1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
|
/* Definitions of target machine for GNU compiler. MIPS version.
Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Contributed by A. Lichnewsky (lich@inria.inria.fr).
Changed by Michael Meissner (meissner@osf.org).
64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
Brendan Eich (brendan@microunity.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Standard GCC variables that we reference. */
extern char *asm_file_name;
extern char call_used_regs[];
extern int may_call_alloca;
extern char **save_argv;
extern int target_flags;
/* MIPS external variables defined in mips.c. */
/* comparison type */
enum cmp_type {
CMP_SI, /* compare four byte integers */
CMP_DI, /* compare eight byte integers */
CMP_SF, /* compare single precision floats */
CMP_DF, /* compare double precision floats */
CMP_MAX /* max comparison type */
};
/* types of delay slot */
enum delay_type {
DELAY_NONE, /* no delay slot */
DELAY_LOAD, /* load from memory delay */
DELAY_HILO, /* move from/to hi/lo registers */
DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
};
/* Which processor to schedule for. Since there is no difference between
a R2000 and R3000 in terms of the scheduler, we collapse them into
just an R3000. The elements of the enumeration must match exactly
the cpu attribute in the mips.md machine description. */
enum processor_type {
PROCESSOR_DEFAULT,
PROCESSOR_R3000,
PROCESSOR_R3900,
PROCESSOR_R6000,
PROCESSOR_R4000,
PROCESSOR_R4100,
PROCESSOR_R4111,
PROCESSOR_R4120,
PROCESSOR_R4300,
PROCESSOR_R4600,
PROCESSOR_R4650,
PROCESSOR_R5000,
PROCESSOR_R5400,
PROCESSOR_R5500,
PROCESSOR_R8000,
PROCESSOR_R4KC,
PROCESSOR_R5KC,
PROCESSOR_R20KC,
PROCESSOR_SR71000,
PROCESSOR_SB1
};
/* Recast the cpu class to be the cpu attribute. */
#define mips_cpu_attr ((enum attr_cpu)mips_tune)
/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
to work on a 64 bit machine. */
#define ABI_32 0
#define ABI_N32 1
#define ABI_64 2
#define ABI_EABI 3
#define ABI_O64 4
/* MEABI is gcc's internal name for MIPS' new EABI (defined by MIPS)
which is not the same as the above EABI (defined by Cygnus,
Greenhills, and Toshiba?). MEABI is not yet complete or published,
but at this point it looks like N32 as far as calling conventions go,
but allows for either 32 or 64 bit registers.
Currently MIPS is calling their EABI "the" MIPS EABI, and Cygnus'
EABI the legacy EABI. In the end we may end up calling both ABI's
EABI but give them different version numbers, but for now I'm going
with different names. */
#define ABI_MEABI 5
/* Whether to emit abicalls code sequences or not. */
enum mips_abicalls_type {
MIPS_ABICALLS_NO,
MIPS_ABICALLS_YES
};
/* Recast the abicalls class to be the abicalls attribute. */
#define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
/* Which type of block move to do (whether or not the last store is
split out so it can fill a branch delay slot). */
enum block_move_type {
BLOCK_MOVE_NORMAL, /* generate complete block move */
BLOCK_MOVE_NOT_LAST, /* generate all but last store */
BLOCK_MOVE_LAST /* generate just the last store */
};
/* Information about one recognized processor. Defined here for the
benefit of TARGET_CPU_CPP_BUILTINS. */
struct mips_cpu_info {
/* The 'canonical' name of the processor as far as GCC is concerned.
It's typically a manufacturer's prefix followed by a numerical
designation. It should be lower case. */
const char *name;
/* The internal processor number that most closely matches this
entry. Several processors can have the same value, if there's no
difference between them from GCC's point of view. */
enum processor_type cpu;
/* The ISA level that the processor implements. */
int isa;
};
extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
extern const char *current_function_file; /* filename current function is in */
extern int num_source_filenames; /* current .file # */
extern int inside_function; /* != 0 if inside of a function */
extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
extern int file_in_function_warning; /* warning given about .file in func */
extern int sdb_label_count; /* block start/end next label # */
extern int sdb_begin_function_line; /* Starting Line of current function */
extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
extern int g_switch_value; /* value of the -G xx switch */
extern int g_switch_set; /* whether -G xx was passed. */
extern int sym_lineno; /* sgi next label # for each stmt */
extern int set_noreorder; /* # of nested .set noreorder's */
extern int set_nomacro; /* # of nested .set nomacro's */
extern int set_noat; /* # of nested .set noat's */
extern int set_volatile; /* # of nested .set volatile's */
extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
extern int mips_dbx_regno[]; /* Map register # to debug register # */
extern GTY(()) rtx branch_cmp[2]; /* operands for compare */
extern enum cmp_type branch_type; /* what type of branch to use */
extern enum processor_type mips_arch; /* which cpu to codegen for */
extern enum processor_type mips_tune; /* which cpu to schedule for */
extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
extern int mips_isa; /* architectural level */
extern int mips16; /* whether generating mips16 code */
extern int mips16_hard_float; /* mips16 without -msoft-float */
extern int mips_entry; /* generate entry/exit for mips16 */
extern const char *mips_arch_string; /* for -march=<xxx> */
extern const char *mips_tune_string; /* for -mtune=<xxx> */
extern const char *mips_isa_string; /* for -mips{1,2,3,4} */
extern const char *mips_abi_string; /* for -mabi={32,n32,64} */
extern const char *mips_entry_string; /* for -mentry */
extern const char *mips_no_mips16_string;/* for -mno-mips16 */
extern const char *mips_cache_flush_func;/* for -mflush-func= and -mno-flush-func */
extern int mips_split_addresses; /* perform high/lo_sum support */
extern int dslots_load_total; /* total # load related delay slots */
extern int dslots_load_filled; /* # filled load delay slots */
extern int dslots_jump_total; /* total # jump related delay slots */
extern int dslots_jump_filled; /* # filled jump delay slots */
extern int dslots_number_nops; /* # of nops needed by previous insn */
extern int num_refs[3]; /* # 1/2/3 word references */
extern GTY(()) rtx mips_load_reg; /* register to check for load delay */
extern GTY(()) rtx mips_load_reg2; /* 2nd reg to check for load delay */
extern GTY(()) rtx mips_load_reg3; /* 3rd reg to check for load delay */
extern GTY(()) rtx mips_load_reg4; /* 4th reg to check for load delay */
extern int mips_string_length; /* length of strings for mips16 */
extern const struct mips_cpu_info mips_cpu_info_table[];
extern const struct mips_cpu_info *mips_arch_info;
extern const struct mips_cpu_info *mips_tune_info;
/* Functions to change what output section we are using. */
extern void sdata_section PARAMS ((void));
extern void sbss_section PARAMS ((void));
/* Macros to silence warnings about numbers being signed in traditional
C and unsigned in ISO C when compiled on 32-bit hosts. */
#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
/* Run-time compilation parameters selecting different hardware subsets. */
/* Macros used in the machine description to test the flags. */
/* Bits for real switches */
#define MASK_INT64 0x00000001 /* ints are 64 bits */
#define MASK_LONG64 0x00000002 /* longs are 64 bits */
#define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
#define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
#define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
#define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
#define MASK_STATS 0x00000040 /* print statistics to stderr */
#define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
#define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
#define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
#define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
#define MASK_UNUSED1 0x00000800 /* Unused Mask. */
#define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
#define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
#define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
#define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
#define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
#define MASK_MIPS16 0x00100000 /* Generate mips16 code */
#define MASK_NO_CHECK_ZERO_DIV \
0x00200000 /* divide by zero checking */
#define MASK_CHECK_RANGE_DIV \
0x00400000 /* divide result range checking */
#define MASK_UNINIT_CONST_IN_RODATA \
0x00800000 /* Store uninitialized
consts in rodata */
#define MASK_NO_FUSED_MADD 0x01000000 /* Don't generate floating point
multiply-add operations. */
#define MASK_BRANCHLIKELY 0x02000000 /* Generate Branch Likely
instructions. */
/* Debug switches, not documented */
#define MASK_DEBUG 0 /* unused */
#define MASK_DEBUG_A 0 /* don't allow <label>($reg) addrs */
#define MASK_DEBUG_B 0 /* GO_IF_LEGITIMATE_ADDRESS debug */
#define MASK_DEBUG_C 0 /* don't expand seq, etc. */
#define MASK_DEBUG_D 0 /* don't do define_split's */
#define MASK_DEBUG_E 0 /* function_arg debug */
#define MASK_DEBUG_F 0 /* ??? */
#define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
#define MASK_DEBUG_I 0 /* unused */
/* Dummy switches used only in specs */
#define MASK_MIPS_TFILE 0 /* flag for mips-tfile usage */
/* r4000 64 bit sizes */
#define TARGET_INT64 (target_flags & MASK_INT64)
#define TARGET_LONG64 (target_flags & MASK_LONG64)
#define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
#define TARGET_64BIT (target_flags & MASK_64BIT)
/* Mips vs. GNU linker */
#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
/* Mips vs. GNU assembler */
#define TARGET_GAS (target_flags & MASK_GAS)
#define TARGET_MIPS_AS (!TARGET_GAS)
/* Debug Modes */
#define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
#define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
#define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
#define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
#define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
#define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
#define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
/* Reg. Naming in .s ($21 vs. $a0) */
#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
/* Optimize for Sdata/Sbss */
#define TARGET_GP_OPT (target_flags & MASK_GPOPT)
/* print program statistics */
#define TARGET_STATS (target_flags & MASK_STATS)
/* call memcpy instead of inline code */
#define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
/* .abicalls, etc from Pyramid V.4 */
#define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
/* software floating point */
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
/* always call through a register */
#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
/* generate embedded PIC code;
requires gas. */
#define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
/* for embedded systems, optimize for
reduced RAM space instead of for
fastest code. */
#define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
/* always store uninitialized const
variables in rodata, requires
TARGET_EMBEDDED_DATA. */
#define TARGET_UNINIT_CONST_IN_RODATA (target_flags & MASK_UNINIT_CONST_IN_RODATA)
/* generate big endian code. */
#define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
#define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
#define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
#define TARGET_MAD (target_flags & MASK_MAD)
#define TARGET_FUSED_MADD (! (target_flags & MASK_NO_FUSED_MADD))
#define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
#define TARGET_NO_CHECK_ZERO_DIV (target_flags & MASK_NO_CHECK_ZERO_DIV)
#define TARGET_CHECK_RANGE_DIV (target_flags & MASK_CHECK_RANGE_DIV)
#define TARGET_BRANCHLIKELY (target_flags & MASK_BRANCHLIKELY)
/* This is true if we must enable the assembly language file switching
code. */
#define TARGET_FILE_SWITCHING \
(TARGET_GP_OPT && ! TARGET_GAS && ! TARGET_MIPS16)
/* We must disable the function end stabs when doing the file switching trick,
because the Lscope stabs end up in the wrong place, making it impossible
to debug the resulting code. */
#define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
/* Generate mips16 code */
#define TARGET_MIPS16 (target_flags & MASK_MIPS16)
/* Generic ISA defines. */
#define ISA_MIPS1 (mips_isa == 1)
#define ISA_MIPS2 (mips_isa == 2)
#define ISA_MIPS3 (mips_isa == 3)
#define ISA_MIPS4 (mips_isa == 4)
#define ISA_MIPS32 (mips_isa == 32)
#define ISA_MIPS64 (mips_isa == 64)
/* Architecture target defines. */
#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
#define TARGET_MIPS4100 (mips_arch == PROCESSOR_R4100)
#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
#define TARGET_MIPS4300 (mips_arch == PROCESSOR_R4300)
#define TARGET_MIPS4KC (mips_arch == PROCESSOR_R4KC)
#define TARGET_MIPS5KC (mips_arch == PROCESSOR_R5KC)
#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
#define TARGET_SB1 (mips_arch == PROCESSOR_SB1)
#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
/* Scheduling target defines. */
#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
#define TUNE_SB1 (mips_tune == PROCESSOR_SB1)
#define TUNE_SR71K (mips_tune == PROCESSOR_SR71000)
/* Define preprocessor macros for the -march and -mtune options.
PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
processor. If INFO's canonical name is "foo", define PREFIX to
be "foo", and define an additional macro PREFIX_FOO. */
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
do \
{ \
char *macro, *p; \
\
macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
for (p = macro; *p != 0; p++) \
*p = TOUPPER (*p); \
\
builtin_define (macro); \
builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
free (macro); \
} \
while (0)
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_assert ("cpu=mips"); \
builtin_define ("__mips__"); \
builtin_define ("_mips"); \
\
/* We do this here because __mips is defined below \
and so we can't use builtin_define_std. */ \
if (!flag_iso) \
builtin_define ("mips"); \
\
/* Treat _R3000 and _R4000 like register-size defines, \
which is how they've historically been used. */ \
if (TARGET_64BIT) \
{ \
builtin_define ("__mips64"); \
builtin_define_std ("R4000"); \
builtin_define ("_R4000"); \
} \
else \
{ \
builtin_define_std ("R3000"); \
builtin_define ("_R3000"); \
} \
if (TARGET_FLOAT64) \
builtin_define ("__mips_fpr=64"); \
else \
builtin_define ("__mips_fpr=32"); \
\
if (TARGET_MIPS16) \
builtin_define ("__mips16"); \
\
MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
\
if (ISA_MIPS1) \
{ \
builtin_define ("__mips=1"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
} \
else if (ISA_MIPS2) \
{ \
builtin_define ("__mips=2"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
} \
else if (ISA_MIPS3) \
{ \
builtin_define ("__mips=3"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
} \
else if (ISA_MIPS4) \
{ \
builtin_define ("__mips=4"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
} \
else if (ISA_MIPS32) \
{ \
builtin_define ("__mips=32"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
} \
else if (ISA_MIPS64) \
{ \
builtin_define ("__mips=64"); \
builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
} \
\
if (TARGET_HARD_FLOAT) \
builtin_define ("__mips_hard_float"); \
else if (TARGET_SOFT_FLOAT) \
builtin_define ("__mips_soft_float"); \
\
if (TARGET_SINGLE_FLOAT) \
builtin_define ("__mips_single_float"); \
\
if (TARGET_BIG_ENDIAN) \
{ \
builtin_define_std ("MIPSEB"); \
builtin_define ("_MIPSEB"); \
} \
else \
{ \
builtin_define_std ("MIPSEL"); \
builtin_define ("_MIPSEL"); \
} \
\
/* Macros dependent on the C dialect. */ \
if (preprocessing_asm_p ()) \
{ \
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
builtin_define ("_LANGUAGE_ASSEMBLY"); \
} \
else if (c_language == clk_c) \
{ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
else if (c_language == clk_cplusplus) \
{ \
builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
} \
if (flag_objc) \
{ \
builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
/* Bizzare, but needed at least for Irix. */ \
builtin_define_std ("LANGUAGE_C"); \
builtin_define ("_LANGUAGE_C"); \
} \
\
if (mips_abi == ABI_EABI) \
builtin_define ("__mips_eabi"); \
\
} while (0)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ \
{"no-crt0", 0, \
N_("No default crt0.o") }, \
{"int64", MASK_INT64 | MASK_LONG64, \
N_("Use 64-bit int type")}, \
{"long64", MASK_LONG64, \
N_("Use 64-bit long type")}, \
{"long32", -(MASK_LONG64 | MASK_INT64), \
N_("Use 32-bit long type")}, \
{"split-addresses", MASK_SPLIT_ADDR, \
N_("Optimize lui/addiu address loads")}, \
{"no-split-addresses", -MASK_SPLIT_ADDR, \
N_("Don't optimize lui/addiu address loads")}, \
{"mips-as", -MASK_GAS, \
N_("Use MIPS as")}, \
{"gas", MASK_GAS, \
N_("Use GNU as")}, \
{"rnames", MASK_NAME_REGS, \
N_("Use symbolic register names")}, \
{"no-rnames", -MASK_NAME_REGS, \
N_("Don't use symbolic register names")}, \
{"gpOPT", MASK_GPOPT, \
N_("Use GP relative sdata/sbss sections")}, \
{"gpopt", MASK_GPOPT, \
N_("Use GP relative sdata/sbss sections")}, \
{"no-gpOPT", -MASK_GPOPT, \
N_("Don't use GP relative sdata/sbss sections")}, \
{"no-gpopt", -MASK_GPOPT, \
N_("Don't use GP relative sdata/sbss sections")}, \
{"stats", MASK_STATS, \
N_("Output compiler statistics")}, \
{"no-stats", -MASK_STATS, \
N_("Don't output compiler statistics")}, \
{"memcpy", MASK_MEMCPY, \
N_("Don't optimize block moves")}, \
{"no-memcpy", -MASK_MEMCPY, \
N_("Optimize block moves")}, \
{"mips-tfile", MASK_MIPS_TFILE, \
N_("Use mips-tfile asm postpass")}, \
{"no-mips-tfile", -MASK_MIPS_TFILE, \
N_("Don't use mips-tfile asm postpass")}, \
{"soft-float", MASK_SOFT_FLOAT, \
N_("Use software floating point")}, \
{"hard-float", -MASK_SOFT_FLOAT, \
N_("Use hardware floating point")}, \
{"fp64", MASK_FLOAT64, \
N_("Use 64-bit FP registers")}, \
{"fp32", -MASK_FLOAT64, \
N_("Use 32-bit FP registers")}, \
{"gp64", MASK_64BIT, \
N_("Use 64-bit general registers")}, \
{"gp32", -MASK_64BIT, \
N_("Use 32-bit general registers")}, \
{"abicalls", MASK_ABICALLS, \
N_("Use Irix PIC")}, \
{"no-abicalls", -MASK_ABICALLS, \
N_("Don't use Irix PIC")}, \
{"long-calls", MASK_LONG_CALLS, \
N_("Use indirect calls")}, \
{"no-long-calls", -MASK_LONG_CALLS, \
N_("Don't use indirect calls")}, \
{"embedded-pic", MASK_EMBEDDED_PIC, \
N_("Use embedded PIC")}, \
{"no-embedded-pic", -MASK_EMBEDDED_PIC, \
N_("Don't use embedded PIC")}, \
{"embedded-data", MASK_EMBEDDED_DATA, \
N_("Use ROM instead of RAM")}, \
{"no-embedded-data", -MASK_EMBEDDED_DATA, \
N_("Don't use ROM instead of RAM")}, \
{"uninit-const-in-rodata", MASK_UNINIT_CONST_IN_RODATA, \
N_("Put uninitialized constants in ROM (needs -membedded-data)")}, \
{"no-uninit-const-in-rodata", -MASK_UNINIT_CONST_IN_RODATA, \
N_("Don't put uninitialized constants in ROM")}, \
{"eb", MASK_BIG_ENDIAN, \
N_("Use big-endian byte order")}, \
{"el", -MASK_BIG_ENDIAN, \
N_("Use little-endian byte order")}, \
{"single-float", MASK_SINGLE_FLOAT, \
N_("Use single (32-bit) FP only")}, \
{"double-float", -MASK_SINGLE_FLOAT, \
N_("Don't use single (32-bit) FP only")}, \
{"mad", MASK_MAD, \
N_("Use multiply accumulate")}, \
{"no-mad", -MASK_MAD, \
N_("Don't use multiply accumulate")}, \
{"no-fused-madd", MASK_NO_FUSED_MADD, \
N_("Don't generate fused multiply/add instructions")}, \
{"fused-madd", -MASK_NO_FUSED_MADD, \
N_("Generate fused multiply/add instructions")}, \
{"fix4300", MASK_4300_MUL_FIX, \
N_("Work around early 4300 hardware bug")}, \
{"no-fix4300", -MASK_4300_MUL_FIX, \
N_("Don't work around early 4300 hardware bug")}, \
{"check-zero-division",-MASK_NO_CHECK_ZERO_DIV, \
N_("Trap on integer divide by zero")}, \
{"no-check-zero-division", MASK_NO_CHECK_ZERO_DIV, \
N_("Don't trap on integer divide by zero")}, \
{"check-range-division",MASK_CHECK_RANGE_DIV, \
N_("Trap on integer divide overflow")}, \
{"no-check-range-division",-MASK_CHECK_RANGE_DIV, \
N_("Don't trap on integer divide overflow")}, \
{ "branch-likely", MASK_BRANCHLIKELY, \
N_("Use Branch Likely instructions, overriding default for arch")}, \
{ "no-branch-likely", -MASK_BRANCHLIKELY, \
N_("Don't use Branch Likely instructions, overriding default for arch")}, \
{"debug", MASK_DEBUG, \
NULL}, \
{"debuga", MASK_DEBUG_A, \
NULL}, \
{"debugb", MASK_DEBUG_B, \
NULL}, \
{"debugc", MASK_DEBUG_C, \
NULL}, \
{"debugd", MASK_DEBUG_D, \
NULL}, \
{"debuge", MASK_DEBUG_E, \
NULL}, \
{"debugf", MASK_DEBUG_F, \
NULL}, \
{"debugg", MASK_DEBUG_G, \
NULL}, \
{"debugi", MASK_DEBUG_I, \
NULL}, \
{"", (TARGET_DEFAULT \
| TARGET_CPU_DEFAULT \
| TARGET_ENDIAN_DEFAULT), \
NULL}, \
}
/* Default target_flags if no switches are specified */
#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT 0
#endif
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT 0
#endif
#ifndef TARGET_ENDIAN_DEFAULT
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
#endif
/* 'from-abi' makes a good default: you get whatever the ABI requires. */
#ifndef MIPS_ISA_DEFAULT
#ifndef MIPS_CPU_STRING_DEFAULT
#define MIPS_CPU_STRING_DEFAULT "from-abi"
#endif
#endif
#ifdef IN_LIBGCC2
#undef TARGET_64BIT
/* Make this compile time constant for libgcc2 */
#ifdef __mips64
#define TARGET_64BIT 1
#else
#define TARGET_64BIT 0
#endif
#endif /* IN_LIBGCC2 */
#ifndef MULTILIB_ENDIAN_DEFAULT
#if TARGET_ENDIAN_DEFAULT == 0
#define MULTILIB_ENDIAN_DEFAULT "EL"
#else
#define MULTILIB_ENDIAN_DEFAULT "EB"
#endif
#endif
#ifndef MULTILIB_ISA_DEFAULT
# if MIPS_ISA_DEFAULT == 1
# define MULTILIB_ISA_DEFAULT "mips1"
# else
# if MIPS_ISA_DEFAULT == 2
# define MULTILIB_ISA_DEFAULT "mips2"
# else
# if MIPS_ISA_DEFAULT == 3
# define MULTILIB_ISA_DEFAULT "mips3"
# else
# if MIPS_ISA_DEFAULT == 4
# define MULTILIB_ISA_DEFAULT "mips4"
# else
# if MIPS_ISA_DEFAULT == 32
# define MULTILIB_ISA_DEFAULT "mips32"
# else
# if MIPS_ISA_DEFAULT == 64
# define MULTILIB_ISA_DEFAULT "mips64"
# else
# define MULTILIB_ISA_DEFAULT "mips1"
# endif
# endif
# endif
# endif
# endif
# endif
#endif
#ifndef MULTILIB_DEFAULTS
#define MULTILIB_DEFAULTS \
{ MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
#endif
/* We must pass -EL to the linker by default for little endian embedded
targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
linker will default to using big-endian output files. The OUTPUT_FORMAT
line must be in the linker script, otherwise -EB/-EL will not work. */
#ifndef ENDIAN_SPEC
#if TARGET_ENDIAN_DEFAULT == 0
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
#else
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
#endif
#endif
#define TARGET_OPTIONS \
{ \
SUBTARGET_TARGET_OPTIONS \
{ "tune=", &mips_tune_string, \
N_("Specify CPU for scheduling purposes")}, \
{ "arch=", &mips_arch_string, \
N_("Specify CPU for code generation purposes")}, \
{ "abi=", &mips_abi_string, \
N_("Specify an ABI")}, \
{ "ips", &mips_isa_string, \
N_("Specify a Standard MIPS ISA")}, \
{ "entry", &mips_entry_string, \
N_("Use mips16 entry/exit psuedo ops")}, \
{ "no-mips16", &mips_no_mips16_string, \
N_("Don't use MIPS16 instructions")}, \
{ "no-flush-func", &mips_cache_flush_func, \
N_("Don't call any cache flush functions")}, \
{ "flush-func=", &mips_cache_flush_func, \
N_("Specify cache flush function")}, \
}
/* This is meant to be redefined in the host dependent files. */
#define SUBTARGET_TARGET_OPTIONS
#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
&& !TARGET_SR71K \
&& !TARGET_MIPS16)
/* Generate three-operand multiply instructions for SImode. */
#define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
|| TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| ISA_MIPS32 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* Generate three-operand multiply instructions for DImode. */
#define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
&& !TARGET_MIPS16)
/* Macros to decide whether certain features are available or not,
depending on the instruction set architecture level. */
#define HAVE_SQRT_P() (!ISA_MIPS1)
/* True if the ABI can only work with 64-bit integer registers. We
generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
otherwise floating-point registers must also be 64-bit. */
#define ABI_NEEDS_64BIT_REGS (mips_abi == ABI_64 \
|| mips_abi == ABI_O64 \
|| mips_abi == ABI_N32)
/* Likewise for 32-bit regs. */
#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
/* ISA has instructions for managing 64 bit fp and gp regs (eg. mips3). */
#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
|| ISA_MIPS4 \
|| ISA_MIPS64)
/* ISA has branch likely instructions (eg. mips2). */
/* Disable branchlikely for tx39 until compare rewrite. They haven't
been generated up to this point. */
#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 \
&& !TARGET_MIPS5500)
/* ISA has the conditional move instructions introduced in mips4. */
#define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS64) \
&& !TARGET_MIPS5500 \
&& !TARGET_MIPS16)
/* ISA has just the integer condition move instructions (movn,movz) */
#define ISA_HAS_INT_CONDMOVE 0
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
branch on CC, and move (both FP and non-FP) on CC. */
#define ISA_HAS_8CC (ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS64)
/* This is a catch all for the other new mips4 instructions: indexed load and
indexed prefetch instructions, the FP madd and msub instructions,
and the FP recip and recip sqrt instructions */
#define ISA_HAS_FP4 ((ISA_MIPS4 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* ISA has conditional trap instructions. */
#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
&& !TARGET_MIPS16)
/* ISA has integer multiply-accumulate instructions, madd and msub. */
#define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
|| ISA_MIPS64 \
) && !TARGET_MIPS16)
/* ISA has floating-point nmadd and nmsub instructions. */
#define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
|| ISA_MIPS64) \
&& (!TARGET_MIPS5400 || TARGET_MAD) \
&& ! TARGET_MIPS16)
/* ISA has count leading zeroes/ones instruction (not implemented). */
#define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
|| ISA_MIPS64 \
) && !TARGET_MIPS16)
/* ISA has double-word count leading zeroes/ones instruction (not
implemented). */
#define ISA_HAS_DCLZ_DCLO (ISA_MIPS64 \
&& !TARGET_MIPS16)
/* ISA has three operand multiply instructions that put
the high part in an accumulator: mulhi or mulhiu. */
#define ISA_HAS_MULHI (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
)
/* ISA has three operand multiply instructions that
negates the result and puts the result in an accumulator. */
#define ISA_HAS_MULS (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
)
/* ISA has three operand multiply instructions that subtracts the
result from a 4th operand and puts the result in an accumulator. */
#define ISA_HAS_MSAC (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
)
/* ISA has three operand multiply instructions that the result
from a 4th operand and puts the result in an accumulator. */
#define ISA_HAS_MACC (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
)
/* ISA has 32-bit rotate right instruction. */
#define ISA_HAS_ROTR_SI (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
)
/* ISA has 32-bit rotate right instruction. */
#define ISA_HAS_ROTR_DI (TARGET_64BIT \
&& (TARGET_MIPS5400 \
|| TARGET_MIPS5500 \
|| TARGET_SR71K \
))
/* ISA has data prefetch instruction. */
#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
|| ISA_MIPS32 \
|| ISA_MIPS64) \
&& !TARGET_MIPS16)
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
also requires TARGET_DOUBLE_FLOAT. */
#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
-mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
-mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
target_flags, and -mgp64 sets MASK_64BIT.
Setting MASK_64BIT in target_flags will cause gcc to assume that
registers are 64 bits wide. int, long and void * will be 32 bit;
this may be changed with -mint64 or -mlong64.
The gen* programs link code that refers to MASK_64BIT. They don't
actually use the information in target_flags; they just refer to
it. */
/* Switch Recognition by gcc.c. Add -G xx support */
#undef SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
On the MIPS, it is used to handle -G. We also use it to set up all
of the tables referenced in the other macros. */
#define OVERRIDE_OPTIONS override_options ()
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Tell collect what flags to pass to nm. */
#ifndef NM_FLAGS
#define NM_FLAGS "-Bn"
#endif
/* Assembler specs. */
/* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
than gas. */
#define MIPS_AS_ASM_SPEC "\
%{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
%{pipe: %e-pipe is not supported} \
%{K} %(subtarget_mips_as_asm_spec)"
/* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
rather than gas. It may be overridden by subtargets. */
#ifndef SUBTARGET_MIPS_AS_ASM_SPEC
#define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
#endif
/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
assembler. */
#define GAS_ASM_SPEC "%{mtune=*} %{v}"
extern int mips_abi;
#ifndef MIPS_ABI_DEFAULT
#define MIPS_ABI_DEFAULT ABI_32
#endif
/* Use the most portable ABI flag for the ASM specs. */
#if MIPS_ABI_DEFAULT == ABI_32
#define MULTILIB_ABI_DEFAULT "mabi=32"
#define ASM_ABI_DEFAULT_SPEC "-32"
#endif
#if MIPS_ABI_DEFAULT == ABI_O64
#define MULTILIB_ABI_DEFAULT "mabi=o64"
#define ASM_ABI_DEFAULT_SPEC "-mabi=o64"
#endif
#if MIPS_ABI_DEFAULT == ABI_N32
#define MULTILIB_ABI_DEFAULT "mabi=n32"
#define ASM_ABI_DEFAULT_SPEC "-n32"
#endif
#if MIPS_ABI_DEFAULT == ABI_64
#define MULTILIB_ABI_DEFAULT "mabi=64"
#define ASM_ABI_DEFAULT_SPEC "-64"
#endif
#if MIPS_ABI_DEFAULT == ABI_EABI
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
#define ASM_ABI_DEFAULT_SPEC "-mabi=eabi"
#endif
#if MIPS_ABI_DEFAULT == ABI_MEABI
/* Most GAS don't know about MEABI. */
#define MULTILIB_ABI_DEFAULT "mabi=meabi"
#define ASM_ABI_DEFAULT_SPEC ""
#endif
/* Only ELF targets can switch the ABI. */
#ifndef OBJECT_FORMAT_ELF
#undef ASM_ABI_DEFAULT_SPEC
#define ASM_ABI_DEFAULT_SPEC ""
#endif
/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
GAS_ASM_SPEC as the default, depending upon the value of
TARGET_DEFAULT. */
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define TARGET_ASM_SPEC "\
%{mmips-as: %(mips_as_asm_spec)} \
%{!mmips-as: %(gas_asm_spec)}"
#else /* not GAS */
#define TARGET_ASM_SPEC "\
%{!mgas: %(mips_as_asm_spec)} \
%{mgas: %(gas_asm_spec)}"
#endif /* not GAS */
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
to the assembler. It may be overridden by subtargets. */
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
%{noasmopt:-O0} \
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
#endif
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
the assembler. It may be overridden by subtargets. */
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
%{g} %{g0} %{g1} %{g2} %{g3} \
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
%(mdebug_asm_spec)"
#endif
/* Beginning with gas 2.13, -mdebug must be passed to correctly handle COFF
and stabs debugging info. */
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define MDEBUG_ASM_SPEC "%{!gdwarf*:-mdebug} %{gdwarf*:-no-mdebug}"
#else /* not GAS */
#define MDEBUG_ASM_SPEC ""
#endif /* not GAS */
/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
overridden by subtargets. */
#ifndef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC ""
#endif
/* ASM_SPEC is the set of arguments to pass to the assembler. Note: we
pass -mgp32, -mgp64, -march, -mabi=eabi and -meabi=o64 regardless of
whether we're using GAS. These options can only be used properly
with GAS, and it is better to get an error from a non-GAS assembler
than to silently generate bad code. */
#undef ASM_SPEC
#define ASM_SPEC "\
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64}\
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
%(subtarget_asm_optimizing_spec) \
%(subtarget_asm_debugging_spec) \
%{membedded-pic} \
%{mabi=32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
%{mabi=eabi} %{mabi=o64} %{!mabi*: %(asm_abi_default_spec)} \
%{mgp32} %{mgp64} %{march=*} \
%(target_asm_spec) \
%(subtarget_asm_spec)"
/* Specify to run a post-processor, mips-tfile after the assembler
has run to stuff the mips debug information into the object file.
