1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
|
/* Definitions of target machine for Mitsubishi D30V.
Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tm_p.h"
#include "except.h"
#include "function.h"
#include "toplev.h"
#include "integrate.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
static void d30v_print_operand_memory_reference PARAMS ((FILE *, rtx));
static void d30v_build_long_insn PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
rtx, rtx));
static struct machine_function * d30v_init_machine_status PARAMS ((void));
static void d30v_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void d30v_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static int d30v_adjust_cost PARAMS ((rtx, rtx, rtx, int));
static int d30v_issue_rate PARAMS ((void));
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. */
struct rtx_def *d30v_compare_op0;
struct rtx_def *d30v_compare_op1;
/* Cached value of d30v_stack_info */
static d30v_stack_t *d30v_stack_cache = (d30v_stack_t *)0;
/* Values of the -mbranch-cost=n string. */
int d30v_branch_cost = D30V_DEFAULT_BRANCH_COST;
const char *d30v_branch_cost_string = (const char *)0;
/* Values of the -mcond-exec=n string. */
int d30v_cond_exec = D30V_DEFAULT_MAX_CONDITIONAL_EXECUTE;
const char *d30v_cond_exec_string = (const char *)0;
/* Whether or not a hard register can accept a register */
unsigned char hard_regno_mode_ok[ (int)MAX_MACHINE_MODE ][FIRST_PSEUDO_REGISTER];
/* Whether to try and avoid moves between two different modes */
unsigned char modes_tieable_p[ (NUM_MACHINE_MODES) * (NUM_MACHINE_MODES) ];
/* Map register number to smallest register class. */
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
/* Map class letter into register class */
enum reg_class reg_class_from_letter[256];
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE d30v_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE d30v_output_function_epilogue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST d30v_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE d30v_issue_rate
struct gcc_target targetm = TARGET_INITIALIZER;
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options ()
{
int regno, i, ok_p;
enum machine_mode mode1, mode2;
/* Set up the branch cost information */
if (d30v_branch_cost_string)
d30v_branch_cost = atoi (d30v_branch_cost_string);
/* Set up max # instructions to use with conditional execution */
if (d30v_cond_exec_string)
d30v_cond_exec = atoi (d30v_cond_exec_string);
/* Setup hard_regno_mode_ok/modes_tieable_p */
for (mode1 = VOIDmode;
(int)mode1 < NUM_MACHINE_MODES;
mode1 = (enum machine_mode)((int)mode1 + 1))
{
int size = GET_MODE_SIZE (mode1);
int large_p = size > UNITS_PER_WORD;
int int_p = GET_MODE_CLASS (mode1) == MODE_INT;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (mode1 == VOIDmode)
ok_p = FALSE;
else if (GPR_P (regno))
{
if (!large_p)
ok_p = TRUE;
else
ok_p = (((regno - GPR_FIRST) & 1) == 0);
}
else if (FLAG_P (regno))
ok_p = (mode1 == CCmode);
else if (CR_P (regno))
ok_p = int_p && !large_p;
else if (ACCUM_P (regno))
ok_p = (mode1 == DImode);
else if (SPECIAL_REG_P (regno))
ok_p = (mode1 == SImode);
else
ok_p = FALSE;
hard_regno_mode_ok[ (int)mode1 ][ regno ] = ok_p;
}
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
MODE2)' must be zero. */
for (mode2 = VOIDmode;
(int)mode2 <= NUM_MACHINE_MODES;
mode2 = (enum machine_mode)((int)mode2 + 1))
{
if (mode1 == mode2)
ok_p = TRUE;
#if 0
else if (GET_MODE_CLASS (mode1) == MODE_INT
&& GET_MODE_SIZE (mode1) <= UNITS_PER_WORD
&& GET_MODE_CLASS (mode2) == MODE_INT
&& GET_MODE_SIZE (mode2) <= UNITS_PER_WORD)
ok_p = TRUE;
#endif
else
ok_p = FALSE;
modes_tieable_p[ ((int)mode1 * (NUM_MACHINE_MODES)) + (int)mode2 ] = ok_p;
}
}
#if 0
for (mode1 = VOIDmode;
(int)mode1 < NUM_MACHINE_MODES;
mode1 = (enum machine_mode)((int)mode1 + 1))
{
for (mode2 = VOIDmode;
(int)mode2 <= NUM_MACHINE_MODES;
mode2 = (enum machine_mode)((int)mode2 + 1))
{
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (ok_p
&& (hard_regno_mode_ok[(int)mode1][regno]
!= hard_regno_mode_ok[(int)mode2][regno]))
error ("bad modes_tieable_p for register %s, mode1 %s, mode2 %s",
reg_names[regno], GET_MODE_NAME (mode1),
GET_MODE_NAME (mode2));
}
}
#endif
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more than one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
enum reg_class class;
if (GPR_P (regno))
class = (IN_RANGE_P (regno, GPR_FIRST+2, GPR_FIRST+62)
&& ((regno - GPR_FIRST) & 1) == 0) ? EVEN_REGS : GPR_REGS;
else if (regno == FLAG_F0)
class = F0_REGS;
else if (regno == FLAG_F1)
class = F1_REGS;
else if (FLAG_P (regno))
class = OTHER_FLAG_REGS;
else if (ACCUM_P (regno))
class = ACCUM_REGS;
else if (regno == CR_RPT_C)
class = REPEAT_REGS;
else if (CR_P (regno))
class = CR_REGS;
else if (SPECIAL_REG_P (regno))
class = GPR_REGS;
else
class = NO_REGS;
regno_reg_class[regno] = class;
#if 0
{
static const char *const names[] = REG_CLASS_NAMES;
fprintf (stderr, "Register %s class is %s, can hold modes", reg_names[regno], names[class]);
for (mode1 = VOIDmode;
(int)mode1 < NUM_MACHINE_MODES;
mode1 = (enum machine_mode)((int)mode1 + 1))
{
if (hard_regno_mode_ok[ (int)mode1 ][ regno ])
fprintf (stderr, " %s", GET_MODE_NAME (mode1));
}
fprintf (stderr, "\n");
}
#endif
}
/* A C expression which defines the machine-dependent operand
constraint letters for register classes. If CHAR is such a
letter, the value should be the register class corresponding to
it. Otherwise, the value should be `NO_REGS'. The register
letter `r', corresponding to class `GENERAL_REGS', will not be
passed to this macro; you do not need to handle it.
The following letters are unavailable, due to being used as
constraints:
'0'..'9'
'<', '>'
'E', 'F', 'G', 'H'
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
'Q', 'R', 'S', 'T', 'U'
'V', 'X'
'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
for (i = 0; i < 256; i++)
reg_class_from_letter[i] = NO_REGS;
reg_class_from_letter['a'] = ACCUM_REGS;
reg_class_from_letter['b'] = BR_FLAG_REGS;
reg_class_from_letter['c'] = CR_REGS;
reg_class_from_letter['d'] = GPR_REGS;
reg_class_from_letter['e'] = EVEN_REGS;
reg_class_from_letter['f'] = FLAG_REGS;
reg_class_from_letter['l'] = REPEAT_REGS;
reg_class_from_letter['x'] = F0_REGS;
reg_class_from_letter['y'] = F1_REGS;
reg_class_from_letter['z'] = OTHER_FLAG_REGS;
}
/* Return true if a memory operand is a short memory operand. */
int
short_memory_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
== 1);
}
/* Return true if a memory operand is a long operand. */
int
long_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
== 2);
}
/* Return true if a memory operand is valid for the D30V. */
int
d30v_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return (d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed)
!= 0);
}
/* Return true if a memory operand uses a single register for the
address. */
int
single_reg_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr;
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
addr = XEXP (op, 0);
if (! d30v_legitimate_address_p (mode, addr, reload_completed))
return FALSE;
if (GET_CODE (addr) == SUBREG)
addr = SUBREG_REG (addr);
return (GET_CODE (addr) == REG);
}
/* Return true if a memory operand uses a constant address. */
int
const_addr_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (! d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed))
return FALSE;
switch (GET_CODE (XEXP (op, 0)))
{
default:
break;
case SYMBOL_REF:
case LABEL_REF:
case CONST_INT:
case CONST:
return TRUE;
}
return FALSE;
}
/* Return true if operand is a memory reference suitable for a call. */
int
call_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (! d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed))
return FALSE;
switch (GET_CODE (XEXP (op, 0)))
{
default:
break;
case SUBREG:
op = SUBREG_REG (op);
if (GET_CODE (op) != REG)
return FALSE;
/* fall through */
case REG:
return (GPR_OR_PSEUDO_P (REGNO (XEXP (op, 0))));
case SYMBOL_REF:
case LABEL_REF:
case CONST_INT:
case CONST:
return TRUE;
}
return FALSE;
}
/* Return true if operand is a GPR register. */
int
gpr_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is an accumulator register. */
int
accum_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return ACCUM_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is a GPR or an accumulator register. */
int
gpr_or_accum_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
if (ACCUM_P (REGNO (op)))
return TRUE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is a CR register. */
int
cr_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return CR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is the repeat count register. */
int
repeat_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return (REGNO (op) == CR_RPT_C || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}
/* Return true if operand is a FLAG register. */
int
flag_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return FLAG_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is either F0 or F1. */
int
br_flag_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return BR_FLAG_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is either F0/F1 or the constants 0/1. */
int
br_flag_or_constant_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) == CONST_INT)
return (INTVAL (op) == 0 || INTVAL (op) == 1);
if (GET_CODE (op) != REG)
return FALSE;
return BR_FLAG_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is either F0 or F1, or a GPR register. */
int
gpr_or_br_flag_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op)) || BR_FLAG_P (REGNO (op));
}
/* Return true if operand is the F0 register. */
int
f0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return (REGNO (op) == FLAG_F0 || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}
/* Return true if operand is the F1 register. */
int
f1_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return (REGNO (op) == FLAG_F1 || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}
/* Return true if operand is the F1 register. */
int
