1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmplx
import "math"
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// Complex circular tangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// sin 2x + i sinh 2y
// w = --------------------.
// cos 2x + cosh 2y
//
// On the real axis the denominator is zero at odd multiples
// of PI/2. The denominator is evaluated by its Taylor
// series near these points.
//
// ctan(z) = -i ctanh(iz).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 5200 7.1e-17 1.6e-17
// IEEE -10,+10 30000 7.2e-16 1.2e-16
// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
// Tan returns the tangent of x.
func Tan(x complex128) complex128 {
d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
if math.Abs(d) < 0.25 {
d = tanSeries(x)
}
if d == 0 {
return Inf()
}
return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
}
// Complex hyperbolic tangent
//
// DESCRIPTION:
//
// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -10,+10 30000 1.7e-14 2.4e-16
// Tanh returns the hyperbolic tangent of x.
func Tanh(x complex128) complex128 {
d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
if d == 0 {
return Inf()
}
return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
}
// Program to subtract nearest integer multiple of PI
func reducePi(x float64) float64 {
const (
// extended precision value of PI:
DP1 = 3.14159265160560607910E0 // ?? 0x400921fb54000000
DP2 = 1.98418714791870343106E-9 // ?? 0x3e210b4610000000
DP3 = 1.14423774522196636802E-17 // ?? 0x3c6a62633145c06e
)
t := x / math.Pi
if t >= 0 {
t += 0.5
} else {
t -= 0.5
}
t = float64(int64(t)) // int64(t) = the multiple
return ((x - t*DP1) - t*DP2) - t*DP3
}
// Taylor series expansion for cosh(2y) - cos(2x)
func tanSeries(z complex128) float64 {
const MACHEP = 1.0 / (1 << 53)
x := math.Abs(2 * real(z))
y := math.Abs(2 * imag(z))
x = reducePi(x)
x = x * x
y = y * y
x2 := 1.0
y2 := 1.0
f := 1.0
rn := 0.0
d := 0.0
for {
rn++
f *= rn
rn++
f *= rn
x2 *= x
y2 *= y
t := y2 + x2
t /= f
d += t
rn++
f *= rn
rn++
f *= rn
x2 *= x
y2 *= y
t = y2 - x2
t /= f
d += t
if !(math.Abs(t/d) > MACHEP) {
// Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
// See issue 17577.
break
}
}
return d
}
// Complex circular cotangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// sin 2x - i sinh 2y
// w = --------------------.
// cosh 2y - cos 2x
//
// On the real axis, the denominator has zeros at even
// multiples of PI/2. Near these points it is evaluated
// by a Taylor series.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 3000 6.5e-17 1.6e-17
// IEEE -10,+10 30000 9.2e-16 1.2e-16
// Also tested by ctan * ccot = 1 + i0.
// Cot returns the cotangent of x.
func Cot(x complex128) complex128 {
d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
if math.Abs(d) < 0.25 {
d = tanSeries(x)
}
if d == 0 {
return Inf()
}
return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
}
|