1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857
|
/* Subroutines for insn-output.c for MIPS
Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Contributed by A. Lichnewsky, lich@inria.inria.fr.
Changes by Michael Meissner, meissner@osf.org.
64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
Brendan Eich, brendan@microunity.com.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* ??? The TARGET_FP_CALL_32 macros are intended to simulate a 32 bit
calling convention in 64 bit mode. It doesn't work though, and should
be replaced with something better designed. */
#include "config.h"
#include "system.h"
#include <signal.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "recog.h"
#include "toplev.h"
#include "output.h"
#include "tree.h"
#include "function.h"
#include "expr.h"
#include "flags.h"
#include "reload.h"
#include "output.h"
#include "tm_p.h"
#include "ggc.h"
#include "gstab.h"
#include "hashtab.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#ifdef __GNU_STAB__
#define STAB_CODE_TYPE enum __stab_debug_code
#else
#define STAB_CODE_TYPE int
#endif
extern tree lookup_name PARAMS ((tree));
/* Enumeration for all of the relational tests, so that we can build
arrays indexed by the test type, and not worry about the order
of EQ, NE, etc. */
enum internal_test {
ITEST_EQ,
ITEST_NE,
ITEST_GT,
ITEST_GE,
ITEST_LT,
ITEST_LE,
ITEST_GTU,
ITEST_GEU,
ITEST_LTU,
ITEST_LEU,
ITEST_MAX
};
struct constant;
struct mips_arg_info;
static enum internal_test map_test_to_internal_test PARAMS ((enum rtx_code));
static void get_float_compare_codes PARAMS ((enum rtx_code, enum rtx_code *,
enum rtx_code *));
static int mips16_simple_memory_operand PARAMS ((rtx, rtx,
enum machine_mode));
static int m16_check_op PARAMS ((rtx, int, int, int));
static void block_move_loop PARAMS ((rtx, rtx,
unsigned int,
int,
rtx, rtx));
static void block_move_call PARAMS ((rtx, rtx, rtx));
static void mips_arg_info PARAMS ((const CUMULATIVE_ARGS *,
enum machine_mode,
tree, int,
struct mips_arg_info *));
static rtx mips_add_large_offset_to_sp PARAMS ((HOST_WIDE_INT));
static void mips_annotate_frame_insn PARAMS ((rtx, rtx));
static rtx mips_frame_set PARAMS ((enum machine_mode,
int, int));
static void mips_emit_frame_related_store PARAMS ((rtx, rtx,
HOST_WIDE_INT));
static void save_restore_insns PARAMS ((int, rtx, long));
static void mips16_output_gp_offset PARAMS ((FILE *, rtx));
static void mips16_fp_args PARAMS ((FILE *, int, int));
static void build_mips16_function_stub PARAMS ((FILE *));
static void mips16_optimize_gp PARAMS ((rtx));
static rtx add_constant PARAMS ((struct constant **,
rtx,
enum machine_mode));
static void dump_constants PARAMS ((struct constant *,
rtx));
static rtx mips_find_symbol PARAMS ((rtx));
static void abort_with_insn PARAMS ((rtx, const char *))
ATTRIBUTE_NORETURN;
static int symbolic_expression_p PARAMS ((rtx));
static bool mips_assemble_integer PARAMS ((rtx, unsigned int, int));
static void mips_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static void mips_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void mips_set_architecture PARAMS ((const struct mips_cpu_info *));
static void mips_set_tune PARAMS ((const struct mips_cpu_info *));
static bool mips_strict_matching_cpu_name_p PARAMS ((const char *,
const char *));
static bool mips_matching_cpu_name_p PARAMS ((const char *,
const char *));
static const struct mips_cpu_info *mips_parse_cpu PARAMS ((const char *,
const char *));
static const struct mips_cpu_info *mips_cpu_info_from_isa PARAMS ((int));
static void copy_file_data PARAMS ((FILE *, FILE *));
#ifdef TARGET_IRIX6
static void iris6_asm_named_section_1 PARAMS ((const char *,
unsigned int,
unsigned int));
static void iris6_asm_named_section PARAMS ((const char *,
unsigned int));
static int iris_section_align_entry_eq PARAMS ((const PTR, const PTR));
static hashval_t iris_section_align_entry_hash PARAMS ((const PTR));
static int iris6_section_align_1 PARAMS ((void **, void *));
#endif
static int mips_adjust_cost PARAMS ((rtx, rtx, rtx, int));
static int mips_issue_rate PARAMS ((void));
static struct machine_function * mips_init_machine_status PARAMS ((void));
static void mips_select_section PARAMS ((tree, int, unsigned HOST_WIDE_INT))
ATTRIBUTE_UNUSED;
static void mips_unique_section PARAMS ((tree, int))
ATTRIBUTE_UNUSED;
static void mips_select_rtx_section PARAMS ((enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
static int mips_use_dfa_pipeline_interface PARAMS ((void));
static void mips_encode_section_info PARAMS ((tree, int));
/* Structure to be filled in by compute_frame_size with register
save masks, and offsets for the current function. */
struct mips_frame_info GTY(())
{
long total_size; /* # bytes that the entire frame takes up */
long var_size; /* # bytes that variables take up */
long args_size; /* # bytes that outgoing arguments take up */
long extra_size; /* # bytes of extra gunk */
int gp_reg_size; /* # bytes needed to store gp regs */
int fp_reg_size; /* # bytes needed to store fp regs */
long mask; /* mask of saved gp registers */
long fmask; /* mask of saved fp registers */
long gp_save_offset; /* offset from vfp to store gp registers */
long fp_save_offset; /* offset from vfp to store fp registers */
long gp_sp_offset; /* offset from new sp to store gp registers */
long fp_sp_offset; /* offset from new sp to store fp registers */
int initialized; /* != 0 if frame size already calculated */
int num_gp; /* number of gp registers saved */
int num_fp; /* number of fp registers saved */
};
struct machine_function GTY(()) {
/* Pseudo-reg holding the address of the current function when
generating embedded PIC code. Created by LEGITIMIZE_ADDRESS,
used by mips_finalize_pic if it was created. */
rtx embedded_pic_fnaddr_rtx;
/* Pseudo-reg holding the value of $28 in a mips16 function which
refers to GP relative global variables. */
rtx mips16_gp_pseudo_rtx;
/* Current frame information, calculated by compute_frame_size. */
struct mips_frame_info frame;
/* Length of instructions in function; mips16 only. */
long insns_len;
};
/* Information about a single argument. */
struct mips_arg_info
{
/* True if the argument is a record or union type. */
bool struct_p;
/* True if the argument is passed in a floating-point register, or
would have been if we hadn't run out of registers. */
bool fpr_p;
/* The argument's size, in bytes. */
unsigned int num_bytes;
/* The number of words passed in registers, rounded up. */
unsigned int reg_words;
/* The offset of the first register from GP_ARG_FIRST or FP_ARG_FIRST,
or MAX_ARGS_IN_REGISTERS if the argument is passed entirely
on the stack. */
unsigned int reg_offset;
/* The number of words that must be passed on the stack, rounded up. */
unsigned int stack_words;
/* The offset from the start of the stack overflow area of the argument's
first stack word. Only meaningful when STACK_WORDS is nonzero. */
unsigned int stack_offset;
};
/* Global variables for machine-dependent things. */
/* Threshold for data being put into the small data/bss area, instead
of the normal data area (references to the small data/bss area take
1 instruction, and use the global pointer, references to the normal
data area takes 2 instructions). */
int mips_section_threshold = -1;
/* Count the number of .file directives, so that .loc is up to date. */
int num_source_filenames = 0;
/* Count the number of sdb related labels are generated (to find block
start and end boundaries). */
int sdb_label_count = 0;
/* Next label # for each statement for Silicon Graphics IRIS systems. */
int sym_lineno = 0;
/* Nonzero if inside of a function, because the stupid MIPS asm can't
handle .files inside of functions. */
int inside_function = 0;
/* Files to separate the text and the data output, so that all of the data
can be emitted before the text, which will mean that the assembler will
generate smaller code, based on the global pointer. */
FILE *asm_out_data_file;
FILE *asm_out_text_file;
/* Linked list of all externals that are to be emitted when optimizing
for the global pointer if they haven't been declared by the end of
the program with an appropriate .comm or initialization. */
struct extern_list
{
struct extern_list *next; /* next external */
const char *name; /* name of the external */
int size; /* size in bytes */
} *extern_head = 0;
/* Name of the file containing the current function. */
const char *current_function_file = "";
/* Warning given that Mips ECOFF can't support changing files
within a function. */
int file_in_function_warning = FALSE;
/* Whether to suppress issuing .loc's because the user attempted
to change the filename within a function. */
int ignore_line_number = FALSE;
/* Number of nested .set noreorder, noat, nomacro, and volatile requests. */
int set_noreorder;
int set_noat;
int set_nomacro;
int set_volatile;
/* The next branch instruction is a branch likely, not branch normal. */
int mips_branch_likely;
/* Count of delay slots and how many are filled. */
int dslots_load_total;
int dslots_load_filled;
int dslots_jump_total;
int dslots_jump_filled;
/* # of nops needed by previous insn */
int dslots_number_nops;
/* Number of 1/2/3 word references to data items (ie, not jal's). */
int num_refs[3];
/* registers to check for load delay */
rtx mips_load_reg, mips_load_reg2, mips_load_reg3, mips_load_reg4;
/* Cached operands, and operator to compare for use in set/branch/trap
on condition codes. */
rtx branch_cmp[2];
/* what type of branch to use */
enum cmp_type branch_type;
/* The target cpu for code generation. */
enum processor_type mips_arch;
const struct mips_cpu_info *mips_arch_info;
/* The target cpu for optimization and scheduling. */
enum processor_type mips_tune;
const struct mips_cpu_info *mips_tune_info;
/* which instruction set architecture to use. */
int mips_isa;
/* which abi to use. */
int mips_abi;
/* Strings to hold which cpu and instruction set architecture to use. */
const char *mips_arch_string; /* for -march=<xxx> */
const char *mips_tune_string; /* for -mtune=<xxx> */
const char *mips_isa_string; /* for -mips{1,2,3,4} */
const char *mips_abi_string; /* for -mabi={32,n32,64,eabi} */
/* Whether we are generating mips16 code. This is a synonym for
TARGET_MIPS16, and exists for use as an attribute. */
int mips16;
/* This variable is set by -mno-mips16. We only care whether
-mno-mips16 appears or not, and using a string in this fashion is
just a way to avoid using up another bit in target_flags. */
const char *mips_no_mips16_string;
/* Whether we are generating mips16 hard float code. In mips16 mode
we always set TARGET_SOFT_FLOAT; this variable is nonzero if
-msoft-float was not specified by the user, which means that we
should arrange to call mips32 hard floating point code. */
int mips16_hard_float;
/* This variable is set by -mentry. We only care whether -mentry
appears or not, and using a string in this fashion is just a way to
avoid using up another bit in target_flags. */
const char *mips_entry_string;
const char *mips_cache_flush_func = CACHE_FLUSH_FUNC;
/* Whether we should entry and exit pseudo-ops in mips16 mode. */
int mips_entry;
/* If TRUE, we split addresses into their high and low parts in the RTL. */
int mips_split_addresses;
/* Generating calls to position independent functions? */
enum mips_abicalls_type mips_abicalls;
/* Mode used for saving/restoring general purpose registers. */
static enum machine_mode gpr_mode;
/* Array giving truth value on whether or not a given hard register
can support a given mode. */
char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
/* The length of all strings seen when compiling for the mips16. This
is used to tell how many strings are in the constant pool, so that
we can see if we may have an overflow. This is reset each time the
constant pool is output. */
int mips_string_length;
/* When generating mips16 code, a list of all strings that are to be
output after the current function. */
static GTY(()) rtx mips16_strings;
/* In mips16 mode, we build a list of all the string constants we see
in a particular function. */
struct string_constant
{
struct string_constant *next;
const char *label;
};
static struct string_constant *string_constants;
/* List of all MIPS punctuation characters used by print_operand. */
char mips_print_operand_punct[256];
/* Map GCC register number to debugger register number. */
int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
/* Buffer to use to enclose a load/store operation with %{ %} to
turn on .set volatile. */
static char volatile_buffer[60];
/* Hardware names for the registers. If -mrnames is used, this
will be overwritten with mips_sw_reg_names. */
char mips_reg_names[][8] =
{
"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7",
"$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15",
"$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",
"$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7","$rap", "", "", "", "",
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"
};
/* Mips software names for the registers, used to overwrite the
mips_reg_names array. */
char mips_sw_reg_names[][8] =
{
"$zero","$at", "$v0", "$v1", "$a0", "$a1", "$a2", "$a3",
"$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
"$s0", "$s1", "$s2", "$s3", "$s4", "$s5", "$s6", "$s7",
"$t8", "$t9", "$k0", "$k1", "$gp", "$sp", "$fp", "$ra",
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
"hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",
"$fcc5","$fcc6","$fcc7","$rap", "", "", "", "",
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"
};
/* Map hard register number to register class */
const enum reg_class mips_regno_to_class[] =
{
GR_REGS, GR_REGS, M16_NA_REGS, M16_NA_REGS,
M16_REGS, M16_REGS, M16_REGS, M16_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
M16_NA_REGS, M16_NA_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
T_REG, GR_REGS, GR_REGS, GR_REGS,
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
HI_REG, LO_REG, HILO_REG, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, ST_REGS,
ST_REGS, ST_REGS, ST_REGS, GR_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS
};
/* Map register constraint character to register class. */
enum reg_class mips_char_to_class[256] =
{
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
NO_REGS, NO_REGS, NO_REGS, NO_REGS,
};
/* A table describing all the processors gcc knows about. Names are
matched in the order listed. The first mention of an ISA level is
taken as the canonical name for that ISA.
To ease comparison, please keep this table in the same order as
gas's mips_cpu_info_table[]. */
const struct mips_cpu_info mips_cpu_info_table[] = {
/* Entries for generic ISAs */
{ "mips1", PROCESSOR_R3000, 1 },
{ "mips2", PROCESSOR_R6000, 2 },
{ "mips3", PROCESSOR_R4000, 3 },
{ "mips4", PROCESSOR_R8000, 4 },
{ "mips32", PROCESSOR_R4KC, 32 },
{ "mips64", PROCESSOR_R5KC, 64 },
/* MIPS I */
{ "r3000", PROCESSOR_R3000, 1 },
{ "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
{ "r3900", PROCESSOR_R3900, 1 },
/* MIPS II */
{ "r6000", PROCESSOR_R6000, 2 },
/* MIPS III */
{ "r4000", PROCESSOR_R4000, 3 },
{ "vr4100", PROCESSOR_R4100, 3 },
{ "vr4111", PROCESSOR_R4111, 3 },
{ "vr4120", PROCESSOR_R4120, 3 },
{ "vr4300", PROCESSOR_R4300, 3 },
{ "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
{ "r4600", PROCESSOR_R4600, 3 },
{ "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
{ "r4650", PROCESSOR_R4650, 3 },
/* MIPS IV */
{ "r8000", PROCESSOR_R8000, 4 },
{ "vr5000", PROCESSOR_R5000, 4 },
{ "vr5400", PROCESSOR_R5400, 4 },
{ "vr5500", PROCESSOR_R5500, 4 },
/* MIPS 32 */
{ "4kc", PROCESSOR_R4KC, 32 },
{ "4kp", PROCESSOR_R4KC, 32 }, /* = 4kc */
/* MIPS 64 */
{ "5kc", PROCESSOR_R5KC, 64 },
{ "20kc", PROCESSOR_R20KC, 64 },
{ "sr71000", PROCESSOR_SR71000, 64 },
/* Broadcom SB-1 CPU core */
{ "sb1", PROCESSOR_SB1, 64 },
/* End marker */
{ 0, 0, 0 }
};
/* Nonzero if -march should decide the default value of MASK_SOFT_FLOAT. */
#ifndef MIPS_MARCH_CONTROLS_SOFT_FLOAT
#define MIPS_MARCH_CONTROLS_SOFT_FLOAT 0
#endif
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER mips_assemble_integer
#if TARGET_IRIX5 && !TARGET_IRIX6
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.half\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.word\t"
/* The IRIX 6 O32 assembler gives an error for `align 0; .dword', contrary
to the documentation, so disable it. */
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP NULL
#endif
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST mips_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE mips_issue_rate
#undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
#define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE mips_use_dfa_pipeline_interface
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
struct gcc_target targetm = TARGET_INITIALIZER;
/* Return truth value of whether OP can be used as an operands
where a register or 16 bit unsigned integer is needed. */
int
uns_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op))
return 1;
return register_operand (op, mode);
}
/* Return truth value of whether OP can be used as an operands
where a 16 bit integer is needed */
int
arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT && SMALL_INT (op))
return 1;
/* On the mips16, a GP relative value is a signed 16 bit offset. */
if (TARGET_MIPS16 && GET_CODE (op) == CONST && mips16_gp_offset_p (op))
return 1;
return register_operand (op, mode);
}
/* Return truth value of whether OP can be used as an operand in a two
address arithmetic insn (such as set 123456,%o4) of mode MODE. */
int
arith32_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT)
return 1;
return register_operand (op, mode);
}
/* Return truth value of whether OP is an integer which fits in 16 bits. */
int
small_int (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}
/* Return truth value of whether OP is a 32 bit integer which is too big to
be loaded with one instruction. */
int
large_int (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
HOST_WIDE_INT value;
if (GET_CODE (op) != CONST_INT)
return 0;
value = INTVAL (op);
/* ior reg,$r0,value */
if ((value & ~ ((HOST_WIDE_INT) 0x0000ffff)) == 0)
return 0;
/* subu reg,$r0,value */
if (((unsigned HOST_WIDE_INT) (value + 32768)) <= 32767)
return 0;
/* lui reg,value>>16 */
if ((value & 0x0000ffff) == 0)
return 0;
return 1;
}
/* Return truth value of whether OP is a register or the constant 0.
In mips16 mode, we only accept a register, since the mips16 does
not have $0. */
int
reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case CONST_INT:
if (TARGET_MIPS16)
return 0;
return INTVAL (op) == 0;
case CONST_DOUBLE:
if (TARGET_MIPS16)
return 0;
return op == CONST0_RTX (mode);
case REG:
case SUBREG:
return register_operand (op, mode);
default:
break;
}
return 0;
}
/* Return truth value of whether OP is a register or the constant 0,
even in mips16 mode. */
int
true_reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
switch (GET_CODE (op))
{
case CONST_INT:
return INTVAL (op) == 0;
case CONST_DOUBLE:
return op == CONST0_RTX (mode);
case REG:
case SUBREG:
return register_operand (op, mode);
default:
break;
}
return 0;
}
/* Return truth value if a CONST_DOUBLE is ok to be a legitimate constant. */
int
mips_const_double_ok (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != CONST_DOUBLE)
return 0;
if (mode == VOIDmode)
return 1;
/* We've no zero register in mips16 mode. */
if (TARGET_MIPS16)
return 0;
if (mode != SFmode && mode != DFmode)
return 0;
if (op == CONST0_RTX (mode))
return 1;
return 0;
}
/* Accept the floating point constant 1 in the appropriate mode. */
int
const_float_1_operand (op, mode)
rtx op;
enum machine_mode mode;
{
REAL_VALUE_TYPE d;
if (GET_CODE (op) != CONST_DOUBLE
|| mode != GET_MODE (op)
|| (mode != DFmode && mode != SFmode))
return 0;
REAL_VALUE_FROM_CONST_DOUBLE (d, op);
return REAL_VALUES_EQUAL (d, dconst1);
}
/* Return true if a memory load or store of REG plus OFFSET in MODE
can be represented in a single word on the mips16. */
static int
mips16_simple_memory_operand (reg, offset, mode)
rtx reg;
rtx offset;
enum machine_mode mode;
{
unsigned int size;
int off;
if (mode == BLKmode)
{
/* We can't tell, because we don't know how the value will
eventually be accessed. Returning 0 here does no great
harm; it just prevents some possible instruction scheduling. */
return 0;
}
size = GET_MODE_SIZE (mode);
if (INTVAL (offset) % size != 0)
return 0;
if (REGNO (reg) == STACK_POINTER_REGNUM && GET_MODE_SIZE (mode) == 4)
off = 0x100;
else
off = 0x20;
if (INTVAL (offset) >= 0 && INTVAL (offset) < (HOST_WIDE_INT)(off * size))
return 1;
return 0;
}
/* Return truth value if a memory operand fits in a single instruction
(ie, register + small offset). */
int
simple_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx addr, plus0, plus1;
/* Eliminate non-memory operations */
if (GET_CODE (op) != MEM)
return 0;
/* dword operations really put out 2 instructions, so eliminate them. */
/* ??? This isn't strictly correct. It is OK to accept multiword modes
here, since the length attributes are being set correctly, but only
if the address is offsettable. LO_SUM is not offsettable. */
if (GET_MODE_SIZE (GET_MODE (op)) > (unsigned) UNITS_PER_WORD)
return 0;
/* Decode the address now. */
addr = XEXP (op, 0);
switch (GET_CODE (addr))
{
case REG:
case LO_SUM:
return 1;
case CONST_INT:
if (TARGET_MIPS16)
return 0;
return SMALL_INT (addr);
case PLUS:
plus0 = XEXP (addr, 0);
plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) == REG
&& GET_CODE (plus1) == CONST_INT && SMALL_INT (plus1)
&& (! TARGET_MIPS16
|| mips16_simple_memory_operand (plus0, plus1, mode)))
return 1;
else if (GET_CODE (plus1) == REG
&& GET_CODE (plus0) == CONST_INT && SMALL_INT (plus0)
&& (! TARGET_MIPS16
|| mips16_simple_memory_operand (plus1, plus0, mode)))
return 1;
else
return 0;
#if 0
/* We used to allow small symbol refs here (ie, stuff in .sdata
or .sbss), but this causes some bugs in G++. Also, it won't
interfere if the MIPS linker rewrites the store instruction
because the function is PIC. */
case LABEL_REF: /* never gp relative */
break;
case CONST:
/* If -G 0, we can never have a GP relative memory operation.
Also, save some time if not optimizing. */
if (!TARGET_GP_OPT)
return 0;
{
rtx offset = const0_rtx;
addr = eliminate_constant_term (XEXP (addr, 0), &offset);
if (GET_CODE (op) != SYMBOL_REF)
return 0;
/* let's be paranoid.... */
if (! SMALL_INT (offset))
return 0;
}
/* fall through */
case SYMBOL_REF:
return SYMBOL_REF_FLAG (addr);
#endif
/* This SYMBOL_REF case is for the mips16. If the above case is
reenabled, this one should be merged in. */
case SYMBOL_REF:
/* References to the constant pool on the mips16 use a small
offset if the function is small. The only time we care about
getting this right is during delayed branch scheduling, so
don't need to check until then. The machine_dependent_reorg
function will set the total length of the instructions used
in the function (cfun->machine->insns_len). If that is small
enough, we know for sure that this is a small offset. It
would be better if we could take into account the location of
the instruction within the function, but we can't, because we
don't know where we are. */
if (TARGET_MIPS16
&& CONSTANT_POOL_ADDRESS_P (addr)
&& cfun->machine->insns_len > 0)
{
long size;
size = cfun->machine->insns_len + get_pool_size ();
if (GET_MODE_SIZE (mode) == 4)
return size < 4 * 0x100;
else if (GET_MODE_SIZE (mode) == 8)
return size < 8 * 0x20;
else
return 0;
}
return 0;
default:
break;
}
return 0;
}
/* Return nonzero for a memory address that can be used to load or store
a doubleword. */
int
double_memory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) != MEM
|| ! memory_operand (op, mode))
{
/* During reload, we accept a pseudo register if it has an
appropriate memory address. If we don't do this, we will
wind up reloading into a register, and then reloading that
register from memory, when we could just reload directly from
memory. */
if (reload_in_progress
&& GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (op)] < 0
&& reg_equiv_mem[REGNO (op)] != 0
&& double_memory_operand (reg_equiv_mem[REGNO (op)], mode))
return 1;
/* All reloaded addresses are valid in TARGET_64BIT mode. This is
the same test performed for 'm' in find_reloads. */
if (reload_in_progress
&& TARGET_64BIT
&& (GET_CODE (op) == MEM
|| (GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER
&& reg_renumber[REGNO (op)] < 0)))
return 1;
if (reload_in_progress
&& TARGET_MIPS16
&& GET_CODE (op) == MEM)
{
rtx addr;
addr = XEXP (op, 0);
/* During reload on the mips16, we accept a large offset
from the frame pointer or the stack pointer. This large
address will get reloaded anyhow. */
if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == REG
&& (REGNO (XEXP (addr, 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
|| REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
&& ((GET_CODE (XEXP (addr, 1)) == CONST_INT
&& ! SMALL_INT (XEXP (addr, 1)))
|| (GET_CODE (XEXP (addr, 1)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (addr, 1)))))
return 1;
/* Similarly, we accept a case where the memory address is
itself on the stack, and will be reloaded. */
if (GET_CODE (addr) == MEM)
{
rtx maddr;
maddr = XEXP (addr, 0);
if (GET_CODE (maddr) == PLUS
&& GET_CODE (XEXP (maddr, 0)) == REG
&& (REGNO (XEXP (maddr, 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
|| REGNO (XEXP (maddr, 0)) == STACK_POINTER_REGNUM)
&& ((GET_CODE (XEXP (maddr, 1)) == CONST_INT
&& ! SMALL_INT (XEXP (maddr, 1)))
|| (GET_CODE (XEXP (maddr, 1)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (maddr, 1)))))
return 1;
}
/* We also accept the same case when we have a 16 bit signed
offset mixed in as well. The large address will get
reloaded, and the 16 bit offset will be OK. */
if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == MEM
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
&& SMALL_INT (XEXP (addr, 1)))
{
addr = XEXP (XEXP (addr, 0), 0);
if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == REG
&& (REGNO (XEXP (addr, 0)) == (unsigned) HARD_FRAME_POINTER_REGNUM
|| REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
&& ((GET_CODE (XEXP (addr, 1)) == CONST_INT
&& ! SMALL_INT (XEXP (addr, 1)))
|| (GET_CODE (XEXP (addr, 1)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (addr, 1)))))
return 1;
}
}
return 0;
}
if (TARGET_64BIT)
{
/* In this case we can use an instruction like sd. */
return 1;
}
/* Make sure that 4 added to the address is a valid memory address.
This essentially just checks for overflow in an added constant. */
if (CONSTANT_ADDRESS_P (XEXP (op, 0)))
return 1;
op = adjust_address_nv (op, GET_MODE_CLASS (mode) == MODE_INT
? SImode : SFmode, 4);
return memory_address_p (GET_MODE (op), XEXP (op, 0));
}
/* Return nonzero if the code of this rtx pattern is EQ or NE. */
int
equality_op (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != GET_MODE (op))
return 0;
return GET_CODE (op) == EQ || GET_CODE (op) == NE;
}
/* Return nonzero if the code is a relational operations (EQ, LE, etc.) */
int
cmp_op (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != GET_MODE (op))
return 0;
return GET_RTX_CLASS (GET_CODE (op)) == '<';
}
/* Return nonzero if the code is a relational operation suitable for a
conditional trap instructuion (only EQ, NE, LT, LTU, GE, GEU).
We need this in the insn that expands `trap_if' in order to prevent
combine from erroneously altering the condition. */
int
trap_cmp_op (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != GET_MODE (op))
return 0;
switch (GET_CODE (op))
{
case EQ:
case NE:
case LT:
case LTU:
case GE:
case GEU:
return 1;
default:
return 0;
}
}
/* Return nonzero if the operand is either the PC or a label_ref. */
int
pc_or_label_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (op == pc_rtx)
return 1;
if (GET_CODE (op) == LABEL_REF)
return 1;
return 0;
}
/* Test for a valid operand for a call instruction.
Don't allow the arg pointer register or virtual regs
since they may change into reg + const, which the patterns
can't handle yet. */
int
call_insn_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (CONSTANT_ADDRESS_P (op)
|| (GET_CODE (op) == REG && op != arg_pointer_rtx
&& ! (REGNO (op) >= FIRST_PSEUDO_REGISTER
&& REGNO (op) <= LAST_VIRTUAL_REGISTER)));
}
/* Return nonzero if OPERAND is valid as a source operand for a move
instruction. */
int
move_operand (op, mode)
rtx op;
enum machine_mode mode;
{
/* Accept any general operand after reload has started; doing so
avoids losing if reload does an in-place replacement of a register
with a SYMBOL_REF or CONST. */
return (general_operand (op, mode)
&& (! (mips_split_addresses && mips_check_split (op, mode))
|| reload_in_progress || reload_completed)
&& ! (TARGET_MIPS16
&& GET_CODE (op) == SYMBOL_REF
&& ! mips16_constant (op, mode, 1, 0)));
}
/* Return nonzero if OPERAND is valid as a source operand for movdi.
This accepts not only general_operand, but also sign extended
move_operands. Note that we need to accept sign extended constants
in case a sign extended register which is used in an expression,
and is equivalent to a constant, is spilled. We need to accept
sign-extended memory in order to reload registers from stack slots,
and so that we generate efficient code for extendsidi2. */
int
movdi_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& move_operand (XEXP (op, 0), SImode))
return 1;
return (general_operand (op, mode)
&& ! (TARGET_MIPS16
&& GET_CODE (op) == SYMBOL_REF
&& ! mips16_constant (op, mode, 1, 0)));
}
/* Like register_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_register_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return register_operand (op, mode);
}
/* Like reg_or_0_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_reg_or_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return reg_or_0_operand (op, mode);
}
/* Like uns_arith_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_uns_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return uns_arith_operand (op, mode);
}
/* Like arith_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_arith_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return arith_operand (op, mode);
}
/* Like nonmemory_operand, but when in 64 bit mode also accept a sign
extend of a 32 bit register, since the value is known to be already
sign extended. */
int
se_nonmemory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (TARGET_64BIT
&& mode == DImode
&& GET_CODE (op) == SIGN_EXTEND
&& GET_MODE (op) == DImode
&& GET_MODE (XEXP (op, 0)) == SImode
&& register_operand (XEXP (op, 0), SImode))
return 1;
return nonmemory_operand (op, mode);
}
/* Accept any operand that can appear in a mips16 constant table
instruction. We can't use any of the standard operand functions
because for these instructions we accept values that are not
accepted by LEGITIMATE_CONSTANT, such as arbitrary SYMBOL_REFs. */
int
consttable_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return CONSTANT_P (op);
}
/* Coprocessor operand; return true if rtx is a REG and refers to a
coprocessor. */
int
coprocessor_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == REG
&& COP0_REG_FIRST <= REGNO (op)
&& REGNO (op) <= COP3_REG_LAST);
}
int
coprocessor2_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == REG
&& COP2_REG_FIRST <= REGNO (op)
&& REGNO (op) <= COP2_REG_LAST);
}
/* Returns 1 if OP is a symbolic operand, i.e. a symbol_ref or a label_ref,
possibly with an offset. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op,0)) == PLUS
&& GET_CODE (XEXP (XEXP (op,0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op,0), 1)) == CONST_INT)
return 1;
return 0;
}
/* Return nonzero if we split the address into high and low parts. */
/* ??? We should also handle reg+array somewhere. We get four
instructions currently, lui %hi/addui %lo/addui reg/lw. Better is
lui %hi/addui reg/lw %lo. Fixing GO_IF_LEGITIMATE_ADDRESS to accept
(plus (reg) (symbol_ref)) doesn't work because the SYMBOL_REF is broken
out of the address, then we have 4 instructions to combine. Perhaps
add a 3->2 define_split for combine. */
/* ??? We could also split a CONST_INT here if it is a large_int().
However, it doesn't seem to be very useful to have %hi(constant).
We would be better off by doing the masking ourselves and then putting
the explicit high part of the constant in the RTL. This will give better
optimization. Also, %hi(constant) needs assembler changes to work.
There is already a define_split that does this. */
int
mips_check_split (address, mode)
rtx address;
enum machine_mode mode;
{
/* ??? This is the same check used in simple_memory_operand.
We use it here because LO_SUM is not offsettable. */
if (GET_MODE_SIZE (mode) > (unsigned) UNITS_PER_WORD)
return 0;
if ((GET_CODE (address) == SYMBOL_REF && ! SYMBOL_REF_FLAG (address))
|| (GET_CODE (address) == CONST
&& GET_CODE (XEXP (XEXP (address, 0), 0)) == SYMBOL_REF
&& ! SYMBOL_REF_FLAG (XEXP (XEXP (address, 0), 0)))
|| GET_CODE (address) == LABEL_REF)
return 1;
return 0;
}
/* This function is used to implement REG_MODE_OK_FOR_BASE_P. */
int
mips_reg_mode_ok_for_base_p (reg, mode, strict)
rtx reg;
enum machine_mode mode;
int strict;
{
return (strict
? REGNO_MODE_OK_FOR_BASE_P (REGNO (reg), mode)
: GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (reg), mode));
}
/* This function is used to implement GO_IF_LEGITIMATE_ADDRESS. It
returns a nonzero value if XINSN is a legitimate address for a
memory operand of the indicated MODE. STRICT is nonzero if this
function is called during reload. */
int
mips_legitimate_address_p (mode, xinsn, strict)
enum machine_mode mode;
rtx xinsn;
int strict;
{
if (TARGET_DEBUG_B_MODE)
{
GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n",
strict ? "" : "not ");
GO_DEBUG_RTX (xinsn);
}
/* Check for constant before stripping off SUBREG, so that we don't
accept (subreg (const_int)) which will fail to reload. */
if (CONSTANT_ADDRESS_P (xinsn)
&& ! (mips_split_addresses && mips_check_split (xinsn, mode))
&& (! TARGET_MIPS16 || mips16_constant (xinsn, mode, 1, 0)))
return 1;
while (GET_CODE (xinsn) == SUBREG)
xinsn = SUBREG_REG (xinsn);
/* The mips16 can only use the stack pointer as a base register when
loading SImode or DImode values. */
if (GET_CODE (xinsn) == REG
&& mips_reg_mode_ok_for_base_p (xinsn, mode, strict))
return 1;
if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses)
{
register rtx xlow0 = XEXP (xinsn, 0);
register rtx xlow1 = XEXP (xinsn, 1);
while (GET_CODE (xlow0) == SUBREG)
xlow0 = SUBREG_REG (xlow0);
if (GET_CODE (xlow0) == REG
&& mips_reg_mode_ok_for_base_p (xlow0, mode, strict)
&& mips_check_split (xlow1, mode))
return 1;
}
if (GET_CODE (xinsn) == PLUS)
{
register rtx xplus0 = XEXP (xinsn, 0);
register rtx xplus1 = XEXP (xinsn, 1);
register enum rtx_code code0;
register enum rtx_code code1;
while (GET_CODE (xplus0) == SUBREG)
xplus0 = SUBREG_REG (xplus0);
code0 = GET_CODE (xplus0);
while (GET_CODE (xplus1) == SUBREG)
xplus1 = SUBREG_REG (xplus1);
code1 = GET_CODE (xplus1);
/* The mips16 can only use the stack pointer as a base register
when loading SImode or DImode values. */
if (code0 == REG
&& mips_reg_mode_ok_for_base_p (xplus0, mode, strict))
{
if (code1 == CONST_INT && SMALL_INT (xplus1))
return 1;
/* On the mips16, we represent GP relative offsets in RTL.
These are 16 bit signed values, and can serve as register
offsets. */
if (TARGET_MIPS16
&& mips16_gp_offset_p (xplus1))
return 1;
/* For some code sequences, you actually get better code by
pretending that the MIPS supports an address mode of a
constant address + a register, even though the real
machine doesn't support it. This is because the
assembler can use $r1 to load just the high 16 bits, add
in the register, and fold the low 16 bits into the memory
reference, whereas the compiler generates a 4 instruction
sequence. On the other hand, CSE is not as effective.