carry_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return (REGNO (op) == FLAG_CARRY || REGNO (op) >= FIRST_PSEUDO_REGISTER);
}
/* Return true if operand is a register of any flavor or a 0 of the
appropriate type. */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
default:
break;
case REG:
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return register_operand (op, mode);
case CONST_INT:
return INTVAL (op) == 0;
case CONST_DOUBLE:
return CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0;
}
return FALSE;
}
/* Return true if operand is a GPR register or a signed 6 bit immediate. */
int
gpr_or_signed6_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -32, 31);
if (GET_CODE (op) != REG)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is a GPR register or an unsigned 5 bit immediate. */
int
gpr_or_unsigned5_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), 0, 31);
if (GET_CODE (op) != REG)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is a GPR register or an unsigned 6 bit immediate. */
int
gpr_or_unsigned6_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), 0, 63);
if (GET_CODE (op) != REG)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
/* Return true if operand is a GPR register or a constant of some form. */
int
gpr_or_constant_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return TRUE;
case SUBREG:
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
/* fall through */
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
return FALSE;
}
/* Return true if operand is a GPR register or a constant of some form,
including a CONST_DOUBLE, which gpr_or_constant_operand doesn't recognize. */
int
gpr_or_dbl_const_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return TRUE;
case SUBREG:
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
/* fall through */
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
}
return FALSE;
}
/* Return true if operand is a gpr register or a valid memory operation. */
int
gpr_or_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
default:
break;
case SUBREG:
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
/* fall through */
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
case MEM:
return d30v_legitimate_address_p (mode, XEXP (op, 0), reload_completed);
}
return FALSE;
}
/* Return true if operand is something that can be an input for a move
operation. */
int
move_input_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return TRUE;
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return d30v_legitimate_address_p ((int)mode, XEXP (subreg, 0),
reload_completed);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
return TRUE;
return d30v_legitimate_address_p (mode, XEXP (op, 0),
reload_completed);
}
return FALSE;
}
/* Return true if operand is something that can be an output for a move
operation. */
int
move_output_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return d30v_legitimate_address_p ((int)mode, XEXP (subreg, 0),
reload_completed);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
if (GET_CODE (XEXP (op, 0)) == ADDRESSOF)
return TRUE;
return d30v_legitimate_address_p (mode, XEXP (op, 0),
reload_completed);
}
return FALSE;
}
/* Return true if operand is a signed 6 bit immediate. */
int
signed6_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -32, 31);
return FALSE;
}
/* Return true if operand is an unsigned 5 bit immediate. */
int
unsigned5_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), 0, 31);
return FALSE;
}
/* Return true if operand is an unsigned 6 bit immediate. */
int
unsigned6_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), 0, 63);
return FALSE;
}
/* Return true if operand is a constant with a single bit set. */
int
bitset_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (exact_log2 (INTVAL (op)), 0, 31);
return FALSE;
}
/* Return true if the operator is a ==/!= test against f0 or f1 that can be
used in conditional execution. */
int
condexec_test_operator (op, mode)
rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
return FALSE;
x0 = XEXP (op, 0);
if (GET_CODE (x0) != REG || !BR_FLAG_OR_PSEUDO_P (REGNO (x0)))
return FALSE;
x1 = XEXP (op, 1);
if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
return FALSE;
return TRUE;
}
/* Return true if the operator is a ==/!= test against f0, f1, or a general
register that can be used in a branch instruction. */
int
condexec_branch_operator (op, mode)
rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
return FALSE;
x0 = XEXP (op, 0);
if (GET_CODE (x0) == REG)
{
int regno = REGNO (x0);
if (!GPR_OR_PSEUDO_P (regno) && !BR_FLAG_P (regno))
return FALSE;
}
/* Allow the optimizer to generate things like:
(if_then_else (ne (const_int 1) (const_int 0))) */
else if (GET_CODE (x0) != CONST_INT)
return FALSE;
x1 = XEXP (op, 1);
if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
return FALSE;
return TRUE;
}
/* Return true if the unary operator can be executed with conditional
execution. */
int
condexec_unary_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0;
/* Only do this after register allocation, so that we can look at the register # */
if (!reload_completed)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '1')
return FALSE;
op0 = XEXP (op, 0);
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
switch (GET_CODE (op))
{
default:
break;
case ABS:
case NOT:
if (GET_MODE (op) == SImode && GET_CODE (op0) == REG && GPR_P (REGNO (op0)))
return TRUE;
break;
}
return FALSE;
}
/* Return true if the add or subtraction can be executed with conditional
execution. */
int
condexec_addsub_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0, op1;
/* Only do this after register allocation, so that we can look at the register # */
if (!reload_completed)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
return FALSE;
op0 = XEXP (op, 0);
op1 = XEXP (op, 1);
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op0) != REG)
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case PLUS:
case MINUS:
return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
&& gpr_or_constant_operand (op1, SImode));
}
return FALSE;
}
/* Return true if the binary operator can be executed with conditional
execution. We don't include add/sub here, since they have extra
clobbers for the flags registers. */
int
condexec_binary_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0, op1;
/* Only do this after register allocation, so that we can look at the register # */
if (!reload_completed)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
return FALSE;
op0 = XEXP (op, 0);
op1 = XEXP (op, 1);
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op0) != REG)
return FALSE;
/* MULT is not included here, because it is an IU only instruction. */
switch (GET_CODE (op))
{
default:
break;
case AND:
case IOR:
case XOR:
case ASHIFTRT:
case LSHIFTRT:
case ROTATERT:
return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
&& gpr_or_constant_operand (op1, SImode));
case ASHIFT:
case ROTATE:
return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
&& GET_CODE (op1) == CONST_INT);
}
return FALSE;
}
/* Return true if the shift/rotate left operator can be executed with
conditional execution. */
int
condexec_shiftl_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0, op1;
/* Only do this after register allocation, so that we can look at the register # */
if (!reload_completed)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '2' && GET_RTX_CLASS (GET_CODE (op)) != 'c')
return FALSE;
op0 = XEXP (op, 0);
op1 = XEXP (op, 1);
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op0) != REG)
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case ASHIFT:
case ROTATE:
return (GET_MODE (op) == SImode && GPR_P (REGNO (op0))
&& GET_CODE (op1) == NEG
&& GET_CODE (XEXP (op1, 0)) == REG
&& GPR_P (REGNO (XEXP (op1, 0))));
}
return FALSE;
}
/* Return true if the {sign,zero} extend operator from memory can be
conditionally executed. */
int
condexec_extend_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
/* Only do this after register allocation, so that we can look at the register # */
if (!reload_completed)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '1')
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case SIGN_EXTEND:
case ZERO_EXTEND:
if ((GET_MODE (op) == SImode && GET_MODE (XEXP (op, 0)) == QImode)
|| (GET_MODE (op) == SImode && GET_MODE (XEXP (op, 0)) == HImode)
|| (GET_MODE (op) == HImode && GET_MODE (XEXP (op, 0)) == QImode))
return TRUE;
break;
}
return FALSE;
}
/* Return true for comparisons against 0 that can be turned into a
bratnz/bratzr instruction. */
int
branch_zero_operator (op, mode)
rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != EQ && GET_CODE (op) != NE)
return FALSE;
x0 = XEXP (op, 0);
if (GET_CODE (x0) != REG || !GPR_OR_PSEUDO_P (REGNO (x0)))
return FALSE;
x1 = XEXP (op, 1);
if (GET_CODE (x1) != CONST_INT || INTVAL (x1) != 0)
return FALSE;
return TRUE;
}
/* Return true if an operand is simple, suitable for use as the destination of
a conditional move */
int
cond_move_dest_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx addr;
if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case REG:
case SUBREG:
return gpr_operand (op, mode);
/* Don't allow post dec/inc, since we might not get the side effects correct. */
case MEM:
addr = XEXP (op, 0);
return (GET_CODE (addr) != POST_DEC
&& GET_CODE (addr) != POST_INC
&& d30v_legitimate_address_p (mode, addr, reload_completed));
}
return FALSE;
}
/* Return true if an operand is simple, suitable for use in a conditional move */
int
cond_move_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx addr;
if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case REG:
case SUBREG:
return gpr_operand (op, mode);
case CONST_DOUBLE:
return GET_MODE (op) == SFmode;
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return TRUE;
/* Don't allow post dec/inc, since we might not get the side effects correct. */
case MEM:
addr = XEXP (op, 0);
return (GET_CODE (addr) != POST_DEC
&& GET_CODE (addr) != POST_INC
&& d30v_legitimate_address_p (mode, addr, reload_completed));
}
return FALSE;
}
/* Return true if an operand is simple, suitable for use in conditional execution.
