reflect"
"sync"
"sync/atomic"
"unicode"
"unicode/utf8"
)
// userTypeInfo stores the information associated with a type the user has handed
// to the package. It's computed once and stored in a map keyed by reflection
// type.
type userTypeInfo struct {
user reflect.Type // the type the user handed us
base reflect.Type // the base type after all indirections
indir int // number of indirections to reach the base type
externalEnc int // xGob, xBinary, or xText
externalDec int // xGob, xBinary or xText
encIndir int8 // number of indirections to reach the receiver type; may be negative
decIndir int8 // number of indirections to reach the receiver type; may be negative
}
// externalEncoding bits
const (
xGob = 1 + iota // GobEncoder or GobDecoder
xBinary // encoding.BinaryMarshaler or encoding.BinaryUnmarshaler
xText // encoding.TextMarshaler or encoding.TextUnmarshaler
)
var userTypeCache sync.Map // map[reflect.Type]*userTypeInfo
// validType returns, and saves, the information associated with user-provided type rt.
// If the user type is not valid, err will be non-nil. To be used when the error handler
// is not set up.
func validUserType(rt reflect.Type) (*userTypeInfo, error) {
if ui, ok := userTypeCache.Load(rt); ok {
return ui.(*userTypeInfo), nil
}
// Construct a new userTypeInfo and atomically add it to the userTypeCache.
// If we lose the race, we'll waste a little CPU and create a little garbage
// but return the existing value anyway.
ut := new(userTypeInfo)
ut.base = rt
ut.user = rt
// A type that is just a cycle of pointers (such as type T *T) cannot
// be represented in gobs, which need some concrete data. We use a
// cycle detection algorithm from Knuth, Vol 2, Section 3.1, Ex 6,
// pp 539-540. As we step through indirections, run another type at
// half speed. If they meet up, there's a cycle.
slowpoke := ut.base // walks half as fast as ut.base
for {
pt := ut.base
if pt.Kind() != reflect.Ptr {
break
}
ut.base = pt.Elem()
if ut.base == slowpoke { // ut.base lapped slowpoke
// recursive pointer type.
return nil, errors.New("can't represent recursive pointer type " + ut.base.String())
}
if ut.indir%2 == 0 {
slowpoke = slowpoke.Elem()
}
ut.indir++
}
if ok, indir := implementsInterface(ut.user, gobEncoderInterfaceType); ok {
ut.externalEnc, ut.encIndir = xGob, indir
} else if ok, indir := implementsInterface(ut.user, binaryMarshalerInterfaceType); ok {
ut.externalEnc, ut.encIndir = xBinary, indir
}
// NOTE(rsc): Would like to allow MarshalText here, but results in incompatibility
// with older encodings for net.IP. See golang.org/issue/6760.
// } else if ok, indir := implementsInterface(ut.user, textMarshalerInterfaceType); ok {
// ut.externalEnc, ut.encIndir = xText, indir
// }
if ok, indir := implementsInterface(ut.user, gobDecoderInterfaceType); ok {
ut.externalDec, ut.decIndir = xGob, indir
} else if ok, indir := implementsInterface(ut.user, binaryUnmarshalerInterfaceType); ok {
ut.externalDec, ut.decIndir = xBinary, indir
}
// See note above.
// } else if ok, indir := implementsInterface(ut.user, textUnmarshalerInterfaceType); ok {
// ut.externalDec, ut.decIndir = xText, indir
// }
ui, _ := userTypeCache.LoadOrStore(rt, ut)
return ui.(*userTypeInfo), nil
}
var (
gobEncoderInterfaceType = reflect.TypeOf((*GobEncoder)(nil)).Elem()
gobDecoderInterfaceType = reflect.TypeOf((*GobDecoder)(nil)).Elem()
binaryMarshalerInterfaceType = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
binaryUnmarshalerInterfaceType = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
textMarshalerInterfaceType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerInterfaceType = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
)
// implementsInterface reports whether the type implements the
// gobEncoder/gobDecoder interface.