It would be a win to generate the lui directly, but the
MIPS assembler does not have syntax to generate the
appropriate relocation. */
/* Also accept CONST_INT addresses here, so no else. */
/* Reject combining an embedded PIC text segment reference
with a register. That requires an additional
instruction. */
/* ??? Reject combining an address with a register for the MIPS
64 bit ABI, because the SGI assembler can not handle this. */
if (!TARGET_DEBUG_A_MODE
&& (mips_abi == ABI_32
|| mips_abi == ABI_O64
|| mips_abi == ABI_EABI)
&& CONSTANT_ADDRESS_P (xplus1)
&& ! mips_split_addresses
&& (!TARGET_EMBEDDED_PIC
|| code1 != CONST
|| GET_CODE (XEXP (xplus1, 0)) != MINUS)
/* When assembling for machines with 64 bit registers,
the assembler will sign-extend the constant "foo"
in "la x, foo(x)" yielding the wrong result for:
(set (blah:DI) (plus x y)). */
&& (!TARGET_64BIT
|| (code1 == CONST_INT
&& trunc_int_for_mode (INTVAL (xplus1),
SImode) == INTVAL (xplus1)))
&& !TARGET_MIPS16)
return 1;
}
}
if (TARGET_DEBUG_B_MODE)
GO_PRINTF ("Not a legitimate address\n");
/* The address was not legitimate. */
return 0;
}
/* We need a lot of little routines to check constant values on the
mips16. These are used to figure out how long the instruction will
be. It would be much better to do this using constraints, but
there aren't nearly enough letters available. */
static int
m16_check_op (op, low, high, mask)
rtx op;
int low;
int high;
int mask;
{
return (GET_CODE (op) == CONST_INT
&& INTVAL (op) >= low
&& INTVAL (op) <= high
&& (INTVAL (op) & mask) == 0);
}
int
m16_uimm3_b (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, 0x1, 0x8, 0);
}
int
m16_simm4_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x8, 0x7, 0);
}
int
m16_nsimm4_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x7, 0x8, 0);
}
int
m16_simm5_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x10, 0xf, 0);
}
int
m16_nsimm5_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0xf, 0x10, 0);
}
int
m16_uimm5_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
}
int
m16_nuimm5_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
}
int
m16_simm8_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x80, 0x7f, 0);
}
int
m16_nsimm8_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x7f, 0x80, 0);
}
int
m16_uimm8_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, 0x0, 0xff, 0);
}
int
m16_nuimm8_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0xff, 0x0, 0);
}
int
m16_uimm8_m1_1 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, - 0x1, 0xfe, 0);
}
int
m16_uimm8_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, 0x0, 0xff << 2, 3);
}
int
m16_nuimm8_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
}
int
m16_simm8_8 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
}
int
m16_nsimm8_8 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
}
/* References to the string table on the mips16 only use a small
offset if the function is small. See the comment in the SYMBOL_REF
case in simple_memory_operand. We can't check for LABEL_REF here,
because the offset is always large if the label is before the
referencing instruction. */
int
m16_usym8_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == SYMBOL_REF
&& SYMBOL_REF_FLAG (op)
&& cfun->machine->insns_len > 0
&& XSTR (op, 0)[0] == '*'
&& strncmp (XSTR (op, 0) + 1, LOCAL_LABEL_PREFIX,
sizeof LOCAL_LABEL_PREFIX - 1) == 0
&& (cfun->machine->insns_len + get_pool_size () + mips_string_length
< 4 * 0x100))
{
struct string_constant *l;
/* Make sure this symbol is on thelist of string constants to be
output for this function. It is possible that it has already
been output, in which case this requires a large offset. */
for (l = string_constants; l != NULL; l = l->next)
if (strcmp (l->label, XSTR (op, 0)) == 0)
return 1;
}
return 0;
}
int
m16_usym5_4 (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == SYMBOL_REF
&& SYMBOL_REF_FLAG (op)
&& cfun->machine->insns_len > 0
&& XSTR (op, 0)[0] == '*'
&& strncmp (XSTR (op, 0) + 1, LOCAL_LABEL_PREFIX,
sizeof LOCAL_LABEL_PREFIX - 1) == 0
&& (cfun->machine->insns_len + get_pool_size () + mips_string_length
< 4 * 0x20))
{
struct string_constant *l;
/* Make sure this symbol is on thelist of string constants to be
output for this function. It is possible that it has already
been output, in which case this requires a large offset. */
for (l = string_constants; l != NULL; l = l->next)
if (strcmp (l->label, XSTR (op, 0)) == 0)
return 1;
}
return 0;
}
/* Returns an operand string for the given instruction's delay slot,
after updating filled delay slot statistics.
We assume that operands[0] is the target register that is set.
In order to check the next insn, most of this functionality is moved
to FINAL_PRESCAN_INSN, and we just set the global variables that
it needs. */
/* ??? This function no longer does anything useful, because final_prescan_insn
now will never emit a nop. */
const char *
mips_fill_delay_slot (ret, type, operands, cur_insn)
const char *ret; /* normal string to return */
enum delay_type type; /* type of delay */
rtx operands[]; /* operands to use */
rtx cur_insn; /* current insn */
{
register rtx set_reg;
register enum machine_mode mode;
register rtx next_insn = cur_insn ? NEXT_INSN (cur_insn) : NULL_RTX;
register int num_nops;
if (type == DELAY_LOAD || type == DELAY_FCMP)
num_nops = 1;
else if (type == DELAY_HILO)
num_nops = 2;
else
num_nops = 0;
/* Make sure that we don't put nop's after labels. */
next_insn = NEXT_INSN (cur_insn);
while (next_insn != 0 && GET_CODE (next_insn) == NOTE)
next_insn = NEXT_INSN (next_insn);
dslots_load_total += num_nops;
if (TARGET_DEBUG_F_MODE
|| !optimize
|| type == DELAY_NONE
|| operands == 0
|| cur_insn == 0
|| next_insn == 0
|| GET_CODE (next_insn) == CODE_LABEL
|| (set_reg = operands[0]) == 0)
{
dslots_number_nops = 0;
mips_load_reg = 0;
mips_load_reg2 = 0;
mips_load_reg3 = 0;
mips_load_reg4 = 0;
return ret;
}
set_reg = operands[0];
if (set_reg == 0)
return ret;
while (GET_CODE (set_reg) == SUBREG)
set_reg = SUBREG_REG (set_reg);
mode = GET_MODE (set_reg);
dslots_number_nops = num_nops;
mips_load_reg = set_reg;
if (GET_MODE_SIZE (mode)
> (unsigned) (FP_REG_P (REGNO (set_reg)) ? UNITS_PER_FPREG : UNITS_PER_WORD))
mips_load_reg2 = gen_rtx_REG (SImode, REGNO (set_reg) + 1);
else
mips_load_reg2 = 0;
if (type == DELAY_HILO)
{
mips_load_reg3 = gen_rtx_REG (SImode, MD_REG_FIRST);
mips_load_reg4 = gen_rtx_REG (SImode, MD_REG_FIRST+1);
}
else
{
mips_load_reg3 = 0;
mips_load_reg4 = 0;
}
return ret;
}
/* Determine whether a memory reference takes one (based off of the GP
pointer), two (normal), or three (label + reg) instructions, and bump the
appropriate counter for -mstats. */
void
mips_count_memory_refs (op, num)
rtx op;
int num;
{
int additional = 0;
int n_words = 0;
rtx addr, plus0, plus1;
enum rtx_code code0, code1;
int looping;
if (TARGET_DEBUG_B_MODE)
{
fprintf (stderr, "\n========== mips_count_memory_refs:\n");
debug_rtx (op);
}
/* Skip MEM if passed, otherwise handle movsi of address. */
addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
/* Loop, going through the address RTL. */
do
{
looping = FALSE;
switch (GET_CODE (addr))
{
case REG:
case CONST_INT:
case LO_SUM:
break;
case PLUS:
plus0 = XEXP (addr, 0);
plus1 = XEXP (addr, 1);
code0 = GET_CODE (plus0);
code1 = GET_CODE (plus1);
if (code0 == REG)
{
additional++;
addr = plus1;
looping = 1;
continue;
}
if (code0 == CONST_INT)
{
addr = plus1;
looping = 1;
continue;
}
if (code1 == REG)
{
additional++;
addr = plus0;
looping = 1;
continue;
}
if (code1 == CONST_INT)
{
addr = plus0;
looping = 1;
continue;
}
if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
{
addr = plus0;
looping = 1;
continue;
}
if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
{
addr = plus1;
looping = 1;
continue;
}
break;
case LABEL_REF:
n_words = 2; /* always 2 words */
break;
case CONST:
addr = XEXP (addr, 0);
looping = 1;
continue;
case SYMBOL_REF:
n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
break;
default:
break;
}
}
while (looping);
if (n_words == 0)
return;
n_words += additional;
if (n_words > 3)
n_words = 3;
num_refs[n_words-1] += num;
}
/* Return a pseudo that points to the address of the current function.
The first time it is called for a function, an initializer for the
pseudo is emitted in the beginning of the function. */
rtx
embedded_pic_fnaddr_reg ()
{
if (cfun->machine->embedded_pic_fnaddr_rtx == NULL)
{
rtx seq;
cfun->machine->embedded_pic_fnaddr_rtx = gen_reg_rtx (Pmode);
/* Output code at function start to initialize the pseudo-reg. */
/* ??? We used to do this in FINALIZE_PIC, but that does not work for
inline functions, because it is called after RTL for the function
has been copied. The pseudo-reg in embedded_pic_fnaddr_rtx however
does not get copied, and ends up not matching the rest of the RTL.
This solution works, but means that we get unnecessary code to
initialize this value every time a function is inlined into another
function. */
start_sequence ();
emit_insn (gen_get_fnaddr (cfun->machine->embedded_pic_fnaddr_rtx,
XEXP (DECL_RTL (current_function_decl), 0)));
seq = get_insns ();
end_sequence ();
push_topmost_sequence ();
emit_insn_after (seq, get_insns ());
pop_topmost_sequence ();
}
return cfun->machine->embedded_pic_fnaddr_rtx;
}
/* Return RTL for the offset from the current function to the argument.
X is the symbol whose offset from the current function we want. */
rtx
embedded_pic_offset (x)
rtx x;
{
/* Make sure it is emitted. */
embedded_pic_fnaddr_reg ();
return
gen_rtx_CONST (Pmode,
gen_rtx_MINUS (Pmode, x,
XEXP (DECL_RTL (current_function_decl), 0)));
}
/* Return the appropriate instructions to move one operand to another. */
const char *
mips_move_1word (operands, insn, unsignedp)
rtx operands[];
rtx insn;
int unsignedp;
{
const char *ret = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
enum machine_mode mode = GET_MODE (op0);
int subreg_offset0 = 0;
int subreg_offset1 = 0;
enum delay_type delay = DELAY_NONE;
while (code0 == SUBREG)
{
subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
GET_MODE (SUBREG_REG (op0)),
SUBREG_BYTE (op0),
GET_MODE (op0));
op0 = SUBREG_REG (op0);
code0 = GET_CODE (op0);
}
while (code1 == SUBREG)
{
subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
GET_MODE (SUBREG_REG (op1)),
SUBREG_BYTE (op1),
GET_MODE (op1));
op1 = SUBREG_REG (op1);
code1 = GET_CODE (op1);
}
/* For our purposes, a condition code mode is the same as SImode. */
if (mode == CCmode)
mode = SImode;
if (code0 == REG)
{
int regno0 = REGNO (op0) + subreg_offset0;
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_offset1;
/* Just in case, don't do anything for assigning a register
to itself, unless we are filling a delay slot. */
if (regno0 == regno1 && set_nomacro == 0)
ret = "";
else if (GP_REG_P (regno0))
{
if (GP_REG_P (regno1))
ret = "move\t%0,%1";
else if (MD_REG_P (regno1))
{
delay = DELAY_HILO;
if (regno1 != HILO_REGNUM)
ret = "mf%1\t%0";
else
ret = "mflo\t%0";
}
else if (ST_REG_P (regno1) && ISA_HAS_8CC)
ret = "li\t%0,1\n\tmovf\t%0,%.,%1";
else
{
delay = DELAY_LOAD;
if (FP_REG_P (regno1))
ret = "mfc1\t%0,%1";
else if (ALL_COP_REG_P (regno1))
{
static char retval[] = "mfc_\t%0,%1";
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (regno1);
ret = retval;
}
else if (regno1 == FPSW_REGNUM && ! ISA_HAS_8CC)
ret = "cfc1\t%0,$31";
}
}
else if (FP_REG_P (regno0))
{
if (GP_REG_P (regno1))
{
delay = DELAY_LOAD;
ret = "mtc1\t%1,%0";
}
if (FP_REG_P (regno1))
ret = "mov.s\t%0,%1";
}
else if (MD_REG_P (regno0))
{
if (GP_REG_P (regno1))
{
delay = DELAY_HILO;
if (regno0 != HILO_REGNUM && ! TARGET_MIPS16)
ret = "mt%0\t%1";
}
}
else if (regno0 == FPSW_REGNUM && ! ISA_HAS_8CC)
{
if (GP_REG_P (regno1))
{
delay = DELAY_LOAD;
ret = "ctc1\t%0,$31";
}
}
else if (ALL_COP_REG_P (regno0))
{
if (GP_REG_P (regno1))
{
static char retval[] = "mtc_\t%1,%0";
char cop = COPNUM_AS_CHAR_FROM_REGNUM (regno0);
if (cop == '0')
abort_with_insn (insn,
"mtc0 not supported; it disturbs virtual address translation");
delay = DELAY_LOAD;
retval[3] = cop;
ret = retval;
}
}
}
else if (code1 == MEM)
{
delay = DELAY_LOAD;
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
if (GP_REG_P (regno0))
{
/* For loads, use the mode of the memory item, instead of the
target, so zero/sign extend can use this code as well. */
switch (GET_MODE (op1))
{
default:
break;
case SFmode:
ret = "lw\t%0,%1";
break;
case SImode:
case CCmode:
ret = ((unsignedp && TARGET_64BIT)
? "lwu\t%0,%1"
: "lw\t%0,%1");
break;
case HImode:
ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1";
break;
case QImode:
ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1";
break;
}
}
else if (FP_REG_P (regno0) && (mode == SImode || mode == SFmode))
ret = "l.s\t%0,%1";
else if (ALL_COP_REG_P (regno0))
{
static char retval[] = "lwc_\t%0,%1";
char cop = COPNUM_AS_CHAR_FROM_REGNUM (regno0);
if (cop == '0')
abort_with_insn (insn,
"loads from memory to COP0 are illegal");
delay = DELAY_LOAD;
retval[3] = cop;
ret = retval;
}
if (ret != (char *)0 && MEM_VOLATILE_P (op1))
{
size_t i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
else if (code1 == CONST_INT
|| (code1 == CONST_DOUBLE
&& GET_MODE (op1) == VOIDmode))
{
if (code1 == CONST_DOUBLE)
{
/* This can happen when storing constants into long long
bitfields. Just store the least significant word of
the value. */
operands[1] = op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
}
if (INTVAL (op1) == 0 && ! TARGET_MIPS16)
{
if (GP_REG_P (regno0))
ret = "move\t%0,%z1";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = "mtc1\t%z1,%0";
}
else if (MD_REG_P (regno0))
{
delay = DELAY_HILO;
ret = "mt%0\t%.";
}
}
else if (GP_REG_P (regno0))
{
/* Don't use X format, because that will give out of
range numbers for 64 bit host and 32 bit target. */
if (! TARGET_MIPS16)
ret = "li\t%0,%1\t\t\t# %X1";
else
{
if (INTVAL (op1) >= 0 && INTVAL (op1) <= 0xffff)
ret = "li\t%0,%1";
else if (INTVAL (op1) < 0 && INTVAL (op1) >= -0xffff)
ret = "li\t%0,%n1\n\tneg\t%0";
}
}
}
else if (code1 == CONST_DOUBLE && mode == SFmode)
{
if (op1 == CONST0_RTX (SFmode))
{
if (GP_REG_P (regno0))
ret = "move\t%0,%.";
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = "mtc1\t%.,%0";
}
}
else
{
delay = DELAY_LOAD;
ret = "li.s\t%0,%1";
}
}
else if (code1 == LABEL_REF)
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
ret = "la\t%0,%a1";
}
else if (code1 == SYMBOL_REF || code1 == CONST)
{
if (TARGET_MIPS16
&& code1 == CONST
&& GET_CODE (XEXP (op1, 0)) == REG
&& REGNO (XEXP (op1, 0)) == GP_REG_FIRST + 28)
{
/* This case arises on the mips16; see
mips16_gp_pseudo_reg. */
ret = "move\t%0,%+";
}
else if (TARGET_MIPS16
&& code1 == SYMBOL_REF
&& SYMBOL_REF_FLAG (op1)
&& (XSTR (op1, 0)[0] != '*'
|| strncmp (XSTR (op1, 0) + 1,
LOCAL_LABEL_PREFIX,
sizeof LOCAL_LABEL_PREFIX - 1) != 0))
{
/* This can occur when reloading the address of a GP
relative symbol on the mips16. */
ret = "move\t%0,%+\n\taddu\t%0,%%gprel(%a1)";
}
else
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 1);
ret = "la\t%0,%a1";
}
}
else if (code1 == PLUS)
{
rtx add_op0 = XEXP (op1, 0);
rtx add_op1 = XEXP (op1, 1);
if (GET_CODE (XEXP (op1, 1)) == REG
&& GET_CODE (XEXP (op1, 0)) == CONST_INT)
add_op0 = XEXP (op1, 1), add_op1 = XEXP (op1, 0);
operands[2] = add_op0;
operands[3] = add_op1;
ret = "add%:\t%0,%2,%3";
}
else if (code1 == HIGH)
{
operands[1] = XEXP (op1, 0);
ret = "lui\t%0,%%hi(%1)";
}
}
else if (code0 == MEM)
{
if (TARGET_STATS)
mips_count_memory_refs (op0, 1);
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_offset1;
if (GP_REG_P (regno1))
{
switch (mode)
{
case SFmode: ret = "sw\t%1,%0"; break;
case SImode: ret = "sw\t%1,%0"; break;
case HImode: ret = "sh\t%1,%0"; break;
case QImode: ret = "sb\t%1,%0"; break;
default: break;
}
}
else if (FP_REG_P (regno1) && (mode == SImode || mode == SFmode))
ret = "s.s\t%1,%0";
else if (ALL_COP_REG_P (regno1))
{
static char retval[] = "swc_\t%1,%0";
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (regno1);
ret = retval;
}
}
else if (code1 == CONST_INT && INTVAL (op1) == 0)
{
switch (mode)
{
case SFmode: ret = "sw\t%z1,%0"; break;
case SImode: ret = "sw\t%z1,%0"; break;
case HImode: ret = "sh\t%z1,%0"; break;
case QImode: ret = "sb\t%z1,%0"; break;
default: break;
}
}
else if (code1 == CONST_DOUBLE && op1 == CONST0_RTX (mode))
{
switch (mode)
{
case SFmode: ret = "sw\t%.,%0"; break;
case SImode: ret = "sw\t%.,%0"; break;
case HImode: ret = "sh\t%.,%0"; break;
case QImode: ret = "sb\t%.,%0"; break;
default: break;
}
}
if (ret != 0 && MEM_VOLATILE_P (op0))
{
size_t i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
if (ret == 0)
{
abort_with_insn (insn, "bad move");
return 0;
}
if (delay != DELAY_NONE)
return mips_fill_delay_slot (ret, delay, operands, insn);
return ret;
}
/* Return instructions to restore the global pointer from the stack,
assuming TARGET_ABICALLS. Used by exception_receiver to set up
the GP for exception handlers.
OPERANDS is an array of operands whose contents are undefined
on entry. INSN is the exception_handler instruction. */
const char *
mips_restore_gp (operands, insn)
rtx *operands, insn;
{
rtx loc;
operands[0] = pic_offset_table_rtx;
if (frame_pointer_needed)
loc = hard_frame_pointer_rtx;
else
loc = stack_pointer_rtx;
loc = plus_constant (loc, cfun->machine->frame.args_size);
operands[1] = gen_rtx_MEM (Pmode, loc);
return mips_move_1word (operands, insn, 0);
}
/* Return an instruction to sign-extend SImode value SRC and store it
in DImode value DEST. INSN is the original extendsidi2-type insn. */
const char *
mips_sign_extend (insn, dest, src)
rtx insn, dest, src;
{
rtx operands[MAX_RECOG_OPERANDS];
if ((register_operand (src, SImode) && FP_REG_P (true_regnum (src)))
|| memory_operand (src, SImode))
{
/* If the source is a floating-point register, we need to use a
32-bit move, since the float register is not kept sign-extended.
If the source is in memory, we need a 32-bit load. */
operands[0] = gen_lowpart_SUBREG (SImode, dest);
operands[1] = src;
return mips_move_1word (operands, insn, false);
}
else
{
operands[0] = dest;
operands[1] = src;
return mips_move_2words (operands, insn);
}
}
/* Return the appropriate instructions to move 2 words */
const char *
mips_move_2words (operands, insn)
rtx operands[];
rtx insn;
{
const char *ret = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
enum rtx_code code0 = GET_CODE (operands[0]);
enum rtx_code code1 = GET_CODE (operands[1]);
int subreg_offset0 = 0;
int subreg_offset1 = 0;
enum delay_type delay = DELAY_NONE;
if (code1 == SIGN_EXTEND)
return mips_sign_extend (insn, op0, XEXP (op1, 0));
while (code0 == SUBREG)
{
subreg_offset0 += subreg_regno_offset (REGNO (SUBREG_REG (op0)),
GET_MODE (SUBREG_REG (op0)),
SUBREG_BYTE (op0),
GET_MODE (op0));
op0 = SUBREG_REG (op0);
code0 = GET_CODE (op0);
}
while (code1 == SUBREG)
{
subreg_offset1 += subreg_regno_offset (REGNO (SUBREG_REG (op1)),
GET_MODE (SUBREG_REG (op1)),
SUBREG_BYTE (op1),
GET_MODE (op1));
op1 = SUBREG_REG (op1);
code1 = GET_CODE (op1);
}
if (code0 == REG)
{
int regno0 = REGNO (op0) + subreg_offset0;
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_offset1;
/* Just in case, don't do anything for assigning a register
to itself, unless we are filling a delay slot. */
if (regno0 == regno1 && set_nomacro == 0)
ret = "";
else if (FP_REG_P (regno0))
{
if (FP_REG_P (regno1))
ret = "mov.d\t%0,%1";
else
{
delay = DELAY_LOAD;
if (TARGET_FLOAT64)
{
if (!TARGET_64BIT)
abort_with_insn (insn, "bad move");
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno1))
ret = "dsll\t%1,32\n\tor\t%1,%D1\n\tdmtc1\t%1,%0";
else
#endif
ret = "dmtc1\t%1,%0";
}
else
ret = "mtc1\t%L1,%0\n\tmtc1\t%M1,%D0";
}
}
else if (FP_REG_P (regno1))
{
delay = DELAY_LOAD;
if (TARGET_FLOAT64)
{
if (!TARGET_64BIT)
abort_with_insn (insn, "bad move");
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
ret = "dmfc1\t%0,%1\n\tmfc1\t%D0,%1\n\tdsrl\t%0,32";
else
#endif
ret = "dmfc1\t%0,%1";
}
else
ret = "mfc1\t%L0,%1\n\tmfc1\t%M0,%D1";
}
else if (MD_REG_P (regno0) && GP_REG_P (regno1) && !TARGET_MIPS16)
{
delay = DELAY_HILO;
if (TARGET_64BIT)
{
if (regno0 != HILO_REGNUM)
ret = "mt%0\t%1";
else if (regno1 == 0)
ret = "mtlo\t%.\n\tmthi\t%.";
}
else
ret = "mthi\t%M1\n\tmtlo\t%L1";
}
else if (GP_REG_P (regno0) && MD_REG_P (regno1))
{
delay = DELAY_HILO;
if (TARGET_64BIT)
{
if (regno1 != HILO_REGNUM)
ret = "mf%1\t%0";
}
else
ret = "mfhi\t%M0\n\tmflo\t%L0";
}
else if (GP_REG_P (regno0) && ALL_COP_REG_P (regno1)
&& TARGET_64BIT)
{
static char retval[] = "dmfc_\t%0,%1";
delay = DELAY_LOAD;
retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (regno1);
ret = retval;
}
else if (ALL_COP_REG_P (regno0) && GP_REG_P (regno1)
&& TARGET_64BIT)
{
static char retval[] = "dmtc_\t%1,%0";
char cop = COPNUM_AS_CHAR_FROM_REGNUM (regno0);
if (cop == '0')
abort_with_insn (insn,
"dmtc0 not supported; it disturbs virtual address translation");
delay = DELAY_LOAD;
retval[4] = cop;
ret = retval;
}
else if (TARGET_64BIT)
ret = "move\t%0,%1";
else if (regno0 != (regno1+1))
ret = "move\t%0,%1\n\tmove\t%D0,%D1";
else
ret = "move\t%D0,%D1\n\tmove\t%0,%1";
}
else if (code1 == CONST_DOUBLE)
{
/* Move zero from $0 unless !TARGET_64BIT and recipient
is 64-bit fp reg, in which case generate a constant. */
if (op1 != CONST0_RTX (GET_MODE (op1))
|| (TARGET_FLOAT64 && !TARGET_64BIT && FP_REG_P (regno0)))
{
if (GET_MODE (op1) == DFmode)
{
delay = DELAY_LOAD;
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
{
if (TARGET_FLOAT64 && !TARGET_64BIT)
{
split_double (op1, operands + 2, operands + 3);
ret = "li\t%0,%2\n\tli\t%D0,%3";
}
else
ret = "li.d\t%0,%1\n\tdsll\t%D0,%0,32\n\tdsrl\t%D0,32\n\tdsrl\t%0,32";
}
else
#endif
/* GNU as emits 64-bit code for li.d if the ISA is 3
or higher. For !TARGET_64BIT && gp registers we
need to avoid this by using two li instructions
instead. */
if (ISA_HAS_64BIT_REGS
&& ! TARGET_64BIT
&& ! FP_REG_P (regno0))
{
split_double (op1, operands + 2, operands + 3);
ret = "li\t%0,%2\n\tli\t%D0,%3";
}
else
ret = "li.d\t%0,%1";
}
else if (TARGET_64BIT)
{
if (! TARGET_MIPS16)
ret = "dli\t%0,%1";
}
else
{
split_double (op1, operands + 2, operands + 3);
ret = "li\t%0,%2\n\tli\t%D0,%3";
}
}
else
{
if (GP_REG_P (regno0))
ret = (TARGET_64BIT
#ifdef TARGET_FP_CALL_32
&& ! FP_CALL_GP_REG_P (regno0)
#endif
? "move\t%0,%."
: "move\t%0,%.\n\tmove\t%D0,%.");
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = (TARGET_64BIT
? "dmtc1\t%.,%0"
: "mtc1\t%.,%0\n\tmtc1\t%.,%D0");
}
}
}
else if (code1 == CONST_INT && INTVAL (op1) == 0 && ! TARGET_MIPS16)
{
if (GP_REG_P (regno0))
ret = (TARGET_64BIT
? "move\t%0,%."
: "move\t%0,%.\n\tmove\t%D0,%.");
else if (FP_REG_P (regno0))
{
delay = DELAY_LOAD;
ret = (TARGET_64BIT
? "dmtc1\t%.,%0"
: (TARGET_FLOAT64
? "li.d\t%0,%1"
: "mtc1\t%.,%0\n\tmtc1\t%.,%D0"));
}
else if (MD_REG_P (regno0))
{
delay = DELAY_HILO;
ret = (regno0 == HILO_REGNUM
? "mtlo\t%.\n\tmthi\t%."
: "mt%0\t%.\n");
}
}
else if (code1 == CONST_INT && GET_MODE (op0) == DImode
&& GP_REG_P (regno0))
{
if (TARGET_64BIT)
{
if (TARGET_MIPS16)
{
if (INTVAL (op1) >= 0 && INTVAL (op1) <= 0xffff)
ret = "li\t%0,%1";
else if (INTVAL (op1) < 0 && INTVAL (op1) >= -0xffff)
ret = "li\t%0,%n1\n\tneg\t%0";
}
else if (GET_CODE (operands[1]) == SIGN_EXTEND)
ret = "li\t%0,%1\t\t# %X1";
else if (HOST_BITS_PER_WIDE_INT < 64)
/* We can't use 'X' for negative numbers, because then we won't
get the right value for the upper 32 bits. */
ret = (INTVAL (op1) < 0
? "dli\t%0,%1\t\t\t# %X1"
: "dli\t%0,%X1\t\t# %1");
else
/* We must use 'X', because otherwise LONG_MIN will print as
a number that the assembler won't accept. */
ret = "dli\t%0,%X1\t\t# %1";
}
else if (HOST_BITS_PER_WIDE_INT < 64)
{
operands[2] = GEN_INT (INTVAL (operands[1]) >= 0 ? 0 : -1);
if (TARGET_MIPS16)
{
if (INTVAL (op1) >= 0 && INTVAL (op1) <= 0xffff)
ret = "li\t%M0,%2\n\tli\t%L0,%1";
else if (INTVAL (op1) < 0 && INTVAL (op1) >= -0xffff)
{
operands[2] = GEN_INT (1);
ret = "li\t%M0,%2\n\tneg\t%M0\n\tli\t%L0,%n1\n\tneg\t%L0";
}
}
else
ret = "li\t%M0,%2\n\tli\t%L0,%1";
}
else
{
/* We use multiple shifts here, to avoid warnings about out
of range shifts on 32 bit hosts. */
operands[2] = GEN_INT (INTVAL (operands[1]) >> 16 >> 16);
operands[1]
= GEN_INT (INTVAL (operands[1]) << 16 << 16 >> 16 >> 16);
if (TARGET_MIPS16)
{
if (INTVAL (op1) >= 0 && INTVAL (op1) <= 0xffff)
ret = "li\t%M0,%2\n\tli\t%L0,%1";
else if (INTVAL (op1) < 0 && INTVAL (op1) >= -0xffff)
{
operands[2] = GEN_INT (1);
ret = "li\t%M0,%2\n\tneg\t%M0\n\tli\t%L0,%n1\n\tneg\t%L0";
}
}
else
ret = "li\t%M0,%2\n\tli\t%L0,%1";
}
}
else if (code1 == MEM)
{
delay = DELAY_LOAD;
if (TARGET_STATS)
mips_count_memory_refs (op1, 2);
if (FP_REG_P (regno0))
ret = "l.d\t%0,%1";
else if (ALL_COP_REG_P (regno0) && TARGET_64BIT)
{
static char retval[] = "ldc_\t%0,%1";
char cop = COPNUM_AS_CHAR_FROM_REGNUM (regno0);
if (cop == '0')
abort_with_insn (insn,
"loads from memory to COP0 are illegal");
delay = DELAY_LOAD;
retval[3] = cop;
ret = retval;
}
else if (TARGET_64BIT)
{
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno0))
ret = (double_memory_operand (op1, GET_MODE (op1))
? "lwu\t%0,%1\n\tlwu\t%D0,4+%1"
: "ld\t%0,%1\n\tdsll\t%D0,%0,32\n\tdsrl\t%D0,32\n\tdsrl\t%0,32");
else
#endif
ret = "ld\t%0,%1";
}
else if (double_memory_operand (op1, GET_MODE (op1)))
ret = (reg_mentioned_p (op0, op1)
? "lw\t%D0,%D1\n\tlw\t%0,%1"
: "lw\t%0,%1\n\tlw\t%D0,%D1");
if (ret != 0 && MEM_VOLATILE_P (op1))
{
size_t i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
else if (code1 == LABEL_REF)
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 2);
if (GET_CODE (operands[1]) == SIGN_EXTEND)
/* We deliberately remove the 'a' from '%1', so that we don't
have to add SIGN_EXTEND support to print_operand_address.
print_operand will just call print_operand_address in this
case, so there is no problem. */
ret = "la\t%0,%1";
else
ret = "dla\t%0,%a1";
}
else if (code1 == SYMBOL_REF || code1 == CONST)
{
if (TARGET_MIPS16
&& code1 == CONST
&& GET_CODE (XEXP (op1, 0)) == REG
&& REGNO (XEXP (op1, 0)) == GP_REG_FIRST + 28)
{
/* This case arises on the mips16; see
mips16_gp_pseudo_reg. */
ret = "move\t%0,%+";
}
else if (TARGET_MIPS16
&& code1 == SYMBOL_REF
&& SYMBOL_REF_FLAG (op1)
&& (XSTR (op1, 0)[0] != '*'
|| strncmp (XSTR (op1, 0) + 1,
LOCAL_LABEL_PREFIX,
sizeof LOCAL_LABEL_PREFIX - 1) != 0))
{
/* This can occur when reloading the address of a GP
relative symbol on the mips16. */
ret = "move\t%0,%+\n\taddu\t%0,%%gprel(%a1)";
}
else
{
if (TARGET_STATS)
mips_count_memory_refs (op1, 2);
if (GET_CODE (operands[1]) == SIGN_EXTEND)
/* We deliberately remove the 'a' from '%1', so that we don't
have to add SIGN_EXTEND support to print_operand_address.
print_operand will just call print_operand_address in this
case, so there is no problem. */
ret = "la\t%0,%1";
else
ret = "dla\t%0,%a1";
}
}
}
else if (code0 == MEM)
{
if (code1 == REG)
{
int regno1 = REGNO (op1) + subreg_offset1;
if (FP_REG_P (regno1))
ret = "s.d\t%1,%0";
else if (ALL_COP_REG_P (regno1) && TARGET_64BIT)
{
static char retval[] = "sdc_\t%1,%0";
retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (regno1);
ret = retval;
}
else if (TARGET_64BIT)
{
#ifdef TARGET_FP_CALL_32
if (FP_CALL_GP_REG_P (regno1))
ret = "dsll\t%1,32\n\tor\t%1,%D1\n\tsd\t%1,%0";
else
#endif
ret = "sd\t%1,%0";
}
else if (double_memory_operand (op0, GET_MODE (op0)))
ret = "sw\t%1,%0\n\tsw\t%D1,%D0";
}
else if (((code1 == CONST_INT && INTVAL (op1) == 0)
|| (code1 == CONST_DOUBLE
&& op1 == CONST0_RTX (GET_MODE (op1))))
&& (TARGET_64BIT
|| double_memory_operand (op0, GET_MODE (op0))))
{
if (TARGET_64BIT)
ret = "sd\t%.,%0";
else
ret = "sw\t%.,%0\n\tsw\t%.,%D0";
}
if (TARGET_STATS)
mips_count_memory_refs (op0, 2);
if (ret != 0 && MEM_VOLATILE_P (op0))
{
size_t i = strlen (ret);
if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
abort ();
sprintf (volatile_buffer, "%%{%s%%}", ret);
ret = volatile_buffer;
}
}
if (ret == 0)
{
abort_with_insn (insn, "bad move");
return 0;
}
if (delay != DELAY_NONE)
return mips_fill_delay_slot (ret, delay, operands, insn);
return ret;
}
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant. */
int
mips_address_cost (addr)
rtx addr;
{
switch (GET_CODE (addr))
{
case LO_SUM:
return 1;
case LABEL_REF:
return 2;
case CONST:
{
rtx offset = const0_rtx;
addr = eliminate_constant_term (XEXP (addr, 0), &offset);
if (GET_CODE (addr) == LABEL_REF)
return 2;
if (GET_CODE (addr) != SYMBOL_REF)
return 4;
if (! SMALL_INT (offset))
return 2;
}
/* ... fall through ... */
case SYMBOL_REF:
return SYMBOL_REF_FLAG (addr) ? 1 : 2;
case PLUS:
{
register rtx plus0 = XEXP (addr, 0);
register rtx plus1 = XEXP (addr, 1);
if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
plus0 = XEXP (addr, 1), plus1 = XEXP (addr, 0);
if (GET_CODE (plus0) != REG)
break;
switch (GET_CODE (plus1))
{
case CONST_INT:
return SMALL_INT (plus1) ? 1 : 2;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
case HIGH:
case LO_SUM:
return mips_address_cost (plus1) + 1;
default:
break;
}
}
default:
break;
}
return 4;
}
/* Return nonzero if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (x)
rtx x;
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
/* Make normal rtx_code into something we can index from an array */
static enum internal_test
map_test_to_internal_test (test_code)
enum rtx_code test_code;
{
enum internal_test test = ITEST_MAX;
switch (test_code)
{
case EQ: test = ITEST_EQ; break;
case NE: test = ITEST_NE; break;
case GT: test = ITEST_GT; break;
case GE: test = ITEST_GE; break;
case LT: test = ITEST_LT; break;
case LE: test = ITEST_LE; break;
case GTU: test = ITEST_GTU; break;
case GEU: test = ITEST_GEU; break;
case LTU: test = ITEST_LTU; break;
case LEU: test = ITEST_LEU; break;
default: break;
}
return test;
}
/* Generate the code to compare two integer values. The return value is:
(reg:SI xx) The pseudo register the comparison is in
0 No register, generate a simple branch.
??? This is called with result nonzero by the Scond patterns in
mips.md. These patterns are called with a target in the mode of
the Scond instruction pattern. Since this must be a constant, we
must use SImode. This means that if RESULT is nonzero, it will
always be an SImode register, even if TARGET_64BIT is true. We
cope with this by calling convert_move rather than emit_move_insn.