Unlike cond_move, we can allow auto inc/dec. */
int
cond_exec_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != QImode && mode != HImode && mode != SImode && mode != SFmode)
return FALSE;
switch (GET_CODE (op))
{
default:
break;
case REG:
case SUBREG:
return gpr_operand (op, mode);
case CONST_DOUBLE:
return GET_MODE (op) == SFmode;
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return TRUE;
case MEM:
return memory_operand (op, mode);
}
return FALSE;
}
/* Return true if operand is a SI mode signed relational test. */
int
srelational_si_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case EQ:
case NE:
case LT:
case LE:
case GT:
case GE:
break;
}
x0 = XEXP (op, 0);
if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
return FALSE;
if (GET_MODE (x0) != SImode)
return FALSE;
x1 = XEXP (op, 1);
switch (GET_CODE (x1))
{
default:
return FALSE;
case REG:
case SUBREG:
case CONST_INT:
case LABEL_REF:
case SYMBOL_REF:
case CONST:
break;
}
return TRUE;
}
/* Return true if operand is a SI mode unsigned relational test. */
int
urelational_si_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case LTU:
case LEU:
case GTU:
case GEU:
break;
}
x0 = XEXP (op, 0);
if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
return FALSE;
if (GET_MODE (x0) != SImode)
return FALSE;
x1 = XEXP (op, 1);
switch (GET_CODE (x1))
{
default:
return FALSE;
case REG:
case SUBREG:
case CONST_INT:
case LABEL_REF:
case SYMBOL_REF:
case CONST:
break;
}
return TRUE;
}
/* Return true if operand is a DI mode relational test. */
int
relational_di_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx x0, x1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_RTX_CLASS (GET_CODE (op)) != '<')
return FALSE;
x0 = XEXP (op, 0);
if (GET_CODE (x0) != REG && GET_CODE (x0) != SUBREG)
return FALSE;
if (GET_MODE (x0) != DImode)
return FALSE;
x1 = XEXP (op, 1);
if (GET_CODE (x1) != REG && GET_CODE (x1) != SUBREG
&& GET_CODE (x1) != CONST_INT && GET_CODE (x1) != CONST_DOUBLE)
return FALSE;
return TRUE;
}
/* Calculate the stack information for the current function.
D30V stack frames look like:
high | .... |
+-------------------------------+
| Argument word #19 |
+-------------------------------+
| Argument word #18 |
+-------------------------------+
| Argument word #17 |
+-------------------------------+
| Argument word #16 |
Prev sp +-------------------------------+
| |
| Save for arguments 1..16 if |
| the func. uses stdarg/varargs |
| |
+-------------------------------+
| |
| Save area for GPR registers |
| |
+-------------------------------+
| |
| Save area for accumulators |
| |
+-------------------------------+
| |
| Local variables |
| |
+-------------------------------+
| |
| alloca space if used |
| |
+-------------------------------+
| |
| Space for outgoing arguments |
| |
low SP----> +-------------------------------+
*/
d30v_stack_t *
d30v_stack_info ()
{
static d30v_stack_t info, zero_info;
d30v_stack_t *info_ptr = &info;
tree fndecl = current_function_decl;
tree fntype = TREE_TYPE (fndecl);
int varargs_p = 0;
tree cur_arg;
tree next_arg;
int saved_gprs;
int saved_accs;
int memrefs_2words;
int memrefs_1word;
unsigned char save_gpr_p[GPR_LAST];
int i;
/* If we've already calculated the values and reload is complete, just return now */
if (d30v_stack_cache)
return d30v_stack_cache;
/* Zero all fields */
info = zero_info;
if (current_function_profile)
regs_ever_live[GPR_LINK] = 1;
/* Determine if this is a stdarg function */
if (TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))
varargs_p = 1;
else
{
/* Find the last argument, and see if it is __builtin_va_alist. */
for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
{
next_arg = TREE_CHAIN (cur_arg);
if (next_arg == (tree)0)
{
if (DECL_NAME (cur_arg)
&& !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
varargs_p = 1;
break;
}
}
}
/* Calculate which registers need to be saved & save area size */
saved_accs = 0;
memrefs_2words = 0;
memrefs_1word = 0;
for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
{
if (regs_ever_live[i] && !call_used_regs[i])
{
info_ptr->save_p[i] = 2;
saved_accs++;
memrefs_2words++;
}
}
saved_gprs = 0;
for (i = GPR_FIRST; i <= GPR_LAST; i++)
{
if (regs_ever_live[i] && (!call_used_regs[i] || i == GPR_LINK))
{
save_gpr_p[i] = 1;
saved_gprs++;
}
else
save_gpr_p[i] = 0;
}
/* Determine which register pairs can be saved together with ld2w/st2w */
for (i = GPR_FIRST; i <= GPR_LAST; i++)
{
if (((i - GPR_FIRST) & 1) == 0 && save_gpr_p[i] && save_gpr_p[i+1])
{
memrefs_2words++;
info_ptr->save_p[i++] = 2;
}
else if (save_gpr_p[i])
{
memrefs_1word++;
info_ptr->save_p[i] = 1;
}
}
/* Determine various sizes */
info_ptr->varargs_p = varargs_p;
info_ptr->varargs_size = ((varargs_p)
? (GPR_ARG_LAST + 1 - GPR_ARG_FIRST) * UNITS_PER_WORD
: 0);
info_ptr->accum_size = 2 * UNITS_PER_WORD * saved_accs;
info_ptr->gpr_size = D30V_ALIGN (UNITS_PER_WORD * saved_gprs,
2 * UNITS_PER_WORD);
info_ptr->vars_size = D30V_ALIGN (get_frame_size (), 2 * UNITS_PER_WORD);
info_ptr->parm_size = D30V_ALIGN (current_function_outgoing_args_size,
2 * UNITS_PER_WORD);
info_ptr->total_size = D30V_ALIGN ((info_ptr->gpr_size
+ info_ptr->accum_size
+ info_ptr->vars_size
+ info_ptr->parm_size
+ info_ptr->varargs_size
+ current_function_pretend_args_size),
(STACK_BOUNDARY / BITS_PER_UNIT));
info_ptr->save_offset = (info_ptr->total_size
- (current_function_pretend_args_size
+ info_ptr->varargs_size
+ info_ptr->gpr_size
+ info_ptr->accum_size));
/* The link register is the last GPR saved, but there might be some padding
bytes after it, so account for that. */
info_ptr->link_offset = (info_ptr->total_size
- (current_function_pretend_args_size
+ info_ptr->varargs_size
+ (info_ptr->gpr_size
- UNITS_PER_WORD * saved_gprs)
+ UNITS_PER_WORD));
info_ptr->memrefs_varargs = info_ptr->varargs_size / (2 * UNITS_PER_WORD);
info_ptr->memrefs_2words = memrefs_2words;
info_ptr->memrefs_1word = memrefs_1word;
if (reload_completed)
d30v_stack_cache = info_ptr;
return info_ptr;
}
/* Internal function to print all of the information about the stack */
void
debug_stack_info (info)
d30v_stack_t *info;
{
int i;
if (!info)
info = d30v_stack_info ();
fprintf (stderr, "\nStack information for function %s:\n",
((current_function_decl && DECL_NAME (current_function_decl))
? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
: "<unknown>"));
fprintf (stderr, "\tsave_offset = %d\n", info->save_offset);
fprintf (stderr, "\tmemrefs_varargs = %d\n", info->memrefs_varargs);
fprintf (stderr, "\tmemrefs_2words = %d\n", info->memrefs_2words);
fprintf (stderr, "\tmemrefs_1word = %d\n", info->memrefs_1word);
fprintf (stderr, "\tvarargs_p = %d\n", info->varargs_p);
fprintf (stderr, "\tvarargs_size = %d\n", info->varargs_size);
fprintf (stderr, "\tvars_size = %d\n", info->vars_size);
fprintf (stderr, "\tparm_size = %d\n", info->parm_size);
fprintf (stderr, "\tgpr_size = %d\n", info->gpr_size);
fprintf (stderr, "\taccum_size = %d\n", info->accum_size);
fprintf (stderr, "\ttotal_size = %d\n", info->total_size);
fprintf (stderr, "\tsaved registers =");
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (info->save_p[i] == 2)
{
fprintf (stderr, " %s-%s", reg_names[i], reg_names[i+1]);
i++;
}
else if (info->save_p[i])
fprintf (stderr, " %s", reg_names[i]);
}
putc ('\n', stderr);
fflush (stderr);
}
/* Return nonzero if this function is known to have a null or 1 instruction epilogue. */
int
direct_return ()
{
if (reload_completed)
{
d30v_stack_t *info = d30v_stack_info ();
/* If no epilogue code is needed, can use just a simple jump */
if (info->total_size == 0)
return 1;
#if 0
/* If just a small amount of local stack was allocated and no registers
saved, skip forward branch */
if (info->total_size == info->vars_size
&& IN_RANGE_P (info->total_size, 1, 31))
return 1;
#endif
}
return 0;
}
/* A C statement (sans semicolon) for initializing the variable CUM for the
state at the beginning of the argument list. The variable has type
`CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
of the function which will receive the args, or 0 if the args are to a
compiler support library function. The value of INDIRECT is nonzero when
processing an indirect call, for example a call through a function pointer.
The value of INDIRECT is zero for a call to an explicitly named function, a
library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
arguments for the function being compiled.
