1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package hex implements hexadecimal encoding and decoding.
package hex
import (
"bytes"
"errors"
"fmt"
"io"
)
const hextable = "0123456789abcdef"
// EncodedLen returns the length of an encoding of n source bytes.
// Specifically, it returns n * 2.
func EncodedLen(n int) int { return n * 2 }
// Encode encodes src into EncodedLen(len(src))
// bytes of dst. As a convenience, it returns the number
// of bytes written to dst, but this value is always EncodedLen(len(src)).
// Encode implements hexadecimal encoding.
func Encode(dst, src []byte) int {
for i, v := range src {
dst[i*2] = hextable[v>>4]
dst[i*2+1] = hextable[v&0x0f]
}
return len(src) * 2
}
// ErrLength reports an attempt to decode an odd-length input
// using Decode or DecodeString.
// The stream-based Decoder returns io.ErrUnexpectedEOF instead of ErrLength.
var ErrLength = errors.New("encoding/hex: odd length hex string")
// InvalidByteError values describe errors resulting from an invalid byte in a hex string.
type InvalidByteError byte
func (e InvalidByteError) Error() string {
return fmt.Sprintf("encoding/hex: invalid byte: %#U", rune(e))
}
// DecodedLen returns the length of a decoding of x source bytes.
// Specifically, it returns x / 2.
func DecodedLen(x int) int { return x / 2 }
// Decode decodes src into DecodedLen(len(src)) bytes,
// returning the actual number of bytes written to dst.
//
// Decode expects that src contain only hexadecimal
// characters and that src should have an even length.
// If the input is malformed, Decode returns the number
// of bytes decoded before the error.
func Decode(dst, src []byte) (int, error) {
var i int
for i = 0; i < len(src)/2; i++ {
a, ok := fromHexChar(src[i*2])
if !ok {
return i, InvalidByteError(src[i*2])
}
b, ok := fromHexChar(src[i*2+1])
if !ok {
return i, InvalidByteError(src[i*2+1])
}
dst[i] = (a << 4) | b
}
if len(src)%2 == 1 {
// Check for invalid char before reporting bad length,
// since the invalid char (if present) is an earlier problem.
if _, ok := fromHexChar(src[i*2]); !ok {
return i, InvalidByteError(src[i*2])
}
return i, ErrLength
}
return i, nil
}
// fromHexChar converts a hex character into its value and a success flag.
func fromHexChar(c byte) (byte, bool) {
switch {
case '0' <= c && c <= '9':
return c - '0', true
case 'a' <= c && c <= 'f':
return c - 'a' + 10, true
case 'A' <= c && c <= 'F':
return c - 'A' + 10, true
}
return 0, false
}
// EncodeToString returns the hexadecimal encoding of src.
func EncodeToString(src []byte) string {
dst := make([]byte, EncodedLen(len(src)))
Encode(dst, src)
return string(dst)
}
// DecodeString returns the bytes represented by the hexadecimal string s.
//
// DecodeString expects that src contain only hexadecimal
// characters and that src should have an even length.
// If the input is malformed, DecodeString returns a string
// containing the bytes decoded before the error.
func DecodeString(s string) ([]byte, error) {
src := []byte(s)
// We can use the source slice itself as the destination
// because the decode loop increments by one and then the 'seen' byte is not used anymore.
n, err := Decode(src, src)
return src[:n], err
}
// Dump returns a string that contains a hex dump of the given data. The format
// of the hex dump matches the output of `hexdump -C` on the command line.
func Dump(data []byte) string {
var buf bytes.Buffer
dumper := Dumper(&buf)
dumper.Write(data)
dumper.Close()
return buf.String()
}
// bufferSize is the number of hexadecimal characters to buffer in encoder and decoder.
const bufferSize = 1024
type encoder struct {
w io.Writer
err error
out [bufferSize]byte // output buffer
}
// NewEncoder returns an io.Writer that writes lowercase hexadecimal characters to w.
func NewEncoder(w io.Writer) io.Writer {
return &encoder{w: w}
}
func (e *encoder) Write(p []byte) (n int, err error) {
for len(p) > 0 && e.err == nil {
chunkSize := bufferSize / 2
if len(p) < chunkSize {
chunkSize = len(p)
}
var written int
encoded := Encode(e.out[:], p[:chunkSize])
written, e.err = e.w.Write(e.out[:encoded])
n += written / 2
p = p[chunkSize:]
}
return n, e.err
}
type decoder struct {
r io.Reader
err error
in []byte // input buffer (encoded form)
arr [bufferSize]byte // backing array for in
}
// NewDecoder returns an io.Reader that decodes hexadecimal characters from r.