This will sometimes lead to an unnecessary extension of the result;
for example:
long long
foo (long long i)
{
return i < 5;
}
*/
rtx
gen_int_relational (test_code, result, cmp0, cmp1, p_invert)
enum rtx_code test_code; /* relational test (EQ, etc) */
rtx result; /* result to store comp. or 0 if branch */
rtx cmp0; /* first operand to compare */
rtx cmp1; /* second operand to compare */
int *p_invert; /* NULL or ptr to hold whether branch needs */
/* to reverse its test */
{
struct cmp_info
{
enum rtx_code test_code; /* code to use in instruction (LT vs. LTU) */
int const_low; /* low bound of constant we can accept */
int const_high; /* high bound of constant we can accept */
int const_add; /* constant to add (convert LE -> LT) */
int reverse_regs; /* reverse registers in test */
int invert_const; /* != 0 if invert value if cmp1 is constant */
int invert_reg; /* != 0 if invert value if cmp1 is register */
int unsignedp; /* != 0 for unsigned comparisons. */
};
static const struct cmp_info info[ (int)ITEST_MAX ] = {
{ XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
{ XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
{ LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
{ LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
{ LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
{ LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
{ LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
{ LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
{ LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
{ LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
};
enum internal_test test;
enum machine_mode mode;
const struct cmp_info *p_info;
int branch_p;
int eqne_p;
int invert;
rtx reg;
rtx reg2;
test = map_test_to_internal_test (test_code);
if (test == ITEST_MAX)
abort ();
p_info = &info[(int) test];
eqne_p = (p_info->test_code == XOR);
mode = GET_MODE (cmp0);
if (mode == VOIDmode)
mode = GET_MODE (cmp1);
/* Eliminate simple branches */
branch_p = (result == 0);
if (branch_p)
{
if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
{
/* Comparisons against zero are simple branches */
if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0
&& (! TARGET_MIPS16 || eqne_p))
return 0;
/* Test for beq/bne. */
if (eqne_p && ! TARGET_MIPS16)
return 0;
}
/* allocate a pseudo to calculate the value in. */
result = gen_reg_rtx (mode);
}
/* Make sure we can handle any constants given to us. */
if (GET_CODE (cmp0) == CONST_INT)
cmp0 = force_reg (mode, cmp0);
if (GET_CODE (cmp1) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (cmp1);
if (value < p_info->const_low
|| value > p_info->const_high
/* ??? Why? And why wasn't the similar code below modified too? */
|| (TARGET_64BIT
&& HOST_BITS_PER_WIDE_INT < 64
&& p_info->const_add != 0
&& ((p_info->unsignedp
? ((unsigned HOST_WIDE_INT) (value + p_info->const_add)
> (unsigned HOST_WIDE_INT) INTVAL (cmp1))
: (value + p_info->const_add) > INTVAL (cmp1))
!= (p_info->const_add > 0))))
cmp1 = force_reg (mode, cmp1);
}
/* See if we need to invert the result. */
invert = (GET_CODE (cmp1) == CONST_INT
? p_info->invert_const : p_info->invert_reg);
if (p_invert != (int *)0)
{
*p_invert = invert;
invert = 0;
}
/* Comparison to constants, may involve adding 1 to change a LT into LE.
Comparison between two registers, may involve switching operands. */
if (GET_CODE (cmp1) == CONST_INT)
{
if (p_info->const_add != 0)
{
HOST_WIDE_INT new = INTVAL (cmp1) + p_info->const_add;
/* If modification of cmp1 caused overflow,
we would get the wrong answer if we follow the usual path;
thus, x > 0xffffffffU would turn into x > 0U. */
if ((p_info->unsignedp
? (unsigned HOST_WIDE_INT) new >
(unsigned HOST_WIDE_INT) INTVAL (cmp1)
: new > INTVAL (cmp1))
!= (p_info->const_add > 0))
{
/* This test is always true, but if INVERT is true then
the result of the test needs to be inverted so 0 should
be returned instead. */
emit_move_insn (result, invert ? const0_rtx : const_true_rtx);
return result;
}
else
cmp1 = GEN_INT (new);
}
}
else if (p_info->reverse_regs)
{
rtx temp = cmp0;
cmp0 = cmp1;
cmp1 = temp;
}
if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
reg = cmp0;
else
{
reg = (invert || eqne_p) ? gen_reg_rtx (mode) : result;
convert_move (reg, gen_rtx (p_info->test_code, mode, cmp0, cmp1), 0);
}
if (test == ITEST_NE)
{
if (! TARGET_MIPS16)
{
convert_move (result, gen_rtx (GTU, mode, reg, const0_rtx), 0);
if (p_invert != NULL)
*p_invert = 0;
invert = 0;
}
else
{
reg2 = invert ? gen_reg_rtx (mode) : result;
convert_move (reg2, gen_rtx (LTU, mode, reg, const1_rtx), 0);
reg = reg2;
}
}
else if (test == ITEST_EQ)
{
reg2 = invert ? gen_reg_rtx (mode) : result;
convert_move (reg2, gen_rtx_LTU (mode, reg, const1_rtx), 0);
reg = reg2;
}
if (invert)
{
rtx one;
if (! TARGET_MIPS16)
one = const1_rtx;
else
{
/* The value is in $24. Copy it to another register, so
that reload doesn't think it needs to store the $24 and
the input to the XOR in the same location. */
reg2 = gen_reg_rtx (mode);
emit_move_insn (reg2, reg);
reg = reg2;
one = force_reg (mode, const1_rtx);
}
convert_move (result, gen_rtx (XOR, mode, reg, one), 0);
}
return result;
}
/* Work out how to check a floating-point condition. We need a
separate comparison instruction (C.cond.fmt), followed by a
branch or conditional move. Given that IN_CODE is the
required condition, set *CMP_CODE to the C.cond.fmt code
and *action_code to the branch or move code. */
static void
get_float_compare_codes (in_code, cmp_code, action_code)
enum rtx_code in_code, *cmp_code, *action_code;
{
switch (in_code)
{
case NE:
case UNGE:
case UNGT:
case LTGT:
case ORDERED:
*cmp_code = reverse_condition_maybe_unordered (in_code);
*action_code = EQ;
break;
default:
*cmp_code = in_code;
*action_code = NE;
break;
}
}
/* Emit the common code for doing conditional branches.
operand[0] is the label to jump to.
The comparison operands are saved away by cmp{si,di,sf,df}. */
void
gen_conditional_branch (operands, test_code)
rtx operands[];
enum rtx_code test_code;
{
enum cmp_type type = branch_type;
rtx cmp0 = branch_cmp[0];
rtx cmp1 = branch_cmp[1];
enum machine_mode mode;
enum rtx_code cmp_code;
rtx reg;
int invert;
rtx label1, label2;
switch (type)
{
case CMP_SI:
case CMP_DI:
mode = type == CMP_SI ? SImode : DImode;
invert = 0;
reg = gen_int_relational (test_code, NULL_RTX, cmp0, cmp1, &invert);
if (reg)
{
cmp0 = reg;
cmp1 = const0_rtx;
test_code = NE;
}
else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
/* We don't want to build a comparison against a nonzero
constant. */
cmp1 = force_reg (mode, cmp1);
break;
case CMP_SF:
case CMP_DF:
if (! ISA_HAS_8CC)
reg = gen_rtx_REG (CCmode, FPSW_REGNUM);
else
reg = gen_reg_rtx (CCmode);
get_float_compare_codes (test_code, &cmp_code, &test_code);
emit_insn (gen_rtx_SET (VOIDmode, reg,
gen_rtx (cmp_code, CCmode, cmp0, cmp1)));
mode = CCmode;
cmp0 = reg;
cmp1 = const0_rtx;
invert = 0;
break;
default:
abort_with_insn (gen_rtx (test_code, VOIDmode, cmp0, cmp1), "bad test");
}
/* Generate the branch. */
label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]);
label2 = pc_rtx;
if (invert)
{
label2 = label1;
label1 = pc_rtx;
}
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx (test_code, mode,
cmp0, cmp1),
label1, label2)));
}
/* Emit the common code for conditional moves. OPERANDS is the array
of operands passed to the conditional move defined_expand. */
void
gen_conditional_move (operands)
rtx *operands;
{
rtx op0 = branch_cmp[0];
rtx op1 = branch_cmp[1];
enum machine_mode mode = GET_MODE (branch_cmp[0]);
enum rtx_code cmp_code = GET_CODE (operands[1]);
enum rtx_code move_code = NE;
enum machine_mode op_mode = GET_MODE (operands[0]);
enum machine_mode cmp_mode;
rtx cmp_reg;
if (GET_MODE_CLASS (mode) != MODE_FLOAT)
{
switch (cmp_code)
{
case EQ:
cmp_code = XOR;
move_code = EQ;
break;
case NE:
cmp_code = XOR;
break;
case LT:
break;
case GE:
cmp_code = LT;
move_code = EQ;
break;
case GT:
cmp_code = LT;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
break;
case LE:
cmp_code = LT;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
move_code = EQ;
break;
case LTU:
break;
case GEU:
cmp_code = LTU;
move_code = EQ;
break;
case GTU:
cmp_code = LTU;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
break;
case LEU:
cmp_code = LTU;
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
move_code = EQ;
break;
default:
abort ();
}
}
else
get_float_compare_codes (cmp_code, &cmp_code, &move_code);
if (mode == SImode || mode == DImode)
cmp_mode = mode;
else if (mode == SFmode || mode == DFmode)
cmp_mode = CCmode;
else
abort ();
cmp_reg = gen_reg_rtx (cmp_mode);
emit_insn (gen_rtx_SET (cmp_mode, cmp_reg,
gen_rtx (cmp_code, cmp_mode, op0, op1)));
emit_insn (gen_rtx_SET (op_mode, operands[0],
gen_rtx_IF_THEN_ELSE (op_mode,
gen_rtx (move_code, VOIDmode,
cmp_reg,
CONST0_RTX (SImode)),
operands[2], operands[3])));
}
/* Emit the common code for conditional moves. OPERANDS is the array
of operands passed to the conditional move defined_expand. */
void
mips_gen_conditional_trap (operands)
rtx operands[];
{
rtx op0, op1;
enum rtx_code cmp_code = GET_CODE (operands[0]);
enum machine_mode mode = GET_MODE (branch_cmp[0]);
/* MIPS conditional trap machine instructions don't have GT or LE
flavors, so we must invert the comparison and convert to LT and
GE, respectively. */
switch (cmp_code)
{
case GT: cmp_code = LT; break;
case LE: cmp_code = GE; break;
case GTU: cmp_code = LTU; break;
case LEU: cmp_code = GEU; break;
default: break;
}
if (cmp_code == GET_CODE (operands[0]))
{
op0 = force_reg (mode, branch_cmp[0]);
op1 = branch_cmp[1];
}
else
{
op0 = force_reg (mode, branch_cmp[1]);
op1 = branch_cmp[0];
}
if (GET_CODE (op1) == CONST_INT && ! SMALL_INT (op1))
op1 = force_reg (mode, op1);
emit_insn (gen_rtx_TRAP_IF (VOIDmode,
gen_rtx (cmp_code, GET_MODE (operands[0]), op0, op1),
operands[1]));
}
/* Return true if operand OP is a condition code register.
Only for use during or after reload. */
int
fcc_register_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return ((mode == VOIDmode || mode == GET_MODE (op))
&& (reload_in_progress || reload_completed)
&& (GET_CODE (op) == REG || GET_CODE (op) == SUBREG)
&& ST_REG_P (true_regnum (op)));
}
/* Emit code to move general operand SRC into condition-code
register DEST. SCRATCH is a scratch TFmode float register.
The sequence is:
FP1 = SRC
FP2 = 0.0f
DEST = FP2 < FP1
where FP1 and FP2 are single-precision float registers
taken from SCRATCH. */
void
mips_emit_fcc_reload (dest, src, scratch)
rtx dest, src, scratch;
{
rtx fp1, fp2;
/* Change the source to SFmode. */
if (GET_CODE (src) == MEM)
src = adjust_address (src, SFmode, 0);
else if (GET_CODE (src) == REG || GET_CODE (src) == SUBREG)
src = gen_rtx_REG (SFmode, true_regnum (src));
fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + FP_INC);
emit_move_insn (copy_rtx (fp1), src);
emit_move_insn (copy_rtx (fp2), CONST0_RTX (SFmode));
emit_insn (gen_slt_sf (dest, fp2, fp1));
}
/* Emit code to change the current function's return address to
ADDRESS. SCRATCH is available as a scratch register, if needed.
ADDRESS and SCRATCH are both word-mode GPRs. */
void
mips_set_return_address (address, scratch)
rtx address, scratch;
{
HOST_WIDE_INT gp_offset;
compute_frame_size (get_frame_size ());
if (((cfun->machine->frame.mask >> 31) & 1) == 0)
abort ();
gp_offset = cfun->machine->frame.gp_sp_offset;
/* Reduce SP + GP_OFSET to a legitimate address and put it in SCRATCH. */
if (gp_offset < 32768)
scratch = plus_constant (stack_pointer_rtx, gp_offset);
else
{
emit_move_insn (scratch, GEN_INT (gp_offset));
if (Pmode == DImode)
emit_insn (gen_adddi3 (scratch, scratch, stack_pointer_rtx));
else
emit_insn (gen_addsi3 (scratch, scratch, stack_pointer_rtx));
}
emit_move_insn (gen_rtx_MEM (GET_MODE (address), scratch), address);
}
/* Write a loop to move a constant number of bytes.
Generate load/stores as follows:
do {
temp1 = src[0];
temp2 = src[1];
...
temp<last> = src[MAX_MOVE_REGS-1];
dest[0] = temp1;
dest[1] = temp2;
...
dest[MAX_MOVE_REGS-1] = temp<last>;
src += MAX_MOVE_REGS;
dest += MAX_MOVE_REGS;
} while (src != final);
This way, no NOP's are needed, and only MAX_MOVE_REGS+3 temp
registers are needed.
Aligned moves move MAX_MOVE_REGS*4 bytes every (2*MAX_MOVE_REGS)+3
cycles, unaligned moves move MAX_MOVE_REGS*4 bytes every
(4*MAX_MOVE_REGS)+3 cycles, assuming no cache misses. */
#define MAX_MOVE_REGS 4
#define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
static void
block_move_loop (dest_reg, src_reg, bytes, align, orig_dest, orig_src)
rtx dest_reg; /* register holding destination address */
rtx src_reg; /* register holding source address */
unsigned int bytes; /* # bytes to move */
int align; /* alignment */
rtx orig_dest; /* original dest */
rtx orig_src; /* original source for making a reg note */
{
rtx dest_mem = replace_equiv_address (orig_dest, dest_reg);
rtx src_mem = replace_equiv_address (orig_src, src_reg);
rtx align_rtx = GEN_INT (align);
rtx label;
rtx final_src;
rtx bytes_rtx;
int leftover;
if (bytes < (unsigned)2 * MAX_MOVE_BYTES)
abort ();
leftover = bytes % MAX_MOVE_BYTES;
bytes -= leftover;
label = gen_label_rtx ();
final_src = gen_reg_rtx (Pmode);
bytes_rtx = GEN_INT (bytes);
if (bytes > 0x7fff)
{
if (Pmode == DImode)
{
emit_insn (gen_movdi (final_src, bytes_rtx));
emit_insn (gen_adddi3 (final_src, final_src, src_reg));
}
else
{
emit_insn (gen_movsi (final_src, bytes_rtx));
emit_insn (gen_addsi3 (final_src, final_src, src_reg));
}
}
else
{
if (Pmode == DImode)
emit_insn (gen_adddi3 (final_src, src_reg, bytes_rtx));
else
emit_insn (gen_addsi3 (final_src, src_reg, bytes_rtx));
}
emit_label (label);
bytes_rtx = GEN_INT (MAX_MOVE_BYTES);
emit_insn (gen_movstrsi_internal (dest_mem, src_mem, bytes_rtx, align_rtx));
if (Pmode == DImode)
{
emit_insn (gen_adddi3 (src_reg, src_reg, bytes_rtx));
emit_insn (gen_adddi3 (dest_reg, dest_reg, bytes_rtx));
emit_insn (gen_cmpdi (src_reg, final_src));
}
else
{
emit_insn (gen_addsi3 (src_reg, src_reg, bytes_rtx));
emit_insn (gen_addsi3 (dest_reg, dest_reg, bytes_rtx));
emit_insn (gen_cmpsi (src_reg, final_src));
}
emit_jump_insn (gen_bne (label));
if (leftover)
emit_insn (gen_movstrsi_internal (dest_mem, src_mem, GEN_INT (leftover),
align_rtx));
}
/* Use a library function to move some bytes. */
static void
block_move_call (dest_reg, src_reg, bytes_rtx)
rtx dest_reg;
rtx src_reg;
rtx bytes_rtx;
{
/* We want to pass the size as Pmode, which will normally be SImode
but will be DImode if we are using 64 bit longs and pointers. */
if (GET_MODE (bytes_rtx) != VOIDmode
&& GET_MODE (bytes_rtx) != (unsigned) Pmode)
bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
#ifdef TARGET_MEM_FUNCTIONS
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "memcpy"), 0,
VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
TREE_UNSIGNED (sizetype)),
TYPE_MODE (sizetype));
#else
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "bcopy"), 0,
VOIDmode, 3, src_reg, Pmode, dest_reg, Pmode,
convert_to_mode (TYPE_MODE (integer_type_node), bytes_rtx,
TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
}
/* Expand string/block move operations.
operands[0] is the pointer to the destination.
operands[1] is the pointer to the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment. */
void
expand_block_move (operands)
rtx operands[];
{
rtx bytes_rtx = operands[2];
rtx align_rtx = operands[3];
int constp = GET_CODE (bytes_rtx) == CONST_INT;
unsigned HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
unsigned int align = INTVAL (align_rtx);
rtx orig_src = operands[1];
rtx orig_dest = operands[0];
rtx src_reg;
rtx dest_reg;
if (constp && bytes == 0)
return;
if (align > (unsigned) UNITS_PER_WORD)
align = UNITS_PER_WORD;
/* Move the address into scratch registers. */
dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
if (TARGET_MEMCPY)
block_move_call (dest_reg, src_reg, bytes_rtx);
else if (constp && bytes <= (unsigned)2 * MAX_MOVE_BYTES
&& align == (unsigned) UNITS_PER_WORD)
move_by_pieces (orig_dest, orig_src, bytes, align * BITS_PER_WORD);
else if (constp && bytes <= (unsigned)2 * MAX_MOVE_BYTES)
emit_insn (gen_movstrsi_internal (replace_equiv_address (orig_dest,
dest_reg),
replace_equiv_address (orig_src,
src_reg),
bytes_rtx, align_rtx));
else if (constp && align >= (unsigned) UNITS_PER_WORD && optimize)
block_move_loop (dest_reg, src_reg, bytes, align, orig_dest, orig_src);
else if (constp && optimize)
{
/* If the alignment is not word aligned, generate a test at
runtime, to see whether things wound up aligned, and we
can use the faster lw/sw instead ulw/usw. */
rtx temp = gen_reg_rtx (Pmode);
rtx aligned_label = gen_label_rtx ();
rtx join_label = gen_label_rtx ();
int leftover = bytes % MAX_MOVE_BYTES;
bytes -= leftover;
if (Pmode == DImode)
{
emit_insn (gen_iordi3 (temp, src_reg, dest_reg));
emit_insn (gen_anddi3 (temp, temp, GEN_INT (UNITS_PER_WORD - 1)));
emit_insn (gen_cmpdi (temp, const0_rtx));
}
else
{
emit_insn (gen_iorsi3 (temp, src_reg, dest_reg));
emit_insn (gen_andsi3 (temp, temp, GEN_INT (UNITS_PER_WORD - 1)));
emit_insn (gen_cmpsi (temp, const0_rtx));
}
emit_jump_insn (gen_beq (aligned_label));
/* Unaligned loop. */
block_move_loop (dest_reg, src_reg, bytes, 1, orig_dest, orig_src);
emit_jump_insn (gen_jump (join_label));
emit_barrier ();
/* Aligned loop. */
emit_label (aligned_label);
block_move_loop (dest_reg, src_reg, bytes, UNITS_PER_WORD, orig_dest,
orig_src);
emit_label (join_label);
/* Bytes at the end of the loop. */
if (leftover)
emit_insn (gen_movstrsi_internal (replace_equiv_address (orig_dest,
dest_reg),
replace_equiv_address (orig_src,
src_reg),
GEN_INT (leftover),
GEN_INT (align)));
}
else
block_move_call (dest_reg, src_reg, bytes_rtx);
}
/* Emit load/stores for a small constant block_move.
operands[0] is the memory address of the destination.
operands[1] is the memory address of the source.
operands[2] is the number of bytes to move.
operands[3] is the alignment.
operands[4] is a temp register.
operands[5] is a temp register.
...
operands[3+num_regs] is the last temp register.
The block move type can be one of the following:
BLOCK_MOVE_NORMAL Do all of the block move.
BLOCK_MOVE_NOT_LAST Do all but the last store.
BLOCK_MOVE_LAST Do just the last store. */
const char *
output_block_move (insn, operands, num_regs, move_type)
rtx insn;
rtx operands[];
int num_regs;
enum block_move_type move_type;
{
rtx dest_reg = XEXP (operands[0], 0);
rtx src_reg = XEXP (operands[1], 0);
HOST_WIDE_INT bytes = INTVAL (operands[2]);
int align = INTVAL (operands[3]);
int num = 0;
int offset = 0;
int use_lwl_lwr = 0;
int last_operand = num_regs + 4;
int safe_regs = 4;
int i;
rtx xoperands[10];
struct {
const char *load; /* load insn without nop */
const char *load_nop; /* load insn with trailing nop */
const char *store; /* store insn */
const char *final; /* if last_store used: NULL or swr */
const char *last_store; /* last store instruction */
int offset; /* current offset */
enum machine_mode mode; /* mode to use on (MEM) */
} load_store[4];
/* ??? Detect a bug in GCC, where it can give us a register
the same as one of the addressing registers and reduce
the number of registers available. */
for (i = 4; i < last_operand && safe_regs < (int) ARRAY_SIZE (xoperands); i++)
if (! reg_mentioned_p (operands[i], operands[0])
&& ! reg_mentioned_p (operands[i], operands[1]))
xoperands[safe_regs++] = operands[i];
if (safe_regs < last_operand)
{
xoperands[0] = operands[0];
xoperands[1] = operands[1];
xoperands[2] = operands[2];
xoperands[3] = operands[3];
return output_block_move (insn, xoperands, safe_regs - 4, move_type);
}
/* If we are given global or static addresses, and we would be
emitting a few instructions, try to save time by using a
temporary register for the pointer. */
/* ??? The SGI Irix6 assembler fails when a SYMBOL_REF is used in
an ldl/ldr instruction pair. We play it safe, and always move
constant addresses into registers when generating N32/N64 code, just
in case we might emit an unaligned load instruction. */
if (num_regs > 2 && (bytes > 2 * align || move_type != BLOCK_MOVE_NORMAL
|| mips_abi == ABI_MEABI
|| mips_abi == ABI_N32
|| mips_abi == ABI_64))
{
if (CONSTANT_P (src_reg))
{
if (TARGET_STATS)
mips_count_memory_refs (operands[1], 1);
src_reg = operands[3 + num_regs--];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[1] = operands[1];
xoperands[0] = src_reg;
if (Pmode == DImode)
output_asm_insn ("dla\t%0,%1", xoperands);
else
output_asm_insn ("la\t%0,%1", xoperands);
}
}
if (CONSTANT_P (dest_reg))
{
if (TARGET_STATS)
mips_count_memory_refs (operands[0], 1);
dest_reg = operands[3 + num_regs--];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[1] = operands[0];
xoperands[0] = dest_reg;
if (Pmode == DImode)
output_asm_insn ("dla\t%0,%1", xoperands);
else
output_asm_insn ("la\t%0,%1", xoperands);
}
}
}
/* ??? We really shouldn't get any LO_SUM addresses here, because they
are not offsettable, however, offsettable_address_p says they are
offsettable. I think this is a bug in offsettable_address_p.
For expediency, we fix this by just loading the address into a register
if we happen to get one. */
if (GET_CODE (src_reg) == LO_SUM)
{
src_reg = operands[3 + num_regs--];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[2] = XEXP (XEXP (operands[1], 0), 1);
xoperands[1] = XEXP (XEXP (operands[1], 0), 0);
xoperands[0] = src_reg;
if (Pmode == DImode)
output_asm_insn ("daddiu\t%0,%1,%%lo(%2)", xoperands);
else
output_asm_insn ("addiu\t%0,%1,%%lo(%2)", xoperands);
}
}
if (GET_CODE (dest_reg) == LO_SUM)
{
dest_reg = operands[3 + num_regs--];
if (move_type != BLOCK_MOVE_LAST)
{
xoperands[2] = XEXP (XEXP (operands[0], 0), 1);
xoperands[1] = XEXP (XEXP (operands[0], 0), 0);
xoperands[0] = dest_reg;
if (Pmode == DImode)
output_asm_insn ("daddiu\t%0,%1,%%lo(%2)", xoperands);
else
output_asm_insn ("addiu\t%0,%1,%%lo(%2)", xoperands);
}
}
if (num_regs > (int) ARRAY_SIZE (load_store))
num_regs = ARRAY_SIZE (load_store);
else if (num_regs < 1)
abort_with_insn (insn,
"cannot do block move, not enough scratch registers");
while (bytes > 0)
{
load_store[num].offset = offset;
if (TARGET_64BIT && bytes >= 8 && align >= 8)
{
load_store[num].load = "ld\t%0,%1";
load_store[num].load_nop = "ld\t%0,%1%#";
load_store[num].store = "sd\t%0,%1";
load_store[num].last_store = "sd\t%0,%1";
load_store[num].final = 0;
load_store[num].mode = DImode;
offset += 8;
bytes -= 8;
}
/* ??? Fails because of a MIPS assembler bug? */
else if (TARGET_64BIT && bytes >= 8
&& ! TARGET_SR71K
&& ! TARGET_MIPS16)
{
if (BYTES_BIG_ENDIAN)
{
load_store[num].load = "ldl\t%0,%1\n\tldr\t%0,%2";
load_store[num].load_nop = "ldl\t%0,%1\n\tldr\t%0,%2%#";
load_store[num].store = "sdl\t%0,%1\n\tsdr\t%0,%2";
load_store[num].last_store = "sdr\t%0,%2";
load_store[num].final = "sdl\t%0,%1";
}
else
{
load_store[num].load = "ldl\t%0,%2\n\tldr\t%0,%1";
load_store[num].load_nop = "ldl\t%0,%2\n\tldr\t%0,%1%#";
load_store[num].store = "sdl\t%0,%2\n\tsdr\t%0,%1";
load_store[num].last_store = "sdr\t%0,%1";
load_store[num].final = "sdl\t%0,%2";
}
load_store[num].mode = DImode;
offset += 8;
bytes -= 8;
use_lwl_lwr = 1;
}
else if (bytes >= 4 && align >= 4)
{
load_store[num].load = "lw\t%0,%1";
load_store[num].load_nop = "lw\t%0,%1%#";
load_store[num].store = "sw\t%0,%1";
load_store[num].last_store = "sw\t%0,%1";
load_store[num].final = 0;
load_store[num].mode = SImode;
offset += 4;
bytes -= 4;
}
else if (bytes >= 4
&& ! TARGET_SR71K
&& ! TARGET_MIPS16)
{
if (BYTES_BIG_ENDIAN)
{
load_store[num].load = "lwl\t%0,%1\n\tlwr\t%0,%2";
load_store[num].load_nop = "lwl\t%0,%1\n\tlwr\t%0,%2%#";
load_store[num].store = "swl\t%0,%1\n\tswr\t%0,%2";
load_store[num].last_store = "swr\t%0,%2";
load_store[num].final = "swl\t%0,%1";
}
else
{
load_store[num].load = "lwl\t%0,%2\n\tlwr\t%0,%1";
load_store[num].load_nop = "lwl\t%0,%2\n\tlwr\t%0,%1%#";
load_store[num].store = "swl\t%0,%2\n\tswr\t%0,%1";
load_store[num].last_store = "swr\t%0,%1";
load_store[num].final = "swl\t%0,%2";
}
load_store[num].mode = SImode;
offset += 4;
bytes -= 4;
use_lwl_lwr = 1;
}
else if (bytes >= 2 && align >= 2)
{
load_store[num].load = "lh\t%0,%1";
load_store[num].load_nop = "lh\t%0,%1%#";
load_store[num].store = "sh\t%0,%1";
load_store[num].last_store = "sh\t%0,%1";
load_store[num].final = 0;
load_store[num].mode = HImode;
offset += 2;
bytes -= 2;
}
else
{
load_store[num].load = "lb\t%0,%1";
load_store[num].load_nop = "lb\t%0,%1%#";
load_store[num].store = "sb\t%0,%1";
load_store[num].last_store = "sb\t%0,%1";
load_store[num].final = 0;
load_store[num].mode = QImode;
offset++;
bytes--;
}
if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
{
dslots_load_total++;
dslots_load_filled++;
if (CONSTANT_P (src_reg))
mips_count_memory_refs (src_reg, 1);
if (CONSTANT_P (dest_reg))
mips_count_memory_refs (dest_reg, 1);
}
/* Emit load/stores now if we have run out of registers or are
at the end of the move. */
if (++num == num_regs || bytes == 0)
{
/* If only load/store, we need a NOP after the load. */
if (num == 1)
{
load_store[0].load = load_store[0].load_nop;
if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
dslots_load_filled--;
}
if (move_type != BLOCK_MOVE_LAST)
{
for (i = 0; i < num; i++)
{
int offset;
if (!operands[i + 4])
abort ();
if (GET_MODE (operands[i + 4]) != load_store[i].mode)
operands[i + 4] = gen_rtx_REG (load_store[i].mode,
REGNO (operands[i + 4]));
offset = load_store[i].offset;
xoperands[0] = operands[i + 4];
xoperands[1] = gen_rtx_MEM (load_store[i].mode,
plus_constant (src_reg, offset));
if (use_lwl_lwr)
{
int extra_offset
= GET_MODE_SIZE (load_store[i].mode) - 1;
xoperands[2] = gen_rtx_MEM (load_store[i].mode,
plus_constant (src_reg,
extra_offset
+ offset));
}
output_asm_insn (load_store[i].load, xoperands);
}
}
for (i = 0; i < num; i++)
{
int last_p = (i == num-1 && bytes == 0);
int offset = load_store[i].offset;
xoperands[0] = operands[i + 4];
xoperands[1] = gen_rtx_MEM (load_store[i].mode,
plus_constant (dest_reg, offset));
if (use_lwl_lwr)
{
int extra_offset = GET_MODE_SIZE (load_store[i].mode) - 1;
xoperands[2] = gen_rtx_MEM (load_store[i].mode,
plus_constant (dest_reg,
extra_offset
+ offset));
}
if (move_type == BLOCK_MOVE_NORMAL)
output_asm_insn (load_store[i].store, xoperands);
else if (move_type == BLOCK_MOVE_NOT_LAST)
{
if (!last_p)
output_asm_insn (load_store[i].store, xoperands);
else if (load_store[i].final != 0)
output_asm_insn (load_store[i].final, xoperands);
}
else if (last_p)
output_asm_insn (load_store[i].last_store, xoperands);
}
num = 0; /* reset load_store */
use_lwl_lwr = 0;
}
}
return "";
}
/* Argument support functions. */
/* Initialize CUMULATIVE_ARGS for a function. */
void
init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname ATTRIBUTE_UNUSED; /* SYMBOL_REF of library name or 0 */
{
static CUMULATIVE_ARGS zero_cum;
tree param, next_param;
if (TARGET_DEBUG_E_MODE)
{
fprintf (stderr,
"\ninit_cumulative_args, fntype = 0x%.8lx", (long)fntype);
if (!fntype)
fputc ('\n', stderr);
else
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, ", fntype code = %s, ret code = %s\n",
tree_code_name[(int)TREE_CODE (fntype)],
tree_code_name[(int)TREE_CODE (ret_type)]);
}
}
*cum = zero_cum;
cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
/* Determine if this function has variable arguments. This is
indicated by the last argument being 'void_type_mode' if there
are no variable arguments. The standard MIPS calling sequence
passes all arguments in the general purpose registers in this case. */
for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
param != 0; param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == 0 && TREE_VALUE (param) != void_type_node)
cum->gp_reg_found = 1;
}
}
static void
mips_arg_info (cum, mode, type, named, info)
const CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named;
struct mips_arg_info *info;
{
bool even_reg_p;
unsigned int num_words, max_regs;
info->struct_p = (type != 0
&& (TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE));
/* Decide whether this argument should go in a floating-point register,
assuming one is free. Later code checks for availablity. */
info->fpr_p = false;
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE)
{
switch (mips_abi)
{
case ABI_32:
case ABI_O64:
info->fpr_p = (!cum->gp_reg_found && cum->arg_number < 2);
break;
case ABI_EABI:
info->fpr_p = true;
break;
case ABI_MEABI:
/* The MIPS eabi says only structures containing doubles get
passed in a fp register, so force a structure containing
a float to be passed in the integer registers. */
info->fpr_p = (named && !(mode == SFmode && info->struct_p));
break;
default:
info->fpr_p = named;
break;
}
}
/* Now decide whether the argument must go in an even-numbered register. */
even_reg_p = false;
if (info->fpr_p)
{
/* Under the O64 ABI, the second float argument goes in $f13 if it
is a double, but $f14 if it is a single. Otherwise, on a
32-bit double-float machine, each FP argument must start in a
new register pair. */
even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_HWFPVALUE
|| (mips_abi == ABI_O64 && mode == SFmode)
|| FP_INC > 1);
}
else if (!TARGET_64BIT || LONG_DOUBLE_TYPE_SIZE == 128)
{
if (GET_MODE_CLASS (mode) == MODE_INT
|| GET_MODE_CLASS (mode) == MODE_FLOAT)
even_reg_p = (GET_MODE_SIZE (mode) > UNITS_PER_WORD);
else if (type != NULL_TREE && TYPE_ALIGN (type) > BITS_PER_WORD)
even_reg_p = true;
}
/* Set REG_OFFSET to the register count we're interested in.
The EABI allocates the floating-point registers separately,
but the other ABIs allocate them like integer registers. */
info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
? cum->num_fprs
: cum->num_gprs);
if (even_reg_p)
info->reg_offset += info->reg_offset & 1;
/* The alignment applied to registers is also applied to stack arguments. */
info->stack_offset = cum->stack_words;
if (even_reg_p)
info->stack_offset += info->stack_offset & 1;
if (mode == BLKmode)
info->num_bytes = int_size_in_bytes (type);
else
info->num_bytes = GET_MODE_SIZE (mode);
num_words = (info->num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
/* Partition the argument between registers and stack. */
info->reg_words = MIN (num_words, max_regs);
info->stack_words = num_words - info->reg_words;
}
/* Advance the argument to the next argument position. */
void
function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
struct mips_arg_info info;
mips_arg_info (cum, mode, type, named, &info);
/* The following is a hack in order to pass 1 byte structures
the same way that the MIPS compiler does (namely by passing
the structure in the high byte or half word of the register).