When processing a call to a compiler support library function, LIBNAME
identifies which one. It is a `symbol_ref' rtx which contains the name of
the function, as a string. LIBNAME is 0 when an ordinary C function call is
being processed. Thus, each time this macro is called, either LIBNAME or
FNTYPE is nonzero, but never both of them at once. */
void
d30v_init_cumulative_args (cum, fntype, libname, indirect, incoming)
CUMULATIVE_ARGS *cum;
tree fntype;
rtx libname;
int indirect;
int incoming;
{
*cum = GPR_ARG_FIRST;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args:");
if (indirect)
fputs (" indirect", stderr);
if (incoming)
fputs (" incoming", stderr);
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, " return=%s,",
tree_code_name[ (int)TREE_CODE (ret_type) ]);
}
if (libname && GET_CODE (libname) == SYMBOL_REF)
fprintf (stderr, " libname=%s", XSTR (libname, 0));
putc ('\n', stderr);
}
}
/* If defined, a C expression that gives the alignment boundary, in bits, of an
argument with the specified mode and type. If it is not defined,
`PARM_BOUNDARY' is used for all arguments. */
int
d30v_function_arg_boundary (mode, type)
enum machine_mode mode;
tree type;
{
int size = ((mode == BLKmode && type)
? int_size_in_bytes (type)
: (int) GET_MODE_SIZE (mode));
return (size > UNITS_PER_WORD) ? 2*UNITS_PER_WORD : UNITS_PER_WORD;
}
/* A C expression that controls whether a function argument is passed in a
register, and which register.
The arguments are CUM, which summarizes all the previous arguments; MODE,
the machine mode of the argument; TYPE, the data type of the argument as a
tree node or 0 if that is not known (which happens for C support library
functions); and NAMED, which is 1 for an ordinary argument and 0 for
nameless arguments that correspond to `...' in the called function's
prototype.
The value of the expression should either be a `reg' RTX for the hard
register in which to pass the argument, or zero to pass the argument on the
stack.
For machines like the VAX and 68000, where normally all arguments are
pushed, zero suffices as a definition.
The usual way to make the ANSI library `stdarg.h' work on a machine where
some arguments are usually passed in registers, is to cause nameless
arguments to be passed on the stack instead. This is done by making
`FUNCTION_ARG' return 0 whenever NAMED is 0.
You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of
this macro to determine if this argument is of a type that must be passed in
the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG'
returns nonzero for such an argument, the compiler will abort. If
`REG_PARM_STACK_SPACE' is defined, the argument will be computed in the
stack and then loaded into a register. */
rtx
d30v_function_arg (cum, mode, type, named, incoming)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
int incoming ATTRIBUTE_UNUSED;
{
int size = ((mode == BLKmode && type)
? int_size_in_bytes (type)
: (int) GET_MODE_SIZE (mode));
int adjust = (size > UNITS_PER_WORD && (*cum & 1) != 0);
rtx ret;
/* Return a marker for use in the call instruction. */
if (mode == VOIDmode)
ret = const0_rtx;
else if (*cum + adjust <= GPR_ARG_LAST)
ret = gen_rtx (REG, mode, *cum + adjust);
else
ret = NULL_RTX;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_arg: words = %2d, mode = %4s, named = %d, size = %3d, adjust = %1d, arg = %s\n",
*cum, GET_MODE_NAME (mode), named, size, adjust,
(ret) ? ((ret == const0_rtx) ? "<0>" : reg_names[ REGNO (ret) ]) : "memory");
return ret;
}
/* A C expression for the number of words, at the beginning of an argument,
must be put in registers. The value must be zero for arguments that are
passed entirely in registers or that are entirely pushed on the stack.
On some machines, certain arguments must be passed partially in registers
and partially in memory. On these machines, typically the first N words of
arguments are passed in registers, and the rest on the stack. If a
multi-word argument (a `double' or a structure) crosses that boundary, its
first few words must be passed in registers and the rest must be pushed.
This macro tells the compiler when this occurs, and how many of the words
should go in registers.
`FUNCTION_ARG' for these arguments should return the first register to be
used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
the called function. */
int
d30v_function_arg_partial_nregs (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
int bytes = ((mode == BLKmode)
? int_size_in_bytes (type)
: (int) GET_MODE_SIZE (mode));
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
int adjust = (bytes > UNITS_PER_WORD && (*cum & 1) != 0);
int arg_num = *cum + adjust;
int ret;
ret = ((arg_num <= GPR_ARG_LAST && arg_num + words > GPR_ARG_LAST+1)
? GPR_ARG_LAST - arg_num + 1
: 0);
if (TARGET_DEBUG_ARG && ret)
fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);
return ret;
}
/* A C expression that indicates when an argument must be passed by reference.
If nonzero for an argument, a copy of that argument is made in memory and a
pointer to the argument is passed instead of the argument itself. The
pointer is passed in whatever way is appropriate for passing a pointer to
that type.
On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
definition of this macro might be
#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE) */
int
d30v_function_arg_pass_by_reference (cum, mode, type, named)
CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
int ret = MUST_PASS_IN_STACK (mode, type);
if (TARGET_DEBUG_ARG && ret)
fprintf (stderr, "function_arg_pass_by_reference: %d\n", ret);
return ret;
}
/* A C statement (sans semicolon) to update the summarizer variable CUM to
advance past an argument in the argument list. The values MODE, TYPE and
NAMED describe that argument. Once this is done, the variable CUM is
suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
This macro need not do anything if the argument in question was passed on
the stack. The compiler knows how to track the amount of stack space used
for arguments without any special help. */
void
d30v_function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
{
int bytes = ((mode == BLKmode)
? int_size_in_bytes (type)
: (int) GET_MODE_SIZE (mode));
int words = D30V_ALIGN (bytes, UNITS_PER_WORD) / UNITS_PER_WORD;
int adjust = (bytes > UNITS_PER_WORD && (*cum & 1) != 0);
*cum += words + adjust;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv: words = %2d, mode = %4s, named = %d, size = %3d, adjust = %1d\n",
*cum, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD, adjust);
}
/* If defined, is a C expression that produces the machine-specific code for a
call to `__builtin_saveregs'. This code will be moved to the very beginning
of the function, before any parameter access are made. The return value of
this function should be an RTX that contains the value to use as the return
of `__builtin_saveregs'.
If this macro is not defined, the compiler will output an ordinary call to
the library function `__builtin_saveregs'. */
rtx
d30v_expand_builtin_saveregs ()
{
int offset = UNITS_PER_WORD * (GPR_ARG_LAST + 1 - GPR_ARG_FIRST);
if (TARGET_DEBUG_ARG)
fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
offset);
return gen_rtx (PLUS, Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
}
/* This macro offers an alternative to using `__builtin_saveregs' and defining
the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
arguments into the stack so that all the arguments appear to have been
passed consecutively on the stack. Once this is done, you can use the
standard implementation of varargs that works for machines that pass all
their arguments on the stack.
The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure, containing
the values that obtain after processing of the named arguments. The
arguments MODE and TYPE describe the last named argument--its machine mode
and its data type as a tree node.
The macro implementation should do two things: first, push onto the stack
all the argument registers *not* used for the named arguments, and second,
store the size of the data thus pushed into the `int'-valued variable whose
name is supplied as the argument PRETEND_ARGS_SIZE. The value that you
store here will serve as additional offset for setting up the stack frame.
Because you must generate code to push the anonymous arguments at compile
time without knowing their data types, `SETUP_INCOMING_VARARGS' is only
useful on machines that have just a single category of argument register and
use it uniformly for all data types.
If the argument SECOND_TIME is nonzero, it means that the arguments of the
function are being analyzed for the second time. This happens for an inline
function, which is not actually compiled until the end of the source file.