This is needed because the $#!%^ MIPS assembler provides no way
of specifying such information in the assembly file. If we are
cross compiling, disable mips-tfile unless the user specifies
-mmips-tfile. */
#ifndef ASM_FINAL_SPEC
#if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
/* GAS */
#define ASM_FINAL_SPEC "\
%{mmips-as: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#else
/* not GAS */
#define ASM_FINAL_SPEC "\
%{!mgas: %{!mno-mips-tfile: \
\n mips-tfile %{v*: -v} \
%{K: -I %b.o~} \
%{!K: %{save-temps: -I %b.o~}} \
%{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
%{.s:%i} %{!.s:%g.s}}}"
#endif
#endif /* ASM_FINAL_SPEC */
/* Redefinition of libraries used. Mips doesn't support normal
UNIX style profiling via calling _mcount. It does offer
profiling that samples the PC, so do what we can... */
#ifndef LIB_SPEC
#define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
#endif
/* Extra switches sometimes passed to the linker. */
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
will interpret it as a -b option. */
#ifndef LINK_SPEC
#define LINK_SPEC "\
%(endian_spec) \
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips64} \
%{bestGnum} %{shared} %{non_shared}"
#endif /* LINK_SPEC defined */
/* Specs for the compiler proper */
/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC ""
#endif
/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
/* Note, we will need to adjust the following if we ever find a MIPS variant
that has 32-bit GPRs and 64-bit FPRs as well as fix all of the reload bugs
that show up in this case. */
#ifndef CC1_SPEC
#define CC1_SPEC "\
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%{save-temps: } \
%(subtarget_cc1_spec)"
#endif
/* Preprocessor specs. */
/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
overridden by subtargets. */
#ifndef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC ""
#endif
#define CPP_SPEC "%(subtarget_cpp_spec)"
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#define EXTRA_SPECS \
{ "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
{ "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
{ "gas_asm_spec", GAS_ASM_SPEC }, \
{ "target_asm_spec", TARGET_ASM_SPEC }, \
{ "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
{ "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
{ "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
{ "mdebug_asm_spec", MDEBUG_ASM_SPEC }, \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
{ "asm_abi_default_spec", ASM_ABI_DEFAULT_SPEC }, \
{ "endian_spec", ENDIAN_SPEC }, \
SUBTARGET_EXTRA_SPECS
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
/* If defined, this macro is an additional prefix to try after
`STANDARD_EXEC_PREFIX'. */
#ifndef MD_EXEC_PREFIX
#define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
#endif
#ifndef MD_STARTFILE_PREFIX
#define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
#endif
/* Print subsidiary information on the compiler version in use. */
#define MIPS_VERSION "[AL 1.1, MM 40]"
#ifndef MACHINE_TYPE
#define MACHINE_TYPE "BSD Mips"
#endif
#ifndef TARGET_VERSION_INTERNAL
#define TARGET_VERSION_INTERNAL(STREAM) \
fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
#endif
#ifndef TARGET_VERSION
#define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
#endif
#define SDB_DEBUGGING_INFO 1 /* generate info for mips-tfile */
#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
#define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
#ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
#endif
/* By default, turn on GDB extensions. */
#define DEFAULT_GDB_EXTENSIONS 1
/* If we are passing smuggling stabs through the MIPS ECOFF object
format, put a comment in front of the .stab<x> operation so
that the MIPS assembler does not choke. The mips-tfile program
will correctly put the stab into the object file. */
#define ASM_STABS_OP ((TARGET_GAS) ? "\t.stabs\t" : " #.stabs\t")
#define ASM_STABN_OP ((TARGET_GAS) ? "\t.stabn\t" : " #.stabn\t")
#define ASM_STABD_OP ((TARGET_GAS) ? "\t.stabd\t" : " #.stabd\t")
/* Local compiler-generated symbols must have a prefix that the assembler
understands. By default, this is $, although some targets (e.g.,
NetBSD-ELF) need to override this. */
#ifndef LOCAL_LABEL_PREFIX
#define LOCAL_LABEL_PREFIX "$"
#endif
/* By default on the mips, external symbols do not have an underscore
prepended, but some targets (e.g., NetBSD) require this. */
#ifndef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX ""
#endif
/* Forward references to tags are allowed. */
#define SDB_ALLOW_FORWARD_REFERENCES
/* Unknown tags are also allowed. */
#define SDB_ALLOW_UNKNOWN_REFERENCES
/* On Sun 4, this limit is 2048. We use 1500 to be safe,
since the length can run past this up to a continuation point. */
#undef DBX_CONTIN_LENGTH
#define DBX_CONTIN_LENGTH 1500
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
/* The mapping from gcc register number to DWARF 2 CFA column number.
This mapping does not allow for tracking register 0, since SGI's broken
dwarf reader thinks column 0 is used for the frame address, but since
register 0 is fixed this is not a problem. */
#define DWARF_FRAME_REGNUM(REG) \
(REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
/* The DWARF 2 CFA column which tracks the return address. */
#define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
/* Before the prologue, RA lives in r31. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
/* Offsets recorded in opcodes are a multiple of this alignment factor.
The default for this in 64-bit mode is 8, which causes problems with
SFmode register saves. */
#define DWARF_CIE_DATA_ALIGNMENT 4
/* Overrides for the COFF debug format. */
#define PUT_SDB_SCL(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
} while (0)
#define PUT_SDB_INT_VAL(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.val\t"); \
fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
fprintf (asm_out_text_file, ";"); \
} while (0)
#define PUT_SDB_VAL(a) \
do { \
extern FILE *asm_out_text_file; \
fputs ("\t.val\t", asm_out_text_file); \
output_addr_const (asm_out_text_file, (a)); \
fputc (';', asm_out_text_file); \
} while (0)
#define PUT_SDB_DEF(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t%s.def\t", \
(TARGET_GAS) ? "" : "#"); \
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
fputc (';', asm_out_text_file); \
} while (0)
#define PUT_SDB_PLAIN_DEF(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
(TARGET_GAS) ? "" : "#", (a)); \
} while (0)
#define PUT_SDB_ENDEF \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.endef\n"); \
} while (0)
#define PUT_SDB_TYPE(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
} while (0)
#define PUT_SDB_SIZE(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.size\t"); \
fprintf (asm_out_text_file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)(a)); \
fprintf (asm_out_text_file, ";"); \
} while (0)
#define PUT_SDB_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
} while (0)
#ifndef PUT_SDB_START_DIM
#define PUT_SDB_START_DIM \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.dim\t"); \
} while (0)
#endif
#ifndef PUT_SDB_NEXT_DIM
#define PUT_SDB_NEXT_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "%d,", a); \
} while (0)
#endif
#ifndef PUT_SDB_LAST_DIM
#define PUT_SDB_LAST_DIM(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "%d;", a); \
} while (0)
#endif
#define PUT_SDB_TAG(a) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, "\t.tag\t"); \
ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
fputc (';', asm_out_text_file); \
} while (0)
/* For block start and end, we create labels, so that
later we can figure out where the correct offset is.
The normal .ent/.end serve well enough for functions,
so those are just commented out. */
#define PUT_SDB_BLOCK_START(LINE) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, \
"%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_BLOCK_END(LINE) \
do { \
extern FILE *asm_out_text_file; \
fprintf (asm_out_text_file, \
"%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(TARGET_GAS) ? "" : "#", \
LOCAL_LABEL_PREFIX, \
sdb_label_count, \
(LINE)); \
sdb_label_count++; \
} while (0)
#define PUT_SDB_FUNCTION_START(LINE)
#define PUT_SDB_FUNCTION_END(LINE) \
do { \
extern FILE *asm_out_text_file; \
ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
} while (0)
#define PUT_SDB_EPILOGUE_END(NAME)
#define PUT_SDB_SRC_FILE(FILENAME) \
do { \
extern FILE *asm_out_text_file; \
output_file_directive (asm_out_text_file, (FILENAME));\
} while (0)
#define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
sprintf ((BUFFER), ".%dfake", (NUMBER));
/* Correct the offset of automatic variables and arguments. Note that
the MIPS debug format wants all automatic variables and arguments
to be in terms of the virtual frame pointer (stack pointer before
any adjustment in the function), while the MIPS 3.0 linker wants
the frame pointer to be the stack pointer after the initial
adjustment. */
#define DEBUGGER_AUTO_OFFSET(X) \
mips_debugger_offset (X, (HOST_WIDE_INT) 0)
#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
/* Tell collect that the object format is ECOFF */
#define OBJECT_FORMAT_COFF /* Object file looks like COFF */
#define EXTENDED_COFF /* ECOFF, not normal coff */
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
*/
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
/* Define this if most significant word of a multiword number is the lowest. */
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
/* Define this to set the endianness to use in libgcc2.c, which can
not depend on target_flags. */
#if !defined(MIPSEL) && !defined(__MIPSEL__)
#define LIBGCC2_WORDS_BIG_ENDIAN 1
#else
#define LIBGCC2_WORDS_BIG_ENDIAN 0
#endif
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
#define MIN_UNITS_PER_WORD 4
/* For MIPS, width of a floating point register. */
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
the next available register. */
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
/* The largest size of value that can be held in floating-point
registers and moved with a single instruction. */
#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
/* The largest size of value that can be held in floating-point
registers. */
#define UNITS_PER_FPVALUE \
(TARGET_SOFT_FLOAT ? 0 : (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT))
/* The number of bytes in a double. */
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
/* A C expression for the size in bits of the type `int' on the
target machine. If you don't define this, the default is one
word. */
#define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
/* Tell the preprocessor the maximum size of wchar_t. */
#ifndef MAX_WCHAR_TYPE_SIZE
#ifndef WCHAR_TYPE_SIZE
#define MAX_WCHAR_TYPE_SIZE 64
#endif
#endif
/* A C expression for the size in bits of the type `short' on the
target machine. If you don't define this, the default is half a
word. (If this would be less than one storage unit, it is
rounded up to one unit.) */
#define SHORT_TYPE_SIZE 16
/* A C expression for the size in bits of the type `long' on the
target machine. If you don't define this, the default is one
word. */
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
#define MAX_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one
word. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `double' on the
target machine. If you don't define this, the default is two
words. */
#define DOUBLE_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long double' on
the target machine. If you don't define this, the default is two
words. */
#define LONG_DOUBLE_TYPE_SIZE \
(mips_abi == ABI_N32 || mips_abi == ABI_64 ? 128 : 64)
/* long double is not a fixed mode, but the idea is that, if we
support long double, we also want a 128-bit integer type. */
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
#ifdef IN_LIBGCC2
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
# else
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
# endif
#endif
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#ifndef POINTER_SIZE
#define POINTER_SIZE (Pmode == DImode ? 64 : 32)
#endif
/* Allocation boundary (in *bits*) for storing pointers in memory. */
#define POINTER_BOUNDARY (Pmode == DImode ? 64 : 32)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY ((mips_abi == ABI_O64 || mips_abi == ABI_N32 \
|| mips_abi == ABI_64 \
|| (mips_abi == ABI_EABI && TARGET_64BIT)) ? 64 : 32)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
/* 8 is observed right on a DECstation and on riscos 4.02. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* There is no point aligning anything to a rounder boundary than this. */
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 1
/* Define this if you wish to imitate the way many other C compilers
handle alignment of bitfields and the structures that contain
them.
The behavior is that the type written for a bit-field (`int',
`short', or other integer type) imposes an alignment for the
entire structure, as if the structure really did contain an
ordinary field of that type. In addition, the bit-field is placed
within the structure so that it would fit within such a field,
not crossing a boundary for it.
Thus, on most machines, a bit-field whose type is written as `int'
would not cross a four-byte boundary, and would force four-byte
alignment for the whole structure. (The alignment used may not
be four bytes; it is controlled by the other alignment
parameters.)
If the macro is defined, its definition should be a C expression;
a nonzero value for the expression enables this behavior. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* If defined, a C expression to compute the alignment given to a
constant that is being placed in memory. CONSTANT is the constant
and ALIGN is the alignment that the object would ordinarily have.
The value of this macro is used instead of that alignment to align
the object.
If this macro is not defined, then ALIGN is used.
The typical use of this macro is to increase alignment for string
constants to be word aligned so that `strcpy' calls that copy
constants can be done inline. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* If defined, a C expression to compute the alignment for a static
variable. TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object.
If this macro is not defined, then ALIGN is used.
One use of this macro is to increase alignment of medium-size
data to make it all fit in fewer cache lines. Another is to
cause character arrays to be word-aligned so that `strcpy' calls
that copy constants to character arrays can be done inline. */
#undef DATA_ALIGNMENT
#define DATA_ALIGNMENT(TYPE, ALIGN) \
((((ALIGN) < BITS_PER_WORD) \
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|| TREE_CODE (TYPE) == UNION_TYPE \
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
/* Force right-alignment for small varargs in 32 bit little_endian mode */
#define PAD_VARARGS_DOWN (TARGET_64BIT \
|| mips_abi == ABI_MEABI \
? BYTES_BIG_ENDIAN : !BYTES_BIG_ENDIAN)
/* Define this macro if an argument declared as `char' or `short' in a
prototype should actually be passed as an `int'. In addition to
avoiding errors in certain cases of mismatch, it also makes for
better code on certain machines. */
#define PROMOTE_PROTOTYPES 1
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none.
When in 64 bit mode, mips_move_1word will sign extend SImode and CCmode
moves. All other referces are zero extended. */
#define LOAD_EXTEND_OP(MODE) \
(TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
? SIGN_EXTEND : ZERO_EXTEND)
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
We promote any value smaller than SImode up to SImode. We don't
want to promote to DImode when in 64 bit mode, because that would
prevent us from using the faster SImode multiply and divide
instructions. */
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
(MODE) = SImode;
/* Define this if function arguments should also be promoted using the above
procedure. */
#define PROMOTE_FUNCTION_ARGS
/* Likewise, if the function return value is promoted. */
#define PROMOTE_FUNCTION_RETURN
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
On the Mips, we have 32 integer registers, 32 floating point
registers, 8 condition code registers, and the special registers
hi, lo, hilo, and rap. Afetr that we have 32 COP0 registers, 32
COP2 registers, and 32 COp3 registers. (COP1 is the floating-point
processor.) The 8 condition code registers are only used if
mips_isa >= 4. The hilo register is only used in 64 bit mode. It
represents a 64 bit value stored as two 32 bit values in the hi and
lo registers; this is the result of the mult instruction. rap is a
pointer to the stack where the return address reg ($31) was stored.