// It also returns the number of indirections required to get to the
// implementation.
func implementsInterface(typ, gobEncDecType reflect.Type) (success bool, indir int8) {
if typ == nil {
return
}
rt := typ
// The type might be a pointer and we need to keep
// dereferencing to the base type until we find an implementation.
for {
if rt.Implements(gobEncDecType) {
return true, indir
}
if p := rt; p.Kind() == reflect.Ptr {
indir++
if indir > 100 { // insane number of indirections
return false, 0
}
rt = p.Elem()
continue
}
break
}
// No luck yet, but if this is a base type (non-pointer), the pointer might satisfy.
if typ.Kind() != reflect.Ptr {
// Not a pointer, but does the pointer work?
if reflect.PtrTo(typ).Implements(gobEncDecType) {
return true, -1
}
}
return false, 0
}
// userType returns, and saves, the information associated with user-provided type rt.
// If the user type is not valid, it calls error.
func userType(rt reflect.Type) *userTypeInfo {
ut, err := validUserType(rt)
if err != nil {
error_(err)
}
return ut
}
// A typeId represents a gob Type as an integer that can be passed on the wire.
// Internally, typeIds are used as keys to a map to recover the underlying type info.
type typeId int32
var nextId typeId // incremented for each new type we build
var typeLock sync.Mutex // set while building a type
const firstUserId = 64 // lowest id number granted to user
type gobType interface {
id() typeId
setId(id typeId)
name() string
string() string // not public; only for debugging
safeString(seen map[typeId]bool) string
}
var types = make(map[reflect.Type]gobType)
var idToType = make(map[typeId]gobType)
var builtinIdToType map[typeId]gobType // set in init() after builtins are established
func setTypeId(typ gobType) {
// When building recursive types, someone may get there before us.
if typ.id() != 0 {
return
}
nextId++
typ.setId(nextId)
idToType[nextId] = typ
}
func (t typeId) gobType() gobType {
if t == 0 {
return nil
}
return idToType[t]
}
// string returns the string representation of the type associated with the typeId.
func (t typeId) string() string {
if t.gobType() == nil {
return "<nil>"
}
return t.gobType().string()
}
// Name returns the name of the type associated with the typeId.
func (t typeId) name() string {
if t.gobType() == nil {
return "<nil>"
}
return t.gobType().name()
}
// CommonType holds elements of all types.
// It is a historical artifact, kept for binary compatibility and exported
// only for the benefit of the package's encoding of type descriptors. It is
// not intended for direct use by clients.
type CommonType struct {
Name string
Id typeId
}
func (t *CommonType) id() typeId { return t.Id }
func (t *CommonType) setId(id typeId) { t.Id = id }
func (t *CommonType) string() string { return t.Name }
func (t *CommonType) safeString(seen map[typeId]bool) string {
return t.Name
}
func (t *CommonType) name() string { return t.Name }
// Create and check predefined types
// The string for tBytes is "bytes" not "[]byte" to signify its specialness.
var (
// Primordial types, needed during initialization.
// Always passed as pointers so the interface{} type
// goes through without losing its interfaceness.