The macro `SETUP_INCOMING_VARARGS' should not generate any instructions in
this case. */
void
d30v_setup_incoming_varargs (cum, mode, type, pretend_size, second_time)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type ATTRIBUTE_UNUSED;
int *pretend_size ATTRIBUTE_UNUSED;
int second_time;
{
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"setup_vararg: words = %2d, mode = %4s, second_time = %d\n",
*cum, GET_MODE_NAME (mode), second_time);
}
/* Create the va_list data type. */
tree
d30v_build_va_list ()
{
tree f_arg_ptr, f_arg_num, record, type_decl;
tree int_type_node;
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
int_type_node = make_signed_type (INT_TYPE_SIZE);
f_arg_ptr = build_decl (FIELD_DECL, get_identifier ("__va_arg_ptr"),
ptr_type_node);
f_arg_num = build_decl (FIELD_DECL, get_identifier ("__va_arg_num"),
int_type_node);
DECL_FIELD_CONTEXT (f_arg_ptr) = record;
DECL_FIELD_CONTEXT (f_arg_num) = record;
TREE_CHAIN (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_arg_ptr;
TREE_CHAIN (f_arg_ptr) = f_arg_num;
layout_type (record);
/* The correct type is an array type of one element. */
return build_array_type (record, build_index_type (size_zero_node));
}
/* Expand __builtin_va_start to do the va_start macro. */
void
d30v_expand_builtin_va_start (valist, nextarg)
tree valist;
rtx nextarg ATTRIBUTE_UNUSED;
{
HOST_WIDE_INT words;
tree f_arg_ptr, f_arg_num;
tree arg_ptr, arg_num, saveregs, t;
f_arg_ptr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_arg_num = TREE_CHAIN (f_arg_ptr);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
arg_ptr = build (COMPONENT_REF, TREE_TYPE (f_arg_ptr), valist, f_arg_ptr);
arg_num = build (COMPONENT_REF, TREE_TYPE (f_arg_num), valist, f_arg_num);
words = current_function_args_info; /* __builtin_args_info (0) */
/* (AP)->__va_arg_ptr = (int *) __builtin_saveregs (); */
saveregs = make_tree (TREE_TYPE (arg_ptr), d30v_expand_builtin_saveregs ());
t = build (MODIFY_EXPR, TREE_TYPE (arg_ptr), arg_ptr, saveregs);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* (AP)->__va_arg_num = __builtin_args_info (0) - 2; */
t = build (PLUS_EXPR, TREE_TYPE (arg_num), build_int_2 (words, 0),
build_int_2 (-GPR_ARG_FIRST, 0));
t = build (MODIFY_EXPR, TREE_TYPE (arg_num), arg_num, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Expand __builtin_va_arg to do the va_arg macro. */
rtx
d30v_expand_builtin_va_arg(valist, type)
tree valist;
tree type;
{
tree f_arg_ptr, f_arg_num;
tree arg_ptr, arg_num, t, ptr;
int num, size;
rtx lab_false, ptr_rtx, r;
f_arg_ptr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_arg_num = TREE_CHAIN (f_arg_ptr);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
arg_ptr = build (COMPONENT_REF, TREE_TYPE (f_arg_ptr), valist, f_arg_ptr);
arg_num = build (COMPONENT_REF, TREE_TYPE (f_arg_num), valist, f_arg_num);
size = int_size_in_bytes (type);
lab_false = gen_label_rtx ();
ptr_rtx = gen_reg_rtx (Pmode);
/* if (sizeof (TYPE) > 4 && ((AP)->__va_arg_num & 1) != 0)
(AP)->__va_arg_num++; */
if (size > UNITS_PER_WORD)
{
t = build (BIT_AND_EXPR, TREE_TYPE (arg_num), arg_num,
build_int_2 (1, 0));
emit_cmp_and_jump_insns (expand_expr (t, NULL_RTX, QImode, EXPAND_NORMAL),
GEN_INT (0), EQ, const1_rtx, QImode, 1,
lab_false);
t = build (POSTINCREMENT_EXPR, TREE_TYPE (arg_num), arg_num,
build_int_2 (1, 0));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
emit_label (lab_false);
}
/* __ptr = (TYPE *)(((char *)(void *)((AP)->__va_arg_ptr
+ (AP)->__va_arg_num))); */
t = build (MULT_EXPR, TREE_TYPE (arg_num), arg_num, build_int_2 (4, 0));
t = build (PLUS_EXPR, ptr_type_node, arg_ptr, t);
/* if (sizeof (TYPE) < 4)
__ptr = (void *)__ptr + 4 - sizeof (TYPE); */
if (size < UNITS_PER_WORD)
t = build (PLUS_EXPR, ptr_type_node, t,
build_int_2 (UNITS_PER_WORD - size, 0));
TREE_SIDE_EFFECTS (t) = 1;
ptr = build1 (NOP_EXPR, build_pointer_type (type), t);
t = build (MODIFY_EXPR, type, ptr, t);
r = expand_expr (t, ptr_rtx, Pmode, EXPAND_NORMAL);
if (r != ptr_rtx)
emit_move_insn (ptr_rtx, r);
/* (AP)->__va_arg_num += (sizeof (TYPE) + 3) / 4; */
num = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
t = build (POSTINCREMENT_EXPR, TREE_TYPE (arg_num), arg_num,
build_int_2 (num, 0));
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
return ptr_rtx;
}
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used. */
static void
d30v_output_function_prologue (stream, size)
FILE *stream ATTRIBUTE_UNUSED;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
/* For the d30v, move all of the prologue processing into separate
insns. */
}
/* Called after register allocation to add any instructions needed for
the prologue. Using a prologue insn is favored compared to putting
all of the instructions in output_function_prologue (), since it
allows the scheduler to intermix instructions with the saves of the
caller saved registers. In some cases, it might be necessary to
emit a barrier instruction as the last insn to prevent such
scheduling. */
void
d30v_expand_prologue ()
{
rtx sp = stack_pointer_rtx;
d30v_stack_t *info = d30v_stack_info ();
int i;
rtx mem_di = NULL_RTX;
rtx mem_si = NULL_RTX;
int num_memrefs = (info->memrefs_2words
+ info->memrefs_1word
+ info->memrefs_varargs);
if (TARGET_DEBUG_STACK)
debug_stack_info (info);
/* Grow the stack. */
if (info->total_size)
emit_insn (gen_addsi3 (sp, sp, GEN_INT (- info->total_size)));
/* If there is more than one save, use post-increment addressing which will
result in smaller code, than would the normal references. If there is
only one save, just do the store as normal. */
if (num_memrefs > 1)
{
rtx save_tmp = gen_rtx (REG, Pmode, GPR_STACK_TMP);
rtx post_inc = gen_rtx (POST_INC, Pmode, save_tmp);
mem_di = gen_rtx (MEM, DImode, post_inc);
mem_si = gen_rtx (MEM, SImode, post_inc);
emit_insn (gen_addsi3 (save_tmp, sp, GEN_INT (info->save_offset)));
}
else if (num_memrefs == 1)
{
rtx addr = plus_constant (sp, info->save_offset);
mem_di = gen_rtx (MEM, DImode, addr);
mem_si = gen_rtx (MEM, SImode, addr);
}
/* Save the accumulators. */
for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
if (info->save_p[i])
{
rtx acc_tmp = gen_rtx (REG, DImode, GPR_ATMP_FIRST);
emit_insn (gen_movdi (acc_tmp, gen_rtx (REG, DImode, i)));
emit_insn (gen_movdi (mem_di, acc_tmp));
}
/* Save the GPR registers that are adjacent to each other with st2w. */
for (i = GPR_FIRST; i <= GPR_LAST; i += 2)
if (info->save_p[i] == 2)
emit_insn (gen_movdi (mem_di, gen_rtx (REG, DImode, i)));
/* Save the GPR registers that need to be saved with a single word store. */
for (i = GPR_FIRST; i <= GPR_LAST; i++)
if (info->save_p[i] == 1)
emit_insn (gen_movsi (mem_si, gen_rtx (REG, SImode, i)));
/* Save the argument registers if this function accepts variable args. */
if (info->varargs_p)
{
/* Realign r22 if an odd # of GPRs were saved. */
if ((info->memrefs_1word & 1) != 0)
{
rtx save_tmp = XEXP (XEXP (mem_si, 0), 0);
emit_insn (gen_addsi3 (save_tmp, save_tmp, GEN_INT (UNITS_PER_WORD)));
}
for (i = GPR_ARG_FIRST; i <= GPR_ARG_LAST; i += 2)
emit_insn (gen_movdi (mem_di, gen_rtx (REG, DImode, i)));
}
/* Update the frame pointer. */
if (frame_pointer_needed)
emit_move_insn (frame_pointer_rtx, sp);
/* Hack for now, to prevent scheduler from being too cleaver */
emit_insn (gen_blockage ());
}
/* This function generates the assembly code for function exit.
Args are as for output_function_prologue ().
The function epilogue should not depend on the current stack
pointer! It should use the frame pointer only. This is mandatory
because of alloca; we also take advantage of it to omit stack
adjustments before returning. */
static void
d30v_output_function_epilogue (stream, size)
FILE *stream ATTRIBUTE_UNUSED;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
/* For the d30v, move all processing to be as insns, but do any
cleanup here, since it is done after handling all of the insns. */
d30v_stack_cache = (d30v_stack_t *)0; /* reset stack cache */
}
/* Called after register allocation to add any instructions needed for
the epilogue. Using an epilogue insn is favored compared to putting
all of the instructions in output_function_prologue(), since it
allows the scheduler to intermix instructions with the saves of the
caller saved registers. In some cases, it might be necessary to
emit a barrier instruction as the last insn to prevent such
scheduling. */
void
d30v_expand_epilogue ()
{
rtx sp = stack_pointer_rtx;
d30v_stack_t *info = d30v_stack_info ();
int i;
rtx mem_di = NULL_RTX;
rtx mem_si = NULL_RTX;
rtx post_inc;
int extra_stack;
/* Hack for now, to prevent scheduler from being too cleaver */
emit_insn (gen_blockage ());
/* Restore sp from fp. */
if (frame_pointer_needed)
emit_move_insn (sp, frame_pointer_rtx);
/* For the epilogue, use post-increment addressing all of the time. First
adjust the sp, to eliminate all of the stack, except for the save area. */
if (info->save_offset)
emit_insn (gen_addsi3 (sp, sp, GEN_INT (info->save_offset)));
post_inc = gen_rtx (POST_INC, Pmode, sp);
mem_di = gen_rtx (MEM, DImode, post_inc);
mem_si = gen_rtx (MEM, SImode, post_inc);
/* Restore the accumulators. */
for (i = ACCUM_FIRST; i <= ACCUM_LAST; i++)
if (info->save_p[i])
{
rtx acc_tmp = gen_rtx (REG, DImode, GPR_ATMP_FIRST);
emit_insn (gen_movdi (acc_tmp, mem_di));
emit_insn (gen_movdi (gen_rtx (REG, DImode, i), acc_tmp));
}
/* Restore the GPR registers that are adjacent to each other with ld2w. */
for (i = GPR_FIRST; i <= GPR_LAST; i += 2)
if (info->save_p[i] == 2)
emit_insn (gen_movdi (gen_rtx (REG, DImode, i), mem_di));
/* Save the GPR registers that need to be saved with a single word store. */
extra_stack = 0;
for (i = GPR_FIRST; i <= GPR_LAST; i++)
if (info->save_p[i] == 1)
{
if (cfun->machine->eh_epilogue_sp_ofs && i == GPR_LINK)
extra_stack = 4;
else
{
if (extra_stack)
{
emit_insn (gen_addsi3 (sp, sp, GEN_INT (extra_stack)));
extra_stack = 0;
}
emit_insn (gen_movsi (gen_rtx (REG, SImode, i), mem_si));
}
}
/* Release any remaining stack that was allocated for saving the
varargs registers or because an odd # of registers were stored. */
if ((info->memrefs_1word & 1) != 0)
extra_stack += UNITS_PER_WORD;
extra_stack += current_function_pretend_args_size + info->varargs_size;
if (extra_stack)
{
if (cfun->machine->eh_epilogue_sp_ofs)
emit_insn (gen_addsi3 (cfun->machine->eh_epilogue_sp_ofs,
cfun->machine->eh_epilogue_sp_ofs,
GEN_INT (extra_stack)));
else
emit_insn (gen_addsi3 (sp, sp, GEN_INT (extra_stack)));
}
if (cfun->machine->eh_epilogue_sp_ofs)
emit_insn (gen_addsi3 (sp, sp, cfun->machine->eh_epilogue_sp_ofs));
/* Now emit the return instruction. */
emit_jump_insn (gen_rtx_RETURN (VOIDmode));
}
/* A C statement or compound statement to output to FILE some assembler code to
call the profiling subroutine `mcount'. Before calling, the assembler code
must load the address of a counter variable into a register where `mcount'
expects to find the address. The name of this variable is `LP' followed by
the number LABELNO, so you would generate the name using `LP%d' in a
`fprintf'.