This is needed for C++ exception handling. */
#define FIRST_PSEUDO_REGISTER 176
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the MIPS, see conventions, page D-2 */
/* Regarding coprocessor registers: without evidence to the contrary,
it's best to assume that each coprocessor register has a unique
use. This can be overridden, in, e.g., override_options() or
CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
for a particular target. */
#define FIXED_REGISTERS \
{ \
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
/* COP0 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP2 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
/* COP3 registers */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
}
/* Like `CALL_USED_REGISTERS' but used to overcome a historical
problem which makes CALL_USED_REGISTERS *always* include
all the FIXED_REGISTERS. Until this problem has been
resolved this macro can be used to overcome this situation.
In particular, block_propagate() requires this list
be acurate, or we can remove registers which should be live.
This macro is used in regs_invalidated_by_call. */
#define CALL_REALLY_USED_REGISTERS \
{ /* General registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, \
/* Floating-point registers. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* Others. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \
/* COP0 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP2 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* COP3 registers */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
}
/* Internal macros to classify a register number as to whether it's a
general purpose register, a floating point register, a
multiply/divide register, or a status register. */
#define GP_REG_FIRST 0
#define GP_REG_LAST 31
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
#define GP_DBX_FIRST 0
#define FP_REG_FIRST 32
#define FP_REG_LAST 63
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
#define MD_REG_FIRST 64
#define MD_REG_LAST 66
#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
#define ST_REG_FIRST 67
#define ST_REG_LAST 74
#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
#define RAP_REG_NUM 75
#define COP0_REG_FIRST 80
#define COP0_REG_LAST 111
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
#define COP2_REG_FIRST 112
#define COP2_REG_LAST 143
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
#define COP3_REG_FIRST 144
#define COP3_REG_LAST 175
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
#define AT_REGNUM (GP_REG_FIRST + 1)
#define HI_REGNUM (MD_REG_FIRST + 0)
#define LO_REGNUM (MD_REG_FIRST + 1)
#define HILO_REGNUM (MD_REG_FIRST + 2)
/* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
mips_isa >= 4, it should not be used, and an arbitrary ST_REG
should be used instead. */
#define FPSW_REGNUM ST_REG_FIRST
#define GP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
#define M16_REG_P(REGNO) \
(((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
#define FP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
#define MD_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
#define ST_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
#define COP0_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
#define COP2_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
#define COP3_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
#define ALL_COP_REG_P(REGNO) \
((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
/* Return coprocessor number from register number. */
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
(COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
: COP3_REG_P (REGNO) ? '3' : '?')
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the MIPS, all general registers are one word long. Except on
the R4000 with the FR bit set, the floating point uses register
pairs, with the second register not being allocable. */
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. In 32 bit mode, require that DImode and DFmode be in even
registers. For DImode, this makes some of the insns easier to
write, since you don't have to worry about a DImode value in
registers 3 & 4, producing a result in 4 & 5.
To make the code simpler HARD_REGNO_MODE_OK now just references an
array built in override_options. Because machmodes.h is not yet
included before this file is processed, the MODE bound can't be
expressed here. */
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
== (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
/* MIPS pc is not overloaded on a register. */
/* #define PC_REGNUM xx */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
/* Offset from the stack pointer to the first available location. Use
the default value zero. */
/* #define STACK_POINTER_OFFSET 0 */
/* Base register for access to local variables of the function. We
pretend that the frame pointer is $1, and then eliminate it to
HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
a fixed register, and will not be used for anything else. */
#define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
/* Temporary scratch register for use by the assembler. */
#define ASSEMBLER_SCRATCH_REGNUM (GP_REG_FIRST + 1)
/* $30 is not available on the mips16, so we use $17 as the frame
pointer. */
#define HARD_FRAME_POINTER_REGNUM \
(TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM GP_REG_FIRST
/* Fake register that holds the address on the stack of the
current function's return address. */
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
/* If the structure value address is passed in a register, then
`STRUCT_VALUE_REGNUM' should be the number of that register. */
/* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
/* If the structure value address is not passed in a register, define
`STRUCT_VALUE' as an expression returning an RTX for the place
where the address is passed. If it returns 0, the address is
passed as an "invisible" first argument. */
#define STRUCT_VALUE 0
/* Mips registers used in prologue/epilogue code when the stack frame
is larger than 32K bytes. These registers must come from the
scratch register set, and not used for passing and returning
arguments and any other information used in the calling sequence
(such as pic). Must start at 12, since t0/t3 are parameter passing
registers in the 64 bit ABI. */
#define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
#define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
/* Define this macro if it is as good or better to call a constant
function address than to call an address kept in a register. */
#define NO_FUNCTION_CSE 1
/* Define this macro if it is as good or better for a function to
call itself with an explicit address than to call an address
kept in a register. */
#define NO_RECURSIVE_FUNCTION_CSE 1
/* The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent
files to allocate such a register (if necessary). */
#define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS, /* no registers in set */
M16_NA_REGS, /* mips16 regs not used to pass args */
M16_REGS, /* mips16 directly accessible registers */
T_REG, /* mips16 T register ($24) */
M16_T_REGS, /* mips16 registers plus T register */
GR_REGS, /* integer registers */
FP_REGS, /* floating point registers */
HI_REG, /* hi register */
LO_REG, /* lo register */
HILO_REG, /* hilo register pair for 64 bit mode mult */
MD_REGS, /* multiply/divide registers (hi/lo) */
COP0_REGS, /* generic coprocessor classes */
COP2_REGS,
COP3_REGS,
HI_AND_GR_REGS, /* union classes */
LO_AND_GR_REGS,
HILO_AND_GR_REGS,
HI_AND_FP_REGS,
COP0_AND_GR_REGS,
COP2_AND_GR_REGS,
COP3_AND_GR_REGS,
ALL_COP_REGS,
ALL_COP_AND_GR_REGS,
ST_REGS, /* status registers (fp status) */
ALL_REGS, /* all registers */
LIM_REG_CLASSES /* max value + 1 */
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define GENERAL_REGS GR_REGS
/* An initializer containing the names of the register classes as C
string constants. These names are used in writing some of the
debugging dumps. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"M16_NA_REGS", \
"M16_REGS", \
"T_REG", \
"M16_T_REGS", \
"GR_REGS", \
"FP_REGS", \
"HI_REG", \
"LO_REG", \
"HILO_REG", \
"MD_REGS", \
/* coprocessor registers */ \
"COP0_REGS", \
"COP2_REGS", \
"COP3_REGS", \
"HI_AND_GR_REGS", \
"LO_AND_GR_REGS", \
"HILO_AND_GR_REGS", \
"HI_AND_FP_REGS", \
"COP0_AND_GR_REGS", \
"COP2_AND_GR_REGS", \
"COP3_AND_GR_REGS", \
"ALL_COP_REGS", \
"ALL_COP_AND_GR_REGS", \
"ST_REGS", \
"ALL_REGS" \
}
/* An initializer containing the contents of the register classes,
as integers which are bit masks. The Nth integer specifies the
contents of class N. The way the integer MASK is interpreted is
that register R is in the class if `MASK & (1 << R)' is 1.
When the machine has more than 32 registers, an integer does not
suffice. Then the integers are replaced by sub-initializers,
braced groupings containing several integers. Each
sub-initializer must be suitable as an initializer for the type
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
{ 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
{ 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
{ 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
{ 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
{ 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
{ 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
{ 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, /* hilo register */ \
{ 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
{ 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
{ 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
{ 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
{ 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0x00000004, 0x00000000, 0x00000000, 0x00000000 }, \
{ 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
{ 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
{ 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
{ 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
{ 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
{ 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0000ffff } /* all registers */ \
}
/* A C expression whose value is a register class containing hard
register REGNO. In general there is more that one such class;
choose a class which is "minimal", meaning that no smaller class
also contains the register. */
extern const enum reg_class mips_regno_to_class[];
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
/* A macro whose definition is the name of the class to which a
valid base register must belong. A base register is one used in
an address which is the register value plus a displacement. */
#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
/* A macro whose definition is the name of the class to which a
valid index register must belong. An index register is one used
in an address where its value is either multiplied by a scale
factor or added to another register (as well as added to a
displacement). */
#define INDEX_REG_CLASS NO_REGS
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
registers explicitly used in the rtl to be used as spill registers
but prevents the compiler from extending the lifetime of these
registers. */
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
/* This macro is used later on in the file. */
#define GR_REG_CLASS_P(CLASS) \
((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
|| (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
/* This macro is also used later on in the file. */
#define COP_REG_CLASS_P(CLASS) \
((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
/* REG_ALLOC_ORDER is to order in which to allocate registers. This
is the default value (allocate the registers in numeric order). We
define it just so that we can override it for the mips16 target in
ORDER_REGS_FOR_LOCAL_ALLOC. */
#define REG_ALLOC_ORDER \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 \
}
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
to be rearranged based on a particular function. On the mips16, we
want to allocate $24 (T_REG) before other registers for
instructions for which it is possible. */
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
/* REGISTER AND CONSTANT CLASSES */
/* Get reg_class from a letter such as appears in the machine
description.
DEFINED REGISTER CLASSES:
'd' General (aka integer) registers
Normally this is GR_REGS, but in mips16 mode this is M16_REGS
'y' General registers (in both mips16 and non mips16 mode)
'e' mips16 non argument registers (M16_NA_REGS)
't' mips16 temporary register ($24)
'f' Floating point registers
'h' Hi register
'l' Lo register
'x' Multiply/divide registers
'a' HILO_REG
'z' FP Status register
'B' Cop0 register
'C' Cop2 register
'D' Cop3 register
'b' All registers */
extern enum reg_class mips_char_to_class[256];
#define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
/* The letters I, J, K, L, M, N, O, and P in a register constraint
string can be used to stand for particular ranges of immediate
operands. This macro defines what the ranges are. C is the
letter, and VALUE is a constant value. Return 1 if VALUE is
in the range specified by C. */
/* For MIPS:
`I' is used for the range of constants an arithmetic insn can
actually contain (16 bits signed integers).
`J' is used for the range which is just zero (ie, $r0).
`K' is used for the range of constants a logical insn can actually
contain (16 bit zero-extended integers).
`L' is used for the range of constants that be loaded with lui
(ie, the bottom 16 bits are zero).
`M' is used for the range of constants that take two words to load
(ie, not matched by `I', `K', and `L').
`N' is used for negative 16 bit constants other than -65536.
`O' is a 15 bit signed integer.
`P' is used for positive 16 bit constants. */
#define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
#define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
: (C) == 'J' ? ((VALUE) == 0) \
: (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
: (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
&& (((VALUE) & ~2147483647) == 0 \
|| ((VALUE) & ~2147483647) == ~2147483647)) \
: (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
&& (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
&& (((VALUE) & 0x0000ffff) != 0 \
|| (((VALUE) & ~2147483647) != 0 \
&& ((VALUE) & ~2147483647) != ~2147483647))) \
: (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
: (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
: (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
/* For Mips
'G' : Floating point 0 */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
/* Letters in the range `Q' through `U' may be defined in a
machine-dependent fashion to stand for arbitrary operand types.
The machine description macro `EXTRA_CONSTRAINT' is passed the
operand as its first argument and the constraint letter as its
second operand.
`Q' is for mips16 GP relative constants
`R' is for memory references which take 1 word for the instruction.
`T' is for memory addresses that can be used to load two words. */
#define EXTRA_CONSTRAINT(OP,CODE) \
(((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
: ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
&& mips16_gp_offset_p (OP)) \
: (GET_CODE (OP) != MEM) ? FALSE \
: ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
: FALSE)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((CLASS) != ALL_REGS \
? (! TARGET_MIPS16 \
? (CLASS) \
: ((CLASS) != GR_REGS \
? (CLASS) \
: M16_REGS)) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|| GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
? (TARGET_SOFT_FLOAT \
? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
: FP_REGS) \
: ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
|| GET_MODE (X) == VOIDmode) \
? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
: (CLASS))))
/* Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is nonzero if
objects of mode MODE in registers of CLASS1 can only be copied to
registers of class CLASS2 by storing a register of CLASS1 into
memory and loading that memory location into a register of CLASS2.
Do not define this macro if its value would always be zero. */
#if 0
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
((!TARGET_DEBUG_H_MODE \
&& GET_MODE_CLASS (MODE) == MODE_INT \
&& ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
|| (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
|| (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
&& ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
|| (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
#endif
/* The HI and LO registers can only be reloaded via the general
registers. Condition code registers can only be loaded to the
general registers, and from the floating point registers. */
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 1)
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
mips_secondary_reload_class (CLASS, MODE, X, 0)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
mips_cannot_change_mode_class (FROM, TO, CLASS)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
/* #define FRAME_GROWS_DOWNWARD */
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET \
(current_function_outgoing_args_size \
+ (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'.
The default value for this macro is `STACK_POINTER_OFFSET' plus the
length of the outgoing arguments. The default is correct for most
machines. See `function.c' for details.
The MIPS ABI states that functions which dynamically allocate the
stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
we are trying to create a second frame pointer to the function, so
allocate some stack space to make it happy.
However, the linker currently complains about linking any code that
dynamically allocates stack space, and there seems to be a bug in
STACK_DYNAMIC_OFFSET, so don't define this right now. */
#if 0
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
? 4*UNITS_PER_WORD \
: current_function_outgoing_args_size)
#endif
/* The return address for the current frame is in r31 if this is a leaf
function. Otherwise, it is on the stack. It is at a variable offset
from sp/fp/ap, so we define a fake hard register rap which is a
poiner to the return address on the stack. This always gets eliminated
during reload to be either the frame pointer or the stack pointer plus
an offset. */
/* ??? This definition fails for leaf functions. There is currently no
general solution for this problem. */
/* ??? There appears to be no way to get the return address of any previous
frame except by disassembling instructions in the prologue/epilogue.
So currently we support only the current frame. */
#define RETURN_ADDR_RTX(count, frame) \
(((count) == 0) \
? (leaf_function_p () \
? gen_rtx_REG (Pmode, GP_REG_FIRST + 31) \
: gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, \
RETURN_ADDRESS_POINTER_REGNUM))) \
: (rtx) 0)
/* Since the mips16 ISA mode is encoded in the least-significant bit
of the address, mask it off return addresses for purposes of
finding exception handling regions. */
#define MASK_RETURN_ADDR GEN_INT (-2)
/* Similarly, don't use the least-significant bit to tell pointers to
code from vtable index. */
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
/* If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If
it is not defined, the only elimination attempted by the compiler
is to replace references to the frame pointer with references to
the stack pointer.
The definition of this macro is a list of structure
initializations, each of which specifies an original and
replacement register.
On some machines, the position of the argument pointer is not
known until the compilation is completed. In such a case, a
separate hard register must be used for the argument pointer.
This register can be eliminated by replacing it with either the
frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
Note that the elimination of the argument pointer with the stack
pointer is specified first since that is the preferred elimination.
The eliminations to $17 are only used on the mips16. See the
definition of HARD_FRAME_POINTER_REGNUM. */
#define ELIMINABLE_REGS \
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
{ FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
/* A C expression that returns nonzero if the compiler is allowed to
try to replace register number FROM-REG with register number
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
defined, and will usually be the constant 1, since most of the
cases preventing register elimination are things that the compiler
already knows about.
When not in mips16 and mips64, we can always eliminate to the
frame pointer. We can eliminate to the stack pointer unless
a frame pointer is needed. In mips16 mode, we need a frame
pointer for a large frame; otherwise, reload may be unable
to compute the address of a local variable, since there is
no way to add a large constant to the stack pointer
without using a temporary register.
In mips16, for some instructions (eg lwu), we can't eliminate the
frame pointer for the stack pointer. These instructions are
only generated in TARGET_64BIT mode.