// NewDecoder expects that r contain only an even number of hexadecimal characters.
func NewDecoder(r io.Reader) io.Reader {
return &decoder{r: r}
}
func (d *decoder) Read(p []byte) (n int, err error) {
// Fill internal buffer with sufficient bytes to decode
if len(d.in) < 2 && d.err == nil {
var numCopy, numRead int
numCopy = copy(d.arr[:], d.in) // Copies either 0 or 1 bytes
numRead, d.err = d.r.Read(d.arr[numCopy:])
d.in = d.arr[:numCopy+numRead]
if d.err == io.EOF && len(d.in)%2 != 0 {
if _, ok := fromHexChar(d.in[len(d.in)-1]); !ok {
d.err = InvalidByteError(d.in[len(d.in)-1])
} else {
d.err = io.ErrUnexpectedEOF
}
}
}
// Decode internal buffer into output buffer
if numAvail := len(d.in) / 2; len(p) > numAvail {
p = p[:numAvail]
}
numDec, err := Decode(p, d.in[:len(p)*2])
d.in = d.in[2*numDec:]
if err != nil {
d.in, d.err = nil, err // Decode error; discard input remainder
}
if len(d.in) < 2 {
return numDec, d.err // Only expose errors when buffer fully consumed
}
return numDec, nil
}
// Dumper returns a WriteCloser that writes a hex dump of all written data to
// w. The format of the dump matches the output of `hexdump -C` on the command
// line.
func Dumper(w io.Writer) io.WriteCloser {
return &dumper{w: w}
}
type dumper struct {
w io.Writer
rightChars [18]byte
buf [14]byte
used int // number of bytes in the current line
n uint // number of bytes, total
}
func toChar(b byte) byte {
if b < 32 || b > 126 {
return '.'
}
return b
}
func (h *dumper) Write(data []byte) (n int, err error) {
// Output lines look like:
// 00000010 2e 2f 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d |./0123456789:;<=|
// ^ offset ^ extra space ^ ASCII of line.
for i := range data {
if h.used == 0 {
// At the beginning of a line we print the current
// offset in hex.
h.buf[0] = byte(h.n >> 24)
h.buf[1] = byte(h.n >> 16)
h.buf[2] = byte(h.n >> 8)
h.buf[3] = byte(h.n)
Encode(h.buf[4:], h.buf[:4])
h.buf[12] = ' '
h.buf[13] = ' '
_, err = h.w.Write(h.buf[4:])
if err != nil {
return
}
}
Encode(h.buf[:], data[i:i+1])
h.buf[2] = ' '
l := 3
if h.used == 7 {
// There's an additional space after the 8th byte.
h.buf[3] = ' '
l = 4
} else if h.used == 15 {
// At the end of the line there's an extra space and
// the bar for the right column.
h.buf[3] = ' '
h.buf[4] = '|'
l = 5
}
_, err = h.w.Write(h.buf[:l])
if err != nil {
return
}
n++
h.rightChars[h.used] = toChar(data[i])
h.used++
h.n++
if h.used == 16 {
h.rightChars[16] = '|'
h.rightChars[17] = '\n'
_, err = h.w.Write(h.rightChars[:])
if err != nil {
return
}
h.used = 0
}
}
return
}
func (h *dumper) Close() (err error) {
// See the comments in Write() for the details of this format.
if h.used == 0 {
return
}
h.buf[0] = ' '
h.buf[1] = ' '
h.buf[2] = ' '
h.buf[3] = ' '
h.buf[4] = '|'
nBytes := h.used
for h.used < 16 {
l := 3
if h.used == 7 {
l = 4
} else if h.used == 15 {
l = 5
}
_, err = h.w.Write(h.buf[:l])
if err != nil {
return
}
h.used++
}
h.rightChars[nBytes] = '|'
h.rightChars[nBytes+1] = '\n'
_, err = h.w.Write(h.rightChars[:nBytes+2])
return
}
|