The details of how the address should be passed to `mcount' are determined
by your operating system environment, not by GNU CC. To figure them out,
compile a small program for profiling using the system's installed C
compiler and look at the assembler code that results. */
void
d30v_function_profiler (stream, labelno)
FILE *stream;
int labelno ATTRIBUTE_UNUSED;
{
fprintf (stream, "# profile\n");
}
/* Split a 64 bit item into an upper and a lower part. We specifically do not
want to call gen_highpart/gen_lowpart on CONST_DOUBLEs since it will give us
the wrong part for floating point in cross compilers, and split_double does
not handle registers. Also abort if the register is not a general purpose
register. */
void
d30v_split_double (value, p_high, p_low)
rtx value;
rtx *p_high;
rtx *p_low;
{
int offset = 0;
int regno;
if (!reload_completed)
abort ();
switch (GET_CODE (value))
{
case SUBREG:
if (GET_CODE (SUBREG_REG (value)) != REG)
abort ();
offset = subreg_regno_offset (REGNO (SUBREG_REG (value)),
GET_MODE (SUBREG_REG (value)),
SUBREG_BYTE (value),
GET_MODE (value));
value = SUBREG_REG (value);
/* fall through */
case REG:
regno = REGNO (value) + offset;
if (!GPR_P (regno))
abort ();
*p_high = gen_rtx (REG, SImode, regno);
*p_low = gen_rtx (REG, SImode, regno+1);
break;
case CONST_INT:
case CONST_DOUBLE:
split_double (value, p_high, p_low);
break;
default:
abort ();
}
}
/* A C compound statement to output to stdio stream STREAM the assembler syntax
for an instruction operand that is a memory reference whose address is X. X
is an RTL expression. */
void
d30v_print_operand_address (stream, x)
FILE *stream;
rtx x;
{
if (GET_CODE (x) == MEM)
x = XEXP (x, 0);
switch (GET_CODE (x))
{
default:
break;
case REG:
fputs (reg_names[ REGNO (x) ], stream);
return;
case CONST_INT:
fprintf (stream, "%ld", (long) INTVAL (x));
return;
/* We wrap simple symbol refs inside a parenthesis, so that a name
like `r2' is not taken for a register name. */
case SYMBOL_REF:
fputs ("(", stream);
assemble_name (stream, XSTR (x, 0));
fputs (")", stream);
return;
case LABEL_REF:
case CONST:
output_addr_const (stream, x);
return;
}
fatal_insn ("bad insn to d30v_print_operand_address:", x);
}
/* Print a memory reference suitable for the ld/st instructions. */
static void
d30v_print_operand_memory_reference (stream, x)
FILE *stream;
rtx x;
{
rtx x0 = NULL_RTX;
rtx x1 = NULL_RTX;
switch (GET_CODE (x))
{
default:
fatal_insn ("bad insn to d30v_print_operand_memory_reference:", x);
break;
case SUBREG:
case REG:
case POST_DEC:
case POST_INC:
x0 = x;
break;
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
case CONST:
x1 = x;
break;
case PLUS:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) == CONST_INT || GET_CODE (x0) == SYMBOL_REF
|| GET_CODE (x0) == CONST || GET_CODE (x0) == LABEL_REF)
{
x0 = XEXP (x, 1);
x1 = XEXP (x, 0);
}
break;
}
fputs ("@(", stream);
if (!x0)
fputs (reg_names[GPR_R0], stream);
else
{
const char *suffix = "";
int offset0 = 0;
if (GET_CODE (x0) == SUBREG)
{
offset0 = subreg_regno_offset (REGNO (SUBREG_REG (x0)),
GET_MODE (SUBREG_REG (x0)),
SUBREG_BYTE (x0),
GET_MODE (x0));
x0 = SUBREG_REG (x0);
}
if (GET_CODE (x0) == POST_INC)
{
x0 = XEXP (x0, 0);
suffix = "+";
}
else if (GET_CODE (x0) == POST_DEC)
{
x0 = XEXP (x0, 0);
suffix = "-";
}
if (GET_CODE (x0) == REG && GPR_P (REGNO (x0)))
fprintf (stream, "%s%s", reg_names[REGNO (x0) + offset0], suffix);
else
fatal_insn ("bad insn to d30v_print_operand_memory_reference:", x);
}
fputs (",", stream);
if (!x1)
fputs (reg_names[GPR_R0], stream);
else
{
int offset1 = 0;
switch (GET_CODE (x1))
{
case SUBREG:
offset1 = subreg_regno_offset (REGNO (SUBREG_REG (x1)),
GET_MODE (SUBREG_REG (x1)),
SUBREG_BYTE (x1),
GET_MODE (x1));
x1 = SUBREG_REG (x1);
if (GET_CODE (x1) != REG)
fatal_insn ("bad insn to d30v_print_operand_memory_reference:", x);
/* fall through */
case REG:
fputs (reg_names[REGNO (x1) + offset1], stream);
break;
case CONST_INT:
fprintf (stream, "%ld", (long) INTVAL (x1));
break;
case SYMBOL_REF:
case LABEL_REF:
case CONST:
d30v_print_operand_address (stream, x1);
break;
default:
fatal_insn ("bad insn to d30v_print_operand_memory_reference:", x);
}
}
fputs (")", stream);
}
/* A C compound statement to output to stdio stream STREAM the assembler syntax
for an instruction operand X. X is an RTL expression.
LETTER is a value that can be used to specify one of several ways of
printing the operand. It is used when identical operands must be printed
differently depending on the context. LETTER comes from the `%'
specification that was used to request printing of the operand. If the
specification was just `%DIGIT' then LETTER is 0; if the specification was
`%LTR DIGIT' then LETTER is the ASCII code for LTR.
If X is a register, this macro should print the register's name. The names
can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%' followed by
a punctuation character), this macro is called with a null pointer for X and
the punctuation character for LETTER.
Standard operand flags that are handled elsewhere:
`=' Output a number unique to each instruction in the compilation.
`a' Substitute an operand as if it were a memory reference.
`c' Omit the syntax that indicates an immediate operand.
`l' Substitute a LABEL_REF into a jump instruction.
`n' Like %cDIGIT, except negate the value before printing.
The d30v specific operand flags are:
`.' Print r0.
`f' Print a SF constant as an int.
`s' Subtract 32 and negate.
`A' Print accumulator number without an `a' in front of it.
`B' Print bit offset for BSET, etc. instructions.
`E' Print u if this is zero extend, nothing if this is sign extend.
`F' Emit /{f,t,x}{f,t,x} for executing a false condition.
`L' Print the lower half of a 64 bit item.
`M' Print a memory reference for ld/st instructions.
`R' Return appropriate cmp instruction for relational test.
`S' Subtract 32.
`T' Emit /{f,t,x}{f,t,x} for executing a true condition.