This also makes varargs work. If we have such a structure,
we save the adjustment RTL, and the call define expands will
emit them. For the VOIDmode argument (argument after the
last real argument), pass back a parallel vector holding each
of the adjustments. */
/* ??? This scheme requires everything smaller than the word size to
shifted to the left, but when TARGET_64BIT and ! TARGET_INT64,
that would mean every int needs to be shifted left, which is very
inefficient. Let's not carry this compatibility to the 64 bit
calling convention for now. */
if (info.struct_p
&& info.reg_words == 1
&& info.num_bytes < UNITS_PER_WORD
&& !TARGET_64BIT
&& mips_abi != ABI_EABI
&& mips_abi != ABI_MEABI)
{
rtx amount = GEN_INT (BITS_PER_WORD - info.num_bytes * BITS_PER_UNIT);
rtx reg = gen_rtx_REG (word_mode, GP_ARG_FIRST + info.reg_offset);
if (TARGET_64BIT)
cum->adjust[cum->num_adjusts++] = PATTERN (gen_ashldi3 (reg, reg, amount));
else
cum->adjust[cum->num_adjusts++] = PATTERN (gen_ashlsi3 (reg, reg, amount));
}
if (!info.fpr_p)
cum->gp_reg_found = true;
/* See the comment above the cumulative args structure in mips.h
for an explanation of what this code does. It assumes the O32
ABI, which passes at most 2 arguments in float registers. */
if (cum->arg_number < 2 && info.fpr_p)
cum->fp_code += (mode == SFmode ? 1 : 2) << ((cum->arg_number - 1) * 2);
if (mips_abi != ABI_EABI || !info.fpr_p)
cum->num_gprs = info.reg_offset + info.reg_words;
else if (info.reg_words > 0)
cum->num_fprs += FP_INC;
if (info.stack_words > 0)
cum->stack_words = info.stack_offset + info.stack_words;
cum->arg_number++;
}
/* Return an RTL expression containing the register for the given mode,
or 0 if the argument is to be passed on the stack. */
struct rtx_def *
function_arg (cum, mode, type, named)
const CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
struct mips_arg_info info;
/* We will be called with a mode of VOIDmode after the last argument
has been seen. Whatever we return will be passed to the call
insn. If we need any shifts for small structures, return them in
a PARALLEL; in that case, stuff the mips16 fp_code in as the
mode. Otherwise, if we need a mips16 fp_code, return a REG
with the code stored as the mode. */
if (mode == VOIDmode)
{
if (cum->num_adjusts > 0)
return gen_rtx_PARALLEL ((enum machine_mode) cum->fp_code,
gen_rtvec_v (cum->num_adjusts,
(rtx *) cum->adjust));
else if (TARGET_MIPS16 && cum->fp_code != 0)
return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
else
return 0;
}
mips_arg_info (cum, mode, type, named, &info);
/* Return straight away if the whole argument is passed on the stack. */
if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
return 0;
if (type != 0
&& TREE_CODE (type) == RECORD_TYPE
&& (mips_abi == ABI_N32 || mips_abi == ABI_64)
&& TYPE_SIZE_UNIT (type)
&& host_integerp (TYPE_SIZE_UNIT (type), 1)
&& named
&& mode != DFmode)
{
/* The Irix 6 n32/n64 ABIs say that if any 64 bit chunk of the
structure contains a double in its entirety, then that 64 bit
chunk is passed in a floating point register. */
tree field;
/* First check to see if there is any such field. */
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
&& host_integerp (bit_position (field), 0)
&& int_bit_position (field) % BITS_PER_WORD == 0)
break;
if (field != 0)
{
/* Now handle the special case by returning a PARALLEL
indicating where each 64 bit chunk goes. INFO.REG_WORDS
chunks are passed in registers. */
unsigned int i;
HOST_WIDE_INT bitpos;
rtx ret;
/* assign_parms checks the mode of ENTRY_PARM, so we must
use the actual mode here. */
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
bitpos = 0;
field = TYPE_FIELDS (type);
for (i = 0; i < info.reg_words; i++)
{
rtx reg;
for (; field; field = TREE_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL
&& int_bit_position (field) >= bitpos)
break;
if (field
&& int_bit_position (field) == bitpos
&& TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
&& !TARGET_SOFT_FLOAT
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
else
reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
XVECEXP (ret, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode, reg,
GEN_INT (bitpos / BITS_PER_UNIT));
bitpos += BITS_PER_WORD;
}
return ret;
}
}
if (mips_abi == ABI_MEABI && info.fpr_p && !cum->prototype)
{
/* To make K&R varargs work we need to pass floating
point arguments in both integer and FP registers. */
return gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode,
GP_ARG_FIRST
+ info.reg_offset),
const0_rtx),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode,
FP_ARG_FIRST
+ info.reg_offset),
const0_rtx)));
}
if (info.fpr_p)
return gen_rtx_REG (mode, FP_ARG_FIRST + info.reg_offset);
else
return gen_rtx_REG (mode, GP_ARG_FIRST + info.reg_offset);
}
int
function_arg_partial_nregs (cum, mode, type, named)
const CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
struct mips_arg_info info;
mips_arg_info (cum, mode, type, named, &info);
return info.stack_words > 0 ? info.reg_words : 0;
}
int
mips_setup_incoming_varargs (cum, mode, type, no_rtl)
const CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int no_rtl;
{
CUMULATIVE_ARGS local_cum;
int gp_saved, fp_saved;
if (mips_abi == ABI_32 || mips_abi == ABI_O64)
return 0;
/* The caller has advanced CUM up to, but not beyond, the last named
argument. Advance a local copy of CUM past the last "real" named
argument, to find out how many registers are left over. */
local_cum = *cum;
FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);
/* Found out how many registers we need to save. */
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
fp_saved = (EABI_FLOAT_VARARGS_P
? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
: 0);
if (!no_rtl)
{
if (gp_saved > 0)
{
rtx ptr, mem;
ptr = virtual_incoming_args_rtx;
if (mips_abi == ABI_EABI)
ptr = plus_constant (ptr, -gp_saved * UNITS_PER_WORD);
mem = gen_rtx_MEM (BLKmode, ptr);
/* va_arg is an array access in this case, which causes
it to get MEM_IN_STRUCT_P set. We must set it here
so that the insn scheduler won't assume that these
stores can't possibly overlap with the va_arg loads. */
if (mips_abi != ABI_EABI && BYTES_BIG_ENDIAN)
MEM_SET_IN_STRUCT_P (mem, 1);
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST, mem,
gp_saved, gp_saved * UNITS_PER_WORD);
}
if (fp_saved > 0)
{
/* We can't use move_block_from_reg, because it will use
the wrong mode. */
enum machine_mode mode;
int off, i;
/* Set OFF to the offset from virtual_incoming_args_rtx of
the first float register. The FP save area lies below
the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
off = -gp_saved * UNITS_PER_WORD;
off &= ~(UNITS_PER_FPVALUE - 1);
off -= fp_saved * UNITS_PER_FPREG;
mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS; i += FP_INC)
{
rtx ptr = plus_constant (virtual_incoming_args_rtx, off);
emit_move_insn (gen_rtx_MEM (mode, ptr),
gen_rtx_REG (mode, FP_ARG_FIRST + i));
off += UNITS_PER_HWFPVALUE;
}
}
}
return (gp_saved * UNITS_PER_WORD) + (fp_saved * UNITS_PER_FPREG);
}
/* Create the va_list data type.
We keep 3 pointers, and two offsets.
Two pointers are to the overflow area, which starts at the CFA.
One of these is constant, for addressing into the GPR save area below it.
The other is advanced up the stack through the overflow region.
The third pointer is to the GPR save area. Since the FPR save area
is just below it, we can address FPR slots off this pointer.
We also keep two one-byte offsets, which are to be subtracted from the
constant pointers to yield addresses in the GPR and FPR save areas.
These are downcounted as float or non-float arguments are used,
and when they get to zero, the argument must be obtained from the
overflow region.
If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
pointer is enough. It's started at the GPR save area, and is
advanced, period.
Note that the GPR save area is not constant size, due to optimization
in the prologue. Hence, we can't use a design with two pointers
and two offsets, although we could have designed this with two pointers
and three offsets. */
tree
mips_build_va_list ()
{
if (EABI_FLOAT_VARARGS_P)
{
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, record;
record = make_node (RECORD_TYPE);
f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
ptr_type_node);
f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
ptr_type_node);
f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
ptr_type_node);
f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
unsigned_char_type_node);
f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
unsigned_char_type_node);
DECL_FIELD_CONTEXT (f_ovfl) = record;
DECL_FIELD_CONTEXT (f_gtop) = record;
DECL_FIELD_CONTEXT (f_ftop) = record;
DECL_FIELD_CONTEXT (f_goff) = record;
DECL_FIELD_CONTEXT (f_foff) = record;
TYPE_FIELDS (record) = f_ovfl;
TREE_CHAIN (f_ovfl) = f_gtop;
TREE_CHAIN (f_gtop) = f_ftop;
TREE_CHAIN (f_ftop) = f_goff;
TREE_CHAIN (f_goff) = f_foff;
layout_type (record);
return record;
}
else
return ptr_type_node;
}
/* Implement va_start. stdarg_p is always 1. */
void
mips_va_start (valist, nextarg)
tree valist;
rtx nextarg;
{
const CUMULATIVE_ARGS *cum = ¤t_function_args_info;
/* ARG_POINTER_REGNUM is initialized to STACK_POINTER_BOUNDARY, but
since the stack is aligned for a pair of argument-passing slots,
and the beginning of a variable argument list may be an odd slot,
we have to decrease its alignment. */
if (cfun && cfun->emit->regno_pointer_align)
while (((current_function_pretend_args_size * BITS_PER_UNIT)
& (REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) - 1)) != 0)
REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) /= 2;
if (mips_abi == ABI_EABI)
{
int gpr_save_area_size;
gpr_save_area_size
= (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
if (EABI_FLOAT_VARARGS_P)
{
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
tree ovfl, gtop, ftop, goff, foff;
tree t;
int fpr_offset;
int fpr_save_area_size;
f_ovfl = TYPE_FIELDS (va_list_type_node);
f_gtop = TREE_CHAIN (f_ovfl);
f_ftop = TREE_CHAIN (f_gtop);
f_goff = TREE_CHAIN (f_ftop);
f_foff = TREE_CHAIN (f_goff);
ovfl = build (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl);
gtop = build (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop);
ftop = build (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop);
goff = build (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff);
foff = build (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff);
/* Emit code to initialize OVFL, which points to the next varargs
stack argument. CUM->STACK_WORDS gives the number of stack
words used by named arguments. */
t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
if (cum->stack_words > 0)
t = build (PLUS_EXPR, TREE_TYPE (ovfl), t,
build_int_2 (cum->stack_words * UNITS_PER_WORD, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize GTOP, the top of the GPR save area. */
t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
t = build (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize FTOP, the top of the FPR save area.
This address is gpr_save_area_bytes below GTOP, rounded
down to the next fp-aligned boundary. */
t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
if (fpr_offset)
t = build (PLUS_EXPR, TREE_TYPE (ftop), t,
build_int_2 (-fpr_offset, -1));
t = build (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Emit code to initialize GOFF, the offset from GTOP of the
next GPR argument. */
t = build (MODIFY_EXPR, TREE_TYPE (goff), goff,
build_int_2 (gpr_save_area_size, 0));
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Likewise emit code to initialize FOFF, the offset from FTOP
of the next FPR argument. */
fpr_save_area_size
= (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
t = build (MODIFY_EXPR, TREE_TYPE (foff), foff,
build_int_2 (fpr_save_area_size, 0));
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
else
{
/* Everything is in the GPR save area, or in the overflow
area which is contiguous with it. */
nextarg = plus_constant (nextarg, -gpr_save_area_size);
std_expand_builtin_va_start (valist, nextarg);
}
}
else
std_expand_builtin_va_start (valist, nextarg);
}
/* Implement va_arg. */
rtx
mips_va_arg (valist, type)
tree valist, type;
{
HOST_WIDE_INT size, rsize;
rtx addr_rtx;
tree t;
size = int_size_in_bytes (type);
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
if (mips_abi == ABI_EABI)
{
bool indirect;
rtx r;
indirect
= function_arg_pass_by_reference (NULL, TYPE_MODE (type), type, 0);
if (indirect)
{
size = POINTER_SIZE / BITS_PER_UNIT;
rsize = UNITS_PER_WORD;
}
addr_rtx = gen_reg_rtx (Pmode);
if (!EABI_FLOAT_VARARGS_P)
{
/* Case of all args in a merged stack. No need to check bounds,
just advance valist along the stack. */
tree gpr = valist;
if (!indirect
&& !TARGET_64BIT
&& TYPE_ALIGN (type) > (unsigned) BITS_PER_WORD)
{
/* Align the pointer using: ap = (ap + align - 1) & -align,
where align is 2 * UNITS_PER_WORD. */
t = build (PLUS_EXPR, TREE_TYPE (gpr), gpr,
build_int_2 (2 * UNITS_PER_WORD - 1, 0));
t = build (BIT_AND_EXPR, TREE_TYPE (t), t,
build_int_2 (-2 * UNITS_PER_WORD, -1));
t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Emit code to set addr_rtx to the valist, and postincrement
the valist by the size of the argument, rounded up to the
next word. */
t = build (POSTINCREMENT_EXPR, TREE_TYPE (gpr), gpr,
size_int (rsize));
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
/* Flush the POSTINCREMENT. */
emit_queue();
}
else
{
/* Not a simple merged stack. */
tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
tree ovfl, top, off;
rtx lab_over = NULL_RTX, lab_false;
HOST_WIDE_INT osize;
f_ovfl = TYPE_FIELDS (va_list_type_node);
f_gtop = TREE_CHAIN (f_ovfl);
f_ftop = TREE_CHAIN (f_gtop);
f_goff = TREE_CHAIN (f_ftop);
f_foff = TREE_CHAIN (f_goff);
/* We maintain separate pointers and offsets for floating-point
and integer arguments, but we need similar code in both cases.
Let:
TOP be the top of the register save area;
OFF be the offset from TOP of the next register;
ADDR_RTX be the address of the argument; and
RSIZE be the number of bytes used to store the argument
when it's in the register save area
OSIZE be the number of bytes used to store it when it's
in the stack overflow area
PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)
The code we want is:
1: off &= -rsize; // round down
2: if (off != 0)
3: {
4: addr_rtx = top - off;
5: off -= rsize;
6: }
7: else
8: {
9: ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
10: addr_rtx = ovfl + PADDING;
11: ovfl += osize;
14: }
[1] and [9] can sometimes be optimized away. */
lab_false = gen_label_rtx ();
lab_over = gen_label_rtx ();
ovfl = build (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl);
if (TREE_CODE (type) == REAL_TYPE)
{
top = build (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop);
off = build (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff);
/* When floating-point registers are saved to the stack,
each one will take up UNITS_PER_HWFPVALUE bytes, regardless
of the float's precision. */
rsize = UNITS_PER_HWFPVALUE;
}
else
{
top = build (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop);
off = build (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff);
if (rsize > UNITS_PER_WORD)
{
/* [1] Emit code for: off &= -rsize. */
t = build (BIT_AND_EXPR, TREE_TYPE (off), off,
build_int_2 (-rsize, -1));
t = build (MODIFY_EXPR, TREE_TYPE (off), off, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
}
/* Every overflow argument must take up at least UNITS_PER_WORD
bytes (= PARM_BOUNDARY bits). RSIZE can sometimes be smaller
than that, such as in the combination -mgp64 -msingle-float
-fshort-double. Doubles passed in registers will then take
up UNITS_PER_HWFPVALUE bytes, but those passed on the stack
take up UNITS_PER_WORD bytes. */
osize = MAX (rsize, UNITS_PER_WORD);
/* [2] Emit code to branch if off == 0. */
r = expand_expr (off, NULL_RTX, TYPE_MODE (TREE_TYPE (off)),
EXPAND_NORMAL);
emit_cmp_and_jump_insns (r, const0_rtx, EQ, const1_rtx, GET_MODE (r),
1, lab_false);
/* [4] Emit code for: addr_rtx = top - off. */
t = build (MINUS_EXPR, TREE_TYPE (top), top, off);
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
/* [5] Emit code for: off -= rsize. */
t = build (MINUS_EXPR, TREE_TYPE (off), off, build_int_2 (rsize, 0));
t = build (MODIFY_EXPR, TREE_TYPE (off), off, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* [7] Emit code to jump over the else clause, then the label
that starts it. */
emit_queue();
emit_jump (lab_over);
emit_barrier ();
emit_label (lab_false);
if (osize > UNITS_PER_WORD)
{
/* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize. */
t = build (PLUS_EXPR, TREE_TYPE (ovfl), ovfl,
build_int_2 (osize - 1, 0));
t = build (BIT_AND_EXPR, TREE_TYPE (ovfl), t,
build_int_2 (-osize, -1));
t = build (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* [10, 11]. Emit code to store ovfl in addr_rtx, then
post-increment ovfl by osize. On big-endian machines,
the argument has OSIZE - RSIZE bytes of leading padding. */
t = build (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl,
size_int (osize));
if (BYTES_BIG_ENDIAN && osize > rsize)
t = build (PLUS_EXPR, TREE_TYPE (t), t,
build_int_2 (osize - rsize, 0));
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
emit_queue();
emit_label (lab_over);
}
if (indirect)
{
addr_rtx = force_reg (Pmode, addr_rtx);
r = gen_rtx_MEM (Pmode, addr_rtx);
set_mem_alias_set (r, get_varargs_alias_set ());
emit_move_insn (addr_rtx, r);
}
else
{
if (BYTES_BIG_ENDIAN && rsize != size)
addr_rtx = plus_constant (addr_rtx, rsize - size);
}
return addr_rtx;
}
else
{
/* Not EABI. */
int align;
/* ??? The original va-mips.h did always align, despite the fact
that alignments <= UNITS_PER_WORD are preserved by the va_arg
increment mechanism. */
if ((mips_abi == ABI_N32 || mips_abi == ABI_64)
&& TYPE_ALIGN (type) > 64)
align = 16;
else if (TARGET_64BIT)
align = 8;
else if (TYPE_ALIGN (type) > 32)
align = 8;
else
align = 4;
t = build (PLUS_EXPR, TREE_TYPE (valist), valist,
build_int_2 (align - 1, 0));
t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_2 (-align, -1));
t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Everything past the alignment is standard. */
return std_expand_builtin_va_arg (valist, type);
}
}
/* Abort after printing out a specific insn. */
static void
abort_with_insn (insn, reason)
rtx insn;
const char *reason;
{
error (reason);
debug_rtx (insn);
abort ();
}
/* Set up globals to generate code for the ISA or processor
described by INFO. */
static void
mips_set_architecture (info)
const struct mips_cpu_info *info;
{
if (info != 0)
{
mips_arch_info = info;
mips_arch = info->cpu;
mips_isa = info->isa;
}
}
/* Likewise for tuning. */
static void
mips_set_tune (info)
const struct mips_cpu_info *info;
{
if (info != 0)
{
mips_tune_info = info;
mips_tune = info->cpu;
}
}
/* Set up the threshold for data to go into the small data area, instead
of the normal data area, and detect any conflicts in the switches. */
void
override_options ()
{
int i, start, regno;
enum machine_mode mode;
mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;
if (mips_section_threshold <= 0)
target_flags &= ~MASK_GPOPT;
else if (optimize)
target_flags |= MASK_GPOPT;
/* If both single-float and soft-float are set, then clear the one that
was set by TARGET_DEFAULT, leaving the one that was set by the
user. We assume here that the specs prevent both being set by the
user. */
#ifdef TARGET_DEFAULT
if (TARGET_SINGLE_FLOAT && TARGET_SOFT_FLOAT)
target_flags &= ~((TARGET_DEFAULT) & (MASK_SOFT_FLOAT | MASK_SINGLE_FLOAT));
#endif
/* Interpret -mabi. */
mips_abi = MIPS_ABI_DEFAULT;
if (mips_abi_string != 0)
{
if (strcmp (mips_abi_string, "32") == 0)
mips_abi = ABI_32;
else if (strcmp (mips_abi_string, "o64") == 0)
mips_abi = ABI_O64;
else if (strcmp (mips_abi_string, "n32") == 0)
mips_abi = ABI_N32;
else if (strcmp (mips_abi_string, "64") == 0)
mips_abi = ABI_64;
else if (strcmp (mips_abi_string, "eabi") == 0)
mips_abi = ABI_EABI;
else if (strcmp (mips_abi_string, "meabi") == 0)
mips_abi = ABI_MEABI;
else
fatal_error ("bad value (%s) for -mabi= switch", mips_abi_string);
}
/* The following code determines the architecture and register size.
Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
The GAS and GCC code should be kept in sync as much as possible. */
if (mips_arch_string != 0)
mips_set_architecture (mips_parse_cpu ("-march", mips_arch_string));
if (mips_tune_string != 0)
mips_set_tune (mips_parse_cpu ("-mtune", mips_tune_string));
if (mips_isa_string != 0)
{
/* Handle -mipsN. */
int level = atoi (mips_isa_string);
if (level == 16)
{
/* -mips16 specifies an ASE rather than a processor, so don't
change mips_arch here. -mno-mips16 overrides -mips16. */
if (mips_no_mips16_string == NULL)
target_flags |= MASK_MIPS16;
}
else if (mips_arch_info != 0)
{
/* -march takes precedence over -mipsN, since it is more descriptive.
There's no harm in specifying both as long as the ISA levels
are the same. */
if (mips_isa != level)
error ("-mips%d conflicts with the other architecture options, which specify a MIPS%d processor",
level, mips_isa);
}
else
{
mips_set_architecture (mips_cpu_info_from_isa (level));
if (mips_arch_info == 0)
error ("bad value (%s) for -mips switch", mips_isa_string);
}
}
if (mips_arch_info == 0)
{
#ifdef MIPS_CPU_STRING_DEFAULT
mips_set_architecture (mips_parse_cpu ("default CPU",
MIPS_CPU_STRING_DEFAULT));
#else
mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
#endif
}
if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
error ("-march=%s is not compatible with the selected ABI",
mips_arch_info->name);
/* Optimize for mips_arch, unless -mtune selects a different processor. */
if (mips_tune_info == 0)
mips_set_tune (mips_arch_info);
if ((target_flags_explicit & MASK_64BIT) != 0)
{
/* The user specified the size of the integer registers. Make sure
it agrees with the ABI and ISA. */
if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
error ("-mgp64 used with a 32-bit processor");
else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
error ("-mgp32 used with a 64-bit ABI");
else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
error ("-mgp64 used with a 32-bit ABI");
}
else
{
/* Infer the integer register size from the ABI and processor.
Restrict ourselves to 32-bit registers if that's all the
processor has, or if the ABI cannot handle 64-bit registers. */
if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
target_flags &= ~MASK_64BIT;
else
target_flags |= MASK_64BIT;
}
if ((target_flags_explicit & MASK_FLOAT64) != 0)
{
/* Really, -mfp32 and -mfp64 are ornamental options. There's
only one right answer here. */
if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
else if (!TARGET_64BIT && TARGET_FLOAT64)
error ("unsupported combination: %s", "-mgp32 -mfp64");
else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
error ("unsupported combination: %s", "-mfp64 -msingle-float");
}
else
{
/* -msingle-float selects 32-bit float registers. Otherwise the
float registers should be the same size as the integer ones. */
if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
target_flags |= MASK_FLOAT64;
else
target_flags &= ~MASK_FLOAT64;
}
/* End of code shared with GAS. */
if ((target_flags_explicit & MASK_LONG64) == 0)
{
/* If no type size setting options (-mlong64,-mint64,-mlong32)
were used, then set the type sizes. In the EABI in 64 bit mode,
longs and pointers are 64 bits. Likewise for the SGI Irix6 N64
ABI. */
if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
target_flags |= MASK_LONG64;
else
target_flags &= ~MASK_LONG64;
}
if (MIPS_MARCH_CONTROLS_SOFT_FLOAT
&& (target_flags_explicit & MASK_SOFT_FLOAT) == 0)
{
/* For some configurations, it is useful to have -march control
the default setting of MASK_SOFT_FLOAT. */
switch ((int) mips_arch)
{
case PROCESSOR_R4100:
case PROCESSOR_R4120:
target_flags |= MASK_SOFT_FLOAT;
break;
default:
target_flags &= ~MASK_SOFT_FLOAT;
break;
}
}
if (mips_abi != ABI_32 && mips_abi != ABI_O64)
flag_pcc_struct_return = 0;
if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
{
/* If neither -mbranch-likely nor -mno-branch-likely was given
on the command line, set MASK_BRANCHLIKELY based on the target
architecture.
By default, we enable use of Branch Likely instructions on
all architectures which support them except for MIPS32 and MIPS64
(i.e., the generic MIPS32 and MIPS64 ISAs, and processors which
implement them).
The MIPS32 and MIPS64 architecture specifications say "Software
is strongly encouraged to avoid use of Branch Likely
instructions, as they will be removed from a future revision
of the [MIPS32 and MIPS64] architecture." Therefore, we do not
issue those instructions unless instructed to do so by
-mbranch-likely. */
if (ISA_HAS_BRANCHLIKELY && !(ISA_MIPS32 || ISA_MIPS64))
target_flags |= MASK_BRANCHLIKELY;
else
target_flags &= ~MASK_BRANCHLIKELY;
}
if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
warning ("generation of Branch Likely instructions enabled, but not supported by architecture");
/* -fpic (-KPIC) is the default when TARGET_ABICALLS is defined. We need
to set flag_pic so that the LEGITIMATE_PIC_OPERAND_P macro will work. */
/* ??? -non_shared turns off pic code generation, but this is not
implemented. */
if (TARGET_ABICALLS)
{
mips_abicalls = MIPS_ABICALLS_YES;
flag_pic = 1;
if (mips_section_threshold > 0)
warning ("-G is incompatible with PIC code which is the default");
}
else
mips_abicalls = MIPS_ABICALLS_NO;
/* -membedded-pic is a form of PIC code suitable for embedded
systems. All calls are made using PC relative addressing, and
all data is addressed using the $gp register. This requires gas,
which does most of the work, and GNU ld, which automatically
expands PC relative calls which are out of range into a longer
instruction sequence. All gcc really does differently is
generate a different sequence for a switch. */
if (TARGET_EMBEDDED_PIC)
{
flag_pic = 1;
if (TARGET_ABICALLS)
warning ("-membedded-pic and -mabicalls are incompatible");
if (g_switch_set)
warning ("-G and -membedded-pic are incompatible");
/* Setting mips_section_threshold is not required, because gas
will force everything to be GP addressable anyhow, but
setting it will cause gcc to make better estimates of the
number of instructions required to access a particular data
item. */
mips_section_threshold = 0x7fffffff;
}
/* This optimization requires a linker that can support a R_MIPS_LO16
relocation which is not immediately preceded by a R_MIPS_HI16 relocation.
GNU ld has this support, but not all other MIPS linkers do, so we enable
this optimization only if the user requests it, or if GNU ld is the
standard linker for this configuration. */
/* ??? This does not work when target addresses are DImode.
This is because we are missing DImode high/lo_sum patterns. */
if (TARGET_GAS && ! TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES && optimize && ! flag_pic
&& Pmode == SImode)
mips_split_addresses = 1;
else
mips_split_addresses = 0;
/* -mrnames says to use the MIPS software convention for register
names instead of the hardware names (ie, $a0 instead of $4).
We do this by switching the names in mips_reg_names, which the
reg_names points into via the REGISTER_NAMES macro. */
if (TARGET_NAME_REGS)
memcpy (mips_reg_names, mips_sw_reg_names, sizeof (mips_reg_names));
/* When compiling for the mips16, we can not use floating point. We
record the original hard float value in mips16_hard_float. */
if (TARGET_MIPS16)
{
if (TARGET_SOFT_FLOAT)
mips16_hard_float = 0;
else
mips16_hard_float = 1;
target_flags |= MASK_SOFT_FLOAT;
/* Don't run the scheduler before reload, since it tends to
increase register pressure. */
flag_schedule_insns = 0;
}
/* We put -mentry in TARGET_OPTIONS rather than TARGET_SWITCHES only
to avoid using up another bit in target_flags. */
if (mips_entry_string != NULL)
{
if (*mips_entry_string != '\0')
error ("invalid option `entry%s'", mips_entry_string);
if (! TARGET_MIPS16)
warning ("-mentry is only meaningful with -mips-16");
else
mips_entry = 1;
}
/* We copy TARGET_MIPS16 into the mips16 global variable, so that
attributes can access it. */
if (TARGET_MIPS16)
mips16 = 1;
else
mips16 = 0;
#ifdef MIPS_TFMODE_FORMAT
real_format_for_mode[TFmode - QFmode] = &MIPS_TFMODE_FORMAT;
#endif
mips_print_operand_punct['?'] = 1;
mips_print_operand_punct['#'] = 1;
mips_print_operand_punct['&'] = 1;
mips_print_operand_punct['!'] = 1;
mips_print_operand_punct['*'] = 1;
mips_print_operand_punct['@'] = 1;
mips_print_operand_punct['.'] = 1;
mips_print_operand_punct['('] = 1;
mips_print_operand_punct[')'] = 1;
mips_print_operand_punct['['] = 1;
mips_print_operand_punct[']'] = 1;
mips_print_operand_punct['<'] = 1;
mips_print_operand_punct['>'] = 1;
mips_print_operand_punct['{'] = 1;
mips_print_operand_punct['}'] = 1;
mips_print_operand_punct['^'] = 1;
mips_print_operand_punct['$'] = 1;
mips_print_operand_punct['+'] = 1;
mips_print_operand_punct['~'] = 1;
mips_char_to_class['d'] = TARGET_MIPS16 ? M16_REGS : GR_REGS;
mips_char_to_class['e'] = M16_NA_REGS;
mips_char_to_class['t'] = T_REG;
mips_char_to_class['f'] = (TARGET_HARD_FLOAT ? FP_REGS : NO_REGS);
mips_char_to_class['h'] = HI_REG;
mips_char_to_class['l'] = LO_REG;
mips_char_to_class['a'] = HILO_REG;
mips_char_to_class['x'] = MD_REGS;
mips_char_to_class['b'] = ALL_REGS;
mips_char_to_class['y'] = GR_REGS;
mips_char_to_class['z'] = ST_REGS;
mips_char_to_class['B'] = COP0_REGS;
mips_char_to_class['C'] = COP2_REGS;
mips_char_to_class['D'] = COP3_REGS;
/* Set up array to map GCC register number to debug register number.
Ignore the special purpose register numbers. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
mips_dbx_regno[i] = -1;
start = GP_DBX_FIRST - GP_REG_FIRST;
for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
start = FP_DBX_FIRST - FP_REG_FIRST;
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
mips_dbx_regno[i] = i + start;
/* Set up array giving whether a given register can hold a given mode.
At present, restrict ints from being in FP registers, because reload
is a little enthusiastic about storing extra values in FP registers,
and this is not good for things like OS kernels. Also, due to the
mandatory delay, it is as fast to load from cached memory as to move
from the FP register. */
for (mode = VOIDmode;
mode != MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int)mode + 1))
{
register int size = GET_MODE_SIZE (mode);
register enum mode_class class = GET_MODE_CLASS (mode);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
register int temp;
if (mode == CCmode)
{
if (! ISA_HAS_8CC)
temp = (regno == FPSW_REGNUM);
else
temp = (ST_REG_P (regno) || GP_REG_P (regno)
|| FP_REG_P (regno));
}
else if (GP_REG_P (regno))
temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
else if (FP_REG_P (regno))
temp = (((regno % FP_INC) == 0
/* I think this change is OK regardless of abi, but
I'm being cautions untill I can test this more.
HARD_REGNO_MODE_OK is about whether or not you
can move to and from a register without changing
the value, not about whether math works on the
register. */
|| (mips_abi == ABI_MEABI && size <= 4))
&& (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
&& size <= UNITS_PER_FPVALUE)
/* Allow integer modes that fit into a single
register. We need to put integers into FPRs
when using instructions like cvt and trunc. */
|| (class == MODE_INT && size <= UNITS_PER_FPREG)
/* Allow TFmode for CCmode reloads. */
|| (ISA_HAS_8CC && mode == TFmode)));
else if (MD_REG_P (regno))
temp = (class == MODE_INT
&& (size <= UNITS_PER_WORD
|| (regno == MD_REG_FIRST
&& size == 2 * UNITS_PER_WORD)));
else if (ALL_COP_REG_P (regno))
temp = (class == MODE_INT && size <= UNITS_PER_WORD);
else
temp = 0;
mips_hard_regno_mode_ok[(int)mode][regno] = temp;
}
}
/* Save GPR registers in word_mode sized hunks. word_mode hasn't been
initialized yet, so we can't use that here. */
gpr_mode = TARGET_64BIT ? DImode : SImode;
/* Provide default values for align_* for 64-bit targets. */
if (TARGET_64BIT && !TARGET_MIPS16)
{
if (align_loops == 0)
align_loops = 8;
if (align_jumps == 0)
align_jumps = 8;
if (align_functions == 0)
align_functions = 8;
}
/* Function to allocate machine-dependent function status. */
init_machine_status = &mips_init_machine_status;
}
/* Implement CONDITIONAL_REGISTER_USAGE. */
void
mips_conditional_register_usage ()
{
if (!TARGET_HARD_FLOAT)
{
int regno;
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
fixed_regs[regno] = call_used_regs[regno] = 1;
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
fixed_regs[regno] = call_used_regs[regno] = 1;
}
else if (! ISA_HAS_8CC)
{
int regno;
/* We only have a single condition code register. We
implement this by hiding all the condition code registers,
and generating RTL that refers directly to ST_REG_FIRST. */
for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
fixed_regs[regno] = call_used_regs[regno] = 1;
}
/* In mips16 mode, we permit the $t temporary registers to be used
for reload. We prohibit the unused $s registers, since they
are caller saved, and saving them via a mips16 register would
probably waste more time than just reloading the value. */
if (TARGET_MIPS16)
{
fixed_regs[18] = call_used_regs[18] = 1;
fixed_regs[19] = call_used_regs[19] = 1;
fixed_regs[20] = call_used_regs[20] = 1;
fixed_regs[21] = call_used_regs[21] = 1;
fixed_regs[22] = call_used_regs[22] = 1;
fixed_regs[23] = call_used_regs[23] = 1;
fixed_regs[26] = call_used_regs[26] = 1;
fixed_regs[27] = call_used_regs[27] = 1;
fixed_regs[30] = call_used_regs[30] = 1;
}
/* fp20-23 are now caller saved. */
if (mips_abi == ABI_64)
{
int regno;
for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
call_really_used_regs[regno] = call_used_regs[regno] = 1;
}
/* odd registers from fp21 to fp31 are now caller saved. */
if (mips_abi == ABI_N32 || mips_abi == ABI_MEABI)
{
int regno;
for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
call_really_used_regs[regno] = call_used_regs[regno] = 1;
}
}
/* Allocate a chunk of memory for per-function machine-dependent data. */
static struct machine_function *
mips_init_machine_status ()
{
return ((struct machine_function *)
ggc_alloc_cleared (sizeof (struct machine_function)));
}
/* On the mips16, we want to allocate $24 (T_REG) before other
registers for instructions for which it is possible. This helps
avoid shuffling registers around in order to set up for an xor,
encouraging the compiler to use a cmp instead. */
void
mips_order_regs_for_local_alloc ()
{
register int i;
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_alloc_order[i] = i;
if (TARGET_MIPS16)
{
/* It really doesn't matter where we put register 0, since it is
a fixed register anyhow. */
reg_alloc_order[0] = 24;
reg_alloc_order[24] = 0;
}
}
/* The MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. So, we do the adjustment here. The arg pointer (which
is eliminated) points to the virtual frame pointer, while the frame
pointer (which may be eliminated) points to the stack pointer after
the initial adjustments. */
HOST_WIDE_INT
mips_debugger_offset (addr, offset)
rtx addr;
HOST_WIDE_INT offset;
{
rtx offset2 = const0_rtx;
rtx reg = eliminate_constant_term (addr, &offset2);
if (offset == 0)
offset = INTVAL (offset2);
if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
|| reg == hard_frame_pointer_rtx)
{
HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
? compute_frame_size (get_frame_size ())
: cfun->machine->frame.total_size;
/* MIPS16 frame is smaller */
if (frame_pointer_needed && TARGET_MIPS16)
frame_size -= current_function_outgoing_args_size;
offset = offset - frame_size;
}
/* sdbout_parms does not want this to crash for unrecognized cases. */
#if 0
else if (reg != arg_pointer_rtx)
abort_with_insn (addr, "mips_debugger_offset called with non stack/frame/arg pointer");
#endif
return offset;
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
The MIPS specific codes are:
'X' X is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
'x' X is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
'd' output integer constant in decimal,
'z' if the operand is 0, use $0 instead of normal operand.