tBool = bootstrapType("bool", (*bool)(nil), 1)
tInt = bootstrapType("int", (*int)(nil), 2)
tUint = bootstrapType("uint", (*uint)(nil), 3)
tFloat = bootstrapType("float", (*float64)(nil), 4)
tBytes = bootstrapType("bytes", (*[]byte)(nil), 5)
tString = bootstrapType("string", (*string)(nil), 6)
tComplex = bootstrapType("complex", (*complex128)(nil), 7)
tInterface = bootstrapType("interface", (*interface{})(nil), 8)
// Reserve some Ids for compatible expansion
tReserved7 = bootstrapType("_reserved1", (*struct{ r7 int })(nil), 9)
tReserved6 = bootstrapType("_reserved1", (*struct{ r6 int })(nil), 10)
tReserved5 = bootstrapType("_reserved1", (*struct{ r5 int })(nil), 11)
tReserved4 = bootstrapType("_reserved1", (*struct{ r4 int })(nil), 12)
tReserved3 = bootstrapType("_reserved1", (*struct{ r3 int })(nil), 13)
tReserved2 = bootstrapType("_reserved1", (*struct{ r2 int })(nil), 14)
tReserved1 = bootstrapType("_reserved1", (*struct{ r1 int })(nil), 15)
)
// Predefined because it's needed by the Decoder
var tWireType = mustGetTypeInfo(reflect.TypeOf(wireType{})).id
var wireTypeUserInfo *userTypeInfo // userTypeInfo of (*wireType)
func init() {
// Some magic numbers to make sure there are no surprises.
checkId(16, tWireType)
checkId(17, mustGetTypeInfo(reflect.TypeOf(arrayType{})).id)
checkId(18, mustGetTypeInfo(reflect.TypeOf(CommonType{})).id)
checkId(19, mustGetTypeInfo(reflect.TypeOf(sliceType{})).id)
checkId(20, mustGetTypeInfo(reflect.TypeOf(structType{})).id)
checkId(21, mustGetTypeInfo(reflect.TypeOf(fieldType{})).id)
checkId(23, mustGetTypeInfo(reflect.TypeOf(mapType{})).id)
builtinIdToType = make(map[typeId]gobType)
for k, v := range idToType {
builtinIdToType[k] = v
}
// Move the id space upwards to allow for growth in the predefined world
// without breaking existing files.
if nextId > firstUserId {
panic(fmt.Sprintln("nextId too large:", nextId))
}
nextId = firstUserId
registerBasics()
wireTypeUserInfo = userType(reflect.TypeOf((*wireType)(nil)))
}
// Array type
type arrayType struct {
CommonType
Elem typeId
Len int
}
func newArrayType(name string) *arrayType {
a := &arrayType{CommonType{Name: name}, 0, 0}
return a
}
func (a *arrayType) init(elem gobType, len int) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(a)
a.Elem = elem.id()
a.Len = len
}
func (a *arrayType) safeString(seen map[typeId]bool) string {
if seen[a.Id] {
return a.Name
}
seen[a.Id] = true
return fmt.Sprintf("[%d]%s", a.Len, a.Elem.gobType().safeString(seen))
}
func (a *arrayType) string() string { return a.safeString(make(map[typeId]bool)) }
// GobEncoder type (something that implements the GobEncoder interface)
type gobEncoderType struct {
CommonType
}
func newGobEncoderType(name string) *gobEncoderType {
g := &gobEncoderType{CommonType{Name: name}}
setTypeId(g)
return g
}
func (g *gobEncoderType) safeString(seen map[typeId]bool) string {
return g.Name
}
func (g *gobEncoderType) string() string { return g.Name }
// Map type
type mapType struct {
CommonType
Key typeId
Elem typeId
}
func newMapType(name string) *mapType {
m := &mapType{CommonType{Name: name}, 0, 0}
return m
}
func (m *mapType) init(key, elem gobType) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(m)
m.Key = key.id()
m.Elem = elem.id()
}
func (m *mapType) safeString(seen map[typeId]bool) string {
if seen[m.Id] {
return m.Name
}
seen[m.Id] = true
key := m.Key.gobType().safeString(seen)
elem := m.Elem.gobType().safeString(seen)
return fmt.Sprintf("map[%s]%s", key, elem)
}
func (m *mapType) string() string { return m.safeString(make(map[typeId]bool)) }
// Slice type
type sliceType struct {
CommonType
Elem typeId
}
func newSliceType(name string) *sliceType {
s := &sliceType{CommonType{Name: name}, 0}
return s
}
func (s *sliceType) init(elem gobType) {
// Set our type id before evaluating the element's, in case it's our own.