`U' Print the upper half of a 64 bit item. */
void
d30v_print_operand (stream, x, letter)
FILE *stream;
rtx x;
int letter;
{
enum rtx_code code = (x) ? GET_CODE (x) : NIL;
rtx split_values[2];
REAL_VALUE_TYPE rv;
long num;
int log;
switch (letter)
{
case '.': /* Output r0 */
fputs (reg_names[GPR_R0], stream);
break;
case 'f': /* Print a SF floating constant as an int */
if (GET_CODE (x) != CONST_DOUBLE)
fatal_insn ("bad insn to d30v_print_operand, 'f' modifier:", x);
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, num);
fprintf (stream, "%ld", num);
break;
case 'A': /* Print accumulator number without an `a' in front of it. */
if (GET_CODE (x) != REG || !ACCUM_P (REGNO (x)))
fatal_insn ("bad insn to d30v_print_operand, 'A' modifier:", x);
putc ('0' + REGNO (x) - ACCUM_FIRST, stream);
break;
case 'M': /* Print a memory reference for ld/st */
if (GET_CODE (x) != MEM)
fatal_insn ("bad insn to d30v_print_operand, 'M' modifier:", x);
d30v_print_operand_memory_reference (stream, XEXP (x, 0));
break;
case 'L': /* print lower part of 64 bit item. */
case 'U': /* print upper part of 64 bit item. */
d30v_split_double (x, &split_values[0], &split_values[1]);
d30v_print_operand (stream, split_values[ letter == 'L' ], '\0');
break;
case ':': /* Output the condition for the current insn. */
x = current_insn_predicate;
if (x == NULL_RTX)
break;
letter = 'T';
/* FALLTHRU */
case 'F': /* Print an appropriate suffix for a false comparision. */
case 'T': /* Print an appropriate suffix for a true comparision. */
/* Note that the sense of appropriate suffix is for conditional execution
and opposite of what branches want. Branches just use the inverse
operation. */
if ((GET_CODE (x) == NE || GET_CODE (x) == EQ)
&& GET_MODE (x) == CCmode
&& GET_CODE (XEXP (x, 0)) == REG
&& (GPR_P (REGNO (XEXP (x, 0))) || BR_FLAG_P (REGNO (XEXP (x, 0))))
&& GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
{
int true_false = (letter == 'T');
if (GET_CODE (x) == EQ)
true_false = !true_false;
if (REGNO (XEXP (x, 0)) == FLAG_F0)
fprintf (stream, "/%cx", (true_false) ? 'f' : 't');
else if (REGNO (XEXP (x, 0)) == FLAG_F1)
fprintf (stream, "/x%c", (true_false) ? 'f' : 't');
else
fputs ((true_false) ? "tnz" : "tzr", stream);
}
else if (GET_CODE (x) == REG && REGNO (x) == FLAG_F0)
fprintf (stream, "/%cx", (letter == 'T') ? 't' : 'f');
else if (GET_CODE (x) == REG && REGNO (x) == FLAG_F1)
fprintf (stream, "/x%c", (letter == 'T') ? 't' : 'f');
else if (GET_CODE (x) == REG && GPR_P (REGNO (x)))
fputs ((letter == 'T') ? "tnz" : "tzr", stream);
else
fatal_insn ("bad insn to print_operand, 'F' or 'T' modifier:", x);
break;
case 'B': /* emit offset single bit to change */
if (GET_CODE (x) == CONST_INT && (log = exact_log2 (INTVAL (x))) >= 0)
fprintf (stream, "%d", 31 - log);
else if (GET_CODE (x) == CONST_INT && (log = exact_log2 (~ INTVAL (x))) >= 0)
fprintf (stream, "%d", 31 - log);
else
fatal_insn ("bad insn to print_operand, 'B' modifier:", x);
break;
case 'E': /* Print u if this is zero extend, nothing if sign extend. */
if (GET_CODE (x) == ZERO_EXTEND)
putc ('u', stream);
else if (GET_CODE (x) != SIGN_EXTEND)
fatal_insn ("bad insn to print_operand, 'E' modifier:", x);
break;
case 'R': /* Return appropriate cmp instruction for relational test. */
switch (GET_CODE (x))
{
case EQ: fputs ("cmpeq", stream); break;
case NE: fputs ("cmpne", stream); break;
case LT: fputs ("cmplt", stream); break;
case LE: fputs ("cmple", stream); break;
case GT: fputs ("cmpgt", stream); break;
case GE: fputs ("cmpge", stream); break;
case LTU: fputs ("cmpult", stream); break;
case LEU: fputs ("cmpule", stream); break;
case GTU: fputs ("cmpugt", stream); break;
case GEU: fputs ("cmpuge", stream); break;
default:
fatal_insn ("bad insn to print_operand, 'R' modifier:", x);
}
break;
case 's': /* Subtract 32 and negate (for 64 bit shifts). */
if (GET_CODE (x) == CONST_INT)
fprintf (stream, "%d", (int) (32 - INTVAL (x)));
else
fatal_insn ("bad insn to print_operand, 's' modifier:", x);
break;
case 'S': /* Subtract 32. */
if (GET_CODE (x) == CONST_INT)
fprintf (stream, "%d", (int)(INTVAL (x) - 32));
else
fatal_insn ("bad insn to print_operand, 's' modifier:", x);
break;
case 'z': /* If arg is 0 or 0.0, print r0, otherwise print as normal */
if ((GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
|| (GET_CODE (x) == CONST_DOUBLE && CONST_DOUBLE_LOW (x) == 0
&& CONST_DOUBLE_HIGH (x) == 0))
{
fputs (reg_names[GPR_FIRST], stream);
return;
}
/* fall through */
case '\0':
if (code == REG)
fputs (reg_names[ REGNO (x) ], stream);
else if (code == CONST_INT)
fprintf (stream, "%d", (int)INTVAL (x));
else if (code == MEM)
d30v_print_operand_address (stream, XEXP (x, 0));
else if (CONSTANT_ADDRESS_P (x))
d30v_print_operand_address (stream, x);
else
fatal_insn ("bad insn in d30v_print_operand, 0 case", x);
return;
default:
{
char buf[80];
sprintf (buf, "invalid asm template character '%%%c'", letter);
fatal_insn (buf, x);
}
}
}
/* A C expression for the size in bytes of the trampoline, as an integer. */
int
d30v_trampoline_size ()
{
return 16;
}
/* Create a long instruction for building up a trampoline. */
static void
d30v_build_long_insn (high_bits, low_bits, imm, mem)
HOST_WIDE_INT high_bits;
HOST_WIDE_INT low_bits;
rtx imm;
rtx mem;
{
rtx reg = gen_reg_rtx (DImode);
rtx high_word = gen_highpart (SImode, reg);
rtx low_word = gen_lowpart (SImode, reg);
rtx tmp1 = gen_reg_rtx (SImode);
rtx tmp2 = gen_reg_rtx (SImode);
rtx tmp3 = gen_reg_rtx (SImode);
rtx tmp4 = gen_reg_rtx (SImode);
rtx tmp5 = gen_reg_rtx (SImode);
rtx tmp6 = gen_reg_rtx (SImode);
imm = force_reg (SImode, imm);
/* Stuff top 6 bits of immediate value into high word */
emit_insn (gen_lshrsi3 (tmp1, imm, GEN_INT (26)));
emit_insn (gen_andsi3 (tmp2, tmp1, GEN_INT (0x3F)));
emit_insn (gen_iorsi3 (high_word, tmp2, GEN_INT (high_bits)));
/* Now get the next 8 bits for building the low word */
emit_insn (gen_andsi3 (tmp3, imm, GEN_INT (0x03FC0000)));
emit_insn (gen_ashlsi3 (tmp4, tmp3, GEN_INT (2)));
/* And the bottom 18 bits */
emit_insn (gen_andsi3 (tmp5, imm, GEN_INT (0x0003FFFF)));
emit_insn (gen_iorsi3 (tmp6, tmp4, tmp5));
emit_insn (gen_iorsi3 (low_word, tmp6, GEN_INT (low_bits)));
/* Store the instruction */
emit_insn (gen_movdi (mem, reg));
}
/* A C statement to initialize the variable parts of a trampoline. ADDR is an
RTX for the address of the trampoline; FNADDR is an RTX for the address of
the nested function; STATIC_CHAIN is an RTX for the static chain value that
should be passed to the function when it is called. */
void
d30v_initialize_trampoline (addr, fnaddr, static_chain)
rtx addr;
rtx fnaddr;
rtx static_chain;
{
/* The instruction space can only be accessed by ld2w/st2w.
Generate on the fly:
or r18,r0,<static-chain>
jmp <fnaddr> */
d30v_build_long_insn (0x83A80000 | ((STATIC_CHAIN_REGNUM - GPR_FIRST) << 12),
0x80000000, static_chain,
gen_rtx (MEM, DImode, addr));
d30v_build_long_insn (0x80180000, 0x80000000, fnaddr,
gen_rtx (MEM, DImode, plus_constant (addr, 8)));
}
/* A C compound statement with a conditional `goto LABEL;' executed if X (an
RTX) is a legitimate memory address on the target machine for a memory
operand of mode MODE. */
#define XREGNO_OK_FOR_BASE_P(REGNO, STRICT_P) \
((STRICT_P) \
? REGNO_OK_FOR_BASE_P (REGNO) \
: GPR_OR_PSEUDO_P (REGNO))
int
d30v_legitimate_address_p (mode, x, strict_p)
enum machine_mode mode;
rtx x;
int strict_p;
{
rtx x0, x1;
int ret = 0;
switch (GET_CODE (x))
{
default:
break;
case SUBREG:
x = SUBREG_REG (x);
if (GET_CODE (x) != REG)
break;
/* fall through */
case REG:
ret = XREGNO_OK_FOR_BASE_P (REGNO (x), strict_p);
break;
case PLUS:
x0 = XEXP (x, 0);
x1 = XEXP (x, 1);
if (GET_CODE (x0) == SUBREG)
x0 = SUBREG_REG (x0);
if (GET_CODE (x0) == POST_INC || GET_CODE (x0) == POST_DEC)
x0 = XEXP (x0, 0);
if (GET_CODE (x0) != REG || !XREGNO_OK_FOR_BASE_P (REGNO (x0), strict_p))
break;
switch (GET_CODE (x1))
{
default:
break;
case SUBREG:
x1 = SUBREG_REG (x1);
if (GET_CODE (x1) != REG)
break;
/* fall through */
case REG:
ret = XREGNO_OK_FOR_BASE_P (REGNO (x1), strict_p);
break;
case CONST_INT:
ret = (IN_RANGE_P (INTVAL (x1), -32, 31)) ? 1 : 2;
break;
case SYMBOL_REF:
case LABEL_REF:
case CONST:
ret = 2;
break;
}
break;
case CONST_INT:
ret = (IN_RANGE_P (INTVAL (x), -32, 31)) ? 1 : 2;
break;
case SYMBOL_REF:
case LABEL_REF:
case CONST:
ret = 2;
break;
case POST_INC:
case POST_DEC:
x0 = XEXP (x, 0);
if (GET_CODE (x0) == REG && XREGNO_OK_FOR_BASE_P (REGNO (x0), strict_p))
ret = 1;
break;
}
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict\n",
GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ");
debug_rtx (x);
}
return ret;
}
/* A C compound statement that attempts to replace X with a valid memory
address for an operand of mode MODE. WIN will be a C statement label
elsewhere in the code; the macro definition may use
GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
to avoid further processing if the address has become legitimate.