'D' print second part of double-word register or memory operand.
'L' print low-order register of double-word register operand.
'M' print high-order register of double-word register operand.
'C' print part of opcode for a branch condition.
'F' print part of opcode for a floating-point branch condition.
'N' print part of opcode for a branch condition, inverted.
'W' print part of opcode for a floating-point branch condition, inverted.
'S' X is CODE_LABEL, print with prefix of "LS" (for embedded switch).
'B' print 'z' for EQ, 'n' for NE
'b' print 'n' for EQ, 'z' for NE
'T' print 'f' for EQ, 't' for NE
't' print 't' for EQ, 'f' for NE
'Z' print register and a comma, but print nothing for $fcc0
'(' Turn on .set noreorder
')' Turn on .set reorder
'[' Turn on .set noat
']' Turn on .set at
'<' Turn on .set nomacro
'>' Turn on .set macro
'{' Turn on .set volatile (not GAS)
'}' Turn on .set novolatile (not GAS)
'&' Turn on .set noreorder if filling delay slots
'*' Turn on both .set noreorder and .set nomacro if filling delay slots
'!' Turn on .set nomacro if filling delay slots
'#' Print nop if in a .set noreorder section.
'?' Print 'l' if we are to use a branch likely instead of normal branch.
'@' Print the name of the assembler temporary register (at or $1).
'.' Print the name of the register with a hard-wired zero (zero or $0).
'^' Print the name of the pic call-through register (t9 or $25).
'$' Print the name of the stack pointer register (sp or $29).
'+' Print the name of the gp register (gp or $28).
'~' Output an branch alignment to LABEL_ALIGN(NULL). */
void
print_operand (file, op, letter)
FILE *file; /* file to write to */
rtx op; /* operand to print */
int letter; /* %<letter> or 0 */
{
register enum rtx_code code;
if (PRINT_OPERAND_PUNCT_VALID_P (letter))
{
switch (letter)
{
case '?':
if (mips_branch_likely)
putc ('l', file);
break;
case '@':
fputs (reg_names [GP_REG_FIRST + 1], file);
break;
case '^':
fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
break;
case '.':
fputs (reg_names [GP_REG_FIRST + 0], file);
break;
case '$':
fputs (reg_names[STACK_POINTER_REGNUM], file);
break;
case '+':
fputs (reg_names[GP_REG_FIRST + 28], file);
break;
case '&':
if (final_sequence != 0 && set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
break;
case '*':
if (final_sequence != 0)
{
if (set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
if (set_nomacro++ == 0)
fputs (".set\tnomacro\n\t", file);
}
break;
case '!':
if (final_sequence != 0 && set_nomacro++ == 0)
fputs ("\n\t.set\tnomacro", file);
break;
case '#':
if (set_noreorder != 0)
fputs ("\n\tnop", file);
else if (TARGET_STATS)
fputs ("\n\t#nop", file);
break;
case '(':
if (set_noreorder++ == 0)
fputs (".set\tnoreorder\n\t", file);
break;
case ')':
if (set_noreorder == 0)
error ("internal error: %%) found without a %%( in assembler pattern");
else if (--set_noreorder == 0)
fputs ("\n\t.set\treorder", file);
break;
case '[':
if (set_noat++ == 0)
fputs (".set\tnoat\n\t", file);
break;
case ']':
if (set_noat == 0)
error ("internal error: %%] found without a %%[ in assembler pattern");
else if (--set_noat == 0)
fputs ("\n\t.set\tat", file);
break;
case '<':
if (set_nomacro++ == 0)
fputs (".set\tnomacro\n\t", file);
break;
case '>':
if (set_nomacro == 0)
error ("internal error: %%> found without a %%< in assembler pattern");
else if (--set_nomacro == 0)
fputs ("\n\t.set\tmacro", file);
break;
case '{':
if (set_volatile++ == 0)
fprintf (file, "%s.set\tvolatile\n\t", TARGET_MIPS_AS ? "" : "#");
break;
case '}':
if (set_volatile == 0)
error ("internal error: %%} found without a %%{ in assembler pattern");
else if (--set_volatile == 0)
fprintf (file, "\n\t%s.set\tnovolatile", (TARGET_MIPS_AS) ? "" : "#");
break;
case '~':
{
if (align_labels_log > 0)
ASM_OUTPUT_ALIGN (file, align_labels_log);
}
break;
default:
error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
break;
}
return;
}
if (! op)
{
error ("PRINT_OPERAND null pointer");
return;
}
code = GET_CODE (op);
if (code == SIGN_EXTEND)
op = XEXP (op, 0), code = GET_CODE (op);
if (letter == 'C')
switch (code)
{
case EQ: fputs ("eq", file); break;
case NE: fputs ("ne", file); break;
case GT: fputs ("gt", file); break;
case GE: fputs ("ge", file); break;
case LT: fputs ("lt", file); break;
case LE: fputs ("le", file); break;
case GTU: fputs ("gtu", file); break;
case GEU: fputs ("geu", file); break;
case LTU: fputs ("ltu", file); break;
case LEU: fputs ("leu", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%C");
}
else if (letter == 'N')
switch (code)
{
case EQ: fputs ("ne", file); break;
case NE: fputs ("eq", file); break;
case GT: fputs ("le", file); break;
case GE: fputs ("lt", file); break;
case LT: fputs ("ge", file); break;
case LE: fputs ("gt", file); break;
case GTU: fputs ("leu", file); break;
case GEU: fputs ("ltu", file); break;
case LTU: fputs ("geu", file); break;
case LEU: fputs ("gtu", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%N");
}
else if (letter == 'F')
switch (code)
{
case EQ: fputs ("c1f", file); break;
case NE: fputs ("c1t", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%F");
}
else if (letter == 'W')
switch (code)
{
case EQ: fputs ("c1t", file); break;
case NE: fputs ("c1f", file); break;
default:
abort_with_insn (op, "PRINT_OPERAND, invalid insn for %%W");
}
else if (letter == 'S')
{
char buffer[100];
ASM_GENERATE_INTERNAL_LABEL (buffer, "LS", CODE_LABEL_NUMBER (op));
assemble_name (file, buffer);
}
else if (letter == 'Z')
{
register int regnum;
if (code != REG)
abort ();
regnum = REGNO (op);
if (! ST_REG_P (regnum))
abort ();
if (regnum != ST_REG_FIRST)
fprintf (file, "%s,", reg_names[regnum]);
}
else if (code == REG || code == SUBREG)
{
register int regnum;
if (code == REG)
regnum = REGNO (op);
else
regnum = true_regnum (op);
if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
|| (letter == 'L' && WORDS_BIG_ENDIAN)
|| letter == 'D')
regnum++;
fprintf (file, "%s", reg_names[regnum]);
}
else if (code == MEM)
{
if (letter == 'D')
output_address (plus_constant (XEXP (op, 0), 4));
else
output_address (XEXP (op, 0));
}
else if (code == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
{
char s[60];
real_to_decimal (s, CONST_DOUBLE_REAL_VALUE (op), sizeof (s), 0, 1);
fputs (s, file);
}
else if (letter == 'x' && GET_CODE (op) == CONST_INT)
fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
else if (letter == 'X' && GET_CODE(op) == CONST_INT)
fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
else if (letter == 'd' && GET_CODE(op) == CONST_INT)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
else if (letter == 'z' && GET_CODE (op) == CONST_INT && INTVAL (op) == 0)
fputs (reg_names[GP_REG_FIRST], file);
else if (letter == 'd' || letter == 'x' || letter == 'X')
output_operand_lossage ("invalid use of %%d, %%x, or %%X");
else if (letter == 'B')
fputs (code == EQ ? "z" : "n", file);
else if (letter == 'b')
fputs (code == EQ ? "n" : "z", file);
else if (letter == 'T')
fputs (code == EQ ? "f" : "t", file);
else if (letter == 't')
fputs (code == EQ ? "t" : "f", file);
else if (code == CONST && GET_CODE (XEXP (op, 0)) == REG)
{
/* This case arises on the mips16; see mips16_gp_pseudo_reg. */
print_operand (file, XEXP (op, 0), letter);
}
else if (TARGET_MIPS16 && code == CONST && mips16_gp_offset_p (op))
{
fputs ("%gprel(", file);
mips16_output_gp_offset (file, op);
fputs (")", file);
}
else
output_addr_const (file, op);
}
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression. */
void
print_operand_address (file, addr)
FILE *file;
rtx addr;
{
if (!addr)
error ("PRINT_OPERAND_ADDRESS, null pointer");
else
switch (GET_CODE (addr))
{
case REG:
if (! TARGET_MIPS16 && REGNO (addr) == ARG_POINTER_REGNUM)
abort_with_insn (addr, "arg pointer not eliminated");
fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
break;
case LO_SUM:
{
register rtx arg0 = XEXP (addr, 0);
register rtx arg1 = XEXP (addr, 1);
if (! mips_split_addresses)
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, Spurious LO_SUM");
if (GET_CODE (arg0) != REG)
abort_with_insn (addr,
"PRINT_OPERAND_ADDRESS, LO_SUM with #1 not REG");
fprintf (file, "%%lo(");
print_operand_address (file, arg1);
fprintf (file, ")(%s)", reg_names [REGNO (arg0)]);
}
break;
case PLUS:
{
register rtx reg = 0;
register rtx offset = 0;
register rtx arg0 = XEXP (addr, 0);
register rtx arg1 = XEXP (addr, 1);
if (GET_CODE (arg0) == REG)
{
reg = arg0;
offset = arg1;
if (GET_CODE (offset) == REG)
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
}
else if (GET_CODE (arg1) == REG)
reg = arg1, offset = arg0;
else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
{
output_addr_const (file, addr);
break;
}
else
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
if (! CONSTANT_P (offset))
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #2");
if (REGNO (reg) == ARG_POINTER_REGNUM)
abort_with_insn (addr, "arg pointer not eliminated");
if (TARGET_MIPS16
&& GET_CODE (offset) == CONST
&& mips16_gp_offset_p (offset))
{
fputs ("%gprel(", file);
mips16_output_gp_offset (file, offset);
fputs (")", file);
}
else
output_addr_const (file, offset);
fprintf (file, "(%s)", reg_names [REGNO (reg)]);
}
break;
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
output_addr_const (file, addr);
break;
default:
abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, invalid insn #1");
break;
}
}
/* Target hook for assembling integer objects. It appears that the Irix
6 assembler can't handle 64-bit decimal integers, so avoid printing
such an integer here. */
static bool
mips_assemble_integer (x, size, aligned_p)
rtx x;
unsigned int size;
int aligned_p;
{
if ((TARGET_64BIT || TARGET_GAS) && size == 8 && aligned_p)
{
fputs ("\t.dword\t", asm_out_file);
if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (x) != CONST_INT)
output_addr_const (asm_out_file, x);
else
print_operand (asm_out_file, x, 'X');
fputc ('\n', asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
/* If optimizing for the global pointer, keep track of all of the externs, so
that at the end of the file, we can emit the appropriate .extern
declaration for them, before writing out the text section. We assume all
names passed to us are in the permanent obstack, so they will be valid at
the end of the compilation.
If we have -G 0, or the extern size is unknown, or the object is in a user
specified section that is not .sbss/.sdata, don't bother emitting the
.externs. In the case of user specified sections this behavior is
required as otherwise GAS will think the object lives in .sbss/.sdata. */
int
mips_output_external (file, decl, name)
FILE *file ATTRIBUTE_UNUSED;
tree decl;
const char *name;
{
register struct extern_list *p;
int len;
tree section_name;
if (TARGET_GP_OPT
&& TREE_CODE (decl) != FUNCTION_DECL
&& !DECL_COMDAT (decl)
&& (len = int_size_in_bytes (TREE_TYPE (decl))) > 0
&& ((section_name = DECL_SECTION_NAME (decl)) == NULL
|| strcmp (TREE_STRING_POINTER (section_name), ".sbss") == 0
|| strcmp (TREE_STRING_POINTER (section_name), ".sdata") == 0))
{
p = (struct extern_list *) xmalloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = len;
extern_head = p;
}
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
if (TREE_CODE (decl) == FUNCTION_DECL
/* ??? Don't include alloca, since gcc will always expand it
inline. If we don't do this, the C++ library fails to build. */
&& strcmp (name, "alloca")
/* ??? Don't include __builtin_next_arg, because then gcc will not
bootstrap under Irix 5.1. */
&& strcmp (name, "__builtin_next_arg"))
{
p = (struct extern_list *) xmalloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = -1;
extern_head = p;
}
#endif
return 0;
}
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
int
mips_output_external_libcall (file, name)
FILE *file ATTRIBUTE_UNUSED;
const char *name;
{
register struct extern_list *p;
p = (struct extern_list *) xmalloc (sizeof (struct extern_list));
p->next = extern_head;
p->name = name;
p->size = -1;
extern_head = p;
return 0;
}
#endif
/* Emit a new filename to a stream. If this is MIPS ECOFF, watch out
for .file's that start within a function. If we are smuggling stabs, try to
put out a MIPS ECOFF file and a stab. */
void
mips_output_filename (stream, name)
FILE *stream;
const char *name;
{
static int first_time = 1;
char ltext_label_name[100];
/* If we are emitting DWARF-2, let dwarf2out handle the ".file"
directives. */
if (write_symbols == DWARF2_DEBUG)
return;
else if (first_time)
{
first_time = 0;
SET_FILE_NUMBER ();
current_function_file = name;
ASM_OUTPUT_FILENAME (stream, num_source_filenames, name);
/* This tells mips-tfile that stabs will follow. */
if (!TARGET_GAS && write_symbols == DBX_DEBUG)
fprintf (stream, "\t#@stabs\n");
}
else if (write_symbols == DBX_DEBUG)
{
ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
fprintf (stream, "%s", ASM_STABS_OP);
output_quoted_string (stream, name);
fprintf (stream, ",%d,0,0,%s\n", N_SOL, <ext_label_name[1]);
}
else if (name != current_function_file
&& strcmp (name, current_function_file) != 0)
{
if (inside_function && !TARGET_GAS)
{
if (!file_in_function_warning)
{
file_in_function_warning = 1;
ignore_line_number = 1;
warning ("MIPS ECOFF format does not allow changing filenames within functions with #line");
}
}
else
{
SET_FILE_NUMBER ();
current_function_file = name;
ASM_OUTPUT_FILENAME (stream, num_source_filenames, name);
}
}
}
/* Emit a linenumber. For encapsulated stabs, we need to put out a stab
as well as a .loc, since it is possible that MIPS ECOFF might not be
able to represent the location for inlines that come from a different
file. */
void
mips_output_lineno (stream, line)
FILE *stream;
int line;
{
if (write_symbols == DBX_DEBUG)
{
++sym_lineno;
fprintf (stream, "%sLM%d:\n%s%d,0,%d,%sLM%d\n",
LOCAL_LABEL_PREFIX, sym_lineno, ASM_STABN_OP, N_SLINE, line,
LOCAL_LABEL_PREFIX, sym_lineno);
}
else
{
fprintf (stream, "\n\t%s.loc\t%d %d\n",
(ignore_line_number) ? "#" : "",
num_source_filenames, line);
LABEL_AFTER_LOC (stream);
}
}
/* Output an ASCII string, in a space-saving way. */
void
mips_output_ascii (stream, string_param, len)
FILE *stream;
const char *string_param;
size_t len;
{
size_t i;
int cur_pos = 17;
register const unsigned char *string =
(const unsigned char *)string_param;
fprintf (stream, "\t.ascii\t\"");
for (i = 0; i < len; i++)
{
register int c = string[i];
switch (c)
{
case '\"':
case '\\':
putc ('\\', stream);
putc (c, stream);
cur_pos += 2;
break;
case TARGET_NEWLINE:
fputs ("\\n", stream);
if (i+1 < len
&& (((c = string[i+1]) >= '\040' && c <= '~')
|| c == TARGET_TAB))
cur_pos = 32767; /* break right here */
else
cur_pos += 2;
break;
case TARGET_TAB:
fputs ("\\t", stream);
cur_pos += 2;
break;
case TARGET_FF:
fputs ("\\f", stream);
cur_pos += 2;
break;
case TARGET_BS:
fputs ("\\b", stream);
cur_pos += 2;
break;
case TARGET_CR:
fputs ("\\r", stream);
cur_pos += 2;
break;
default:
if (c >= ' ' && c < 0177)
{
putc (c, stream);
cur_pos++;
}
else
{
fprintf (stream, "\\%03o", c);
cur_pos += 4;
}
}
if (cur_pos > 72 && i+1 < len)
{
cur_pos = 17;
fprintf (stream, "\"\n\t.ascii\t\"");
}
}
fprintf (stream, "\"\n");
}
/* If defined, a C statement to be executed just prior to the output of
assembler code for INSN, to modify the extracted operands so they will be
output differently.
Here the argument OPVEC is the vector containing the operands extracted
from INSN, and NOPERANDS is the number of elements of the vector which
contain meaningful data for this insn. The contents of this vector are
what will be used to convert the insn template into assembler code, so you
can change the assembler output by changing the contents of the vector.
We use it to check if the current insn needs a nop in front of it because
of load delays, and also to update the delay slot statistics. */
/* ??? There is no real need for this function, because it never actually
emits a NOP anymore. */
void
final_prescan_insn (insn, opvec, noperands)
rtx insn;
rtx opvec[] ATTRIBUTE_UNUSED;
int noperands ATTRIBUTE_UNUSED;
{
if (dslots_number_nops > 0)
{
rtx pattern = PATTERN (insn);
int length = get_attr_length (insn);
/* Do we need to emit a NOP? */
if (length == 0
|| (mips_load_reg != 0 && reg_mentioned_p (mips_load_reg, pattern))
|| (mips_load_reg2 != 0 && reg_mentioned_p (mips_load_reg2, pattern))
|| (mips_load_reg3 != 0 && reg_mentioned_p (mips_load_reg3, pattern))
|| (mips_load_reg4 != 0
&& reg_mentioned_p (mips_load_reg4, pattern)))
fputs ("\t#nop\n", asm_out_file);
else
dslots_load_filled++;
while (--dslots_number_nops > 0)
fputs ("\t#nop\n", asm_out_file);
mips_load_reg = 0;
mips_load_reg2 = 0;
mips_load_reg3 = 0;
mips_load_reg4 = 0;
}
if (TARGET_STATS
&& (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN))
dslots_jump_total++;
}
/* Output at beginning of assembler file.
If we are optimizing to use the global pointer, create a temporary file to
hold all of the text stuff, and write it out to the end. This is needed
because the MIPS assembler is evidently one pass, and if it hasn't seen the
relevant .comm/.lcomm/.extern/.sdata declaration when the code is
processed, it generates a two instruction sequence. */
void
mips_asm_file_start (stream)
FILE *stream;
{
ASM_OUTPUT_SOURCE_FILENAME (stream, main_input_filename);
/* Versions of the MIPS assembler before 2.20 generate errors if a branch
inside of a .set noreorder section jumps to a label outside of the .set
noreorder section. Revision 2.20 just set nobopt silently rather than
fixing the bug. */
if (TARGET_MIPS_AS && optimize && flag_delayed_branch)
fprintf (stream, "\t.set\tnobopt\n");
if (TARGET_GAS)
{
#if defined(OBJECT_FORMAT_ELF) && !(TARGET_IRIX5 || TARGET_IRIX6)
/* Generate a special section to describe the ABI switches used to
produce the resultant binary. This used to be done by the assembler
setting bits in the ELF header's flags field, but we have run out of
bits. GDB needs this information in order to be able to correctly
debug these binaries. See the function mips_gdbarch_init() in
gdb/mips-tdep.c. This is unnecessary for the IRIX 5/6 ABIs and
causes unnecessary IRIX 6 ld warnings. */
const char * abi_string = NULL;
switch (mips_abi)
{
case ABI_32: abi_string = "abi32"; break;
case ABI_N32: abi_string = "abiN32"; break;
case ABI_64: abi_string = "abi64"; break;
case ABI_O64: abi_string = "abiO64"; break;
case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
case ABI_MEABI:abi_string = TARGET_64BIT ? "meabi64" : "meabi32"; break;
default:
abort ();
}
/* Note - we use fprintf directly rather than called named_section()
because in this way we can avoid creating an allocated section. We
do not want this section to take up any space in the running
executable. */
fprintf (stream, "\t.section .mdebug.%s\n", abi_string);
/* Restore the default section. */
fprintf (stream, "\t.previous\n");
#endif
}
/* Generate the pseudo ops that System V.4 wants. */
#ifndef ABICALLS_ASM_OP
#define ABICALLS_ASM_OP "\t.abicalls"
#endif
if (TARGET_ABICALLS)
/* ??? but do not want this (or want pic0) if -non-shared? */
fprintf (stream, "%s\n", ABICALLS_ASM_OP);
if (TARGET_MIPS16)
fprintf (stream, "\t.set\tmips16\n");
/* This code exists so that we can put all externs before all symbol
references. This is necessary for the MIPS assembler's global pointer
optimizations to work. */
if (TARGET_FILE_SWITCHING)
{
asm_out_data_file = stream;
asm_out_text_file = tmpfile ();
}
else
asm_out_data_file = asm_out_text_file = stream;
if (flag_verbose_asm)
fprintf (stream, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
ASM_COMMENT_START,
mips_section_threshold, mips_arch_info->name, mips_isa);
}
/* If we are optimizing the global pointer, emit the text section now and any
small externs which did not have .comm, etc that are needed. Also, give a
warning if the data area is more than 32K and -pic because 3 instructions
are needed to reference the data pointers. */
void
mips_asm_file_end (file)
FILE *file;
{
tree name_tree;
struct extern_list *p;
if (extern_head)
{
fputs ("\n", file);
for (p = extern_head; p != 0; p = p->next)
{
name_tree = get_identifier (p->name);
/* Positively ensure only one .extern for any given symbol. */
if (! TREE_ASM_WRITTEN (name_tree))
{
TREE_ASM_WRITTEN (name_tree) = 1;
#ifdef ASM_OUTPUT_UNDEF_FUNCTION
if (p->size == -1)
ASM_OUTPUT_UNDEF_FUNCTION (file, p->name);
else
#endif
{
fputs ("\t.extern\t", file);
assemble_name (file, p->name);
fprintf (file, ", %d\n", p->size);
}
}
}
}
if (TARGET_FILE_SWITCHING)
{
fprintf (file, "\n\t.text\n");
copy_file_data (file, asm_out_text_file);
}
}
static void
copy_file_data (to, from)
FILE *to, *from;
{
char buffer[8192];
size_t len;
rewind (from);
if (ferror (from))
fatal_io_error ("can't rewind temp file");
while ((len = fread (buffer, 1, sizeof (buffer), from)) > 0)
if (fwrite (buffer, 1, len, to) != len)
fatal_io_error ("can't write to output file");
if (ferror (from))
fatal_io_error ("can't read from temp file");
if (fclose (from))
fatal_io_error ("can't close temp file");
}
/* Emit either a label, .comm, or .lcomm directive, and mark that the symbol
is used, so that we don't emit an .extern for it in mips_asm_file_end. */
void
mips_declare_object (stream, name, init_string, final_string, size)
FILE *stream;
const char *name;
const char *init_string;
const char *final_string;
int size;
{
fputs (init_string, stream); /* "", "\t.comm\t", or "\t.lcomm\t" */
assemble_name (stream, name);
fprintf (stream, final_string, size); /* ":\n", ",%u\n", ",%u\n" */
if (TARGET_GP_OPT)
{
tree name_tree = get_identifier (name);
TREE_ASM_WRITTEN (name_tree) = 1;
}
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer.
Mips stack frames look like:
Before call After call
+-----------------------+ +-----------------------+
high | | | |
mem. | | | |
| caller's temps. | | caller's temps. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack. | | arguments on stack. |
| | | |
+-----------------------+ +-----------------------+
| 4 words to save | | 4 words to save |
| arguments passed | | arguments passed |
| in registers, even | | in registers, even |
SP->| if not passed. | VFP->| if not passed. |
+-----------------------+ +-----------------------+
| |
| fp register save |
| |
+-----------------------+
| |
| gp register save |
| |
+-----------------------+
| |
| local variables |
| |
+-----------------------+
| |
| alloca allocations |
| |
+-----------------------+
| |
| GP save for V.4 abi |
| |
+-----------------------+
| |
| arguments on stack |
| |
+-----------------------+
| 4 words to save |
| arguments passed |
| in registers, even |
low SP->| if not passed. |
memory +-----------------------+
*/
HOST_WIDE_INT
compute_frame_size (size)
HOST_WIDE_INT size; /* # of var. bytes allocated */
{
unsigned int regno;
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
HOST_WIDE_INT var_size; /* # bytes that variables take up */
HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
HOST_WIDE_INT extra_size; /* # extra bytes */
HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
long mask; /* mask of saved gp registers */
long fmask; /* mask of saved fp registers */
tree return_type;
gp_reg_size = 0;
fp_reg_size = 0;
mask = 0;
fmask = 0;
extra_size = MIPS_STACK_ALIGN (((TARGET_ABICALLS) ? UNITS_PER_WORD : 0));
var_size = MIPS_STACK_ALIGN (size);
args_size = MIPS_STACK_ALIGN (current_function_outgoing_args_size);
/* The MIPS 3.0 linker does not like functions that dynamically
allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
looks like we are trying to create a second frame pointer to the
function, so allocate some stack space to make it happy. */
if (args_size == 0 && current_function_calls_alloca)
args_size = 4 * UNITS_PER_WORD;
total_size = var_size + args_size + extra_size;
return_type = DECL_RESULT (current_function_decl);
/* Calculate space needed for gp registers. */
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
{
/* $18 is a special case on the mips16. It may be used to call
a function which returns a floating point value, but it is
marked in call_used_regs. $31 is also a special case. When
not using -mentry, it will be used to copy a return value
into the floating point registers if the return value is
floating point. */
if (MUST_SAVE_REGISTER (regno)
|| (TARGET_MIPS16
&& regno == GP_REG_FIRST + 18
&& regs_ever_live[regno])
|| (TARGET_MIPS16
&& regno == GP_REG_FIRST + 31
&& mips16_hard_float
&& ! mips_entry
&& ! aggregate_value_p (return_type)
&& GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
&& GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE))
{
gp_reg_size += GET_MODE_SIZE (gpr_mode);
mask |= 1L << (regno - GP_REG_FIRST);
/* The entry and exit pseudo instructions can not save $17
without also saving $16. */
if (mips_entry
&& regno == GP_REG_FIRST + 17
&& ! MUST_SAVE_REGISTER (GP_REG_FIRST + 16))
{
gp_reg_size += UNITS_PER_WORD;
mask |= 1L << 16;
}
}
}
/* We need to restore these for the handler. */
if (current_function_calls_eh_return)
{
unsigned int i;
for (i = 0; ; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
gp_reg_size += GET_MODE_SIZE (gpr_mode);
mask |= 1L << (regno - GP_REG_FIRST);
}
}
/* This loop must iterate over the same space as its companion in
save_restore_insns. */
for (regno = (FP_REG_LAST - FP_INC + 1);
regno >= FP_REG_FIRST;
regno -= FP_INC)
{
if (regs_ever_live[regno] && !call_used_regs[regno])
{
fp_reg_size += FP_INC * UNITS_PER_FPREG;
fmask |= ((1 << FP_INC) - 1) << (regno - FP_REG_FIRST);
}
}
gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
/* The gp reg is caller saved in the 32 bit ABI, so there is no need
for leaf routines (total_size == extra_size) to save the gp reg.
The gp reg is callee saved in the 64 bit ABI, so all routines must
save the gp reg. This is not a leaf routine if -p, because of the
call to mcount. */
if (total_size == extra_size
&& (mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI)
&& ! current_function_profile)
total_size = extra_size = 0;
else if (TARGET_ABICALLS)
{
/* Add the context-pointer to the saved registers. */
gp_reg_size += UNITS_PER_WORD;
mask |= 1L << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST);
total_size -= gp_reg_rounded;
gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
total_size += gp_reg_rounded;
}
/* Add in space reserved on the stack by the callee for storing arguments
passed in registers. */
if (mips_abi != ABI_32 && mips_abi != ABI_O64)
total_size += MIPS_STACK_ALIGN (current_function_pretend_args_size);
/* The entry pseudo instruction will allocate 32 bytes on the stack. */
if (mips_entry && total_size > 0 && total_size < 32)
total_size = 32;
/* Save other computed information. */
cfun->machine->frame.total_size = total_size;
cfun->machine->frame.var_size = var_size;
cfun->machine->frame.args_size = args_size;
cfun->machine->frame.extra_size = extra_size;
cfun->machine->frame.gp_reg_size = gp_reg_size;
cfun->machine->frame.fp_reg_size = fp_reg_size;
cfun->machine->frame.mask = mask;
cfun->machine->frame.fmask = fmask;
cfun->machine->frame.initialized = reload_completed;
cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
cfun->machine->frame.num_fp = fp_reg_size / (FP_INC * UNITS_PER_FPREG);
if (mask)
{
unsigned long offset;
/* When using mips_entry, the registers are always saved at the
top of the stack. */
if (! mips_entry)
offset = (args_size + extra_size + var_size
+ gp_reg_size - GET_MODE_SIZE (gpr_mode));
else
offset = total_size - GET_MODE_SIZE (gpr_mode);
cfun->machine->frame.gp_sp_offset = offset;
cfun->machine->frame.gp_save_offset = offset - total_size;
}
else
{
cfun->machine->frame.gp_sp_offset = 0;
cfun->machine->frame.gp_save_offset = 0;
}
if (fmask)
{
unsigned long offset = (args_size + extra_size + var_size
+ gp_reg_rounded + fp_reg_size
- FP_INC * UNITS_PER_FPREG);
cfun->machine->frame.fp_sp_offset = offset;
cfun->machine->frame.fp_save_offset = offset - total_size;
}
else
{
cfun->machine->frame.fp_sp_offset = 0;
cfun->machine->frame.fp_save_offset = 0;
}
/* Ok, we're done. */
return total_size;
}
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
pointer, argument pointer, or return address pointer. TO is either
the stack pointer or hard frame pointer. */
int
mips_initial_elimination_offset (from, to)
int from, to;
{
int offset;
/* Set OFFSET to the offset from the stack pointer. */
switch (from)
{
case FRAME_POINTER_REGNUM:
offset = 0;
break;
case ARG_POINTER_REGNUM:
compute_frame_size (get_frame_size ());
offset = cfun->machine->frame.total_size;
if (mips_abi == ABI_N32 || mips_abi == ABI_64 || mips_abi == ABI_MEABI)
offset -= current_function_pretend_args_size;
break;
case RETURN_ADDRESS_POINTER_REGNUM:
compute_frame_size (get_frame_size ());
offset = cfun->machine->frame.gp_sp_offset;
if (BYTES_BIG_ENDIAN)
offset += UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT);
break;
default:
abort ();
}
if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
offset -= current_function_outgoing_args_size;
return offset;
}
/* Common code to emit the insns (or to write the instructions to a file)
to save/restore registers.
Other parts of the code assume that MIPS_TEMP1_REGNUM (aka large_reg)
is not modified within save_restore_insns. */
#define BITSET_P(VALUE,BIT) (((VALUE) & (1L << (BIT))) != 0)
/* Emit instructions to load the value (SP + OFFSET) into MIPS_TEMP2_REGNUM
and return an rtl expression for the register.
This function is a subroutine of save_restore_insns. It is used when
OFFSET is too large to add in a single instruction. */
static rtx
mips_add_large_offset_to_sp (offset)
HOST_WIDE_INT offset;
{
rtx reg = gen_rtx_REG (Pmode, MIPS_TEMP2_REGNUM);
rtx offset_rtx = GEN_INT (offset);
emit_move_insn (reg, offset_rtx);
if (Pmode == DImode)
emit_insn (gen_adddi3 (reg, reg, stack_pointer_rtx));
else
emit_insn (gen_addsi3 (reg, reg, stack_pointer_rtx));
return reg;
}
/* Make INSN frame related and note that it performs the frame-related
operation DWARF_PATTERN. */
static void
mips_annotate_frame_insn (insn, dwarf_pattern)
rtx insn, dwarf_pattern;
{
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf_pattern,
REG_NOTES (insn));
}
/* Return a frame-related rtx that stores register REGNO at (SP + OFFSET).