setTypeId(s)
// See the comments about ids in newTypeObject. Only slices and
// structs have mutual recursion.
if elem.id() == 0 {
setTypeId(elem)
}
s.Elem = elem.id()
}
func (s *sliceType) safeString(seen map[typeId]bool) string {
if seen[s.Id] {
return s.Name
}
seen[s.Id] = true
return fmt.Sprintf("[]%s", s.Elem.gobType().safeString(seen))
}
func (s *sliceType) string() string { return s.safeString(make(map[typeId]bool)) }
// Struct type
type fieldType struct {
Name string
Id typeId
}
type structType struct {
CommonType
Field []*fieldType
}
func (s *structType) safeString(seen map[typeId]bool) string {
if s == nil {
return "<nil>"
}
if _, ok := seen[s.Id]; ok {
return s.Name
}
seen[s.Id] = true
str := s.Name + " = struct { "
for _, f := range s.Field {
str += fmt.Sprintf("%s %s; ", f.Name, f.Id.gobType().safeString(seen))
}
str += "}"
return str
}
func (s *structType) string() string { return s.safeString(make(map[typeId]bool)) }
func newStructType(name string) *structType {
s := &structType{CommonType{Name: name}, nil}
// For historical reasons we set the id here rather than init.
// See the comment in newTypeObject for details.
setTypeId(s)
return s
}
// newTypeObject allocates a gobType for the reflection type rt.
// Unless ut represents a GobEncoder, rt should be the base type
// of ut.
// This is only called from the encoding side. The decoding side
// works through typeIds and userTypeInfos alone.
func newTypeObject(name string, ut *userTypeInfo, rt reflect.Type) (gobType, error) {
// Does this type implement GobEncoder?
if ut.externalEnc != 0 {
return newGobEncoderType(name), nil
}
var err error
var type0, type1 gobType
defer func() {
if err != nil {
delete(types, rt)
}
}()
// Install the top-level type before the subtypes (e.g. struct before
// fields) so recursive types can be constructed safely.
switch t := rt; t.Kind() {
// All basic types are easy: they are predefined.
case reflect.Bool:
return tBool.gobType(), nil
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return tInt.gobType(), nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
return tUint.gobType(), nil
case reflect.Float32, reflect.Float64:
return tFloat.gobType(), nil
case reflect.Complex64, reflect.Complex128:
return tComplex.gobType(), nil
case reflect.String:
return tString.gobType(), nil
case reflect.Interface:
return tInterface.gobType(), nil
case reflect.Array:
at := newArrayType(name)
types[rt] = at
type0, err = getBaseType("", t.Elem())
if err != nil {
return nil, err
}
// Historical aside:
// For arrays, maps, and slices, we set the type id after the elements
// are constructed. This is to retain the order of type id allocation after
// a fix made to handle recursive types, which changed the order in
// which types are built. Delaying the setting in this way preserves
// type ids while allowing recursive types to be described. Structs,
// done below, were already handling recursion correctly so they
// assign the top-level id before those of the field.
at.init(type0, t.Len())
return at, nil
case reflect.Map:
mt := newMapType(name)
types[rt] = mt
type0, err = getBaseType("", t.Key())
if err != nil {
return nil, err
}
type1, err = getBaseType("", t.Elem())
if err != nil {
return nil, err
}
mt.init(type0, type1)
return mt, nil
case reflect.Slice:
// []byte == []uint8 is a special case
if t.Elem().Kind() == reflect.Uint8 {
return tBytes.gobType(), nil
}
st := newSliceType(name)
types[rt] = st
type0, err = getBaseType(t.Elem().Name(), t.Elem())
if err != nil {
return nil, err
}
st.init(type0)
return st, nil
case reflect.Struct:
st := newStructType(name)
types[rt] = st
idToType[st.id()] = st
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
if !isSent(&f) {
continue
}
typ := userType(f.Type).base
tname := typ.Name()
if tname == "" {
t := userType(f.Type).base
tname = t.String()
}
gt, err := getBaseType(tname, f.Type)
if err != nil {
return nil, err
}
// Some mutually recursive types can cause us to be here while
// still defining the element. Fix the element type id here.