X will always be the result of a call to `break_out_memory_refs', and OLDX
will be the operand that was given to that function to produce X.
The code generated by this macro should not alter the substructure of X. If
it transforms X into a more legitimate form, it should assign X (which will
always be a C variable) a new value.
It is not necessary for this macro to come up with a legitimate address.
The compiler has standard ways of doing so in all cases. In fact, it is
safe for this macro to do nothing. But often a machine-dependent strategy
can generate better code. */
rtx
d30v_legitimize_address (x, oldx, mode, strict_p)
rtx x;
rtx oldx ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
int strict_p ATTRIBUTE_UNUSED;
{
rtx ret = NULL_RTX;
if (TARGET_DEBUG_ADDR)
{
if (ret)
{
fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, transformed:\n");
debug_rtx (x);
fprintf (stderr, "\ninto:\n");
debug_rtx (ret);
}
else
{
fprintf (stderr, "\n========== LEGITIMIZE_ADDRESS, did nothing with:\n");
debug_rtx (x);
}
}
return ret;
}
/* A C statement or compound statement with a conditional `goto LABEL;'
executed if memory address X (an RTX) can have different meanings depending
on the machine mode of the memory reference it is used for or if the address
is valid for some modes but not others.
Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size of the
operand being addressed. Some machines have other mode-dependent addresses.
Many RISC machines have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine. */
int
d30v_mode_dependent_address_p (addr)
rtx addr;
{
switch (GET_CODE (addr))
{
default:
break;
case POST_INC:
case POST_DEC:
return TRUE;
}
return FALSE;
}
/* Generate the appropriate comparison code for a test. */
rtx
d30v_emit_comparison (test_int, result, arg1, arg2)
int test_int;
rtx result;
rtx arg1;
rtx arg2;
{
enum rtx_code test = (enum rtx_code) test_int;
enum machine_mode mode = GET_MODE (arg1);
rtx rtx_test = gen_rtx (SET, VOIDmode, result, gen_rtx (test, CCmode, arg1, arg2));
if (mode == SImode
|| (mode == DImode && (test == EQ || test == NE))
|| (mode == DImode && (test == LT || test == GE)
&& GET_CODE (arg2) == CONST_INT && INTVAL (arg2) == 0))
return rtx_test;
else if (mode == DImode)
return gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2,
rtx_test,
gen_rtx (CLOBBER, VOIDmode,
gen_reg_rtx (CCmode))));
else
fatal_insn ("d30v_emit_comparison", rtx_test);
}
/* Return appropriate code to move 2 words. Since DImode registers must start
on even register numbers, there is no possibility of overlap. */
const char *
d30v_move_2words (operands, insn)
rtx operands[];
rtx insn;
{
if (GET_CODE (operands[0]) == REG && GPR_P (REGNO (operands[0])))
{
if (GET_CODE (operands[1]) == REG && GPR_P (REGNO (operands[1])))
return "or %U0,%.,%U1\n\tor %L0,%.,%L1";
else if (GET_CODE (operands[1]) == REG && ACCUM_P (REGNO (operands[1])))
return "mvfacc %L0,%1,%.\n\tmvfacc %U0,%1,32";
else if (GET_CODE (operands[1]) == MEM)
return "ld2w %0,%M1";
else if (GET_CODE (operands[1]) == CONST_INT
|| GET_CODE (operands[1]) == CONST_DOUBLE)
return "or %U0,%.,%U1\n\tor %L0,%.,%L1";
}
else if (GET_CODE (operands[0]) == REG && ACCUM_P (REGNO (operands[0])))
{
if (GET_CODE (operands[1]) == REG
&& GPR_P (REGNO (operands[1])))
return "mvtacc %0,%U1,%L1";
if (GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) == 0)
return "mvtacc %0,%.,%.";
}
else if (GET_CODE (operands[0]) == MEM
&& GET_CODE (operands[1]) == REG
&& GPR_P (REGNO (operands[1])))
return "st2w %1,%M0";
fatal_insn ("bad call to d30v_move_2words", insn);
}
/* Emit the code to do a conditional move instruction. Return FALSE
if the conditional move could not be executed. */
int
d30v_emit_cond_move (dest, test, true_value, false_value)
rtx dest;
rtx test;
rtx true_value;
rtx false_value;
{
rtx br_reg;
enum machine_mode mode = GET_MODE (dest);
int two_mem_moves_p = FALSE;
if (GET_CODE (dest) == MEM)
{
if (!reg_or_0_operand (true_value, mode))
return FALSE;
if (rtx_equal_p (dest, false_value))
two_mem_moves_p = TRUE;
else if (!reg_or_0_operand (false_value, mode))
return FALSE;
}
/* We used to try to optimize setting 0/1 by using mvfsys, but that turns out
to be slower than just doing the conditional execution. */
br_reg = gen_reg_rtx (CCmode);
emit_insn (d30v_emit_comparison (GET_CODE (test), br_reg,
d30v_compare_op0, d30v_compare_op1));
if (!two_mem_moves_p)
emit_insn (gen_rtx_SET (VOIDmode,
dest,
gen_rtx_IF_THEN_ELSE (mode,
gen_rtx_NE (CCmode, br_reg,
const0_rtx),
true_value,
false_value)));
else
{
/* Emit conditional stores as two separate stores. This avoids a problem
where you have a conditional store, and one of the arms of the
conditional store is spilled to memory. */
emit_insn (gen_rtx_SET (VOIDmode,
dest,
gen_rtx_IF_THEN_ELSE (mode,
gen_rtx_NE (CCmode, br_reg,
const0_rtx),
true_value,
dest)));
emit_insn (gen_rtx_SET (VOIDmode,
dest,
gen_rtx_IF_THEN_ELSE (mode,
gen_rtx_EQ (CCmode, br_reg,
const0_rtx),
false_value,
dest)));
}
return TRUE;
}
/* In rare cases, correct code generation requires extra machine dependent
processing between the second jump optimization pass and delayed branch
scheduling. On those machines, define this macro as a C statement to act on
the code starting at INSN. */
void
d30v_machine_dependent_reorg (insn)
rtx insn ATTRIBUTE_UNUSED;
{
}
/* A C statement (sans semicolon) to update the integer variable COST based on
the relationship between INSN that is dependent on DEP_INSN through the
dependence LINK. The default is to make no adjustment to COST. This can be
used for example to specify to the scheduler that an output- or
anti-dependence does not incur the same cost as a data-dependence. */
/* For the d30v, try to insure that the source operands for a load/store are
set 2 cycles before the memory reference. */
static int
d30v_adjust_cost (insn, link, dep_insn, cost)
rtx insn;
rtx link ATTRIBUTE_UNUSED;
rtx dep_insn;
int cost;
{
rtx set_dep = single_set (dep_insn);
rtx set_insn = single_set (insn);
if (set_dep != NULL_RTX && set_insn != NULL_RTX
&& GET_CODE (SET_DEST (set_dep)) == REG)
{
rtx reg = SET_DEST (set_dep);
rtx mem;
if ((GET_CODE (mem = SET_SRC (set_insn)) == MEM
&& reg_mentioned_p (reg, XEXP (mem, 0)))
|| (GET_CODE (mem = SET_DEST (set_insn)) == MEM
&& reg_mentioned_p (reg, XEXP (mem, 0))))
{
return cost + 2;
}
}
return cost;
}
/* Function which returns the number of insns that can be
scheduled in the same machine cycle. This must be constant
over an entire compilation. The default is 1. */
static int
d30v_issue_rate ()
{
return 2;
}
/* Routine to allocate, mark and free a per-function,
machine specific structure. */
static struct machine_function *
d30v_init_machine_status ()
{
return ggc_alloc_cleared (sizeof (machine_function));
}
/* Do anything needed before RTL is emitted for each function. */
void
d30v_init_expanders ()
{
/* Arrange to save and restore machine status around nested functions. */
init_machine_status = d30v_init_machine_status;
}
/* Find the current function's return address.
??? It would be better to arrange things such that if we would ordinarily
have been a leaf function and we didn't spill the hard reg that we
wouldn't have to save the register in the prolog. But it's not clear
how to get the right information at the right time. */
rtx
d30v_return_addr ()
{
return get_hard_reg_initial_val (Pmode, GPR_LINK);
}
|