The expression should only be used to store single registers. */
static rtx
mips_frame_set (mode, regno, offset)
enum machine_mode mode;
int regno;
int offset;
{
rtx address = plus_constant (stack_pointer_rtx, offset);
rtx set = gen_rtx_SET (mode,
gen_rtx_MEM (mode, address),
gen_rtx_REG (mode, regno));
RTX_FRAME_RELATED_P (set) = 1;
return set;
}
/* Emit a move instruction that stores REG in MEM. Make the instruction
frame related and note that it stores REG at (SP + OFFSET). This
function may be asked to store an FPR pair. */
static void
mips_emit_frame_related_store (mem, reg, offset)
rtx mem;
rtx reg;
HOST_WIDE_INT offset;
{
rtx dwarf_expr;
if (GET_MODE (reg) == DFmode && ! TARGET_FLOAT64)
{
/* Two registers are being stored, so the frame-related expression
must be a PARALLEL rtx with one SET for each register. The
higher numbered register is stored in the lower address on
big-endian targets. */
int regno1 = TARGET_BIG_ENDIAN ? REGNO (reg) + 1 : REGNO (reg);
int regno2 = TARGET_BIG_ENDIAN ? REGNO (reg) : REGNO (reg) + 1;
rtx set1 = mips_frame_set (SFmode, regno1, offset);
rtx set2 = mips_frame_set (SFmode, regno2, offset + UNITS_PER_FPREG);
dwarf_expr = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set1, set2));
}
else
dwarf_expr = mips_frame_set (GET_MODE (reg), REGNO (reg), offset);
mips_annotate_frame_insn (emit_move_insn (mem, reg), dwarf_expr);
}
static void
save_restore_insns (store_p, large_reg, large_offset)
int store_p; /* true if this is prologue */
rtx large_reg; /* register holding large offset constant or NULL */
long large_offset; /* large constant offset value */
{
long mask = cfun->machine->frame.mask;
long fmask = cfun->machine->frame.fmask;
long real_mask = mask;
int regno;
rtx base_reg_rtx;
HOST_WIDE_INT base_offset;
HOST_WIDE_INT gp_offset;
HOST_WIDE_INT fp_offset;
HOST_WIDE_INT end_offset;
rtx insn;
if (frame_pointer_needed
&& ! BITSET_P (mask, HARD_FRAME_POINTER_REGNUM - GP_REG_FIRST))
abort ();
/* Do not restore GP under certain conditions. */
if (! store_p
&& TARGET_ABICALLS
&& (mips_abi == ABI_32 || mips_abi == ABI_O64))
mask &= ~(1L << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST));
if (mask == 0 && fmask == 0)
return;
/* Save registers starting from high to low. The debuggers prefer at least
the return register be stored at func+4, and also it allows us not to
need a nop in the epilog if at least one register is reloaded in
addition to return address. */
/* Save GP registers if needed. */
if (mask)
{
/* Pick which pointer to use as a base register. For small frames, just
use the stack pointer. Otherwise, use a temporary register. Save 2
cycles if the save area is near the end of a large frame, by reusing
the constant created in the prologue/epilogue to adjust the stack
frame. */
gp_offset = cfun->machine->frame.gp_sp_offset;
end_offset
= gp_offset - (cfun->machine->frame.gp_reg_size
- GET_MODE_SIZE (gpr_mode));
if (gp_offset < 0 || end_offset < 0)
internal_error
("gp_offset (%ld) or end_offset (%ld) is less than zero",
(long) gp_offset, (long) end_offset);
/* If we see a large frame in mips16 mode, we save the registers
before adjusting the stack pointer, and load them afterward. */
else if (TARGET_MIPS16 && large_offset > 32767)
base_reg_rtx = stack_pointer_rtx, base_offset = large_offset;
else if (gp_offset < 32768)
base_reg_rtx = stack_pointer_rtx, base_offset = 0;
else if (large_reg != 0
&& (unsigned HOST_WIDE_INT) (large_offset - gp_offset) < 32768
&& (unsigned HOST_WIDE_INT) (large_offset - end_offset) < 32768)
{
base_reg_rtx = gen_rtx_REG (Pmode, MIPS_TEMP2_REGNUM);
base_offset = large_offset;
if (Pmode == DImode)
insn = emit_insn (gen_adddi3 (base_reg_rtx, large_reg,
stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, large_reg,
stack_pointer_rtx));
}
else
{
base_offset = gp_offset;
base_reg_rtx = mips_add_large_offset_to_sp (base_offset);
}
/* When we restore the registers in MIPS16 mode, then if we are
using a frame pointer, and this is not a large frame, the
current stack pointer will be offset by
current_function_outgoing_args_size. Doing it this way lets
us avoid offsetting the frame pointer before copying it into
the stack pointer; there is no instruction to set the stack
pointer to the sum of a register and a constant. */
if (TARGET_MIPS16
&& ! store_p
&& frame_pointer_needed
&& large_offset <= 32767)
base_offset += current_function_outgoing_args_size;
for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
{
if (BITSET_P (mask, regno - GP_REG_FIRST))
{
rtx reg_rtx;
rtx mem_rtx
= gen_rtx (MEM, gpr_mode,
gen_rtx (PLUS, Pmode, base_reg_rtx,
GEN_INT (gp_offset - base_offset)));
if (! current_function_calls_eh_return)
RTX_UNCHANGING_P (mem_rtx) = 1;
/* The mips16 does not have an instruction to load
$31, so we load $7 instead, and work things out
in mips_expand_epilogue. */
if (TARGET_MIPS16 && ! store_p && regno == GP_REG_FIRST + 31)
reg_rtx = gen_rtx (REG, gpr_mode, GP_REG_FIRST + 7);
/* The mips16 sometimes needs to save $18. */
else if (TARGET_MIPS16
&& regno != GP_REG_FIRST + 31
&& ! M16_REG_P (regno))
{
if (! store_p)
reg_rtx = gen_rtx (REG, gpr_mode, 6);
else
{
reg_rtx = gen_rtx (REG, gpr_mode, 3);
emit_move_insn (reg_rtx,
gen_rtx (REG, gpr_mode, regno));
}
}
else
reg_rtx = gen_rtx (REG, gpr_mode, regno);
if (store_p)
mips_emit_frame_related_store (mem_rtx, reg_rtx, gp_offset);
else
{
emit_move_insn (reg_rtx, mem_rtx);
if (TARGET_MIPS16
&& regno != GP_REG_FIRST + 31
&& ! M16_REG_P (regno))
emit_move_insn (gen_rtx (REG, gpr_mode, regno),
reg_rtx);
}
}
/* If the restore is being supressed, still take into account
the offset at which it is stored. */
if (BITSET_P (real_mask, regno - GP_REG_FIRST))
gp_offset -= GET_MODE_SIZE (gpr_mode);
}
}
else
base_reg_rtx = 0, base_offset = 0;
/* Save floating point registers if needed. */
if (fmask)
{
/* Pick which pointer to use as a base register. */
fp_offset = cfun->machine->frame.fp_sp_offset;
end_offset = fp_offset - (cfun->machine->frame.fp_reg_size
- UNITS_PER_HWFPVALUE);
if (fp_offset < 0 || end_offset < 0)
internal_error
("fp_offset (%ld) or end_offset (%ld) is less than zero",
(long) fp_offset, (long) end_offset);
else if (fp_offset < 32768)
base_reg_rtx = stack_pointer_rtx, base_offset = 0;
else if (base_reg_rtx != 0
&& (unsigned HOST_WIDE_INT) (base_offset - fp_offset) < 32768
&& (unsigned HOST_WIDE_INT) (base_offset - end_offset) < 32768)
; /* already set up for gp registers above */
else if (large_reg != 0
&& (unsigned HOST_WIDE_INT) (large_offset - fp_offset) < 32768
&& (unsigned HOST_WIDE_INT) (large_offset - end_offset) < 32768)
{
base_reg_rtx = gen_rtx_REG (Pmode, MIPS_TEMP2_REGNUM);
base_offset = large_offset;
if (Pmode == DImode)
insn = emit_insn (gen_adddi3 (base_reg_rtx, large_reg,
stack_pointer_rtx));
else
insn = emit_insn (gen_addsi3 (base_reg_rtx, large_reg,
stack_pointer_rtx));
}
else
{
base_offset = fp_offset;
base_reg_rtx = mips_add_large_offset_to_sp (fp_offset);
}
/* This loop must iterate over the same space as its companion in
compute_frame_size. */
for (regno = (FP_REG_LAST - FP_INC + 1);
regno >= FP_REG_FIRST;
regno -= FP_INC)
if (BITSET_P (fmask, regno - FP_REG_FIRST))
{
enum machine_mode sz = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
rtx reg_rtx = gen_rtx (REG, sz, regno);
rtx mem_rtx = gen_rtx (MEM, sz,
gen_rtx (PLUS, Pmode, base_reg_rtx,
GEN_INT (fp_offset
- base_offset)));
if (! current_function_calls_eh_return)
RTX_UNCHANGING_P (mem_rtx) = 1;
if (store_p)
mips_emit_frame_related_store (mem_rtx, reg_rtx, fp_offset);
else
emit_move_insn (reg_rtx, mem_rtx);
fp_offset -= UNITS_PER_HWFPVALUE;
}
}
}
/* Set up the stack and frame (if desired) for the function. */
static void
mips_output_function_prologue (file, size)
FILE *file;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
#ifndef FUNCTION_NAME_ALREADY_DECLARED
const char *fnname;
#endif
HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
/* ??? When is this really needed? At least the GNU assembler does not
need the source filename more than once in the file, beyond what is
emitted by the debug information. */
if (!TARGET_GAS)
ASM_OUTPUT_SOURCE_FILENAME (file, DECL_SOURCE_FILE (current_function_decl));
#ifdef SDB_DEBUGGING_INFO
if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
ASM_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
#endif
/* In mips16 mode, we may need to generate a 32 bit to handle
floating point arguments. The linker will arrange for any 32 bit
functions to call this stub, which will then jump to the 16 bit
function proper. */
if (TARGET_MIPS16 && !TARGET_SOFT_FLOAT
&& current_function_args_info.fp_code != 0)
build_mips16_function_stub (file);
inside_function = 1;
#ifndef FUNCTION_NAME_ALREADY_DECLARED
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
if (!flag_inhibit_size_directive)
{
fputs ("\t.ent\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
assemble_name (file, fnname);
fputs (":\n", file);
#endif
if (!flag_inhibit_size_directive)
{
/* .frame FRAMEREG, FRAMESIZE, RETREG */
fprintf (file,
"\t.frame\t%s,%ld,%s\t\t# vars= %ld, regs= %d/%d, args= %d, extra= %ld\n",
(reg_names[(frame_pointer_needed)
? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
((frame_pointer_needed && TARGET_MIPS16)
? ((long) tsize - current_function_outgoing_args_size)
: (long) tsize),
reg_names[GP_REG_FIRST + 31],
cfun->machine->frame.var_size,
cfun->machine->frame.num_gp,
cfun->machine->frame.num_fp,
current_function_outgoing_args_size,
cfun->machine->frame.extra_size);
/* .mask MASK, GPOFFSET; .fmask FPOFFSET */
fprintf (file, "\t.mask\t0x%08lx,%ld\n\t.fmask\t0x%08lx,%ld\n",
cfun->machine->frame.mask,
cfun->machine->frame.gp_save_offset,
cfun->machine->frame.fmask,
cfun->machine->frame.fp_save_offset);
/* Require:
OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs. */
}
if (mips_entry && ! mips_can_use_return_insn ())
{
int save16 = BITSET_P (cfun->machine->frame.mask, 16);
int save17 = BITSET_P (cfun->machine->frame.mask, 17);
int save31 = BITSET_P (cfun->machine->frame.mask, 31);
int savearg = 0;
rtx insn;
/* Look through the initial insns to see if any of them store
the function parameters into the incoming parameter storage
area. If they do, we delete the insn, and save the register
using the entry pseudo-instruction instead. We don't try to
look past a label, jump, or call. */
for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
{
rtx note, set, src, dest, base, offset;
int hireg;
if (GET_CODE (insn) == CODE_LABEL
|| GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)
break;
if (GET_CODE (insn) != INSN)
continue;
set = PATTERN (insn);
if (GET_CODE (set) != SET)
continue;
/* An insn storing a function parameter will still have a
REG_EQUIV note on it mentioning the argument pointer. */
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
if (note == NULL_RTX)
continue;
if (! reg_mentioned_p (arg_pointer_rtx, XEXP (note, 0)))
continue;
src = SET_SRC (set);
if (GET_CODE (src) != REG
|| REGNO (src) < GP_REG_FIRST + 4
|| REGNO (src) > GP_REG_FIRST + 7)
continue;
dest = SET_DEST (set);
if (GET_CODE (dest) != MEM)
continue;
if (GET_MODE_SIZE (GET_MODE (dest)) == (unsigned) UNITS_PER_WORD)
;
else if (GET_MODE_SIZE (GET_MODE (dest)) == (unsigned)2 * UNITS_PER_WORD
&& REGNO (src) < GP_REG_FIRST + 7)
;
else
continue;
offset = const0_rtx;
base = eliminate_constant_term (XEXP (dest, 0), &offset);
if (GET_CODE (base) != REG
|| GET_CODE (offset) != CONST_INT)
continue;
if (REGNO (base) == (unsigned) STACK_POINTER_REGNUM
&& INTVAL (offset) == tsize + (REGNO (src) - 4) * UNITS_PER_WORD)
;
else if (REGNO (base) == (unsigned) HARD_FRAME_POINTER_REGNUM
&& (INTVAL (offset)
== (tsize
+ (REGNO (src) - 4) * UNITS_PER_WORD
- current_function_outgoing_args_size)))
;
else
continue;
/* This insn stores a parameter onto the stack, in the same
location where the entry pseudo-instruction will put it.
Delete the insn, and arrange to tell the entry
instruction to save the register. */
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
hireg = (REGNO (src)
+ HARD_REGNO_NREGS (REGNO (src), GET_MODE (dest))
- 1);
if (hireg > savearg)
savearg = hireg;
}
/* If this is a varargs function, we need to save all the
registers onto the stack anyhow. */
if (current_function_stdarg)
savearg = GP_REG_FIRST + 7;
fprintf (file, "\tentry\t");
if (savearg > 0)
{
if (savearg == GP_REG_FIRST + 4)
fprintf (file, "%s", reg_names[savearg]);
else
fprintf (file, "%s-%s", reg_names[GP_REG_FIRST + 4],
reg_names[savearg]);
}
if (save16 || save17)
{
if (savearg > 0)
fprintf (file, ",");
fprintf (file, "%s", reg_names[GP_REG_FIRST + 16]);
if (save17)
fprintf (file, "-%s", reg_names[GP_REG_FIRST + 17]);
}
if (save31)
{
if (savearg > 0 || save16 || save17)
fprintf (file, ",");
fprintf (file, "%s", reg_names[GP_REG_FIRST + 31]);
}
fprintf (file, "\n");
}
if (TARGET_ABICALLS && (mips_abi == ABI_32 || mips_abi == ABI_O64))
{
const char *const sp_str = reg_names[STACK_POINTER_REGNUM];
fprintf (file, "\t.set\tnoreorder\n\t.cpload\t%s\n\t.set\treorder\n",
reg_names[PIC_FUNCTION_ADDR_REGNUM]);
if (tsize > 0)
{
fprintf (file, "\t%s\t%s,%s,%ld\n",
(Pmode == DImode ? "dsubu" : "subu"),
sp_str, sp_str, (long) tsize);
fprintf (file, "\t.cprestore %ld\n", cfun->machine->frame.args_size);
}
if (dwarf2out_do_frame ())
dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, tsize);
}
}
/* Expand the prologue into a bunch of separate insns. */
void
mips_expand_prologue ()
{
int regno;
HOST_WIDE_INT tsize;
rtx tmp_rtx = 0;
int last_arg_is_vararg_marker = 0;
tree fndecl = current_function_decl;
tree fntype = TREE_TYPE (fndecl);
tree fnargs = DECL_ARGUMENTS (fndecl);
rtx next_arg_reg;
int i;
tree next_arg;
tree cur_arg;
CUMULATIVE_ARGS args_so_far;
rtx reg_18_save = NULL_RTX;
int store_args_on_stack = (mips_abi == ABI_32 || mips_abi == ABI_O64)
&& (! mips_entry || mips_can_use_return_insn ());
/* If struct value address is treated as the first argument, make it so. */
if (aggregate_value_p (DECL_RESULT (fndecl))
&& ! current_function_returns_pcc_struct
&& struct_value_incoming_rtx == 0)
{
tree type = build_pointer_type (fntype);
tree function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
DECL_ARG_TYPE (function_result_decl) = type;
TREE_CHAIN (function_result_decl) = fnargs;
fnargs = function_result_decl;
}
/* For arguments passed in registers, find the register number
of the first argument in the variable part of the argument list,
otherwise GP_ARG_LAST+1. Note also if the last argument is
the varargs special argument, and treat it as part of the
variable arguments.
This is only needed if store_args_on_stack is true. */
INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
regno = GP_ARG_FIRST;
for (cur_arg = fnargs; cur_arg != 0; cur_arg = next_arg)
{
tree passed_type = DECL_ARG_TYPE (cur_arg);
enum machine_mode passed_mode = TYPE_MODE (passed_type);
rtx entry_parm;
if (TREE_ADDRESSABLE (passed_type))
{
passed_type = build_pointer_type (passed_type);
passed_mode = Pmode;
}
entry_parm = FUNCTION_ARG (args_so_far, passed_mode, passed_type, 1);
FUNCTION_ARG_ADVANCE (args_so_far, passed_mode, passed_type, 1);
next_arg = TREE_CHAIN (cur_arg);
if (entry_parm && store_args_on_stack)
{
if (next_arg == 0
&& DECL_NAME (cur_arg)
&& ((0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
"__builtin_va_alist"))
|| (0 == strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)),
"va_alist"))))
{
last_arg_is_vararg_marker = 1;
if (GET_CODE (entry_parm) == REG)
regno = REGNO (entry_parm);
else
regno = GP_ARG_LAST + 1;
break;
}
else
regno = GP_ARG_FIRST + args_so_far.num_gprs;
}
else
{
regno = GP_ARG_LAST+1;
break;
}
}
/* In order to pass small structures by value in registers compatibly with
the MIPS compiler, we need to shift the value into the high part of the
register. Function_arg has encoded a PARALLEL rtx, holding a vector of
adjustments to be made as the next_arg_reg variable, so we split up the
insns, and emit them separately. */
next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1);
if (next_arg_reg != 0 && GET_CODE (next_arg_reg) == PARALLEL)
{
rtvec adjust = XVEC (next_arg_reg, 0);
int num = GET_NUM_ELEM (adjust);
for (i = 0; i < num; i++)
{
rtx insn, pattern;
pattern = RTVEC_ELT (adjust, i);
if (GET_CODE (pattern) != SET
|| GET_CODE (SET_SRC (pattern)) != ASHIFT)
abort_with_insn (pattern, "insn is not a shift");
PUT_CODE (SET_SRC (pattern), ASHIFTRT);
insn = emit_insn (pattern);
/* Global life information isn't valid at this point, so we
can't check whether these shifts are actually used. Mark
them MAYBE_DEAD so that flow2 will remove them, and not
complain about dead code in the prologue. */
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, NULL_RTX,
REG_NOTES (insn));
}
}
tsize = compute_frame_size (get_frame_size ());
/* If this function is a varargs function, store any registers that
would normally hold arguments ($4 - $7) on the stack. */
if (store_args_on_stack
&& ((TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node))
|| last_arg_is_vararg_marker))
{
int offset = (regno - GP_ARG_FIRST) * UNITS_PER_WORD;
rtx ptr = stack_pointer_rtx;
/* If we are doing svr4-abi, sp has already been decremented by tsize. */
if (TARGET_ABICALLS)
offset += tsize;
for (; regno <= GP_ARG_LAST; regno++)
{
if (offset != 0)
ptr = gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (offset));
emit_move_insn (gen_rtx (MEM, gpr_mode, ptr),
gen_rtx (REG, gpr_mode, regno));
offset += GET_MODE_SIZE (gpr_mode);
}
}
/* If we are using the entry pseudo instruction, it will
automatically subtract 32 from the stack pointer, so we don't
need to. The entry pseudo instruction is emitted by
function_prologue. */
if (mips_entry && ! mips_can_use_return_insn ())
{
if (tsize > 0 && tsize <= 32 && frame_pointer_needed)
{
rtx insn;
/* If we are using a frame pointer with a small stack frame,
we need to initialize it here since it won't be done
below. */
if (TARGET_MIPS16 && current_function_outgoing_args_size != 0)
{
rtx incr = GEN_INT (current_function_outgoing_args_size);
if (Pmode == DImode)
insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
incr));
else
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
incr));
}
else if (Pmode == DImode)
insn = emit_insn (gen_movdi (hard_frame_pointer_rtx,
stack_pointer_rtx));
else
insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* We may need to save $18, if it is used to call a function
which may return a floating point value. Set up a sequence
of instructions to do so. Later on we emit them at the right
moment. */
if (TARGET_MIPS16 && BITSET_P (cfun->machine->frame.mask, 18))
{
rtx reg_rtx = gen_rtx (REG, gpr_mode, GP_REG_FIRST + 3);
long gp_offset, base_offset;
gp_offset = cfun->machine->frame.gp_sp_offset;
if (BITSET_P (cfun->machine->frame.mask, 16))
gp_offset -= UNITS_PER_WORD;
if (BITSET_P (cfun->machine->frame.mask, 17))
gp_offset -= UNITS_PER_WORD;
if (BITSET_P (cfun->machine->frame.mask, 31))
gp_offset -= UNITS_PER_WORD;
if (tsize > 32767)
base_offset = tsize;
else
base_offset = 0;
start_sequence ();
emit_move_insn (reg_rtx,
gen_rtx (REG, gpr_mode, GP_REG_FIRST + 18));
emit_move_insn (gen_rtx (MEM, gpr_mode,
gen_rtx (PLUS, Pmode, stack_pointer_rtx,
GEN_INT (gp_offset
- base_offset))),
reg_rtx);
reg_18_save = get_insns ();
end_sequence ();
}
if (tsize > 32)
tsize -= 32;
else
{
tsize = 0;
if (reg_18_save != NULL_RTX)
emit_insn (reg_18_save);
}
}
if (tsize > 0)
{
rtx tsize_rtx = GEN_INT (tsize);
/* If we are doing svr4-abi, sp move is done by
function_prologue. In mips16 mode with a large frame, we
save the registers before adjusting the stack. */
if ((!TARGET_ABICALLS || (mips_abi != ABI_32 && mips_abi != ABI_O64))
&& (!TARGET_MIPS16 || tsize <= 32767))
{
rtx adjustment_rtx, insn, dwarf_pattern;
if (tsize > 32767)
{
adjustment_rtx = gen_rtx (REG, Pmode, MIPS_TEMP1_REGNUM);
emit_move_insn (adjustment_rtx, tsize_rtx);
}
else
adjustment_rtx = tsize_rtx;
if (Pmode == DImode)
insn = emit_insn (gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx,
adjustment_rtx));
else
insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
adjustment_rtx));
dwarf_pattern = gen_rtx_SET (Pmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-tsize));
mips_annotate_frame_insn (insn, dwarf_pattern);
}
if (! mips_entry)
save_restore_insns (1, tmp_rtx, tsize);
else if (reg_18_save != NULL_RTX)
emit_insn (reg_18_save);
if ((!TARGET_ABICALLS || (mips_abi != ABI_32 && mips_abi != ABI_O64))
&& TARGET_MIPS16
&& tsize > 32767)
{
rtx reg_rtx;
if (!frame_pointer_needed)
abort ();
reg_rtx = gen_rtx (REG, Pmode, 3);
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
emit_move_insn (reg_rtx, tsize_rtx);
if (Pmode == DImode)
emit_insn (gen_subdi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
reg_rtx));
else
emit_insn (gen_subsi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
reg_rtx));
emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
}
if (frame_pointer_needed)
{
rtx insn = 0;
/* On the mips16, we encourage the use of unextended
instructions when using the frame pointer by pointing the
frame pointer ahead of the argument space allocated on
the stack. */
if ((! TARGET_ABICALLS || (mips_abi != ABI_32 && mips_abi != ABI_O64))
&& TARGET_MIPS16
&& tsize > 32767)
{
/* In this case, we have already copied the stack
pointer into the frame pointer, above. We need only
adjust for the outgoing argument size. */
if (current_function_outgoing_args_size != 0)
{
rtx incr = GEN_INT (current_function_outgoing_args_size);
if (Pmode == DImode)
insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
incr));
else
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
incr));
}
}
else if (TARGET_MIPS16 && current_function_outgoing_args_size != 0)
{
rtx incr = GEN_INT (current_function_outgoing_args_size);
if (Pmode == DImode)
insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
incr));
else
insn = emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
stack_pointer_rtx,
incr));
}
else if (Pmode == DImode)
insn = emit_insn (gen_movdi (hard_frame_pointer_rtx,
stack_pointer_rtx));
else
insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
stack_pointer_rtx));
if (insn)
RTX_FRAME_RELATED_P (insn) = 1;
}
if (TARGET_ABICALLS && (mips_abi != ABI_32 && mips_abi != ABI_O64))
emit_insn (gen_loadgp (XEXP (DECL_RTL (current_function_decl), 0),
gen_rtx_REG (DImode, 25)));
}
/* If we are profiling, make sure no instructions are scheduled before
the call to mcount. */
if (current_function_profile)
emit_insn (gen_blockage ());
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
#define RA_MASK BITMASK_HIGH /* 1 << 31 */
#define PIC_OFFSET_TABLE_MASK (1 << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))
static void
mips_output_function_epilogue (file, size)
FILE *file ATTRIBUTE_UNUSED;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
const char *fnname = ""; /* FIXME: Correct initialisation? */
rtx string;
#ifndef FUNCTION_NAME_ALREADY_DECLARED
/* Get the function name the same way that toplev.c does before calling
assemble_start_function. This is needed so that the name used here
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
if (!flag_inhibit_size_directive)
{
fputs ("\t.end\t", file);
assemble_name (file, fnname);
fputs ("\n", file);
}
#endif
if (TARGET_STATS)
{
int num_gp_regs = cfun->machine->frame.gp_reg_size / 4;
int num_fp_regs = cfun->machine->frame.fp_reg_size / 8;
int num_regs = num_gp_regs + num_fp_regs;
const char *name = fnname;
if (name[0] == '*')
name++;
dslots_load_total += num_regs;
fprintf (stderr,
"%-20s fp=%c leaf=%c alloca=%c setjmp=%c stack=%4ld arg=%3d reg=%2d/%d delay=%3d/%3dL %3d/%3dJ refs=%3d/%3d/%3d",
name, frame_pointer_needed ? 'y' : 'n',
(cfun->machine->frame.mask & RA_MASK) != 0 ? 'n' : 'y',
current_function_calls_alloca ? 'y' : 'n',
current_function_calls_setjmp ? 'y' : 'n',
cfun->machine->frame.total_size,
current_function_outgoing_args_size, num_gp_regs, num_fp_regs,
dslots_load_total, dslots_load_filled,
dslots_jump_total, dslots_jump_filled,
num_refs[0], num_refs[1], num_refs[2]);
fputc ('\n', stderr);
}
/* Reset state info for each function. */
inside_function = 0;
ignore_line_number = 0;
dslots_load_total = 0;
dslots_jump_total = 0;
dslots_load_filled = 0;
dslots_jump_filled = 0;
num_refs[0] = 0;
num_refs[1] = 0;
num_refs[2] = 0;
mips_load_reg = 0;
mips_load_reg2 = 0;
while (string_constants != NULL)
{
struct string_constant *next;
next = string_constants->next;
free (string_constants);
string_constants = next;
}
/* If any following function uses the same strings as this one, force
them to refer those strings indirectly. Nearby functions could
refer them using pc-relative addressing, but it isn't safe in
general. For instance, some functions may be placed in sections
other than .text, and we don't know whether they be close enough
to this one. In large files, even other .text functions can be
too far away. */
for (string = mips16_strings; string != 0; string = XEXP (string, 1))
SYMBOL_REF_FLAG (XEXP (string, 0)) = 0;
free_EXPR_LIST_list (&mips16_strings);
/* Restore the output file if optimizing the GP (optimizing the GP causes
the text to be diverted to a tempfile, so that data decls come before
references to the data). */
if (TARGET_FILE_SWITCHING)
{
asm_out_file = asm_out_data_file;
data_section ();
}
}
/* Expand the epilogue into a bunch of separate insns. */
void
mips_expand_epilogue ()
{
HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
rtx tsize_rtx = GEN_INT (tsize);
rtx tmp_rtx = (rtx)0;
if (mips_can_use_return_insn ())
{
emit_jump_insn (gen_return ());
return;
}
if (mips_entry && ! mips_can_use_return_insn ())
tsize -= 32;
if (tsize > 32767 && ! TARGET_MIPS16)
{
tmp_rtx = gen_rtx_REG (Pmode, MIPS_TEMP1_REGNUM);
emit_move_insn (tmp_rtx, tsize_rtx);
tsize_rtx = tmp_rtx;
}
if (tsize > 0)
{
long orig_tsize = tsize;
if (frame_pointer_needed)
{
emit_insn (gen_blockage ());
/* On the mips16, the frame pointer is offset from the stack
pointer by current_function_outgoing_args_size. We
account for that by changing tsize. Note that this can
actually make tsize negative. */
if (TARGET_MIPS16)
{
tsize -= current_function_outgoing_args_size;
/* If we have a large frame, it's easier to add to $6
than to $sp, since the mips16 has no instruction to
add a register to $sp. */
if (orig_tsize > 32767)
{
rtx g6_rtx = gen_rtx (REG, Pmode, GP_REG_FIRST + 6);
emit_move_insn (g6_rtx, GEN_INT (tsize));
if (Pmode == DImode)
emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
g6_rtx));
else
emit_insn (gen_addsi3 (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
g6_rtx));
tsize = 0;
}
if (tsize && tsize != orig_tsize)
tsize_rtx = GEN_INT (tsize);
}
if (Pmode == DImode)
emit_insn (gen_movdi (stack_pointer_rtx, hard_frame_pointer_rtx));
else
emit_insn (gen_movsi (stack_pointer_rtx, hard_frame_pointer_rtx));
}
/* The GP/PIC register is implicitly used by all SYMBOL_REFs, so if we
are going to restore it, then we must emit a blockage insn to
prevent the scheduler from moving the restore out of the epilogue. */
else if (TARGET_ABICALLS && mips_abi != ABI_32 && mips_abi != ABI_O64
&& (cfun->machine->frame.mask
& (1L << (PIC_OFFSET_TABLE_REGNUM - GP_REG_FIRST))))
emit_insn (gen_blockage ());
save_restore_insns (0, tmp_rtx, orig_tsize);
/* In mips16 mode with a large frame, we adjust the stack
pointer before restoring the registers. In this case, we
should always be using a frame pointer, so everything should
have been handled above. */
if (tsize > 32767 && TARGET_MIPS16)
abort ();
if (current_function_calls_eh_return)
{
rtx eh_ofs = EH_RETURN_STACKADJ_RTX;
if (Pmode == DImode)
emit_insn (gen_adddi3 (eh_ofs, eh_ofs, tsize_rtx));
else
emit_insn (gen_addsi3 (eh_ofs, eh_ofs, tsize_rtx));
tsize_rtx = eh_ofs;
}
emit_insn (gen_blockage ());
if (tsize != 0 || current_function_calls_eh_return)
{
if (!TARGET_MIPS16)
{
if (Pmode == DImode)
emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
else
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
tsize_rtx));
}
else
{
/* We need to work around not being able to add a register
to the stack pointer directly. Use register $6 as an
intermediate step. */
rtx g6_rtx = gen_rtx (REG, Pmode, GP_REG_FIRST + 6);
if (Pmode == DImode)
{
emit_insn (gen_movdi (g6_rtx, stack_pointer_rtx));
emit_insn (gen_adddi3 (g6_rtx, g6_rtx, tsize_rtx));
emit_insn (gen_movdi (stack_pointer_rtx, g6_rtx));
}
else
{
emit_insn (gen_movsi (g6_rtx, stack_pointer_rtx));
emit_insn (gen_addsi3 (g6_rtx, g6_rtx, tsize_rtx));
emit_insn (gen_movsi (stack_pointer_rtx, g6_rtx));
}
}
}
}
/* The mips16 loads the return address into $7, not $31. */
if (TARGET_MIPS16 && (cfun->machine->frame.mask & RA_MASK) != 0)
emit_jump_insn (gen_return_internal (gen_rtx (REG, Pmode,
GP_REG_FIRST + 7)));
else
emit_jump_insn (gen_return_internal (gen_rtx (REG, Pmode,
GP_REG_FIRST + 31)));
}
/* Return nonzero if this function is known to have a null epilogue.
This allows the optimizer to omit jumps to jumps if no stack
was created. */
int
mips_can_use_return_insn ()
{
tree return_type;
if (! reload_completed)
return 0;
if (regs_ever_live[31] || current_function_profile)
return 0;
return_type = DECL_RESULT (current_function_decl);
/* In mips16 mode, a function which returns a floating point value
needs to arrange to copy the return value into the floating point
registers. */
if (TARGET_MIPS16
&& mips16_hard_float
&& ! aggregate_value_p (return_type)
&& GET_MODE_CLASS (DECL_MODE (return_type)) == MODE_FLOAT
&& GET_MODE_SIZE (DECL_MODE (return_type)) <= UNITS_PER_FPVALUE)
return 0;
if (cfun->machine->frame.initialized)
return cfun->machine->frame.total_size == 0;
return compute_frame_size (get_frame_size ()) == 0;
}
/* Returns nonzero if X contains a SYMBOL_REF. */
static int
symbolic_expression_p (x)
rtx x;
{
if (GET_CODE (x) == SYMBOL_REF)
return 1;
if (GET_CODE (x) == CONST)
return symbolic_expression_p (XEXP (x, 0));
if (GET_RTX_CLASS (GET_CODE (x)) == '1')
return symbolic_expression_p (XEXP (x, 0));
if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
|| GET_RTX_CLASS (GET_CODE (x)) == '2')
return (symbolic_expression_p (XEXP (x, 0))
|| symbolic_expression_p (XEXP (x, 1)));
return 0;
}
/* Choose the section to use for the constant rtx expression X that has
mode MODE. */
static void
mips_select_rtx_section (mode, x, align)
enum machine_mode mode;
rtx x;
unsigned HOST_WIDE_INT align;
{
if (TARGET_MIPS16)
{
/* In mips16 mode, the constant table always goes in the same section
as the function, so that constants can be loaded using PC relative
addressing. */
function_section (current_function_decl);
}
else if (TARGET_EMBEDDED_DATA)
{
/* For embedded applications, always put constants in read-only data,
in order to reduce RAM usage. */
mergeable_constant_section (mode, align, 0);
}
else
{
/* For hosted applications, always put constants in small data if
possible, as this gives the best performance. */
/* ??? Consider using mergable small data sections. */
if (GET_MODE_SIZE (mode) <= (unsigned) mips_section_threshold
&& mips_section_threshold > 0)
SMALL_DATA_SECTION ();
else if (flag_pic && symbolic_expression_p (x))
{
if (targetm.have_named_sections)
named_section (NULL_TREE, ".data.rel.ro", 3);
else
data_section ();
}
else
mergeable_constant_section (mode, align, 0);
}
}
/* Choose the section to use for DECL. RELOC is true if its value contains
any relocatable expression.
Some of the logic used here needs to be replicated in
mips_encode_section_info so that references to these symbols are
done correctly. Specifically, at least all symbols assigned here
to rom (.text and/or .rodata) must not be referenced via
mips_encode_section_info with %gprel, as the rom might be too far
away.
If you need to make a change here, you probably should check
mips_encode_section_info to see if it needs a similar change.
??? This would be fixed by implementing targetm.is_small_data_p. */
static void
mips_select_section (decl, reloc, align)
tree decl;
int reloc;
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED;
{
int size = int_size_in_bytes (TREE_TYPE (decl));
if ((TARGET_EMBEDDED_PIC || TARGET_MIPS16)
&& TREE_CODE (decl) == STRING_CST
&& !flag_writable_strings)
/* For embedded position independent code, put constant strings in the
text section, because the data section is limited to 64K in size.
For mips16 code, put strings in the text section so that a PC
relative load instruction can be used to get their address. */
text_section ();
else if (TARGET_EMBEDDED_DATA)
{
/* For embedded applications, always put an object in read-only data
if possible, in order to reduce RAM usage. */
if (((TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
&& DECL_INITIAL (decl)
&& (DECL_INITIAL (decl) == error_mark_node
|| TREE_CONSTANT (DECL_INITIAL (decl))))
/* Deal with calls from output_constant_def_contents. */
|| (TREE_CODE (decl) != VAR_DECL
&& (TREE_CODE (decl) != STRING_CST
|| !flag_writable_strings)))
&& ! (flag_pic && reloc))
readonly_data_section ();
else if (size > 0 && size <= mips_section_threshold)
SMALL_DATA_SECTION ();
else
data_section ();
}
else
{
/* For hosted applications, always put an object in small data if
possible, as this gives the best performance. */
if (size > 0 && size <= mips_section_threshold)
SMALL_DATA_SECTION ();
else if (((TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl)
&& DECL_INITIAL (decl)
&& (DECL_INITIAL (decl) == error_mark_node
|| TREE_CONSTANT (DECL_INITIAL (decl))))
/* Deal with calls from output_constant_def_contents. */
|| (TREE_CODE (decl) != VAR_DECL
&& (TREE_CODE (decl) != STRING_CST
|| !flag_writable_strings)))
&& ! (flag_pic && reloc))
readonly_data_section ();
else
data_section ();
}
}
/* When optimizing for the $gp pointer, SYMBOL_REF_FLAG is set for all
small objects.
When generating embedded PIC code, SYMBOL_REF_FLAG is set for
symbols which are not in the .text section.
When generating mips16 code, SYMBOL_REF_FLAG is set for string
constants which are put in the .text section. We also record the
total length of all such strings; this total is used to decide
whether we need to split the constant table, and need not be
precisely correct.
When not mips16 code nor embedded PIC, if a symbol is in a
gp addressable section, SYMBOL_REF_FLAG is set prevent gcc from
splitting the reference so that gas can generate a gp relative
reference.
When TARGET_EMBEDDED_DATA is set, we assume that all const
variables will be stored in ROM, which is too far from %gp to use
%gprel addressing. Note that (1) we include "extern const"
variables in this, which mips_select_section doesn't, and (2) we
can't always tell if they're really const (they might be const C++
objects with non-const constructors), so we err on the side of
caution and won't use %gprel anyway (otherwise we'd have to defer
this decision to the linker/loader). The handling of extern consts
is why the DECL_INITIAL macros differ from mips_select_section. */
static void
mips_encode_section_info (decl, first)
tree decl;
int first;
{
if (TARGET_MIPS16)
{
if (first && TREE_CODE (decl) == STRING_CST
&& ! flag_writable_strings
/* If this string is from a function, and the function will
go in a gnu linkonce section, then we can't directly
access the string. This gets an assembler error
"unsupported PC relative reference to different section".
If we modify SELECT_SECTION to put it in function_section
instead of text_section, it still fails because
DECL_SECTION_NAME isn't set until assemble_start_function.