// We could do this more neatly by setting the id at the start of
// building every type, but that would break binary compatibility.
if gt.id() == 0 {
setTypeId(gt)
}
st.Field = append(st.Field, &fieldType{f.Name, gt.id()})
}
return st, nil
default:
return nil, errors.New("gob NewTypeObject can't handle type: " + rt.String())
}
}
// isExported reports whether this is an exported - upper case - name.
func isExported(name string) bool {
rune, _ := utf8.DecodeRuneInString(name)
return unicode.IsUpper(rune)
}
// isSent reports whether this struct field is to be transmitted.
// It will be transmitted only if it is exported and not a chan or func field
// or pointer to chan or func.
func isSent(field *reflect.StructField) bool {
if !isExported(field.Name) {
return false
}
// If the field is a chan or func or pointer thereto, don't send it.
// That is, treat it like an unexported field.
typ := field.Type
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
if typ.Kind() == reflect.Chan || typ.Kind() == reflect.Func {
return false
}
return true
}
// getBaseType returns the Gob type describing the given reflect.Type's base type.
// typeLock must be held.
func getBaseType(name string, rt reflect.Type) (gobType, error) {
ut := userType(rt)
return getType(name, ut, ut.base)
}
// getType returns the Gob type describing the given reflect.Type.
// Should be called only when handling GobEncoders/Decoders,
// which may be pointers. All other types are handled through the
// base type, never a pointer.
// typeLock must be held.
func getType(name string, ut *userTypeInfo, rt reflect.Type) (gobType, error) {
typ, present := types[rt]
if present {
return typ, nil
}
typ, err := newTypeObject(name, ut, rt)
if err == nil {
types[rt] = typ
}
return typ, err
}
func checkId(want, got typeId) {
if want != got {
fmt.Fprintf(os.Stderr, "checkId: %d should be %d\n", int(got), int(want))
panic("bootstrap type wrong id: " + got.name() + " " + got.string() + " not " + want.string())
}
}
// used for building the basic types; called only from init(). the incoming
// interface always refers to a pointer.
func bootstrapType(name string, e interface{}, expect typeId) typeId {
rt := reflect.TypeOf(e).Elem()
_, present := types[rt]
if present {
panic("bootstrap type already present: " + name + ", " + rt.String())
}
typ := &CommonType{Name: name}
types[rt] = typ
setTypeId(typ)
checkId(expect, nextId)
userType(rt) // might as well cache it now
return nextId
}
// Representation of the information we send and receive about this type.
// Each value we send is preceded by its type definition: an encoded int.
// However, the very first time we send the value, we first send the pair
// (-id, wireType).
// For bootstrapping purposes, we assume that the recipient knows how
// to decode a wireType; it is exactly the wireType struct here, interpreted
// using the gob rules for sending a structure, except that we assume the
// ids for wireType and structType etc. are known. The relevant pieces
// are built in encode.go's init() function.
// To maintain binary compatibility, if you extend this type, always put
// the new fields last.
type wireType struct {
ArrayT *arrayType
SliceT *sliceType
StructT *structType
MapT *mapType
GobEncoderT *gobEncoderType
BinaryMarshalerT *gobEncoderType
TextMarshalerT *gobEncoderType
}
func (w *wireType) string() string {
const unknown = "unknown type"
if w == nil {
return unknown
}
switch {
case w.ArrayT != nil:
return w.ArrayT.Name
case w.SliceT != nil:
return w.SliceT.Name
case w.StructT != nil:
return w.StructT.Name
case w.MapT != nil:
return w.MapT.Name
case w.GobEncoderT != nil:
return w.GobEncoderT.Name
case w.BinaryMarshalerT != nil:
return w.BinaryMarshalerT.Name
case w.TextMarshalerT != nil:
return w.TextMarshalerT.Name
}
return unknown
}
type typeInfo struct {
id typeId
encInit sync.Mutex // protects creation of encoder
encoder atomic.Value // *encEngine
wire *wireType
}
// typeInfoMap is an atomic pointer to map[reflect.Type]*typeInfo.