*/
#define CAN_ELIMINATE(FROM, TO) \
(((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
&& (((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed) \
|| (TO) == HARD_FRAME_POINTER_REGNUM)) \
|| ((FROM) != RETURN_ADDRESS_POINTER_REGNUM \
&& ((TO) == HARD_FRAME_POINTER_REGNUM \
|| ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
&& ! (TARGET_MIPS16 && TARGET_64BIT) \
&& (! TARGET_MIPS16 \
|| compute_frame_size (get_frame_size ()) < 32768)))))
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the VAX, sp@- in a byte insn really pushes a word. */
/* #define PUSH_ROUNDING(BYTES) 0 */
/* If defined, the maximum amount of space required for outgoing
arguments will be computed and placed into the variable
`current_function_outgoing_args_size'. No space will be pushed
onto the stack for each call; instead, the function prologue
should increase the stack frame size by this amount.
It is not proper to define both `PUSH_ROUNDING' and
`ACCUMULATE_OUTGOING_ARGS'. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Offset from the argument pointer register to the first argument's
address. On some machines it may depend on the data type of the
function.
If `ARGS_GROW_DOWNWARD', this is the offset to the location above
the first argument's address.
On the MIPS, we must skip the first argument position if we are
returning a structure or a union, to account for its address being
passed in $4. However, at the current time, this produces a compiler
that can't bootstrap, so comment it out for now. */
#if 0
#define FIRST_PARM_OFFSET(FNDECL) \
(FNDECL != 0 \
&& TREE_TYPE (FNDECL) != 0 \
&& TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
&& (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
|| TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
? UNITS_PER_WORD \
: 0)
#else
#define FIRST_PARM_OFFSET(FNDECL) 0
#endif
/* When a parameter is passed in a register, stack space is still
allocated for it. For the MIPS, stack space must be allocated, cf
Asm Lang Prog Guide page 7-8.
BEWARE that some space is also allocated for non existing arguments
in register. In case an argument list is of form GF used registers
are a0 (a2,a3), but we should push over a1... */
#define REG_PARM_STACK_SPACE(FNDECL) \
((mips_abi == ABI_32 || mips_abi == ABI_O64) \
? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL) \
: 0)
/* Define this if it is the responsibility of the caller to
allocate the area reserved for arguments passed in registers.
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
of this macro is to determine whether the space is included in
`current_function_outgoing_args_size'. */
#define OUTGOING_REG_PARM_STACK_SPACE
#define STACK_BOUNDARY \
((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI) \
? 64 : 128)
/* Make sure 4 words are always allocated on the stack. */
#ifndef STACK_ARGS_ADJUST
#define STACK_ARGS_ADJUST(SIZE) \
{ \
if (SIZE.constant < 4 * UNITS_PER_WORD) \
SIZE.constant = 4 * UNITS_PER_WORD; \
}
#endif
/* A C expression that should indicate the number of bytes of its
own arguments that a function pops on returning, or 0
if the function pops no arguments and the caller must therefore
pop them all after the function returns.
FUNDECL is the declaration node of the function (as a tree).
FUNTYPE is a C variable whose value is a tree node that
describes the function in question. Normally it is a node of
type `FUNCTION_TYPE' that describes the data type of the function.
From this it is possible to obtain the data types of the value
and arguments (if known).
When a call to a library function is being considered, FUNTYPE
will contain an identifier node for the library function. Thus,
if you need to distinguish among various library functions, you
can do so by their names. Note that "library function" in this
context means a function used to perform arithmetic, whose name
is known specially in the compiler and was not mentioned in the
C code being compiled.
STACK-SIZE is the number of bytes of arguments passed on the
stack. If a variable number of bytes is passed, it is zero, and
argument popping will always be the responsibility of the
calling function. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Symbolic macros for the registers used to return integer and floating
point values. */
#define GP_RETURN (GP_REG_FIRST + 2)
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
#define MAX_ARGS_IN_REGISTERS \
((mips_abi == ABI_32 || mips_abi == ABI_O64) ? 4 : 8)
/* Largest possible value of MAX_ARGS_IN_REGISTERS. */
#define BIGGEST_MAX_ARGS_IN_REGISTERS 8
/* Symbolic macros for the first/last argument registers. */
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. Because we define
PROMOTE_FUNCTION_RETURN, we must promote the mode just as
PROMOTE_MODE does. */
#define LIBCALL_VALUE(MODE) \
mips_function_value (NULL_TREE, NULL, (MODE))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
mips_function_value ((VALTYPE), (FUNC), VOIDmode)
/* 1 if N is a possible register number for a function value.
On the MIPS, R2 R3 and F0 F2 are the only register thus used.
Currently, R2 and F0 are only implemented here (C has no complex type) */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
|| (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
&& (N) == FP_RETURN + 2))
/* 1 if N is a possible register number for function argument passing.
We have no FP argument registers when soft-float. When FP registers
are 32 bits, we can't directly reference the odd numbered ones. */
#define FUNCTION_ARG_REGNO_P(N) \
((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
|| (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
&& ((N) % FP_INC == 0) && mips_abi != ABI_O64)) \
&& !fixed_regs[N])
/* A C expression which can inhibit the returning of certain function
values in registers, based on the type of value. A nonzero value says
to return the function value in memory, just as large structures are
always returned. Here TYPE will be a C expression of type
`tree', representing the data type of the value.
Note that values of mode `BLKmode' must be explicitly
handled by this macro. Also, the option `-fpcc-struct-return'
takes effect regardless of this macro. On most systems, it is
possible to leave the macro undefined; this causes a default
definition to be used, whose value is the constant 1 for BLKmode
values, and 0 otherwise.
GCC normally converts 1 byte structures into chars, 2 byte
structs into shorts, and 4 byte structs into ints, and returns
them this way. Defining the following macro overrides this,
to give us MIPS cc compatibility. */
#define RETURN_IN_MEMORY(TYPE) \
mips_return_in_memory (TYPE)
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
(PRETEND_SIZE) = mips_setup_incoming_varargs (&(CUM), (MODE), \
(TYPE), (NO_RTL))
#define STRICT_ARGUMENT_NAMING (mips_abi != ABI_32 && mips_abi != ABI_O64)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
This structure has to cope with two different argument allocation
schemes. Most MIPS ABIs view the arguments as a struct, of which the
first N words go in registers and the rest go on the stack. If I < N,
the Ith word might go in Ith integer argument register or the
Ith floating-point one. In some cases, it has to go in both (see
function_arg). For these ABIs, we only need to remember the number
of words passed so far.
The EABI instead allocates the integer and floating-point arguments
separately. The first N words of FP arguments go in FP registers,
the rest go on the stack. Likewise, the first N words of the other
arguments go in integer registers, and the rest go on the stack. We
need to maintain three counts: the number of integer registers used,
the number of floating-point registers used, and the number of words
passed on the stack.
We could keep separate information for the two ABIs (a word count for
the standard ABIs, and three separate counts for the EABI). But it
seems simpler to view the standard ABIs as forms of EABI that do not
allocate floating-point registers.
So for the standard ABIs, the first N words are allocated to integer
registers, and function_arg decides on an argument-by-argument basis
whether that argument should really go in an integer register, or in
a floating-point one. */
typedef struct mips_args {
/* Always true for varargs functions. Otherwise true if at least
one argument has been passed in an integer register. */
int gp_reg_found;
/* The number of arguments seen so far. */
unsigned int arg_number;
/* For EABI, the number of integer registers used so far. For other
ABIs, the number of words passed in registers (whether integer
or floating-point). */
unsigned int num_gprs;
/* For EABI, the number of floating-point registers used so far. */
unsigned int num_fprs;
/* The number of words passed on the stack. */
unsigned int stack_words;
/* On the mips16, we need to keep track of which floating point
arguments were passed in general registers, but would have been
passed in the FP regs if this were a 32 bit function, so that we
can move them to the FP regs if we wind up calling a 32 bit
function. We record this information in fp_code, encoded in base
four. A zero digit means no floating point argument, a one digit
means an SFmode argument, and a two digit means a DFmode argument,
and a three digit is not used. The low order digit is the first
argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
an SFmode argument. ??? A more sophisticated approach will be
needed if MIPS_ABI != ABI_32. */
int fp_code;
/* True if the function has a prototype. */
int prototype;
/* When a structure does not take up a full register, the argument
should sometimes be shifted left so that it occupies the high part
of the register. These two fields describe an array of ashl
patterns for doing this. See function_arg_advance, which creates
the shift patterns, and function_arg, which returns them when given
a VOIDmode argument. */
unsigned int num_adjusts;
rtx adjust[BIGGEST_MAX_ARGS_IN_REGISTERS];
} CUMULATIVE_ARGS;
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
*/
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE, NAMED)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg( &CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
/* If defined, a C expression that gives the alignment boundary, in
bits, of an argument with the specified mode and type. If it is
not defined, `PARM_BOUNDARY' is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) != 0) \
? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: TYPE_ALIGN(TYPE)) \
: ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
? PARM_BOUNDARY \
: GET_MODE_ALIGNMENT(MODE)))
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
function_arg_pass_by_reference (&CUM, MODE, TYPE, NAMED)
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
(! BYTES_BIG_ENDIAN \
? upward \
: (((MODE) == BLKmode \
? ((TYPE) && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& int_size_in_bytes (TYPE) < (PARM_BOUNDARY / BITS_PER_UNIT))\
: (GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY \
&& (mips_abi == ABI_32 \
|| mips_abi == ABI_O64 \
|| mips_abi == ABI_EABI \
|| GET_MODE_CLASS (MODE) == MODE_INT))) \
? downward : upward))
#define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
(mips_abi == ABI_EABI && (NAMED) \
&& FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED))
/* Modified version of the macro in expr.h. */
#define MUST_PASS_IN_STACK(MODE,TYPE) \
((TYPE) != 0 \
&& (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
|| TREE_ADDRESSABLE (TYPE) \
|| ((MODE) == BLKmode \
&& mips_abi != ABI_32 && mips_abi != ABI_O64 \
&& ! ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
&& 0 == (int_size_in_bytes (TYPE) \
% (PARM_BOUNDARY / BITS_PER_UNIT))) \
&& (FUNCTION_ARG_PADDING (MODE, TYPE) \
== (BYTES_BIG_ENDIAN ? upward : downward)))))
/* True if using EABI and varargs can be passed in floating-point
registers. Under these conditions, we need a more complex form
of va_list, which tracks GPR, FPR and stack arguments separately. */
#define EABI_FLOAT_VARARGS_P \
(mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
#define MUST_SAVE_REGISTER(regno) \
((regs_ever_live[regno] && !call_used_regs[regno]) \
|| (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
|| (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
/* Treat LOC as a byte offset from the stack pointer and round it up
to the next fully-aligned offset. */
#define MIPS_STACK_ALIGN(LOC) \
((mips_abi == ABI_32 || mips_abi == ABI_O64 || mips_abi == ABI_EABI) \
? ((LOC) + 7) & ~7 \
: ((LOC) + 15) & ~15)
/* Define the `__builtin_va_list' type for the ABI. */
#define BUILD_VA_LIST_TYPE(VALIST) \
(VALIST) = mips_build_va_list ()
/* Implement `va_start' for varargs and stdarg. */
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
mips_va_start (valist, nextarg)
/* Implement `va_arg'. */
#define EXPAND_BUILTIN_VA_ARG(valist, type) \
mips_va_arg (valist, type)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
{ \
if (TARGET_MIPS16) \
sorry ("mips16 function profiling"); \
fprintf (FILE, "\t.set\tnoat\n"); \
fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
fprintf (FILE, \
"\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
TARGET_64BIT ? "dsubu" : "subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
Pmode == DImode ? 16 : 8); \
fprintf (FILE, "\tjal\t_mcount\n"); \
fprintf (FILE, "\t.set\tat\n"); \
}
/* Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after. */
/* #define PROFILE_BEFORE_PROLOGUE */
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* A C statement to output, on the stream FILE, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically. */
#define TRAMPOLINE_TEMPLATE(STREAM) \
{ \
fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
if (Pmode == DImode) \
{ \
fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
} \
fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
if (Pmode == DImode) \
{ \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
} \
else \
{ \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
} \
}
/* A C expression for the size in bytes of the trampoline, as an
integer. */
#define TRAMPOLINE_SIZE (32 + (Pmode == DImode ? 16 : 8))
/* Alignment required for trampolines, in bits. */
#define TRAMPOLINE_ALIGNMENT (Pmode == DImode ? 64 : 32)
/* INITIALIZE_TRAMPOLINE calls this library function to flush
program and data caches. */
#ifndef CACHE_FLUSH_FUNC
#define CACHE_FLUSH_FUNC "_flush_cache"
#endif
/* A C statement to initialize the variable parts of a trampoline.
ADDR is an RTX for the address of the trampoline; FNADDR is an
RTX for the address of the nested function; STATIC_CHAIN is an
RTX for the static chain value that should be passed to the
function when it is called. */
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
{ \
rtx addr = ADDR; \
if (Pmode == DImode) \
{ \
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 32)), FUNC); \
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (addr, 40)), CHAIN);\
} \
else \
{ \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 32)), FUNC); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 36)), CHAIN);\
} \
\
/* Flush both caches. We need to flush the data cache in case \
the system has a write-back cache. */ \
/* ??? Should check the return value for errors. */ \
if (mips_cache_flush_func && mips_cache_flush_func[0]) \
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
0, VOIDmode, 3, addr, Pmode, \
GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
GEN_INT (3), TYPE_MODE (integer_type_node)); \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
These definitions are NOT overridden anywhere. */
#define BASE_REG_P(regno, mode) \
(TARGET_MIPS16 \
? (M16_REG_P (regno) \
|| (regno) == FRAME_POINTER_REGNUM \
|| (regno) == ARG_POINTER_REGNUM \
|| ((regno) == STACK_POINTER_REGNUM \
&& (GET_MODE_SIZE (mode) == 4 \
|| GET_MODE_SIZE (mode) == 8))) \
: GP_REG_P (regno))
#define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? (int) regno : reg_renumber[regno], \
(mode))
#define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
(((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
#define REGNO_OK_FOR_INDEX_P(regno) 0
#define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects them all.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Some source files that are used after register allocation
need to be strict. */
#ifndef REG_OK_STRICT
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
mips_reg_mode_ok_for_base_p (X, MODE, 0)
#else
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
mips_reg_mode_ok_for_base_p (X, MODE, 1)
#endif
#define REG_OK_FOR_INDEX_P(X) 0
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* A C compound statement with a conditional `goto LABEL;' executed
if X (an RTX) is a legitimate memory address on the target
machine for a memory operand of mode MODE. */
#if 1
#define GO_PRINTF(x) fprintf(stderr, (x))
#define GO_PRINTF2(x,y) fprintf(stderr, (x), (y))
#define GO_DEBUG_RTX(x) debug_rtx(x)
#else
#define GO_PRINTF(x)
#define GO_PRINTF2(x,y)
#define GO_DEBUG_RTX(x)
#endif
#ifdef REG_OK_STRICT
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (mips_legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#else
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (mips_legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#endif
/* A C expression that is 1 if the RTX X is a constant which is a
valid address. This is defined to be the same as `CONSTANT_P (X)',
but rejecting CONST_DOUBLE. */
/* When pic, we must reject addresses of the form symbol+large int.
This is because an instruction `sw $4,s+70000' needs to be converted
by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
assembler would use $at as a temp to load in the large offset. In this
case $at is already in use. We convert such problem addresses to
`la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
/* ??? SGI IRIX 6 N32/N64 assembler fails for CONST address, so reject them
when !TARGET_GAS or ABI_32. */
/* We should be rejecting everything but const addresses. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
|| (GET_CODE (X) == CONST \
&& ! (flag_pic && pic_address_needs_scratch (X)) \
&& (TARGET_GAS || mips_abi == ABI_32)))
/* Define this, so that when PIC, reload won't try to reload invalid
addresses which require two reload registers. */
#define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
At present, GAS doesn't understand li.[sd], so don't allow it
to be generated at present. Also, the MIPS assembler does not
grok li.d Infinity. */
/* ??? SGI Irix 6 assembler fails for CONST address, so reject them.