If we fix that, it still fails because strings are shared
among multiple functions, and we have cross section
references again. We force it to work by putting string
addresses in the constant pool and indirecting. */
&& (! current_function_decl
|| ! DECL_ONE_ONLY (current_function_decl)))
{
rtx symref;
symref = XEXP (TREE_CST_RTL (decl), 0);
mips16_strings = alloc_EXPR_LIST (0, symref, mips16_strings);
SYMBOL_REF_FLAG (symref) = 1;
mips_string_length += TREE_STRING_LENGTH (decl);
}
}
if (TARGET_EMBEDDED_DATA
&& (TREE_CODE (decl) == VAR_DECL
&& TREE_READONLY (decl) && !TREE_SIDE_EFFECTS (decl))
&& (!DECL_INITIAL (decl)
|| TREE_CONSTANT (DECL_INITIAL (decl))))
{
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 0;
}
else if (TARGET_EMBEDDED_PIC)
{
if (TREE_CODE (decl) == VAR_DECL)
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
else if (TREE_CODE (decl) == FUNCTION_DECL)
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 0;
else if (TREE_CODE (decl) == STRING_CST
&& ! flag_writable_strings)
SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (decl), 0)) = 0;
else
SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (decl), 0)) = 1;
}
else if (TREE_CODE (decl) == VAR_DECL
&& DECL_SECTION_NAME (decl) != NULL_TREE
&& (0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
".sdata")
|| 0 == strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
".sbss")))
{
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
}
/* We can not perform GP optimizations on variables which are in
specific sections, except for .sdata and .sbss which are
handled above. */
else if (TARGET_GP_OPT && TREE_CODE (decl) == VAR_DECL
&& DECL_SECTION_NAME (decl) == NULL_TREE
&& ! (TARGET_MIPS16 && TREE_PUBLIC (decl)
&& (DECL_COMMON (decl)
|| DECL_ONE_ONLY (decl)
|| DECL_WEAK (decl))))
{
int size = int_size_in_bytes (TREE_TYPE (decl));
if (size > 0 && size <= mips_section_threshold)
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
}
}
/* Return register to use for a function return value with VALTYPE for
function FUNC. MODE is used instead of VALTYPE for LIBCALLs. */
rtx
mips_function_value (valtype, func, mode)
tree valtype;
tree func ATTRIBUTE_UNUSED;
enum machine_mode mode;
{
int reg = GP_RETURN;
enum mode_class mclass;
int unsignedp = 1;
if (valtype)
{
mode = TYPE_MODE (valtype);
unsignedp = TREE_UNSIGNED (valtype);
/* Since we define PROMOTE_FUNCTION_RETURN, we must promote
the mode just as PROMOTE_MODE does. */
mode = promote_mode (valtype, mode, &unsignedp, 1);
}
mclass = GET_MODE_CLASS (mode);
if (mclass == MODE_FLOAT && GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE)
reg = FP_RETURN;
else if (mclass == MODE_FLOAT && mode == TFmode)
/* long doubles are really split between f0 and f2, not f1. Eek.
Use DImode for each component, since GCC wants integer modes
for subregs. */
return gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, FP_RETURN),
GEN_INT (0)),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, FP_RETURN + 2),
GEN_INT (GET_MODE_SIZE (mode) / 2))));
else if (mclass == MODE_COMPLEX_FLOAT
&& GET_MODE_SIZE (mode) <= UNITS_PER_HWFPVALUE * 2)
{
enum machine_mode cmode = GET_MODE_INNER (mode);
return gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (cmode, FP_RETURN),
GEN_INT (0)),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (cmode, FP_RETURN + FP_INC),
GEN_INT (GET_MODE_SIZE (cmode)))));
}
else if (valtype && TREE_CODE (valtype) == RECORD_TYPE
&& mips_abi != ABI_32
&& mips_abi != ABI_O64
&& mips_abi != ABI_EABI)
{
/* A struct with only one or two floating point fields is returned in
the floating point registers. */
tree field, fields[2];
int i;
for (i = 0, field = TYPE_FIELDS (valtype); field;
field = TREE_CHAIN (field))
{
if (TREE_CODE (field) != FIELD_DECL)
continue;
if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE || i >= 2)
break;
fields[i++] = field;
}
/* Must check i, so that we reject structures with no elements. */
if (! field)
{
if (i == 1)
{
/* The structure has DImode, but we don't allow DImode values
in FP registers, so we use a PARALLEL even though it isn't
strictly necessary. */
enum machine_mode field_mode = TYPE_MODE (TREE_TYPE (fields[0]));
return gen_rtx_PARALLEL
(mode,
gen_rtvec (1,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (field_mode,
FP_RETURN),
const0_rtx)));
}
else if (i == 2)
{
enum machine_mode first_mode
= TYPE_MODE (TREE_TYPE (fields[0]));
enum machine_mode second_mode
= TYPE_MODE (TREE_TYPE (fields[1]));
HOST_WIDE_INT first_offset = int_byte_position (fields[0]);
HOST_WIDE_INT second_offset = int_byte_position (fields[1]);
return gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (first_mode,
FP_RETURN),
GEN_INT (first_offset)),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (second_mode,
FP_RETURN + 2),
GEN_INT (second_offset))));
}
}
}
return gen_rtx_REG (mode, reg);
}
/* The implementation of FUNCTION_ARG_PASS_BY_REFERENCE. Return
nonzero when an argument must be passed by reference. */
int
function_arg_pass_by_reference (cum, mode, type, named)
const CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int named ATTRIBUTE_UNUSED;
{
int size;
if (mips_abi == ABI_32 || mips_abi == ABI_O64)
return 0;
/* We must pass by reference if we would be both passing in registers
and the stack. This is because any subsequent partial arg would be
handled incorrectly in this case.
??? This is really a kludge. We should either fix GCC so that such
a situation causes an abort and then do something in the MIPS port
to prevent it, or add code to function.c to properly handle the case. */
/* ??? cum can be NULL when called from mips_va_arg. The problem handled
here hopefully is not relevant to mips_va_arg. */
if (cum && MUST_PASS_IN_STACK (mode, type)
&& mips_abi != ABI_MEABI
&& FUNCTION_ARG (*cum, mode, type, named) != 0)
return 1;
/* Otherwise, we only do this if EABI is selected. */
if (mips_abi != ABI_EABI)
return 0;
/* ??? How should SCmode be handled? */
if (type == NULL_TREE || mode == DImode || mode == DFmode)
return 0;
size = int_size_in_bytes (type);
return size == -1 || size > UNITS_PER_WORD;
}
/* Return the class of registers for which a mode change from FROM to TO
is invalid.
In little-endian mode, the hi-lo registers are numbered backwards,
so (subreg:SI (reg:DI hi) 0) gets the high word instead of the low
word as intended.
Similarly, when using paired floating-point registers, the first
register holds the low word, regardless of endianness. So in big
endian mode, (subreg:SI (reg:DF $f0) 0) does not get the high word
as intended.
Also, loading a 32-bit value into a 64-bit floating-point register
will not sign-extend the value, despite what LOAD_EXTEND_OP says.
We can't allow 64-bit float registers to change from a 32-bit
mode to a 64-bit mode. */
bool
mips_cannot_change_mode_class (from, to, class)
enum machine_mode from, to;
enum reg_class class;
{
if (GET_MODE_SIZE (from) != GET_MODE_SIZE (to))
{
if (TARGET_BIG_ENDIAN)
return reg_classes_intersect_p (FP_REGS, class);
if (TARGET_FLOAT64)
return reg_classes_intersect_p (HI_AND_FP_REGS, class);
return reg_classes_intersect_p (HI_REG, class);
}
return false;
}
/* This function returns the register class required for a secondary
register when copying between one of the registers in CLASS, and X,
using MODE. If IN_P is nonzero, the copy is going from X to the
register, otherwise the register is the source. A return value of
NO_REGS means that no secondary register is required. */
enum reg_class
mips_secondary_reload_class (class, mode, x, in_p)
enum reg_class class;
enum machine_mode mode;
rtx x;
int in_p;
{
enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
int regno = -1;
int gp_reg_p;
if (GET_CODE (x) == SIGN_EXTEND)
{
int off = 0;
x = XEXP (x, 0);
/* We may be called with reg_renumber NULL from regclass.
??? This is probably a bug. */
if (reg_renumber)
regno = true_regnum (x);
else
{
while (GET_CODE (x) == SUBREG)
{
off += subreg_regno_offset (REGNO (SUBREG_REG (x)),
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x),
GET_MODE (x));
x = SUBREG_REG (x);
}
if (GET_CODE (x) == REG)
regno = REGNO (x) + off;
}
/* 64-bit floating-point registers don't store 32-bit values
in sign-extended form. The only way we can reload
(sign_extend:DI (reg:SI $f0)) is by moving $f0 into
an integer register using a 32-bit move. */
if (FP_REG_P (regno))
return (class == GR_REGS ? NO_REGS : GR_REGS);
/* For the same reason, we can only reload (sign_extend:DI FOO) into
a floating-point register when FOO is an integer register. */
if (class == FP_REGS)
return (GP_REG_P (regno) ? NO_REGS : GR_REGS);
}
else if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
regno = true_regnum (x);
gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
/* We always require a general register when copying anything to
HILO_REGNUM, except when copying an SImode value from HILO_REGNUM
to a general register, or when copying from register 0. */
if (class == HILO_REG && regno != GP_REG_FIRST + 0)
return ((! in_p
&& gp_reg_p
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (SImode))
? NO_REGS : gr_regs);
else if (regno == HILO_REGNUM)
return ((in_p
&& class == gr_regs
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (SImode))
? NO_REGS : gr_regs);
/* Copying from HI or LO to anywhere other than a general register
requires a general register. */
if (class == HI_REG || class == LO_REG || class == MD_REGS)
{
if (TARGET_MIPS16 && in_p)
{
/* We can't really copy to HI or LO at all in mips16 mode. */
return M16_REGS;
}
return gp_reg_p ? NO_REGS : gr_regs;
}
if (MD_REG_P (regno))
{
if (TARGET_MIPS16 && ! in_p)
{
/* We can't really copy to HI or LO at all in mips16 mode. */
return M16_REGS;
}
return class == gr_regs ? NO_REGS : gr_regs;
}
/* We can only copy a value to a condition code register from a
floating point register, and even then we require a scratch
floating point register. We can only copy a value out of a
condition code register into a general register. */
if (class == ST_REGS)
{
if (in_p)
return FP_REGS;
return GP_REG_P (regno) ? NO_REGS : GR_REGS;
}
if (ST_REG_P (regno))
{
if (! in_p)
return FP_REGS;
return class == GR_REGS ? NO_REGS : GR_REGS;
}
if (class == FP_REGS)
{
if (GET_CODE (x) == MEM)
{
/* In this case we can use lwc1, swc1, ldc1 or sdc1. */
return NO_REGS;
}
else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
{
/* We can use the l.s and l.d macros to load floating-point
constants. ??? For l.s, we could probably get better
code by returning GR_REGS here. */
return NO_REGS;
}
else if (GP_REG_P (regno) || x == CONST0_RTX (mode))
{
/* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
return NO_REGS;
}
else if (FP_REG_P (regno))
{
/* In this case we can use mov.s or mov.d. */
return NO_REGS;
}
else
{
/* Otherwise, we need to reload through an integer register. */
return GR_REGS;
}
}
/* In mips16 mode, going between memory and anything but M16_REGS
requires an M16_REG. */
if (TARGET_MIPS16)
{
if (class != M16_REGS && class != M16_NA_REGS)
{
if (gp_reg_p)
return NO_REGS;
return M16_REGS;
}
if (! gp_reg_p)
{
/* The stack pointer isn't a valid operand to an add instruction,
so we need to load it into M16_REGS first. This can happen as
a result of register elimination and form_sum converting
(plus reg (plus SP CONST)) to (plus (plus reg SP) CONST). We
need an extra register if the dest is the same as the other
register. In that case, we can't fix the problem by loading SP
into the dest first. */
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == REG
&& (XEXP (x, 0) == stack_pointer_rtx
|| XEXP (x, 1) == stack_pointer_rtx))
return (class == M16_REGS ? M16_NA_REGS : M16_REGS);
if (class == M16_REGS || class == M16_NA_REGS)
return NO_REGS;
return M16_REGS;
}
}
return NO_REGS;
}
/* This function returns the maximum number of consecutive registers
needed to represent mode MODE in registers of class CLASS. */
int
mips_class_max_nregs (class, mode)
enum reg_class class;
enum machine_mode mode;
{
if (class == FP_REGS)
return FP_INC;
else
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* For each mips16 function which refers to GP relative symbols, we
use a pseudo register, initialized at the start of the function, to
hold the $gp value. */
rtx
mips16_gp_pseudo_reg ()
{
if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
{
rtx const_gp;
rtx insn, scan;
cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
RTX_UNCHANGING_P (cfun->machine->mips16_gp_pseudo_rtx) = 1;
/* We want to initialize this to a value which gcc will believe
is constant. */
const_gp = gen_rtx (CONST, Pmode,
gen_rtx (REG, Pmode, GP_REG_FIRST + 28));
start_sequence ();
emit_move_insn (cfun->machine->mips16_gp_pseudo_rtx,
const_gp);
insn = get_insns ();
end_sequence ();
push_topmost_sequence ();
/* We need to emit the initialization after the FUNCTION_BEG
note, so that it will be integrated. */
for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
if (GET_CODE (scan) == NOTE
&& NOTE_LINE_NUMBER (scan) == NOTE_INSN_FUNCTION_BEG)
break;
if (scan == NULL_RTX)
scan = get_insns ();
insn = emit_insn_after (insn, scan);
pop_topmost_sequence ();
}
return cfun->machine->mips16_gp_pseudo_rtx;
}
/* Return an RTX which represents the signed 16 bit offset from the
$gp register for the given symbol. This is only used on the
mips16. */
rtx
mips16_gp_offset (sym)
rtx sym;
{
tree gp;
if (GET_CODE (sym) != SYMBOL_REF
|| ! SYMBOL_REF_FLAG (sym))
abort ();
/* We use a special identifier to represent the value of the gp
register. */
gp = get_identifier ("__mips16_gp_value");
return gen_rtx (CONST, Pmode,
gen_rtx (MINUS, Pmode, sym,
gen_rtx (SYMBOL_REF, Pmode,
IDENTIFIER_POINTER (gp))));
}
/* Return nonzero if the given RTX represents a signed 16 bit offset
from the $gp register. */
int
mips16_gp_offset_p (x)
rtx x;
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
/* It's OK to add a small integer value to a gp offset. */
if (GET_CODE (x) == PLUS)
{
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& SMALL_INT (XEXP (x, 1)))
return mips16_gp_offset_p (XEXP (x, 0));
if (GET_CODE (XEXP (x, 0)) == CONST_INT
&& SMALL_INT (XEXP (x, 0)))
return mips16_gp_offset_p (XEXP (x, 1));
return 0;
}
/* Make sure it is in the form SYM - __mips16_gp_value. */
return (GET_CODE (x) == MINUS
&& GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& SYMBOL_REF_FLAG (XEXP (x, 0))
&& GET_CODE (XEXP (x, 1)) == SYMBOL_REF
&& strcmp (XSTR (XEXP (x, 1), 0), "__mips16_gp_value") == 0);
}
/* Output a GP offset. We don't want to print the subtraction of
__mips16_gp_value; it is implicitly represented by the %gprel which
should have been printed by the caller. */
static void
mips16_output_gp_offset (file, x)
FILE *file;
rtx x;
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS)
{
mips16_output_gp_offset (file, XEXP (x, 0));
fputs ("+", file);
mips16_output_gp_offset (file, XEXP (x, 1));
return;
}
if (GET_CODE (x) == MINUS
&& GET_CODE (XEXP (x, 1)) == SYMBOL_REF
&& strcmp (XSTR (XEXP (x, 1), 0), "__mips16_gp_value") == 0)
{
mips16_output_gp_offset (file, XEXP (x, 0));
return;
}
output_addr_const (file, x);
}
/* Return nonzero if a constant should not be output until after the
function. This is true of most string constants, so that we can
use a more efficient PC relative reference. However, a static
inline function may never call assemble_function_end to write out
the constant pool, so don't try to postpone the constant in that
case.
??? It's really a bug that a static inline function can put stuff
in the constant pool even if the function itself is not output.
We record which string constants we've seen, so that we know which
ones might use the more efficient reference. */
int
mips16_constant_after_function_p (x)
tree x;
{
if (TREE_CODE (x) == STRING_CST
&& ! flag_writable_strings
&& current_function_decl != 0
&& ! DECL_DEFER_OUTPUT (current_function_decl)
&& ! (DECL_INLINE (current_function_decl)
&& ((! TREE_PUBLIC (current_function_decl)
&& ! TREE_ADDRESSABLE (current_function_decl)
&& ! flag_keep_inline_functions)
|| DECL_EXTERNAL (current_function_decl))))
{
struct string_constant *n;
n = (struct string_constant *) xmalloc (sizeof *n);
n->label = XSTR (XEXP (TREE_CST_RTL (x), 0), 0);
n->next = string_constants;
string_constants = n;
return 1;
}
return 0;
}
/* Validate a constant for the mips16. This rejects general symbolic
addresses, which must be loaded from memory. If ADDR is nonzero,
this should reject anything which is not a legal address. If
ADDEND is nonzero, this is being added to something else. */
int
mips16_constant (x, mode, addr, addend)
rtx x;
enum machine_mode mode;
int addr;
int addend;
{
while (GET_CODE (x) == CONST)
x = XEXP (x, 0);
switch (GET_CODE (x))
{
default:
return 0;
case PLUS:
return (mips16_constant (XEXP (x, 0), mode, addr, 1)
&& mips16_constant (XEXP (x, 1), mode, addr, 1));
case SYMBOL_REF:
if (addr && GET_MODE_SIZE (mode) != 4 && GET_MODE_SIZE (mode) != 8)
return 0;
if (CONSTANT_POOL_ADDRESS_P (x))
return 1;
/* If we aren't looking for a memory address, we can accept a GP
relative symbol, which will have SYMBOL_REF_FLAG set; movsi
knows how to handle this. We can always accept a string
constant, which is the other case in which SYMBOL_REF_FLAG
will be set. */
if (! addr
&& ! addend
&& SYMBOL_REF_FLAG (x)
&& mode == (enum machine_mode) Pmode)
return 1;
/* We can accept a string constant, which will have
SYMBOL_REF_FLAG set but must be recognized by name to
distinguish from a GP accessible symbol. The name of a
string constant will have been generated by
ASM_GENERATE_INTERNAL_LABEL as called by output_constant_def. */
if (SYMBOL_REF_FLAG (x))
{
const char *name = XSTR (x, 0);
return (name[0] == '*'
&& strncmp (name + 1, LOCAL_LABEL_PREFIX,
sizeof LOCAL_LABEL_PREFIX - 1) == 0);
}
return 0;
case LABEL_REF:
if (addr && GET_MODE_SIZE (mode) != 4 && GET_MODE_SIZE (mode) != 8)
return 0;
return 1;
case CONST_INT:
if (addr && ! addend)
return 0;
return INTVAL (x) > - 0x10000 && INTVAL (x) <= 0xffff;
case REG:
/* We need to treat $gp as a legitimate constant, because
mips16_gp_pseudo_reg assumes that. */
return REGNO (x) == GP_REG_FIRST + 28;
}
}
/* Write out code to move floating point arguments in or out of
general registers. Output the instructions to FILE. FP_CODE is
the code describing which arguments are present (see the comment at
the definition of CUMULATIVE_ARGS in mips.h). FROM_FP_P is nonzero if
we are copying from the floating point registers. */
static void
mips16_fp_args (file, fp_code, from_fp_p)
FILE *file;
int fp_code;
int from_fp_p;
{
const char *s;
int gparg, fparg;
unsigned int f;
/* This code only works for the original 32 bit ABI and the O64 ABI. */
if (mips_abi != ABI_32 && mips_abi != ABI_O64)
abort ();
if (from_fp_p)
s = "mfc1";
else
s = "mtc1";
gparg = GP_ARG_FIRST;
fparg = FP_ARG_FIRST;
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
{
if ((f & 3) == 1)
{
if ((fparg & 1) != 0)
++fparg;
fprintf (file, "\t%s\t%s,%s\n", s,
reg_names[gparg], reg_names[fparg]);
}
else if ((f & 3) == 2)
{
if (TARGET_64BIT)
fprintf (file, "\td%s\t%s,%s\n", s,
reg_names[gparg], reg_names[fparg]);
else
{
if ((fparg & 1) != 0)
++fparg;
if (TARGET_BIG_ENDIAN)
fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
reg_names[gparg], reg_names[fparg + 1], s,
reg_names[gparg + 1], reg_names[fparg]);
else
fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
reg_names[gparg], reg_names[fparg], s,
reg_names[gparg + 1], reg_names[fparg + 1]);
++gparg;
++fparg;
}
}
else
abort ();
++gparg;
++fparg;
}
}
/* Build a mips16 function stub. This is used for functions which
take aruments in the floating point registers. It is 32 bit code
that moves the floating point args into the general registers, and
then jumps to the 16 bit code. */
static void
build_mips16_function_stub (file)
FILE *file;
{
const char *fnname;
char *secname, *stubname;
tree stubid, stubdecl;
int need_comma;
unsigned int f;
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
secname = (char *) alloca (strlen (fnname) + 20);
sprintf (secname, ".mips16.fn.%s", fnname);
stubname = (char *) alloca (strlen (fnname) + 20);
sprintf (stubname, "__fn_stub_%s", fnname);
stubid = get_identifier (stubname);
stubdecl = build_decl (FUNCTION_DECL, stubid,
build_function_type (void_type_node, NULL_TREE));
DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
fprintf (file, "\t# Stub function for %s (", current_function_name);
need_comma = 0;
for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
{
fprintf (file, "%s%s",
need_comma ? ", " : "",
(f & 3) == 1 ? "float" : "double");
need_comma = 1;
}
fprintf (file, ")\n");
fprintf (file, "\t.set\tnomips16\n");
function_section (stubdecl);
ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
/* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
within a .ent, and we can not emit another .ent. */
#ifndef FUNCTION_NAME_ALREADY_DECLARED
fputs ("\t.ent\t", file);
assemble_name (file, stubname);
fputs ("\n", file);
#endif
assemble_name (file, stubname);
fputs (":\n", file);
/* We don't want the assembler to insert any nops here. */
fprintf (file, "\t.set\tnoreorder\n");
mips16_fp_args (file, current_function_args_info.fp_code, 1);
fprintf (asm_out_file, "\t.set\tnoat\n");
fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
assemble_name (file, fnname);
fprintf (file, "\n");
fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
fprintf (asm_out_file, "\t.set\tat\n");
/* Unfortunately, we can't fill the jump delay slot. We can't fill
with one of the mfc1 instructions, because the result is not
available for one instruction, so if the very first instruction
in the function refers to the register, it will see the wrong
value. */
fprintf (file, "\tnop\n");
fprintf (file, "\t.set\treorder\n");
#ifndef FUNCTION_NAME_ALREADY_DECLARED
fputs ("\t.end\t", file);
assemble_name (file, stubname);
fputs ("\n", file);
#endif
fprintf (file, "\t.set\tmips16\n");
function_section (current_function_decl);
}
/* We keep a list of functions for which we have already built stubs
in build_mips16_call_stub. */
struct mips16_stub
{
struct mips16_stub *next;
char *name;
int fpret;
};
static struct mips16_stub *mips16_stubs;
/* Build a call stub for a mips16 call. A stub is needed if we are
passing any floating point values which should go into the floating
point registers. If we are, and the call turns out to be to a 32
bit function, the stub will be used to move the values into the
floating point registers before calling the 32 bit function. The
linker will magically adjust the function call to either the 16 bit
function or the 32 bit stub, depending upon where the function call
is actually defined.
Similarly, we need a stub if the return value might come back in a
floating point register.
RETVAL, FNMEM, and ARG_SIZE are the values passed to the call insn
(RETVAL is NULL if this is call rather than call_value). FP_CODE
is the code built by function_arg. This function returns a nonzero
value if it builds the call instruction itself. */
int
build_mips16_call_stub (retval, fnmem, arg_size, fp_code)
rtx retval;
rtx fnmem;
rtx arg_size;
int fp_code;
{
int fpret;
rtx fn;
const char *fnname;
char *secname, *stubname;
struct mips16_stub *l;
tree stubid, stubdecl;
int need_comma;
unsigned int f;
/* We don't need to do anything if we aren't in mips16 mode, or if
we were invoked with the -msoft-float option. */
if (! TARGET_MIPS16 || ! mips16_hard_float)
return 0;
/* Figure out whether the value might come back in a floating point
register. */
fpret = (retval != 0
&& GET_MODE_CLASS (GET_MODE (retval)) == MODE_FLOAT
&& GET_MODE_SIZE (GET_MODE (retval)) <= UNITS_PER_FPVALUE);
/* We don't need to do anything if there were no floating point
arguments and the value will not be returned in a floating point
register. */
if (fp_code == 0 && ! fpret)
return 0;
if (GET_CODE (fnmem) != MEM)
abort ();
fn = XEXP (fnmem, 0);
/* We don't need to do anything if this is a call to a special
mips16 support function. */
if (GET_CODE (fn) == SYMBOL_REF
&& strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
return 0;
/* This code will only work for o32 and o64 abis. The other ABI's
require more sophisticated support. */
if (mips_abi != ABI_32 && mips_abi != ABI_O64)
abort ();
/* We can only handle SFmode and DFmode floating point return
values. */
if (fpret && GET_MODE (retval) != SFmode && GET_MODE (retval) != DFmode)
abort ();
/* If we're calling via a function pointer, then we must always call
via a stub. There are magic stubs provided in libgcc.a for each
of the required cases. Each of them expects the function address
to arrive in register $2. */
if (GET_CODE (fn) != SYMBOL_REF)
{
char buf[30];
tree id;
rtx stub_fn, stub_mem, insn;
/* ??? If this code is modified to support other ABI's, we need
to handle PARALLEL return values here. */
sprintf (buf, "__mips16_call_stub_%s%d",
(fpret
? (GET_MODE (retval) == SFmode ? "sf_" : "df_")
: ""),
fp_code);
id = get_identifier (buf);
stub_fn = gen_rtx (SYMBOL_REF, Pmode, IDENTIFIER_POINTER (id));
stub_mem = gen_rtx (MEM, Pmode, stub_fn);
emit_move_insn (gen_rtx (REG, Pmode, 2), fn);
if (retval == NULL_RTX)
insn = gen_call_internal0 (stub_mem, arg_size,
gen_rtx (REG, SImode,
GP_REG_FIRST + 31));
else
insn = gen_call_value_internal0 (retval, stub_mem, arg_size,
gen_rtx (REG, SImode,
GP_REG_FIRST + 31));
insn = emit_call_insn (insn);
/* Put the register usage information on the CALL. */
if (GET_CODE (insn) != CALL_INSN)
abort ();
CALL_INSN_FUNCTION_USAGE (insn) =
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (USE, VOIDmode, gen_rtx (REG, Pmode, 2)),
CALL_INSN_FUNCTION_USAGE (insn));
/* If we are handling a floating point return value, we need to
save $18 in the function prologue. Putting a note on the
call will mean that regs_ever_live[$18] will be true if the
call is not eliminated, and we can check that in the prologue
code. */
if (fpret)
CALL_INSN_FUNCTION_USAGE (insn) =
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (USE, VOIDmode, gen_rtx (REG, word_mode, 18)),
CALL_INSN_FUNCTION_USAGE (insn));
/* Return 1 to tell the caller that we've generated the call
insn. */
return 1;
}
/* We know the function we are going to call. If we have already
built a stub, we don't need to do anything further. */
fnname = XSTR (fn, 0);
for (l = mips16_stubs; l != NULL; l = l->next)
if (strcmp (l->name, fnname) == 0)
break;
if (l == NULL)
{
/* Build a special purpose stub. When the linker sees a
function call in mips16 code, it will check where the target
is defined. If the target is a 32 bit call, the linker will
search for the section defined here. It can tell which
symbol this section is associated with by looking at the
relocation information (the name is unreliable, since this
might be a static function). If such a section is found, the
linker will redirect the call to the start of the magic
section.
If the function does not return a floating point value, the
special stub section is named
.mips16.call.FNNAME
If the function does return a floating point value, the stub
section is named
.mips16.call.fp.FNNAME
*/
secname = (char *) alloca (strlen (fnname) + 40);
sprintf (secname, ".mips16.call.%s%s",
fpret ? "fp." : "",
fnname);
stubname = (char *) alloca (strlen (fnname) + 20);
sprintf (stubname, "__call_stub_%s%s",
fpret ? "fp_" : "",
fnname);
stubid = get_identifier (stubname);
stubdecl = build_decl (FUNCTION_DECL, stubid,
build_function_type (void_type_node, NULL_TREE));
DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
fprintf (asm_out_file, "\t# Stub function to call %s%s (",
(fpret
? (GET_MODE (retval) == SFmode ? "float " : "double ")
: ""),
fnname);
need_comma = 0;
for (f = (unsigned int) fp_code; f != 0; f >>= 2)
{
fprintf (asm_out_file, "%s%s",
need_comma ? ", " : "",
(f & 3) == 1 ? "float" : "double");
need_comma = 1;
}
fprintf (asm_out_file, ")\n");
fprintf (asm_out_file, "\t.set\tnomips16\n");
assemble_start_function (stubdecl, stubname);
#ifndef FUNCTION_NAME_ALREADY_DECLARED
fputs ("\t.ent\t", asm_out_file);
assemble_name (asm_out_file, stubname);
fputs ("\n", asm_out_file);
assemble_name (asm_out_file, stubname);
fputs (":\n", asm_out_file);
#endif
/* We build the stub code by hand. That's the only way we can
do it, since we can't generate 32 bit code during a 16 bit
compilation. */
/* We don't want the assembler to insert any nops here. */
fprintf (asm_out_file, "\t.set\tnoreorder\n");
mips16_fp_args (asm_out_file, fp_code, 0);
if (! fpret)
{
fprintf (asm_out_file, "\t.set\tnoat\n");
fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
fnname);
fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
fprintf (asm_out_file, "\t.set\tat\n");
/* Unfortunately, we can't fill the jump delay slot. We
can't fill with one of the mtc1 instructions, because the
result is not available for one instruction, so if the
very first instruction in the function refers to the
register, it will see the wrong value. */
fprintf (asm_out_file, "\tnop\n");
}
else
{
fprintf (asm_out_file, "\tmove\t%s,%s\n",
reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
fprintf (asm_out_file, "\tjal\t%s\n", fnname);
/* As above, we can't fill the delay slot. */
fprintf (asm_out_file, "\tnop\n");
if (GET_MODE (retval) == SFmode)
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
reg_names[GP_REG_FIRST + 2], reg_names[FP_REG_FIRST + 0]);
else
{
if (TARGET_BIG_ENDIAN)
{
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
reg_names[GP_REG_FIRST + 2],
reg_names[FP_REG_FIRST + 1]);
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
reg_names[GP_REG_FIRST + 3],
reg_names[FP_REG_FIRST + 0]);
}
else
{
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
reg_names[GP_REG_FIRST + 2],
reg_names[FP_REG_FIRST + 0]);
fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
reg_names[GP_REG_FIRST + 3],
reg_names[FP_REG_FIRST + 1]);
}
}
fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
/* As above, we can't fill the delay slot. */
fprintf (asm_out_file, "\tnop\n");
}
fprintf (asm_out_file, "\t.set\treorder\n");
#ifdef ASM_DECLARE_FUNCTION_SIZE
ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
#endif
#ifndef FUNCTION_NAME_ALREADY_DECLARED
fputs ("\t.end\t", asm_out_file);
assemble_name (asm_out_file, stubname);
fputs ("\n", asm_out_file);
#endif
fprintf (asm_out_file, "\t.set\tmips16\n");
/* Record this stub. */
l = (struct mips16_stub *) xmalloc (sizeof *l);
l->name = xstrdup (fnname);
l->fpret = fpret;
l->next = mips16_stubs;
mips16_stubs = l;
}
/* If we expect a floating point return value, but we've built a
stub which does not expect one, then we're in trouble. We can't
use the existing stub, because it won't handle the floating point
value. We can't build a new stub, because the linker won't know
which stub to use for the various calls in this object file.
Fortunately, this case is illegal, since it means that a function
was declared in two different ways in a single compilation. */
if (fpret && ! l->fpret)
error ("can not handle inconsistent calls to `%s'", fnname);
/* If we are calling a stub which handles a floating point return
value, we need to arrange to save $18 in the prologue. We do
this by marking the function call as using the register. The
prologue will later see that it is used, and emit code to save
it. */
if (l->fpret)
{
rtx insn;
if (retval == NULL_RTX)
insn = gen_call_internal0 (fnmem, arg_size,
gen_rtx (REG, SImode,
GP_REG_FIRST + 31));
else
insn = gen_call_value_internal0 (retval, fnmem, arg_size,
gen_rtx (REG, SImode,
GP_REG_FIRST + 31));
insn = emit_call_insn (insn);
if (GET_CODE (insn) != CALL_INSN)
abort ();
CALL_INSN_FUNCTION_USAGE (insn) =
gen_rtx (EXPR_LIST, VOIDmode,
gen_rtx (USE, VOIDmode, gen_rtx (REG, word_mode, 18)),
CALL_INSN_FUNCTION_USAGE (insn));
/* Return 1 to tell the caller that we've generated the call
insn. */
return 1;
}
/* Return 0 to let the caller generate the call insn. */
return 0;
}
/* This function looks through the code for a function, and tries to
optimize the usage of the $gp register. We arrange to copy $gp
into a pseudo-register, and then let gcc's normal reload handling
deal with the pseudo-register. Unfortunately, if reload choose to
put the pseudo-register into a call-clobbered register, it will
emit saves and restores for that register around any function
calls. We don't need the saves, and it's faster to copy $gp than
to do an actual restore. ??? This still means that we waste a
stack slot.
This is an optimization, and the code which gcc has actually
generated is correct, so we do not need to catch all cases. */
static void
mips16_optimize_gp (first)
rtx first;
{
rtx gpcopy, slot, insn;
/* Look through the instructions. Set GPCOPY to the register which
holds a copy of $gp. Set SLOT to the stack slot where it is
saved. If we find an instruction which sets GPCOPY to anything
other than $gp or SLOT, then we can't use it. If we find an
instruction which sets SLOT to anything other than GPCOPY, we
can't use it. */
gpcopy = NULL_RTX;
slot = NULL_RTX;
for (insn = first; insn != NULL_RTX; insn = next_active_insn (insn))
{
rtx set;
if (! INSN_P (insn))
continue;
set = PATTERN (insn);
/* We know that all references to memory will be inside a SET,
because there is no other way to access memory on the mips16.
We don't have to worry about a PARALLEL here, because the
mips.md file will never generate them for memory references. */
if (GET_CODE (set) != SET)
continue;
if (gpcopy == NULL_RTX
&& GET_CODE (SET_SRC (set)) == CONST
&& GET_CODE (XEXP (SET_SRC (set), 0)) == REG
&& REGNO (XEXP (SET_SRC (set), 0)) == GP_REG_FIRST + 28
&& GET_CODE (SET_DEST (set)) == REG
&& GET_MODE (SET_DEST (set)) == (unsigned) Pmode)
gpcopy = SET_DEST (set);
else if (slot == NULL_RTX
&& gpcopy != NULL_RTX
&& GET_CODE (SET_DEST (set)) == MEM
&& GET_CODE (SET_SRC (set)) == REG
&& REGNO (SET_SRC (set)) == REGNO (gpcopy)
&& GET_MODE (SET_DEST (set)) == (unsigned) Pmode)
{
rtx base, offset;
offset = const0_rtx;
base = eliminate_constant_term (XEXP (SET_DEST (set), 0), &offset);
if (GET_CODE (base) == REG
&& (REGNO (base) == STACK_POINTER_REGNUM
|| REGNO (base) == FRAME_POINTER_REGNUM))
slot = SET_DEST (set);
}
else if (gpcopy != NULL_RTX
&& (GET_CODE (SET_DEST (set)) == REG
|| GET_CODE (SET_DEST (set)) == SUBREG)
&& reg_overlap_mentioned_p (SET_DEST (set), gpcopy)
&& (GET_CODE (SET_DEST (set)) != REG
|| REGNO (SET_DEST (set)) != REGNO (gpcopy)
|| GET_MODE (SET_DEST (set)) != (unsigned) Pmode
|| ((GET_CODE (SET_SRC (set)) != CONST
|| GET_CODE (XEXP (SET_SRC (set), 0)) != REG
|| (REGNO (XEXP (SET_SRC (set), 0))
!= GP_REG_FIRST + 28))
&& ! rtx_equal_p (SET_SRC (set), slot))))
break;
else if (slot != NULL_RTX
&& GET_CODE (SET_DEST (set)) == MEM
&& rtx_equal_p (SET_DEST (set), slot)
&& (GET_CODE (SET_SRC (set)) != REG
|| REGNO (SET_SRC (set)) != REGNO (gpcopy)))
break;
}
/* If we couldn't find a unique value for GPCOPY or SLOT, then try a
different optimization. Any time we find a copy of $28 into a
register, followed by an add of a symbol_ref to that register, we
convert it to load the value from the constant table instead.