// It's updated copy-on-write. Readers just do an atomic load
// to get the current version of the map. Writers make a full copy of
// the map and atomically update the pointer to point to the new map.
// Under heavy read contention, this is significantly faster than a map
// protected by a mutex.
var typeInfoMap atomic.Value
func lookupTypeInfo(rt reflect.Type) *typeInfo {
m, _ := typeInfoMap.Load().(map[reflect.Type]*typeInfo)
return m[rt]
}
func getTypeInfo(ut *userTypeInfo) (*typeInfo, error) {
rt := ut.base
if ut.externalEnc != 0 {
// We want the user type, not the base type.
rt = ut.user
}
if info := lookupTypeInfo(rt); info != nil {
return info, nil
}
return buildTypeInfo(ut, rt)
}
// buildTypeInfo constructs the type information for the type
// and stores it in the type info map.
func buildTypeInfo(ut *userTypeInfo, rt reflect.Type) (*typeInfo, error) {
typeLock.Lock()
defer typeLock.Unlock()
if info := lookupTypeInfo(rt); info != nil {
return info, nil
}
gt, err := getBaseType(rt.Name(), rt)
if err != nil {
return nil, err
}
info := &typeInfo{id: gt.id()}
if ut.externalEnc != 0 {
userType, err := getType(rt.Name(), ut, rt)
if err != nil {
return nil, err
}
gt := userType.id().gobType().(*gobEncoderType)
switch ut.externalEnc {
case xGob:
info.wire = &wireType{GobEncoderT: gt}
case xBinary:
info.wire = &wireType{BinaryMarshalerT: gt}
case xText:
info.wire = &wireType{TextMarshalerT: gt}
}
rt = ut.user
} else {
t := info.id.gobType()
switch typ := rt; typ.Kind() {
case reflect.Array:
info.wire = &wireType{ArrayT: t.(*arrayType)}
case reflect.Map:
info.wire = &wireType{MapT: t.(*mapType)}
case reflect.Slice:
// []byte == []uint8 is a special case handled separately
if typ.Elem().Kind() != reflect.Uint8 {
info.wire = &wireType{SliceT: t.(*sliceType)}
}
case reflect.Struct:
info.wire = &wireType{StructT: t.(*structType)}
}
}
// Create new map with old contents plus new entry.
newm := make(map[reflect.Type]*typeInfo)
m, _ := typeInfoMap.Load().(map[reflect.Type]*typeInfo)
for k, v := range m {
newm[k] = v
}
newm[rt] = info
typeInfoMap.Store(newm)
return info, nil
}
// Called only when a panic is acceptable and unexpected.
func mustGetTypeInfo(rt reflect.Type) *typeInfo {
t, err := getTypeInfo(userType(rt))
if err != nil {
panic("getTypeInfo: " + err.Error())
}
return t
}
// GobEncoder is the interface describing data that provides its own
// representation for encoding values for transmission to a GobDecoder.
// A type that implements GobEncoder and GobDecoder has complete
// control over the representation of its data and may therefore
// contain things such as private fields, channels, and functions,
// which are not usually transmissible in gob streams.
//
// Note: Since gobs can be stored permanently, it is good design
// to guarantee the encoding used by a GobEncoder is stable as the
// software evolves. For instance, it might make sense for GobEncode
// to include a version number in the encoding.
type GobEncoder interface {
// GobEncode returns a byte slice representing the encoding of the
// receiver for transmission to a GobDecoder, usually of the same
// concrete type.