Note that the Irix 6 assembler problem may already be fixed.
Note also that the GET_CODE (X) == CONST test catches the mips16
gp pseudo reg (see mips16_gp_pseudo_reg) deciding it is not
a LEGITIMATE_CONSTANT. If we ever want mips16 and ABI_N32 or
ABI_64 to work together, we'll need to fix this. */
#define LEGITIMATE_CONSTANT_P(X) \
((GET_CODE (X) != CONST_DOUBLE \
|| mips_const_double_ok (X, GET_MODE (X))) \
&& ! (GET_CODE (X) == CONST \
&& ! TARGET_GAS \
&& (mips_abi == ABI_N32 \
|| mips_abi == ABI_64)) \
&& (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
/* A C compound statement that attempts to replace X with a valid
memory address for an operand of mode MODE. WIN will be a C
statement label elsewhere in the code; the macro definition may
use
GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
to avoid further processing if the address has become legitimate.
X will always be the result of a call to `break_out_memory_refs',
and OLDX will be the operand that was given to that function to
produce X.
The code generated by this macro should not alter the
substructure of X. If it transforms X into a more legitimate
form, it should assign X (which will always be a C variable) a
new value.
It is not necessary for this macro to come up with a legitimate
address. The compiler has standard ways of doing so in all
cases. In fact, it is safe for this macro to do nothing. But
often a machine-dependent strategy can generate better code.
For the MIPS, transform:
memory(X + <large int>)
into:
Y = <large int> & ~0x7fff;
Z = X + Y
memory (Z + (<large int> & 0x7fff));
This is for CSE to find several similar references, and only use one Z.
When PIC, convert addresses of the form memory (symbol+large int) to
memory (reg+large int). */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ \
register rtx xinsn = (X); \
\
if (TARGET_DEBUG_B_MODE) \
{ \
GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
GO_DEBUG_RTX (xinsn); \
} \
\
if (mips_split_addresses && mips_check_split (X, MODE)) \
{ \
/* ??? Is this ever executed? */ \
X = gen_rtx_LO_SUM (Pmode, \
copy_to_mode_reg (Pmode, \
gen_rtx (HIGH, Pmode, X)), \
X); \
goto WIN; \
} \
\
if (GET_CODE (xinsn) == CONST \
&& ((flag_pic && pic_address_needs_scratch (xinsn)) \
/* ??? SGI's Irix 6 assembler can't handle CONST. */ \
|| (!TARGET_GAS \
&& (mips_abi == ABI_N32 \
|| mips_abi == ABI_64)))) \
{ \
rtx ptr_reg = gen_reg_rtx (Pmode); \
rtx constant = XEXP (XEXP (xinsn, 0), 1); \
\
emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
\
X = gen_rtx_PLUS (Pmode, ptr_reg, constant); \
if (SMALL_INT (constant)) \
goto WIN; \
/* Otherwise we fall through so the code below will fix the \
constant. */ \
xinsn = X; \
} \
\
if (GET_CODE (xinsn) == PLUS) \
{ \
register rtx xplus0 = XEXP (xinsn, 0); \
register rtx xplus1 = XEXP (xinsn, 1); \
register enum rtx_code code0 = GET_CODE (xplus0); \
register enum rtx_code code1 = GET_CODE (xplus1); \
\
if (code0 != REG && code1 == REG) \
{ \
xplus0 = XEXP (xinsn, 1); \
xplus1 = XEXP (xinsn, 0); \
code0 = GET_CODE (xplus0); \
code1 = GET_CODE (xplus1); \
} \
\
if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
&& code1 == CONST_INT && !SMALL_INT (xplus1)) \
{ \
rtx int_reg = gen_reg_rtx (Pmode); \
rtx ptr_reg = gen_reg_rtx (Pmode); \
\
emit_move_insn (int_reg, \
GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
\
emit_insn (gen_rtx_SET (VOIDmode, \
ptr_reg, \
gen_rtx_PLUS (Pmode, xplus0, int_reg))); \
\
X = plus_constant (ptr_reg, INTVAL (xplus1) & 0x7fff); \
goto WIN; \
} \
} \
\
if (TARGET_DEBUG_B_MODE) \
GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
}
/* A C statement or compound statement with a conditional `goto
LABEL;' executed if memory address X (an RTX) can have different
meanings depending on the machine mode of the memory reference it
is used for.
Autoincrement and autodecrement addresses typically have
mode-dependent effects because the amount of the increment or
decrement is the size of the operand being addressed. Some
machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
'the start of the function that this code is output in'. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
asm_fprintf ((FILE), "%U%s", \
XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
else \
asm_fprintf ((FILE), "%U%s", (NAME))
/* The mips16 wants the constant pool to be after the function,
because the PC relative load instructions use unsigned offsets. */
#define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
#define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
mips_string_length = 0;
#if 0
/* In mips16 mode, put most string constants after the function. */
#define CONSTANT_AFTER_FUNCTION_P(tree) \
(TARGET_MIPS16 && mips16_constant_after_function_p (tree))
#endif
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction.
??? Using HImode in mips16 mode can cause overflow. However, the
overflow is no more likely than the overflow in a branch
instruction. Large functions can currently break in both ways. */
#define CASE_VECTOR_MODE \
(TARGET_MIPS16 ? HImode : Pmode == DImode ? DImode : SImode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
/* Define this as 1 if `char' should by default be signed; else as 0. */
#ifndef DEFAULT_SIGNED_CHAR
#define DEFAULT_SIGNED_CHAR 1
#endif
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
#define MAX_MOVE_MAX 8
/* Define this macro as a C expression which is nonzero if
accessing less than a word of memory (i.e. a `char' or a
`short') is no faster than accessing a word of memory, i.e., if
such access require more than one instruction or if there is no
difference in cost between byte and (aligned) word loads.
On RISC machines, it tends to generate better code to define
this as 1, since it avoids making a QI or HI mode register. */
#define SLOW_BYTE_ACCESS 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
/* In 64 bit mode, 32 bit instructions require that register values be properly
sign-extended to 64 bits. As a result, a truncate is not a no-op if it
converts a value >32 bits to a value <32 bits. */
/* ??? This results in inefficient code for 64 bit to 32 conversions.
Something needs to be done about this. Perhaps not use any 32 bit
instructions? Perhaps use PROMOTE_MODE? */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode.
For MIPS we make pointers are the smaller of longs and gp-registers. */
#ifndef Pmode
#define Pmode ((TARGET_LONG64 && TARGET_64BIT) ? DImode : SImode)
#endif
/* A function address in a call instruction
is a word address (for indexing purposes)
so give the MEM rtx a words's mode. */
#define FUNCTION_MODE (Pmode == DImode ? DImode : SImode)
/* A part of a C `switch' statement that describes the relative
costs of constant RTL expressions. It must contain `case'
labels for expression codes `const_int', `const', `symbol_ref',
`label_ref' and `const_double'. Each case must ultimately reach
a `return' statement to return the relative cost of the use of
that kind of constant value in an expression. The cost may
depend on the precise value of the constant, which is available
for examination in X.
CODE is the expression code--redundant, since it can be obtained
with `GET_CODE (X)'. */
#define CONST_COSTS(X,CODE,OUTER_CODE) \
case CONST_INT: \
if (! TARGET_MIPS16) \
{ \
/* Always return 0, since we don't have different sized \
instructions, hence different costs according to Richard \
Kenner */ \
return 0; \
} \
if ((OUTER_CODE) == SET) \
{ \
if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
return 0; \
else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
|| (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
return COSTS_N_INSNS (1); \
else \
return COSTS_N_INSNS (2); \
} \
/* A PLUS could be an address. We don't want to force an address \
to use a register, so accept any signed 16 bit value without \
complaint. */ \
if ((OUTER_CODE) == PLUS \
&& INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
return 0; \
/* A number between 1 and 8 inclusive is efficient for a shift. \
Otherwise, we will need an extended instruction. */ \
if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
|| (OUTER_CODE) == LSHIFTRT) \
{ \
if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
return 0; \
return COSTS_N_INSNS (1); \
} \
/* We can use cmpi for an xor with an unsigned 16 bit value. */ \
if ((OUTER_CODE) == XOR \
&& INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
return 0; \
/* We may be able to use slt or sltu for a comparison with a \
signed 16 bit value. (The boundary conditions aren't quite \
right, but this is just a heuristic anyhow.) */ \
if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
|| (OUTER_CODE) == GE || (OUTER_CODE) == GT \
|| (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
|| (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
&& INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
return 0; \
/* Equality comparisons with 0 are cheap. */ \
if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
&& INTVAL (X) == 0) \
return 0; \
\
/* Otherwise, work out the cost to load the value into a \
register. */ \
if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
return COSTS_N_INSNS (1); \
else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
|| (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (3); \
\
case LABEL_REF: \
return COSTS_N_INSNS (2); \
\
case CONST: \
{ \
rtx offset = const0_rtx; \
rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
\
if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
{ \
/* Treat this like a signed 16 bit CONST_INT. */ \
if ((OUTER_CODE) == PLUS) \
return 0; \
else if ((OUTER_CODE) == SET) \
return COSTS_N_INSNS (1); \
else \
return COSTS_N_INSNS (2); \
} \
\
if (GET_CODE (symref) == LABEL_REF) \
return COSTS_N_INSNS (2); \
\
if (GET_CODE (symref) != SYMBOL_REF) \
return COSTS_N_INSNS (4); \
\
/* let's be paranoid.... */ \
if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
return COSTS_N_INSNS (2); \
\
return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
} \
\
case SYMBOL_REF: \
return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
\
case CONST_DOUBLE: \
{ \
rtx high, low; \
if (TARGET_MIPS16) \
return COSTS_N_INSNS (4); \
split_double (X, &high, &low); \
return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
|| low == CONST0_RTX (GET_MODE (low))) \
? 2 : 4); \
}
/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
This can be used, for example, to indicate how costly a multiply
instruction is. In writing this macro, you can use the construct
`COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
This macro is optional; do not define it if the default cost
assumptions are adequate for the target machine.
If -mdebugd is used, change the multiply cost to 2, so multiply by
a constant isn't converted to a series of shifts. This helps
strength reduction, and also makes it easier to identify what the
compiler is doing. */
/* ??? Fix this to be right for the R8000. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case MEM: \
{ \
int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
if (simple_memory_operand (X, GET_MODE (X))) \
return COSTS_N_INSNS (num_words); \
\
return COSTS_N_INSNS (2*num_words); \
} \
\
case FFS: \
return COSTS_N_INSNS (6); \
\
case NOT: \
return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
\
case AND: \
case IOR: \
case XOR: \
if (GET_MODE (X) == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS (2); \
\
break; \
\
case ASHIFT: \
case ASHIFTRT: \
case LSHIFTRT: \
if (GET_MODE (X) == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
\
break; \
\
case ABS: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode || xmode == DFmode) \
return COSTS_N_INSNS (1); \
\
return COSTS_N_INSNS (4); \
} \
\
case PLUS: \
case MINUS: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode || xmode == DFmode) \
{ \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900) \
return COSTS_N_INSNS (2); \
else if (TUNE_MIPS6000) \
return COSTS_N_INSNS (3); \
else \
return COSTS_N_INSNS (6); \
} \
\
if (xmode == DImode && !TARGET_64BIT) \
return COSTS_N_INSNS (4); \
\
break; \
} \
\
case NEG: \
if (GET_MODE (X) == DImode && !TARGET_64BIT) \
return 4; \
\
break; \
\
case MULT: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode) \
{ \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900 \
|| TUNE_MIPS5000) \
return COSTS_N_INSNS (4); \
else if (TUNE_MIPS6000 \
|| TUNE_MIPS5400 \
|| TUNE_MIPS5500) \
return COSTS_N_INSNS (5); \
else \
return COSTS_N_INSNS (7); \
} \
\
if (xmode == DFmode) \
{ \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900 \
|| TUNE_MIPS5000) \
return COSTS_N_INSNS (5); \
else if (TUNE_MIPS6000 \
|| TUNE_MIPS5400 \
|| TUNE_MIPS5500) \
return COSTS_N_INSNS (6); \
else \
return COSTS_N_INSNS (8); \
} \
\
if (TUNE_MIPS3000) \
return COSTS_N_INSNS (12); \
else if (TUNE_MIPS3900) \
return COSTS_N_INSNS (2); \
else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
return COSTS_N_INSNS ((xmode == DImode) ? 4 : 3); \
else if (TUNE_MIPS6000) \
return COSTS_N_INSNS (17); \
else if (TUNE_MIPS5000) \
return COSTS_N_INSNS (5); \
else \
return COSTS_N_INSNS (10); \
} \
\
case DIV: \
case MOD: \
{ \
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode) \
{ \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900) \
return COSTS_N_INSNS (12); \
else if (TUNE_MIPS6000) \
return COSTS_N_INSNS (15); \
else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
return COSTS_N_INSNS (30); \
else \
return COSTS_N_INSNS (23); \
} \
\
if (xmode == DFmode) \
{ \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900) \
return COSTS_N_INSNS (19); \
else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
return COSTS_N_INSNS (59); \
else if (TUNE_MIPS6000) \
return COSTS_N_INSNS (16); \
else \
return COSTS_N_INSNS (36); \
} \
} \
/* fall through */ \
\
case UDIV: \
case UMOD: \
if (TUNE_MIPS3000 \
|| TUNE_MIPS3900) \
return COSTS_N_INSNS (35); \
else if (TUNE_MIPS6000) \
return COSTS_N_INSNS (38); \
else if (TUNE_MIPS5000) \
return COSTS_N_INSNS (36); \
else if (TUNE_MIPS5400 || TUNE_MIPS5500) \
return COSTS_N_INSNS ((GET_MODE (X) == SImode) ? 42 : 74); \
else \
return COSTS_N_INSNS (69); \
\
case SIGN_EXTEND: \
/* A sign extend from SImode to DImode in 64 bit mode is often \
zero instructions, because the result can often be used \
directly by another instruction; we'll call it one. */ \
if (TARGET_64BIT && GET_MODE (X) == DImode \
&& GET_MODE (XEXP (X, 0)) == SImode) \
return COSTS_N_INSNS (1); \
else \
return COSTS_N_INSNS (2); \
\
case ZERO_EXTEND: \
if (TARGET_64BIT && GET_MODE (X) == DImode \
&& GET_MODE (XEXP (X, 0)) == SImode) \
return COSTS_N_INSNS (2); \
else \
return COSTS_N_INSNS (1);
/* An expression giving the cost of an addressing mode that
contains ADDRESS. If not defined, the cost is computed from the
form of the ADDRESS expression and the `CONST_COSTS' values.
For most CISC machines, the default cost is a good approximation
of the true cost of the addressing mode. However, on RISC
machines, all instructions normally have the same length and
execution time. Hence all addresses will have equal costs.
In cases where more than one form of an address is known, the
form with the lowest cost will be used. If multiple forms have
the same, lowest, cost, the one that is the most complex will be
used.
For example, suppose an address that is equal to the sum of a
register and a constant is used twice in the same basic block.
When this macro is not defined, the address will be computed in
a register and memory references will be indirect through that
register. On machines where the cost of the addressing mode
containing the sum is no higher than that of a simple indirect
reference, this will produce an additional instruction and
possibly require an additional register. Proper specification
of this macro eliminates this overhead for such machines.
Similar use of this macro is made in strength reduction of loops.
ADDRESS need not be valid as an address. In such a case, the
cost is not relevant and can be any value; invalid addresses
need not be assigned a different cost.
On machines where an address involving more than one register is
as cheap as an address computation involving only one register,
defining `ADDRESS_COST' to reflect this can cause two registers
to be live over a region of code where only one would have been
if `ADDRESS_COST' were not defined in that manner. This effect
should be considered in the definition of this macro.