The copy and add will take six bytes, just as the load and
constant table entry will take six bytes. However, it is
possible that the constant table entry will be shared.
This could be a peephole optimization, but I don't know if the
peephole code can call force_const_mem.
Using the same register for the copy of $28 and the add of the
symbol_ref is actually pretty likely, since the add instruction
requires the destination and the first addend to be the same
register. */
if (insn != NULL_RTX || gpcopy == NULL_RTX || slot == NULL_RTX)
{
rtx next;
/* This optimization is only reasonable if the constant table
entries are only 4 bytes. */
if (Pmode != SImode)
return;
for (insn = first; insn != NULL_RTX; insn = next)
{
rtx set1, set2;
next = insn;
do
{
next = NEXT_INSN (next);
}
while (next != NULL_RTX
&& (GET_CODE (next) == NOTE
|| (GET_CODE (next) == INSN
&& (GET_CODE (PATTERN (next)) == USE
|| GET_CODE (PATTERN (next)) == CLOBBER))));
if (next == NULL_RTX)
break;
if (! INSN_P (insn))
continue;
if (! INSN_P (next))
continue;
set1 = PATTERN (insn);
if (GET_CODE (set1) != SET)
continue;
set2 = PATTERN (next);
if (GET_CODE (set2) != SET)
continue;
if (GET_CODE (SET_DEST (set1)) == REG
&& GET_CODE (SET_SRC (set1)) == CONST
&& GET_CODE (XEXP (SET_SRC (set1), 0)) == REG
&& REGNO (XEXP (SET_SRC (set1), 0)) == GP_REG_FIRST + 28
&& rtx_equal_p (SET_DEST (set1), SET_DEST (set2))
&& GET_CODE (SET_SRC (set2)) == PLUS
&& rtx_equal_p (SET_DEST (set1), XEXP (SET_SRC (set2), 0))
&& mips16_gp_offset_p (XEXP (SET_SRC (set2), 1))
&& GET_CODE (XEXP (XEXP (SET_SRC (set2), 1), 0)) == MINUS)
{
rtx sym;
/* We've found a case we can change to load from the
constant table. */
sym = XEXP (XEXP (XEXP (SET_SRC (set2), 1), 0), 0);
if (GET_CODE (sym) != SYMBOL_REF)
abort ();
emit_insn_after (gen_rtx (SET, VOIDmode, SET_DEST (set1),
force_const_mem (Pmode, sym)),
next);
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
PUT_CODE (next, NOTE);
NOTE_LINE_NUMBER (next) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (next) = 0;
}
}
return;
}
/* We can safely remove all assignments to SLOT from GPCOPY, and
replace all assignments from SLOT to GPCOPY with assignments from
$28. */
for (insn = first; insn != NULL_RTX; insn = next_active_insn (insn))
{
rtx set;
if (! INSN_P (insn))
continue;
set = PATTERN (insn);
if (GET_CODE (set) != SET
|| GET_MODE (SET_DEST (set)) != (unsigned) Pmode)
continue;
if (GET_CODE (SET_DEST (set)) == MEM
&& rtx_equal_p (SET_DEST (set), slot)
&& GET_CODE (SET_SRC (set)) == REG
&& REGNO (SET_SRC (set)) == REGNO (gpcopy))
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
else if (GET_CODE (SET_DEST (set)) == REG
&& REGNO (SET_DEST (set)) == REGNO (gpcopy)
&& GET_CODE (SET_SRC (set)) == MEM
&& rtx_equal_p (SET_SRC (set), slot))
{
emit_insn_after (gen_rtx (SET, Pmode, SET_DEST (set),
gen_rtx (CONST, Pmode,
gen_rtx (REG, Pmode,
GP_REG_FIRST + 28))),
insn);
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
}
}
}
/* We keep a list of constants we which we have to add to internal
constant tables in the middle of large functions. */
struct constant
{
struct constant *next;
rtx value;
rtx label;
enum machine_mode mode;
};
/* Add a constant to the list in *PCONSTANTS. */
static rtx
add_constant (pconstants, val, mode)
struct constant **pconstants;
rtx val;
enum machine_mode mode;
{
struct constant *c;
for (c = *pconstants; c != NULL; c = c->next)
if (mode == c->mode && rtx_equal_p (val, c->value))
return c->label;
c = (struct constant *) xmalloc (sizeof *c);
c->value = val;
c->mode = mode;
c->label = gen_label_rtx ();
c->next = *pconstants;
*pconstants = c;
return c->label;
}
/* Dump out the constants in CONSTANTS after INSN. */
static void
dump_constants (constants, insn)
struct constant *constants;
rtx insn;
{
struct constant *c;
int align;
c = constants;
align = 0;
while (c != NULL)
{
rtx r;
struct constant *next;
switch (GET_MODE_SIZE (c->mode))
{
case 1:
align = 0;
break;
case 2:
if (align < 1)
insn = emit_insn_after (gen_align_2 (), insn);
align = 1;
break;
case 4:
if (align < 2)
insn = emit_insn_after (gen_align_4 (), insn);
align = 2;
break;
default:
if (align < 3)
insn = emit_insn_after (gen_align_8 (), insn);
align = 3;
break;
}
insn = emit_label_after (c->label, insn);
switch (c->mode)
{
case QImode:
r = gen_consttable_qi (c->value);
break;
case HImode:
r = gen_consttable_hi (c->value);
break;
case SImode:
r = gen_consttable_si (c->value);
break;
case SFmode:
r = gen_consttable_sf (c->value);
break;
case DImode:
r = gen_consttable_di (c->value);
break;
case DFmode:
r = gen_consttable_df (c->value);
break;
default:
abort ();
}
insn = emit_insn_after (r, insn);
next = c->next;
free (c);
c = next;
}
emit_barrier_after (insn);
}
/* Find the symbol in an address expression. */
static rtx
mips_find_symbol (addr)
rtx addr;
{
if (GET_CODE (addr) == MEM)
addr = XEXP (addr, 0);
while (GET_CODE (addr) == CONST)
addr = XEXP (addr, 0);
if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
return addr;
if (GET_CODE (addr) == PLUS)
{
rtx l1, l2;
l1 = mips_find_symbol (XEXP (addr, 0));
l2 = mips_find_symbol (XEXP (addr, 1));
if (l1 != NULL_RTX && l2 == NULL_RTX)
return l1;
else if (l1 == NULL_RTX && l2 != NULL_RTX)
return l2;
}
return NULL_RTX;
}
/* Exported to toplev.c.
Do a final pass over the function, just before delayed branch
scheduling. */
void
machine_dependent_reorg (first)
rtx first;
{
int insns_len, max_internal_pool_size, pool_size, addr, first_constant_ref;
rtx insn;
struct constant *constants;
if (! TARGET_MIPS16)
return;
/* If $gp is used, try to remove stores, and replace loads with
copies from $gp. */
if (optimize)
mips16_optimize_gp (first);
/* Scan the function looking for PC relative loads which may be out
of range. All such loads will either be from the constant table,
or be getting the address of a constant string. If the size of
the function plus the size of the constant table is less than
0x8000, then all loads are in range. */
insns_len = 0;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
insns_len += get_attr_length (insn);
/* ??? We put switch tables in .text, but we don't define
JUMP_TABLES_IN_TEXT_SECTION, so get_attr_length will not
compute their lengths correctly. */
if (GET_CODE (insn) == JUMP_INSN)
{
rtx body;
body = PATTERN (insn);
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
insns_len += (XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC)
* GET_MODE_SIZE (GET_MODE (body)));
insns_len += GET_MODE_SIZE (GET_MODE (body)) - 1;
}
}
/* Store the original value of insns_len in cfun->machine, so
that simple_memory_operand can look at it. */
cfun->machine->insns_len = insns_len;
pool_size = get_pool_size ();
if (insns_len + pool_size + mips_string_length < 0x8000)
return;
/* Loop over the insns and figure out what the maximum internal pool
size could be. */
max_internal_pool_size = 0;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET)
{
rtx src;
src = mips_find_symbol (SET_SRC (PATTERN (insn)));
if (src == NULL_RTX)
continue;
if (CONSTANT_POOL_ADDRESS_P (src))
max_internal_pool_size += GET_MODE_SIZE (get_pool_mode (src));
else if (SYMBOL_REF_FLAG (src))
max_internal_pool_size += GET_MODE_SIZE (Pmode);
}
}
constants = NULL;
addr = 0;
first_constant_ref = -1;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET)
{
rtx val, src;
enum machine_mode mode = VOIDmode;
val = NULL_RTX;
src = mips_find_symbol (SET_SRC (PATTERN (insn)));
if (src != NULL_RTX && CONSTANT_POOL_ADDRESS_P (src))
{
/* ??? This is very conservative, which means that we
will generate too many copies of the constant table.
The only solution would seem to be some form of
relaxing. */
if (((insns_len - addr)
+ max_internal_pool_size
+ get_pool_offset (src))
>= 0x8000)
{
val = get_pool_constant (src);
mode = get_pool_mode (src);
}
max_internal_pool_size -= GET_MODE_SIZE (get_pool_mode (src));
}
else if (src != NULL_RTX && SYMBOL_REF_FLAG (src))
{
/* Including all of mips_string_length is conservative,
and so is including all of max_internal_pool_size. */
if (((insns_len - addr)
+ max_internal_pool_size
+ pool_size
+ mips_string_length)
>= 0x8000)
{
val = src;
mode = Pmode;
}
max_internal_pool_size -= Pmode;
}
if (val != NULL_RTX)
{
rtx lab, newsrc;
/* This PC relative load is out of range. ??? In the
case of a string constant, we are only guessing that
it is range, since we don't know the offset of a
particular string constant. */
lab = add_constant (&constants, val, mode);
newsrc = gen_rtx (MEM, mode,
gen_rtx (LABEL_REF, VOIDmode, lab));
RTX_UNCHANGING_P (newsrc) = 1;
PATTERN (insn) = gen_rtx (SET, VOIDmode,
SET_DEST (PATTERN (insn)),
newsrc);
INSN_CODE (insn) = -1;
if (first_constant_ref < 0)
first_constant_ref = addr;
}
}
addr += get_attr_length (insn);
/* ??? We put switch tables in .text, but we don't define
JUMP_TABLES_IN_TEXT_SECTION, so get_attr_length will not
compute their lengths correctly. */
if (GET_CODE (insn) == JUMP_INSN)
{
rtx body;
body = PATTERN (insn);
if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
addr += (XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC)
* GET_MODE_SIZE (GET_MODE (body)));
addr += GET_MODE_SIZE (GET_MODE (body)) - 1;
}
if (GET_CODE (insn) == BARRIER)
{
/* Output any constants we have accumulated. Note that we
don't need to change ADDR, since its only use is
subtraction from INSNS_LEN, and both would be changed by
the same amount.
??? If the instructions up to the next barrier reuse a
constant, it would often be better to continue
accumulating. */
if (constants != NULL)
dump_constants (constants, insn);
constants = NULL;
first_constant_ref = -1;
}
if (constants != NULL
&& (NEXT_INSN (insn) == NULL
|| (first_constant_ref >= 0
&& (((addr - first_constant_ref)
+ 2 /* for alignment */
+ 2 /* for a short jump insn */
+ pool_size)
>= 0x8000))))
{
/* If we haven't had a barrier within 0x8000 bytes of a
constant reference or we are at the end of the function,
emit a barrier now. */
rtx label, jump, barrier;
label = gen_label_rtx ();
jump = emit_jump_insn_after (gen_jump (label), insn);
JUMP_LABEL (jump) = label;
LABEL_NUSES (label) = 1;
barrier = emit_barrier_after (jump);
emit_label_after (label, barrier);
first_constant_ref = -1;
}
}
/* ??? If we output all references to a constant in internal
constants table, we don't need to output the constant in the real
constant table, but we have no way to prevent that. */
}
/* Return nonzero if X is a SIGN or ZERO extend operator. */
int
extend_operator (x, mode)
rtx x;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (x);
return code == SIGN_EXTEND || code == ZERO_EXTEND;
}
/* Accept any operator that can be used to shift the high half of the
input value to the lower half, suitable for truncation. The
remainder (the lower half of the input, and the upper half of the
output) will be discarded. */
int
highpart_shift_operator (x, mode)
rtx x;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (x);
return (code == LSHIFTRT
|| code == ASHIFTRT
|| code == ROTATERT
|| code == ROTATE);
}
/* Return a number assessing the cost of moving a register in class
FROM to class TO. The classes are expressed using the enumeration
values such as `GENERAL_REGS'. A value of 2 is the default; other
values are interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the
same as TO; on some machines it is expensive to move between
registers if they are not general registers.
If reload sees an insn consisting of a single `set' between two
hard registers, and if `REGISTER_MOVE_COST' applied to their
classes returns a value of 2, reload does not check to ensure that
the constraints of the insn are met. Setting a cost of other than
2 will allow reload to verify that the constraints are met. You
should do this if the `movM' pattern's constraints do not allow
such copying.
??? We make make the cost of moving from HI/LO/HILO/MD into general
registers the same as for one of moving general registers to
HI/LO/HILO/MD for TARGET_MIPS16 in order to prevent allocating a
pseudo to HI/LO/HILO/MD. This might hurt optimizations though, it
isn't clear if it is wise. And it might not work in all cases. We
could solve the DImode LO reg problem by using a multiply, just
like reload_{in,out}si. We could solve the SImode/HImode HI reg
problem by using divide instructions. divu puts the remainder in
the HI reg, so doing a divide by -1 will move the value in the HI
reg for all values except -1. We could handle that case by using a
signed divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit
a compare/branch to test the input value to see which instruction
we need to use. This gets pretty messy, but it is feasible. */
int
mips_register_move_cost (mode, to, from)
enum machine_mode mode ATTRIBUTE_UNUSED;
enum reg_class to, from;
{
if (from == M16_REGS && GR_REG_CLASS_P (to))
return 2;
else if (from == M16_NA_REGS && GR_REG_CLASS_P (to))
return 2;
else if (GR_REG_CLASS_P (from))
{
if (to == M16_REGS)
return 2;
else if (to == M16_NA_REGS)
return 2;
else if (GR_REG_CLASS_P (to))
{
if (TARGET_MIPS16)
return 4;
else
return 2;
}
else if (to == FP_REGS)
return 4;
else if (to == HI_REG || to == LO_REG || to == MD_REGS
|| to == HILO_REG)
{
if (TARGET_MIPS16)
return 12;
else
return 6;
}
else if (COP_REG_CLASS_P (to))
{
return 5;
}
} /* GR_REG_CLASS_P (from) */
else if (from == FP_REGS)
{
if (GR_REG_CLASS_P (to))
return 4;
else if (to == FP_REGS)
return 2;
else if (to == ST_REGS)
return 8;
} /* from == FP_REGS */
else if (from == HI_REG || from == LO_REG || from == MD_REGS
|| from == HILO_REG)
{
if (GR_REG_CLASS_P (to))
{
if (TARGET_MIPS16)
return 12;
else
return 6;
}
} /* from == HI_REG, etc. */
else if (from == ST_REGS && GR_REG_CLASS_P (to))
return 4;
else if (COP_REG_CLASS_P (from))
{
return 5;
} /* COP_REG_CLASS_P (from) */
/* fallthru */
return 12;
}
/* Return the length of INSN. LENGTH is the initial length computed by
attributes in the machine-description file. */
int
mips_adjust_insn_length (insn, length)
rtx insn;
int length;
{
/* A unconditional jump has an unfilled delay slot if it is not part
of a sequence. A conditional jump normally has a delay slot, but
does not on MIPS16. */
if (simplejump_p (insn)
|| (!TARGET_MIPS16 && (GET_CODE (insn) == JUMP_INSN
|| GET_CODE (insn) == CALL_INSN)))
length += 4;
/* All MIPS16 instructions are a measly two bytes. */
if (TARGET_MIPS16)
length /= 2;
return length;
}
/* Output assembly instructions to peform a conditional branch.
INSN is the branch instruction. OPERANDS[0] is the condition.
OPERANDS[1] is the target of the branch. OPERANDS[2] is the target
of the first operand to the condition. If TWO_OPERANDS_P is
nonzero the comparison takes two operands; OPERANDS[3] will be the
second operand.
If INVERTED_P is nonzero we are to branch if the condition does
not hold. If FLOAT_P is nonzero this is a floating-point comparison.
LENGTH is the length (in bytes) of the sequence we are to generate.
That tells us whether to generate a simple conditional branch, or a
reversed conditional branch around a `jr' instruction. */
const char *
mips_output_conditional_branch (insn,
operands,
two_operands_p,
float_p,
inverted_p,
length)
rtx insn;
rtx *operands;
int two_operands_p;
int float_p;
int inverted_p;
int length;
{
static char buffer[200];
/* The kind of comparison we are doing. */
enum rtx_code code = GET_CODE (operands[0]);
/* Nonzero if the opcode for the comparison needs a `z' indicating
that it is a comparision against zero. */
int need_z_p;
/* A string to use in the assembly output to represent the first
operand. */
const char *op1 = "%z2";
/* A string to use in the assembly output to represent the second
operand. Use the hard-wired zero register if there's no second
operand. */
const char *op2 = (two_operands_p ? ",%z3" : ",%.");
/* The operand-printing string for the comparison. */
const char *const comp = (float_p ? "%F0" : "%C0");
/* The operand-printing string for the inverted comparison. */
const char *const inverted_comp = (float_p ? "%W0" : "%N0");
/* The MIPS processors (for levels of the ISA at least two), have
"likely" variants of each branch instruction. These instructions
annul the instruction in the delay slot if the branch is not
taken. */
mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
if (!two_operands_p)
{
/* To compute whether than A > B, for example, we normally
subtract B from A and then look at the sign bit. But, if we
are doing an unsigned comparison, and B is zero, we don't
have to do the subtraction. Instead, we can just check to
see if A is nonzero. Thus, we change the CODE here to
reflect the simpler comparison operation. */
switch (code)
{
case GTU:
code = NE;
break;
case LEU:
code = EQ;
break;
case GEU:
/* A condition which will always be true. */
code = EQ;
op1 = "%.";
break;
case LTU:
/* A condition which will always be false. */
code = NE;
op1 = "%.";
break;
default:
/* Not a special case. */
break;
}
}
/* Relative comparisons are always done against zero. But
equality comparisons are done between two operands, and therefore
do not require a `z' in the assembly language output. */
need_z_p = (!float_p && code != EQ && code != NE);
/* For comparisons against zero, the zero is not provided
explicitly. */
if (need_z_p)
op2 = "";
/* Begin by terminating the buffer. That way we can always use
strcat to add to it. */
buffer[0] = '\0';
switch (length)
{
case 4:
case 8:
/* Just a simple conditional branch. */
if (float_p)
sprintf (buffer, "%%*b%s%%?\t%%Z2%%1",
inverted_p ? inverted_comp : comp);
else
sprintf (buffer, "%%*b%s%s%%?\t%s%s,%%1",
inverted_p ? inverted_comp : comp,
need_z_p ? "z" : "",
op1,
op2);
return buffer;
case 12:
case 16:
case 24:
case 28:
{
/* Generate a reversed conditional branch around ` j'
instruction:
.set noreorder
.set nomacro
bc l
delay_slot or #nop
j target
#nop
l:
.set macro
.set reorder
If the original branch was a likely branch, the delay slot
must be executed only if the branch is taken, so generate:
.set noreorder
.set nomacro
bc l
#nop
j target
delay slot or #nop
l:
.set macro
.set reorder
When generating non-embedded PIC, instead of:
j target
we emit:
.set noat
la $at, target
jr $at
.set at
*/
rtx orig_target;
rtx target = gen_label_rtx ();
orig_target = operands[1];
operands[1] = target;
/* Generate the reversed comparison. This takes four
bytes. */
if (float_p)
sprintf (buffer, "%%*b%s\t%%Z2%%1",
inverted_p ? comp : inverted_comp);
else
sprintf (buffer, "%%*b%s%s\t%s%s,%%1",
inverted_p ? comp : inverted_comp,
need_z_p ? "z" : "",
op1,
op2);
output_asm_insn (buffer, operands);
if (length != 16 && length != 28 && ! mips_branch_likely)
{
/* Output delay slot instruction. */
rtx insn = final_sequence;
final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file,
optimize, 0, 1);
INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
}
else
output_asm_insn ("%#", 0);
if (length <= 16)
output_asm_insn ("j\t%0", &orig_target);
else
{
if (Pmode == DImode)
output_asm_insn ("%[dla\t%@,%0\n\tjr\t%@%]", &orig_target);
else
output_asm_insn ("%[la\t%@,%0\n\tjr\t%@%]", &orig_target);
}
if (length != 16 && length != 28 && mips_branch_likely)
{
/* Output delay slot instruction. */
rtx insn = final_sequence;
final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file,
optimize, 0, 1);
INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
}
else
output_asm_insn ("%#", 0);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
CODE_LABEL_NUMBER (target));
return "";
}
/* We do not currently use this code. It handles jumps to
arbitrary locations, using `jr', even across a 256MB boundary.
We could add a -mhuge switch, and then use this code instead of
the `j' alternative above when -mhuge was used. */
#if 0
case 16:
case 20:
{
/* Generate a reversed conditional branch around a `jr'
instruction:
.set noreorder
.set nomacro
.set noat
bc l
la $at, target
jr $at
.set at
.set macro
.set reorder
l:
Not pretty, but allows a conditional branch anywhere in the
32-bit address space. If the original branch is annulled,
then the instruction in the delay slot should be executed
only if the branch is taken. The la instruction is really
a macro which will usually take eight bytes, but sometimes
takes only four, if the instruction to which we're jumping
gets its own entry in the global pointer table, which will
happen if its a case label. The assembler will then
generate only a four-byte sequence, rather than eight, and
there seems to be no way to tell it not to. Thus, we can't
just use a `.+x' addressing form; we don't know what value
to give for `x'.
So, we resort to using the explicit relocation syntax
available in the assembler and do:
lw $at,%got_page(target)($gp)
daddiu $at,$at,%got_ofst(target)
That way, this always takes up eight bytes, and we can use
the `.+x' form. Of course, these explicit machinations
with relocation will not work with old assemblers. Then
again, neither do out-of-range branches, so we haven't lost
anything. */
/* The target of the reversed branch. */
const char *const target
= ((mips_branch_likely || length == 20) ? ".+20" : ".+16");
const char *at_register = mips_reg_names[ASSEMBLER_SCRATCH_REGNUM];
const char *gp_register = mips_reg_names[PIC_OFFSET_TABLE_REGNUM];
char *c;
strcpy (buffer, "%(%<%[");
c = strchr (buffer, '\0');
/* Generate the reversed comparision. This takes four
bytes. */
if (float_p)
sprintf (c, "%%*b%s\t%%Z2%s",
inverted_p ? comp : inverted_comp,
target);
else
sprintf (c, "%%*b%s%s\t%s%s,%s",
inverted_p ? comp : inverted_comp,
need_z_p ? "z" : "",
op1,
op2,
target);
c = strchr (buffer, '\0');
/* Generate the load-address, and jump. This takes twelve
bytes, for a total of 16. */
sprintf (c,
"\n\tlw\t%s,%%%%got_page(%%1)(%s)\n\tdaddiu\t%s,%s,%%%%got_ofst(%%1)\n\tjr\t%s",
at_register,
gp_register,
at_register,
at_register,
at_register);
if (length == 20)
/* The delay slot was unfilled. Since we're inside
.noreorder, the assembler will not fill in the NOP for
us, so we must do it ourselves. */
strcat (buffer, "\n\tnop");
strcat (buffer, "%]%>%)");
return buffer;
}
#endif
default:
abort ();
}
/* NOTREACHED */
return 0;
}
/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
with a final "000" replaced by "k". Ignore case.
Note: this function is shared between GCC and GAS. */
static bool
mips_strict_matching_cpu_name_p (canonical, given)
const char *canonical, *given;
{
while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
given++, canonical++;
return ((*given == 0 && *canonical == 0)
|| (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
}
/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
CPU name. We've traditionally allowed a lot of variation here.
Note: this function is shared between GCC and GAS. */
static bool
mips_matching_cpu_name_p (canonical, given)
const char *canonical, *given;
{
/* First see if the name matches exactly, or with a final "000"
turned into "k". */
if (mips_strict_matching_cpu_name_p (canonical, given))
return true;
/* If not, try comparing based on numerical designation alone.
See if GIVEN is an unadorned number, or 'r' followed by a number. */
if (TOLOWER (*given) == 'r')
given++;
if (!ISDIGIT (*given))
return false;
/* Skip over some well-known prefixes in the canonical name,
hoping to find a number there too. */
if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
canonical += 2;
else if (TOLOWER (canonical[0]) == 'r')
canonical += 1;
return mips_strict_matching_cpu_name_p (canonical, given);
}
/* Parse an option that takes the name of a processor as its argument.
OPTION is the name of the option and CPU_STRING is the argument.
Return the corresponding processor enumeration if the CPU_STRING is
recognized, otherwise report an error and return null.
A similar function exists in GAS. */
static const struct mips_cpu_info *
mips_parse_cpu (option, cpu_string)
const char *option, *cpu_string;
{
const struct mips_cpu_info *p;
const char *s;
/* In the past, we allowed upper-case CPU names, but it doesn't
work well with the multilib machinery. */
for (s = cpu_string; *s != 0; s++)
if (ISUPPER (*s))
{
warning ("the cpu name must be lower case");
break;
}
/* 'from-abi' selects the most compatible architecture for the given
ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
EABIs, we have to decide whether we're using the 32-bit or 64-bit
version. Look first at the -mgp options, if given, otherwise base
the choice on MASK_64BIT in TARGET_DEFAULT. */
if (strcasecmp (cpu_string, "from-abi") == 0)
return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
: ABI_NEEDS_64BIT_REGS ? 3
: (TARGET_64BIT ? 3 : 1));
/* 'default' has traditionally been a no-op. Probably not very useful. */
if (strcasecmp (cpu_string, "default") == 0)
return 0;
for (p = mips_cpu_info_table; p->name != 0; p++)
if (mips_matching_cpu_name_p (p->name, cpu_string))
return p;
error ("bad value (%s) for %s", cpu_string, option);
return 0;
}
/* Return the processor associated with the given ISA level, or null
if the ISA isn't valid. */
static const struct mips_cpu_info *
mips_cpu_info_from_isa (isa)
int isa;
{
const struct mips_cpu_info *p;
for (p = mips_cpu_info_table; p->name != 0; p++)
if (p->isa == isa)
return p;
return 0;
}
/* Adjust the cost of INSN based on the relationship between INSN that
is dependent on DEP_INSN through the dependence LINK. The default
is to make no adjustment to COST.
On the MIPS, ignore the cost of anti- and output-dependencies. */
static int
mips_adjust_cost (insn, link, dep, cost)
rtx insn ATTRIBUTE_UNUSED;
rtx link;
rtx dep ATTRIBUTE_UNUSED;
int cost;
{
if (REG_NOTE_KIND (link) != 0)
return 0; /* Anti or output dependence. */
return cost;
}
/* ??? This could be replaced with the default elf version if
TARGET_IS_SMALL_DATA_P is set properly. */
static void
mips_unique_section (decl, reloc)
tree decl;
int reloc;
{
int len, size, sec;
const char *name, *prefix;
char *string;
static const char *const prefixes[4][2] = {
{ ".text.", ".gnu.linkonce.t." },
{ ".rodata.", ".gnu.linkonce.r." },
{ ".data.", ".gnu.linkonce.d." },
{ ".sdata.", ".gnu.linkonce.s." }
};
name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
name = (* targetm.strip_name_encoding) (name);
size = int_size_in_bytes (TREE_TYPE (decl));
/* Determine the base section we are interested in:
0=text, 1=rodata, 2=data, 3=sdata, [4=bss]. */
if (TREE_CODE (decl) == FUNCTION_DECL)
sec = 0;
else if (DECL_INITIAL (decl) == 0
|| DECL_INITIAL (decl) == error_mark_node)
sec = 2;
else if ((TARGET_EMBEDDED_PIC || TARGET_MIPS16)
&& TREE_CODE (decl) == STRING_CST
&& !flag_writable_strings)
{
/* For embedded position independent code, put constant
strings in the text section, because the data section
is limited to 64K in size. For mips16 code, put
strings in the text section so that a PC relative load
instruction can be used to get their address. */
sec = 0;
}
else if (TARGET_EMBEDDED_DATA)
{
/* For embedded applications, always put an object in
read-only data if possible, in order to reduce RAM
usage. */
if (decl_readonly_section (decl, reloc))
sec = 1;
else if (size > 0 && size <= mips_section_threshold)
sec = 3;
else
sec = 2;
}
else
{
/* For hosted applications, always put an object in
small data if possible, as this gives the best
performance. */
if (size > 0 && size <= mips_section_threshold)
sec = 3;
else if (decl_readonly_section (decl, reloc))
sec = 1;
else
sec = 2;
}
prefix = prefixes[sec][DECL_ONE_ONLY (decl)];
len = strlen (name) + strlen (prefix);
string = alloca (len + 1);
sprintf (string, "%s%s", prefix, name);
DECL_SECTION_NAME (decl) = build_string (len, string);
}
unsigned int
mips_hard_regno_nregs (regno, mode)
int regno;
enum machine_mode mode;
{
if (! FP_REG_P (regno))
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
else
return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
}
int
mips_return_in_memory (type)
tree type;
{
/* Under the old (i.e., 32 and O64 ABIs) all BLKmode objects are
returned in memory. Under the new (N32 and 64-bit MIPS ABIs) small
structures are returned in a register. Objects with varying size
must still be returned in memory, of course. */
if (mips_abi == ABI_32 || mips_abi == ABI_O64)
return (TYPE_MODE (type) == BLKmode);
else
return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
|| (int_size_in_bytes (type) == -1));
}
static int
mips_issue_rate ()
{
switch (mips_tune)
{
case PROCESSOR_R3000: return 1;
case PROCESSOR_R5400: return 2;
case PROCESSOR_R5500: return 2;
default:
return 1;
}
abort ();
}
/* Implements TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE. Return true for
processors that have a DFA pipeline description. */
static int
mips_use_dfa_pipeline_interface ()
{
switch (mips_tune)
{
case PROCESSOR_R5400:
case PROCESSOR_R5500:
case PROCESSOR_SR71000:
return true;
default:
return false;
}
}
const char *
mips_emit_prefetch (operands)
rtx operands[];
{
/* For the mips32/64 architectures the hint fields are arranged
by operation (load/store) and locality (normal/streamed/retained).
Irritatingly, numbers 2 and 3 are reserved leaving no simple
algorithm for figuring the hint. */
int write = INTVAL (operands[1]);
int locality = INTVAL (operands[2]);
static const char * const alt[2][4] = {
{
"pref\t4,%a0",
"pref\t0,%a0",
"pref\t0,%a0",
"pref\t6,%a0"
},
{
"pref\t5,%a0",
"pref\t1,%a0",
"pref\t1,%a0",
"pref\t7,%a0"
}
};
return alt[write][locality];
}
#ifdef TARGET_IRIX6
/* Output assembly to switch to section NAME with attribute FLAGS. */
static void
iris6_asm_named_section_1 (name, flags, align)
const char *name;
unsigned int flags;
unsigned int align;
{
unsigned int sh_type, sh_flags, sh_entsize;
sh_flags = 0;
if (!(flags & SECTION_DEBUG))
sh_flags |= 2; /* SHF_ALLOC */
if (flags & SECTION_WRITE)
sh_flags |= 1; /* SHF_WRITE */
if (flags & SECTION_CODE)
sh_flags |= 4; /* SHF_EXECINSTR */
if (flags & SECTION_SMALL)
sh_flags |= 0x10000000; /* SHF_MIPS_GPREL */
if (strcmp (name, ".debug_frame") == 0)
sh_flags |= 0x08000000; /* SHF_MIPS_NOSTRIP */
if (flags & SECTION_DEBUG)
sh_type = 0x7000001e; /* SHT_MIPS_DWARF */
else if (flags & SECTION_BSS)
sh_type = 8; /* SHT_NOBITS */
else
sh_type = 1; /* SHT_PROGBITS */
if (flags & SECTION_CODE)
sh_entsize = 4;
else
sh_entsize = 0;
fprintf (asm_out_file, "\t.section %s,%#x,%#x,%u,%u\n",
name, sh_type, sh_flags, sh_entsize, align);
}
static void
iris6_asm_named_section (name, flags)
const char *name;
unsigned int flags;
{
if (TARGET_FILE_SWITCHING && (flags & SECTION_CODE))
asm_out_file = asm_out_text_file;
iris6_asm_named_section_1 (name, flags, 0);
}
/* In addition to emitting a .align directive, record the maximum
alignment requested for the current section. */
struct iris_section_align_entry
{
const char *name;
unsigned int log;
unsigned int flags;
};
static htab_t iris_section_align_htab;
static FILE *iris_orig_asm_out_file;
static int
iris_section_align_entry_eq (p1, p2)
const PTR p1;
const PTR p2;
{
const struct iris_section_align_entry *old = p1;
const char *new = p2;
return strcmp (old->name, new) == 0;
}
static hashval_t
iris_section_align_entry_hash (p)
const PTR p;
{
const struct iris_section_align_entry *old = p;
return htab_hash_string (old->name);
}
void
iris6_asm_output_align (file, log)
FILE *file;
unsigned int log;
{
const char *section = current_section_name ();
struct iris_section_align_entry **slot, *entry;
if (! section)
abort ();
slot = (struct iris_section_align_entry **)
htab_find_slot_with_hash (iris_section_align_htab, section,
htab_hash_string (section), INSERT);
entry = *slot;
if (! entry)
{
entry = (struct iris_section_align_entry *)
xmalloc (sizeof (struct iris_section_align_entry));
*slot = entry;
entry->name = section;
entry->log = log;
entry->flags = current_section_flags ();
}
else if (entry->log < log)
entry->log = log;
fprintf (file, "\t.align\t%u\n", log);
}
/* The Iris assembler does not record alignment from .align directives,
but takes it from the first .section directive seen. Play yet more
file switching games so that we can emit a .section directive at the
beginning of the file with the proper alignment attached. */
void
iris6_asm_file_start (stream)
FILE *stream;
{
mips_asm_file_start (stream);
iris_orig_asm_out_file = asm_out_file;
stream = tmpfile ();
asm_out_file = stream;
asm_out_data_file = stream;
if (! TARGET_FILE_SWITCHING)
asm_out_text_file = stream;
iris_section_align_htab = htab_create (31, iris_section_align_entry_hash,
iris_section_align_entry_eq, NULL);
}
static int
iris6_section_align_1 (slot, data)
void **slot;
void *data ATTRIBUTE_UNUSED;
{
const struct iris_section_align_entry *entry
= *(const struct iris_section_align_entry **) slot;
iris6_asm_named_section_1 (entry->name, entry->flags, 1 << entry->log);
return 1;
}
void
iris6_asm_file_end (stream)
FILE *stream;
{
/* Emit section directives with the proper alignment at the top of the
real output file. */
asm_out_file = iris_orig_asm_out_file;
htab_traverse (iris_section_align_htab, iris6_section_align_1, NULL);
/* Copy the data emitted to the temp file to the real output file. */
copy_file_data (asm_out_file, stream);
mips_asm_file_end (stream);
}
#endif /* TARGET_IRIX6 */
#include "gt-mips.h"
|