GobEncode() ([]byte, error)
}
// GobDecoder is the interface describing data that provides its own
// routine for decoding transmitted values sent by a GobEncoder.
type GobDecoder interface {
// GobDecode overwrites the receiver, which must be a pointer,
// with the value represented by the byte slice, which was written
// by GobEncode, usually for the same concrete type.
GobDecode([]byte) error
}
var (
nameToConcreteType sync.Map // map[string]reflect.Type
concreteTypeToName sync.Map // map[reflect.Type]string
)
// RegisterName is like Register but uses the provided name rather than the
// type's default.
func RegisterName(name string, value interface{}) {
if name == "" {
// reserved for nil
panic("attempt to register empty name")
}
ut := userType(reflect.TypeOf(value))
// Check for incompatible duplicates. The name must refer to the
// same user type, and vice versa.
// Store the name and type provided by the user....
if t, dup := nameToConcreteType.LoadOrStore(name, reflect.TypeOf(value)); dup && t != ut.user {
panic(fmt.Sprintf("gob: registering duplicate types for %q: %s != %s", name, t, ut.user))
}
// but the flattened type in the type table, since that's what decode needs.
if n, dup := concreteTypeToName.LoadOrStore(ut.base, name); dup && n != name {
nameToConcreteType.Delete(name)
panic(fmt.Sprintf("gob: registering duplicate names for %s: %q != %q", ut.user, n, name))
}
}
// Register records a type, identified by a value for that type, under its
// internal type name. That name will identify the concrete type of a value
// sent or received as an interface variable. Only types that will be
// transferred as implementations of interface values need to be registered.
// Expecting to be used only during initialization, it panics if the mapping
// between types and names is not a bijection.
func Register(value interface{}) {
// Default to printed representation for unnamed types
rt := reflect.TypeOf(value)
name := rt.String()
// But for named types (or pointers to them), qualify with import path (but see inner comment).
// Dereference one pointer looking for a named type.
star := ""
if rt.Name() == "" {
if pt := rt; pt.Kind() == reflect.Ptr {
star = "*"
// NOTE: The following line should be rt = pt.Elem() to implement
// what the comment above claims, but fixing it would break compatibility
// with existing gobs.
//
// Given package p imported as "full/p" with these definitions:
// package p
// type T1 struct { ... }
// this table shows the intended and actual strings used by gob to
// name the types:
//
// Type Correct string Actual string
//
// T1 full/p.T1 full/p.T1
// *T1 *full/p.T1 *p.T1
//
// The missing full path cannot be fixed without breaking existing gob decoders.
rt = pt
}
}
if rt.Name() != "" {
if rt.PkgPath() == "" {
name = star + rt.Name()
} else {
name = star + rt.PkgPath() + "." + rt.Name()
}
}
RegisterName(name, value)
}
func registerBasics() {
Register(int(0))
Register(int8(0))
Register(int16(0))
Register(int32(0))
Register(int64(0))
Register(uint(0))
Register(uint8(0))
Register(uint16(0))
Register(uint32(0))
Register(uint64(0))
Register(float32(0))
Register(float64(0))
Register(complex64(0i))
Register(complex128(0i))
Register(uintptr(0))
Register(false)
Register("")
Register([]byte(nil))
Register([]int(nil))
Register([]int8(nil))
Register([]int16(nil))
Register([]int32(nil))
Register([]int64(nil))
Register([]uint(nil))
Register([]uint8(nil))
Register([]uint16(nil))
Register([]uint32(nil))
Register([]uint64(nil))
Register([]float32(nil))
Register([]float64(nil))
Register([]complex64(nil))
Register([]complex128(nil))
Register([]uintptr(nil))
Register([]bool(nil))
Register([]string(nil))
}
|