Equivalent costs should probably only be given to addresses with
different numbers of registers on machines with lots of registers.
This macro will normally either not be defined or be defined as
a constant. */
#define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
/* A C expression for the cost of moving data from a register in
class FROM to one in class TO. The classes are expressed using
the enumeration values such as `GENERAL_REGS'. A value of 2 is
the default; other values are interpreted relative to that.
It is not required that the cost always equal 2 when FROM is the
same as TO; on some machines it is expensive to move between
registers if they are not general registers.
If reload sees an insn consisting of a single `set' between two
hard registers, and if `REGISTER_MOVE_COST' applied to their
classes returns a value of 2, reload does not check to ensure
that the constraints of the insn are met. Setting a cost of
other than 2 will allow reload to verify that the constraints are
met. You should do this if the `movM' pattern's constraints do
not allow such copying. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) \
mips_register_move_cost (MODE, FROM, TO)
/* ??? Fix this to be right for the R8000. */
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
(((TUNE_MIPS4000 || TUNE_MIPS6000) ? 6 : 4) \
+ memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
/* Define if copies to/from condition code registers should be avoided.
This is needed for the MIPS because reload_outcc is not complete;
it needs to handle cases where the source is a general or another
condition code register. */
#define AVOID_CCMODE_COPIES
/* A C expression for the cost of a branch instruction. A value of
1 is the default; other values are interpreted relative to that. */
/* ??? Fix this to be right for the R8000. */
#define BRANCH_COST \
((! TARGET_MIPS16 \
&& (TUNE_MIPS4000 || TUNE_MIPS6000)) \
? 2 : 1)
/* If defined, modifies the length assigned to instruction INSN as a
function of the context in which it is used. LENGTH is an lvalue
that contains the initially computed length of the insn and should
be updated with the correct length of the insn. */
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
/* Optionally define this if you have added predicates to
`MACHINE.c'. This macro is called within an initializer of an
array of structures. The first field in the structure is the
name of a predicate and the second field is an array of rtl
codes. For each predicate, list all rtl codes that can be in
expressions matched by the predicate. The list should have a
trailing comma. Here is an example of two entries in the list
for a typical RISC machine:
#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
Defining this macro does not affect the generated code (however,
incorrect definitions that omit an rtl code that may be matched
by the predicate can cause the compiler to malfunction).
Instead, it allows the table built by `genrecog' to be more
compact and efficient, thus speeding up the compiler. The most
important predicates to include in the list specified by this
macro are thoses used in the most insn patterns. */
#define PREDICATE_CODES \
{"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
{"arith_operand", { REG, CONST_INT, SUBREG }}, \
{"arith32_operand", { REG, CONST_INT, SUBREG }}, \
{"reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
{"true_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG }}, \
{"small_int", { CONST_INT }}, \
{"large_int", { CONST_INT }}, \
{"mips_const_double_ok", { CONST_DOUBLE }}, \
{"const_float_1_operand", { CONST_DOUBLE }}, \
{"simple_memory_operand", { MEM, SUBREG }}, \
{"equality_op", { EQ, NE }}, \
{"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
LTU, LEU }}, \
{"trap_cmp_op", { EQ, NE, GE, GEU, LT, LTU }}, \
{"pc_or_label_operand", { PC, LABEL_REF }}, \
{"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
{"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, \
REG, MEM}}, \
{"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, REG, \
MEM, SIGN_EXTEND }}, \
{"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
{"se_reg_or_0_operand", { REG, CONST_INT, CONST_DOUBLE, SUBREG, \
SIGN_EXTEND }}, \
{"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
SIGN_EXTEND }}, \
{"se_arith_operand", { REG, CONST_INT, SUBREG, \
SIGN_EXTEND }}, \
{"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
SYMBOL_REF, LABEL_REF, SUBREG, \
REG, SIGN_EXTEND }}, \
{"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
CONST_DOUBLE, CONST }}, \
{"fcc_register_operand", { REG, SUBREG }}, \
{"extend_operator", { SIGN_EXTEND, ZERO_EXTEND }}, \
{"highpart_shift_operator", { ASHIFTRT, LSHIFTRT, ROTATERT, ROTATE }},
/* A list of predicates that do special things with modes, and so
should not elicit warnings for VOIDmode match_operand. */
#define SPECIAL_MODE_PREDICATES \
"pc_or_label_operand",
/* If defined, a C statement to be executed just prior to the
output of assembler code for INSN, to modify the extracted
operands so they will be output differently.
Here the argument OPVEC is the vector containing the operands
extracted from INSN, and NOPERANDS is the number of elements of
the vector which contain meaningful data for this insn. The
contents of this vector are what will be used to convert the
insn template into assembler code, so you can change the
assembler output by changing the contents of the vector.
We use it to check if the current insn needs a nop in front of it
because of load delays, and also to update the delay slot
statistics. */
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
final_prescan_insn (INSN, OPVEC, NOPERANDS)
/* Control the assembler format that we output. */
/* Output at beginning of assembler file.
If we are optimizing to use the global pointer, create a temporary
file to hold all of the text stuff, and write it out to the end.
This is needed because the MIPS assembler is evidently one pass,
and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
declaration when the code is processed, it generates a two
instruction sequence. */
#undef ASM_FILE_START
#define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#ifndef ASM_APP_ON
#define ASM_APP_ON " #APP\n"
#endif
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#ifndef ASM_APP_OFF
#define ASM_APP_OFF " #NO_APP\n"
#endif
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above).
In order to support the two different conventions for register names,
we use the name of a table set up in mips.c, which is overwritten
if -mrnames is used. */
#define REGISTER_NAMES \
{ \
&mips_reg_names[ 0][0], \
&mips_reg_names[ 1][0], \
&mips_reg_names[ 2][0], \
&mips_reg_names[ 3][0], \
&mips_reg_names[ 4][0], \
&mips_reg_names[ 5][0], \
&mips_reg_names[ 6][0], \
&mips_reg_names[ 7][0], \
&mips_reg_names[ 8][0], \
&mips_reg_names[ 9][0], \
&mips_reg_names[10][0], \
&mips_reg_names[11][0], \
&mips_reg_names[12][0], \
&mips_reg_names[13][0], \
&mips_reg_names[14][0], \
&mips_reg_names[15][0], \
&mips_reg_names[16][0], \
&mips_reg_names[17][0], \
&mips_reg_names[18][0], \
&mips_reg_names[19][0], \
&mips_reg_names[20][0], \
&mips_reg_names[21][0], \
&mips_reg_names[22][0], \
&mips_reg_names[23][0], \
&mips_reg_names[24][0], \
&mips_reg_names[25][0], \
&mips_reg_names[26][0], \
&mips_reg_names[27][0], \
&mips_reg_names[28][0], \
&mips_reg_names[29][0], \
&mips_reg_names[30][0], \
&mips_reg_names[31][0], \
&mips_reg_names[32][0], \
&mips_reg_names[33][0], \
&mips_reg_names[34][0], \
&mips_reg_names[35][0], \
&mips_reg_names[36][0], \
&mips_reg_names[37][0], \
&mips_reg_names[38][0], \
&mips_reg_names[39][0], \
&mips_reg_names[40][0], \
&mips_reg_names[41][0], \
&mips_reg_names[42][0], \
&mips_reg_names[43][0], \
&mips_reg_names[44][0], \
&mips_reg_names[45][0], \
&mips_reg_names[46][0], \
&mips_reg_names[47][0], \
&mips_reg_names[48][0], \
&mips_reg_names[49][0], \
&mips_reg_names[50][0], \
&mips_reg_names[51][0], \
&mips_reg_names[52][0], \
&mips_reg_names[53][0], \
&mips_reg_names[54][0], \
&mips_reg_names[55][0], \
&mips_reg_names[56][0], \
&mips_reg_names[57][0], \
&mips_reg_names[58][0], \
&mips_reg_names[59][0], \
&mips_reg_names[60][0], \
&mips_reg_names[61][0], \
&mips_reg_names[62][0], \
&mips_reg_names[63][0], \
&mips_reg_names[64][0], \
&mips_reg_names[65][0], \
&mips_reg_names[66][0], \
&mips_reg_names[67][0], \
&mips_reg_names[68][0], \
&mips_reg_names[69][0], \
&mips_reg_names[70][0], \
&mips_reg_names[71][0], \
&mips_reg_names[72][0], \
&mips_reg_names[73][0], \
&mips_reg_names[74][0], \
&mips_reg_names[75][0], \
&mips_reg_names[76][0], \
&mips_reg_names[77][0], \
&mips_reg_names[78][0], \
&mips_reg_names[79][0], \
&mips_reg_names[80][0], \
&mips_reg_names[81][0], \
&mips_reg_names[82][0], \
&mips_reg_names[83][0], \
&mips_reg_names[84][0], \
&mips_reg_names[85][0], \
&mips_reg_names[86][0], \
&mips_reg_names[87][0], \
&mips_reg_names[88][0], \
&mips_reg_names[89][0], \
&mips_reg_names[90][0], \
&mips_reg_names[91][0], \
&mips_reg_names[92][0], \
&mips_reg_names[93][0], \
&mips_reg_names[94][0], \
&mips_reg_names[95][0], \
&mips_reg_names[96][0], \
&mips_reg_names[97][0], \
&mips_reg_names[98][0], \
&mips_reg_names[99][0], \
&mips_reg_names[100][0], \
&mips_reg_names[101][0], \
&mips_reg_names[102][0], \
&mips_reg_names[103][0], \
&mips_reg_names[104][0], \
&mips_reg_names[105][0], \
&mips_reg_names[106][0], \
&mips_reg_names[107][0], \
&mips_reg_names[108][0], \
&mips_reg_names[109][0], \
&mips_reg_names[110][0], \
&mips_reg_names[111][0], \
&mips_reg_names[112][0], \
&mips_reg_names[113][0], \
&mips_reg_names[114][0], \
&mips_reg_names[115][0], \
&mips_reg_names[116][0], \
&mips_reg_names[117][0], \
&mips_reg_names[118][0], \
&mips_reg_names[119][0], \
&mips_reg_names[120][0], \
&mips_reg_names[121][0], \
&mips_reg_names[122][0], \
&mips_reg_names[123][0], \
&mips_reg_names[124][0], \
&mips_reg_names[125][0], \
&mips_reg_names[126][0], \
&mips_reg_names[127][0], \
&mips_reg_names[128][0], \
&mips_reg_names[129][0], \
&mips_reg_names[130][0], \
&mips_reg_names[131][0], \
&mips_reg_names[132][0], \
&mips_reg_names[133][0], \
&mips_reg_names[134][0], \
&mips_reg_names[135][0], \
&mips_reg_names[136][0], \
&mips_reg_names[137][0], \
&mips_reg_names[138][0], \
&mips_reg_names[139][0], \
&mips_reg_names[140][0], \
&mips_reg_names[141][0], \
&mips_reg_names[142][0], \
&mips_reg_names[143][0], \
&mips_reg_names[144][0], \
&mips_reg_names[145][0], \
&mips_reg_names[146][0], \
&mips_reg_names[147][0], \
&mips_reg_names[148][0], \
&mips_reg_names[149][0], \
&mips_reg_names[150][0], \
&mips_reg_names[151][0], \
&mips_reg_names[152][0], \
&mips_reg_names[153][0], \
&mips_reg_names[154][0], \
&mips_reg_names[155][0], \
&mips_reg_names[156][0], \
&mips_reg_names[157][0], \
&mips_reg_names[158][0], \
&mips_reg_names[159][0], \
&mips_reg_names[160][0], \
&mips_reg_names[161][0], \
&mips_reg_names[162][0], \
&mips_reg_names[163][0], \
&mips_reg_names[164][0], \
&mips_reg_names[165][0], \
&mips_reg_names[166][0], \
&mips_reg_names[167][0], \
&mips_reg_names[168][0], \
&mips_reg_names[169][0], \
&mips_reg_names[170][0], \
&mips_reg_names[171][0], \
&mips_reg_names[172][0], \
&mips_reg_names[173][0], \
&mips_reg_names[174][0], \
&mips_reg_names[175][0] \
}
/* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
So define this for it. */
#define DEBUG_REGISTER_NAMES \
{ \
"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
"t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
"$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
"$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
"$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
"$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
"hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
"$fcc5","$fcc6","$fcc7","$rap", "", "", "", "", \
"$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",\
"$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15",\
"$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23",\
"$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31",\
"$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",\
"$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15",\
"$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23",\
"$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31",\
"$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",\
"$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15",\
"$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23",\
"$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31"\
}
/* If defined, a C initializer for an array of structures
containing a name and a register number. This macro defines
additional names for hard registers, thus allowing the `asm'
option in declarations to refer to registers using alternate
names.
We define both names for the integer registers here. */
#define ADDITIONAL_REGISTER_NAMES \
{ \
{ "$0", 0 + GP_REG_FIRST }, \
{ "$1", 1 + GP_REG_FIRST }, \
{ "$2", 2 + GP_REG_FIRST }, \
{ "$3", 3 + GP_REG_FIRST }, \
{ "$4", 4 + GP_REG_FIRST }, \
{ "$5", 5 + GP_REG_FIRST }, \
{ "$6", 6 + GP_REG_FIRST }, \
{ "$7", 7 + GP_REG_FIRST }, \
{ "$8", 8 + GP_REG_FIRST }, \
{ "$9", 9 + GP_REG_FIRST }, \
{ "$10", 10 + GP_REG_FIRST }, \
{ "$11", 11 + GP_REG_FIRST }, \
{ "$12", 12 + GP_REG_FIRST }, \
{ "$13", 13 + GP_REG_FIRST }, \
{ "$14", 14 + GP_REG_FIRST }, \
{ "$15", 15 + GP_REG_FIRST }, \
{ "$16", 16 + GP_REG_FIRST }, \
{ "$17", 17 + GP_REG_FIRST }, \
{ "$18", 18 + GP_REG_FIRST }, \
{ "$19", 19 + GP_REG_FIRST }, \
{ "$20", 20 + GP_REG_FIRST }, \
{ "$21", 21 + GP_REG_FIRST }, \
{ "$22", 22 + GP_REG_FIRST }, \
{ "$23", 23 + GP_REG_FIRST }, \
{ "$24", 24 + GP_REG_FIRST }, \
{ "$25", 25 + GP_REG_FIRST }, \
{ "$26", 26 + GP_REG_FIRST }, \
{ "$27", 27 + GP_REG_FIRST }, \
{ "$28", 28 + GP_REG_FIRST }, \
{ "$29", 29 + GP_REG_FIRST }, \
{ "$30", 30 + GP_REG_FIRST }, \
{ "$31", 31 + GP_REG_FIRST }, \
{ "$sp", 29 + GP_REG_FIRST }, \
{ "$fp", 30 + GP_REG_FIRST }, \
{ "at", 1 + GP_REG_FIRST }, \
{ "v0", 2 + GP_REG_FIRST }, \
{ "v1", 3 + GP_REG_FIRST }, \
{ "a0", 4 + GP_REG_FIRST }, \
{ "a1", 5 + GP_REG_FIRST }, \
{ "a2", 6 + GP_REG_FIRST }, \
{ "a3", 7 + GP_REG_FIRST }, \
{ "t0", 8 + GP_REG_FIRST }, \
{ "t1", 9 + GP_REG_FIRST }, \
{ "t2", 10 + GP_REG_FIRST }, \
{ "t3", 11 + GP_REG_FIRST }, \
{ "t4", 12 + GP_REG_FIRST }, \
{ "t5", 13 + GP_REG_FIRST }, \
{ "t6", 14 + GP_REG_FIRST }, \
{ "t7", 15 + GP_REG_FIRST }, \
{ "s0", 16 + GP_REG_FIRST }, \
{ "s1", 17 + GP_REG_FIRST }, \
{ "s2", 18 + GP_REG_FIRST }, \
{ "s3", 19 + GP_REG_FIRST }, \
{ "s4", 20 + GP_REG_FIRST }, \
{ "s5", 21 + GP_REG_FIRST }, \
{ "s6", 22 + GP_REG_FIRST }, \
{ "s7", 23 + GP_REG_FIRST }, \
{ "t8", 24 + GP_REG_FIRST }, \
{ "t9", 25 + GP_REG_FIRST }, \
{ "k0", 26 + GP_REG_FIRST }, \
{ "k1", 27 + GP_REG_FIRST }, \
{ "gp", 28 + GP_REG_FIRST }, \
{ "sp", 29 + GP_REG_FIRST }, \
{ "fp", 30 + GP_REG_FIRST }, \
{ "ra", 31 + GP_REG_FIRST }, \
{ "$sp", 29 + GP_REG_FIRST }, \
{ "$fp", 30 + GP_REG_FIRST } \
ALL_COP_ADDITIONAL_REGISTER_NAMES \
}
/* This is meant to be redefined in the host dependent files. It is a
set of alternative names and regnums for mips coprocessors. */
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand X. X is an RTL
expression.
CODE is a value that can be used to specify one of several ways
of printing the operand. It is used when identical operands
must be printed differently depending on the context. CODE
comes from the `%' specification that was used to request
printing of the operand. If the specification was just `%DIGIT'
then CODE is 0; if the specification was `%LTR DIGIT' then CODE
is the ASCII code for LTR.
If X is a register, this macro should print the register's name.
The names can be found in an array `reg_names' whose type is
`char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
When the machine description has a specification `%PUNCT' (a `%'
followed by a punctuation character), this macro is called with
a null pointer for X and the punctuation character for CODE.
See mips.c for the MIPS specific codes. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* A C expression which evaluates to true if CODE is a valid
punctuation character for use in the `PRINT_OPERAND' macro. If
`PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
punctuation characters (except for the standard one, `%') are
used in this way. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
/* A C compound statement to output to stdio stream STREAM the
assembler syntax for an instruction operand that is a memory
reference whose address is ADDR. ADDR is an RTL expression. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* A C statement, to be executed after all slot-filler instructions
have been output. If necessary, call `dbr_sequence_length' to
determine the number of slots filled in a sequence (zero if not
currently outputting a sequence), to decide how many no-ops to
output, or whatever.
Don't define this macro if it has nothing to do, but it is
helpful in reading assembly output if the extent of the delay
sequence is made explicit (e.g. with white space).
Note that output routines for instructions with delay slots must
be prepared to deal with not being output as part of a sequence
(i.e. when the scheduling pass is not run, or when no slot
fillers could be found.) The variable `final_sequence' is null
when not processing a sequence, otherwise it contains the
`sequence' rtx being output. */
#define DBR_OUTPUT_SEQEND(STREAM) \
do \
{ \
if (set_nomacro > 0 && --set_nomacro == 0) \
fputs ("\t.set\tmacro\n", STREAM); \
\
if (set_noreorder > 0 && --set_noreorder == 0) \
fputs ("\t.set\treorder\n", STREAM); \
\
dslots_jump_filled++; \
fputs ("\n", STREAM); \
} \
while (0)
/* How to tell the debugger about changes of source files. Note, the
mips ECOFF format cannot deal with changes of files inside of
functions, which means the output of parser generators like bison
is generally not debuggable without using the -l switch. Lose,
lose, lose. Silicon graphics seems to want all .file's hardwired
to 1. */
#ifndef SET_FILE_NUMBER
#define SET_FILE_NUMBER() ++num_source_filenames
#endif
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
mips_output_filename (STREAM, NAME)
/* This is defined so that it can be overridden in iris6.h. */
#define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
do \
{ \
fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
output_quoted_string (STREAM, NAME); \
fputs ("\n", STREAM); \
} \
while (0)
/* This is how to output a note the debugger telling it the line number
to which the following sequence of instructions corresponds.
Silicon graphics puts a label after each .loc. */
#ifndef LABEL_AFTER_LOC
#define LABEL_AFTER_LOC(STREAM)
#endif
#ifndef ASM_OUTPUT_SOURCE_LINE
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
mips_output_lineno (STREAM, LINE)
#endif
/* The MIPS implementation uses some labels for its own purpose. The
following lists what labels are created, and are all formed by the
pattern $L[a-z].*. The machine independent portion of GCC creates
labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
$Lb[0-9]+ Begin blocks for MIPS debug support
$Lc[0-9]+ Label for use in s<xx> operation.
$Le[0-9]+ End blocks for MIPS debug support */
/* A C statement (sans semicolon) to output to the stdio stream
STREAM any text necessary for declaring the name NAME of an
initialized variable which is being defined. This macro must
output the label definition (perhaps using `ASM_OUTPUT_LABEL').
The argument DECL is the `VAR_DECL' tree node representing the
variable.
If this macro is not defined, then the variable name is defined
in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
#undef ASM_DECLARE_OBJECT_NAME
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
do \
{ \
mips_declare_object (STREAM, NAME, "", ":\n", 0); \
} \
while (0)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.globl\t"
/* This says how to define a global common symbol. */
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(STREAM, DECL, NAME, SIZE, ALIGN) \
do { \
/* If the target wants uninitialized const declarations in \
.rdata then don't put them in .comm */ \
if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA \
&& TREE_CODE (DECL) == VAR_DECL && TREE_READONLY (DECL) \
&& (DECL_INITIAL (DECL) == 0 \
|| DECL_INITIAL (DECL) == error_mark_node)) \
{ \
if (TREE_PUBLIC (DECL) && DECL_NAME (DECL)) \
(*targetm.asm_out.globalize_label) (STREAM, NAME); \
\
readonly_data_section (); \
ASM_OUTPUT_ALIGN (STREAM, floor_log2 (ALIGN / BITS_PER_UNIT)); \
mips_declare_object (STREAM, NAME, "", ":\n\t.space\t%u\n", \
(SIZE)); \
} \
else \
mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", \
(SIZE)); \
} while (0)
/* This says how to define a local common symbol (ie, not visible to
linker). */
#define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
/* This says how to output an external. It would be possible not to
output anything and let undefined symbol become external. However
the assembler uses length information on externals to allocate in
data/sdata bss/sbss, thereby saving exec time. */
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
mips_output_external(STREAM,DECL,NAME)
/* This says what to print at the end of the assembly file */
#undef ASM_FILE_END
#define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
/* Play switch file games if we're optimizing the global pointer. */
#undef TEXT_SECTION
#define TEXT_SECTION() \
do { \
extern FILE *asm_out_text_file; \
if (TARGET_FILE_SWITCHING) \
asm_out_file = asm_out_text_file; \
fputs (TEXT_SECTION_ASM_OP, asm_out_file); \
fputc ('\n', asm_out_file); \
} while (0)
/* This is how to declare a function name. The actual work of
emitting the label is moved to function_prologue, so that we can
get the line number correctly emitted before the .ent directive,
and after any .file directives. Define as empty so that the function
is not declared before the .ent directive elsewhere. */
#undef ASM_DECLARE_FUNCTION_NAME
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#undef ASM_OUTPUT_INTERNAL_LABEL
#define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#undef ASM_GENERATE_INTERNAL_LABEL
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, \
VALUE)
/* This is how to output an element of a case-vector that is relative.
This is used for pc-relative code (e.g. when TARGET_ABICALLS or
TARGET_EMBEDDED_PIC). */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
do { \
if (TARGET_MIPS16) \
fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
else if (TARGET_EMBEDDED_PIC) \
fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
else if (mips_abi == ABI_32 || mips_abi == ABI_O64) \
fprintf (STREAM, "\t%s\t%sL%d\n", \
Pmode == DImode ? ".gpdword" : ".gpword", \
LOCAL_LABEL_PREFIX, VALUE); \
else \
fprintf (STREAM, "\t%s\t%sL%d\n", \
Pmode == DImode ? ".dword" : ".word", \
LOCAL_LABEL_PREFIX, VALUE); \
} while (0)
/* When generating embedded PIC or mips16 code we want to put the jump
table in the .text section. In all other cases, we want to put the
jump table in the .rdata section. Unfortunately, we can't use
JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
section if appropriate. */
#undef ASM_OUTPUT_CASE_LABEL
#define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
do { \
if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
function_section (current_function_decl); \
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
fprintf (STREAM, "\t.align\t%d\n", (LOG))
/* This is how to output an assembler line to advance the location
counter by SIZE bytes. */
#undef ASM_OUTPUT_SKIP
#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
fprintf (STREAM, "\t.space\t%u\n", (SIZE))
/* This is how to output a string. */
#undef ASM_OUTPUT_ASCII
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
mips_output_ascii (STREAM, STRING, LEN)
/* Output #ident as a in the read-only data section. */
#undef ASM_OUTPUT_IDENT
#define ASM_OUTPUT_IDENT(FILE, STRING) \
{ \
const char *p = STRING; \
int size = strlen (p) + 1; \
readonly_data_section (); \
assemble_string (p, size); \
}
/* Default to -G 8 */
#ifndef MIPS_DEFAULT_GVALUE
#define MIPS_DEFAULT_GVALUE 8
#endif
/* Define the strings to put out for each section in the object file. */
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
#define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
#undef READONLY_DATA_SECTION_ASM_OP
#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
#define SMALL_DATA_SECTION sdata_section
/* What other sections we support other than the normal .data/.text. */
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_sdata
/* Define the additional functions to select our additional sections. */
/* on the MIPS it is not a good idea to put constants in the text
section, since this defeats the sdata/data mechanism. This is
especially true when -O is used. In this case an effort is made to
address with faster (gp) register relative addressing, which can
only get at sdata and sbss items (there is no stext !!) However,
if the constant is too large for sdata, and it's readonly, it
will go into the .rdata section. */
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
void \
sdata_section () \
{ \
if (in_section != in_sdata) \
{ \
fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
in_section = in_sdata; \
} \
}
/* Given a decl node or constant node, choose the section to output it in
and select that section. */
#undef TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION mips_select_section
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
do \
{ \
fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
TARGET_64BIT ? "dsubu" : "subu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "sd" : "sw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM]); \
} \
while (0)
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
do \
{ \
if (! set_noreorder) \
fprintf (STREAM, "\t.set\tnoreorder\n"); \
\
dslots_load_total++; \
dslots_load_filled++; \
fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
TARGET_64BIT ? "ld" : "lw", \
reg_names[REGNO], \
reg_names[STACK_POINTER_REGNUM], \
TARGET_64BIT ? "daddu" : "addu", \
reg_names[STACK_POINTER_REGNUM], \
reg_names[STACK_POINTER_REGNUM]); \
\
if (! set_noreorder) \
fprintf (STREAM, "\t.set\treorder\n"); \
} \
while (0)
/* How to start an assembler comment.
The leading space is important (the mips native assembler requires it). */
#ifndef ASM_COMMENT_START
#define ASM_COMMENT_START " #"
#endif
/* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
and mips-tdump.c to print them out.
These must match the corresponding definitions in gdb/mipsread.c.
Unfortunately, gcc and gdb do not currently share any directories. */
#define CODE_MASK 0x8F300
#define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
#define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
#define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
/* Default definitions for size_t and ptrdiff_t. We must override the
definitions from ../svr4.h on mips-*-linux-gnu. */
#undef SIZE_TYPE
#define SIZE_TYPE (Pmode == DImode ? "long unsigned int" : "unsigned int")
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE (Pmode == DImode ? "long int" : "int")
/* See mips_expand_prologue's use of loadgp for when this should be
true. */
#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS \
&& mips_abi != ABI_32 \
&& mips_abi != ABI_O64)
/* In mips16 mode, we need to look through the function to check for
PC relative loads that are out of range. */
#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
/* We need to use a special set of functions to handle hard floating
point code in mips16 mode. */
#ifndef INIT_SUBTARGET_OPTABS
#define INIT_SUBTARGET_OPTABS
#endif
#define INIT_TARGET_OPTABS \
do \
{ \
if (! TARGET_MIPS16 || ! mips16_hard_float) \
INIT_SUBTARGET_OPTABS; \
else \
{ \
add_optab->handlers[(int) SFmode].libfunc = \
init_one_libfunc ("__mips16_addsf3"); \
sub_optab->handlers[(int) SFmode].libfunc = \
init_one_libfunc ("__mips16_subsf3"); \
smul_optab->handlers[(int) SFmode].libfunc = \
init_one_libfunc ("__mips16_mulsf3"); \
sdiv_optab->handlers[(int) SFmode].libfunc = \
init_one_libfunc ("__mips16_divsf3"); \
\
eqsf2_libfunc = init_one_libfunc ("__mips16_eqsf2"); \
nesf2_libfunc = init_one_libfunc ("__mips16_nesf2"); \
gtsf2_libfunc = init_one_libfunc ("__mips16_gtsf2"); \
gesf2_libfunc = init_one_libfunc ("__mips16_gesf2"); \
ltsf2_libfunc = init_one_libfunc ("__mips16_ltsf2"); \
lesf2_libfunc = init_one_libfunc ("__mips16_lesf2"); \
\
floatsisf_libfunc = \
init_one_libfunc ("__mips16_floatsisf"); \
fixsfsi_libfunc = \
init_one_libfunc ("__mips16_fixsfsi"); \
\
if (TARGET_DOUBLE_FLOAT) \
{ \
add_optab->handlers[(int) DFmode].libfunc = \
init_one_libfunc ("__mips16_adddf3"); \
sub_optab->handlers[(int) DFmode].libfunc = \
init_one_libfunc ("__mips16_subdf3"); \
smul_optab->handlers[(int) DFmode].libfunc = \
init_one_libfunc ("__mips16_muldf3"); \
sdiv_optab->handlers[(int) DFmode].libfunc = \
init_one_libfunc ("__mips16_divdf3"); \
\
extendsfdf2_libfunc = \
init_one_libfunc ("__mips16_extendsfdf2"); \
truncdfsf2_libfunc = \
init_one_libfunc ("__mips16_truncdfsf2"); \
\
eqdf2_libfunc = \
init_one_libfunc ("__mips16_eqdf2"); \
nedf2_libfunc = \
init_one_libfunc ("__mips16_nedf2"); \
gtdf2_libfunc = \
init_one_libfunc ("__mips16_gtdf2"); \
gedf2_libfunc = \
init_one_libfunc ("__mips16_gedf2"); \
ltdf2_libfunc = \
init_one_libfunc ("__mips16_ltdf2"); \
ledf2_libfunc = \
init_one_libfunc ("__mips16_ledf2"); \
\
floatsidf_libfunc = \
init_one_libfunc ("__mips16_floatsidf"); \
fixdfsi_libfunc = \
init_one_libfunc ("__mips16_fixdfsi"); \
} \
} \
} \
while (0)
#define DFMODE_NAN \
unsigned short DFbignan[4] = {0x7ff7, 0xffff, 0xffff, 0xffff}; \
unsigned short DFlittlenan[4] = {0xffff, 0xffff, 0xffff, 0xfff7}
#define SFMODE_NAN \
unsigned short SFbignan[2] = {0x7fbf, 0xffff}; \
unsigned short SFlittlenan[2] = {0xffff, 0xffbf}
/* Generate calls to memcpy, etc., not bcopy, etc. */
#define TARGET_MEM_FUNCTIONS
#ifndef __mips16
/* Since the bits of the _init and _fini function is spread across
many object files, each potentially with its own GP, we must assume
we need to load our GP. We don't preserve $gp or $ra, since each
init/fini chunk is supposed to initialize $gp, and crti/crtn
already take care of preserving $ra and, when appropriate, $gp. */
#if _MIPS_SIM == _MIPS_SIM_ABI32
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .cpload $31\n\
.set reorder\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
" TEXT_SECTION_ASM_OP);
#endif /* Switch to #elif when we're no longer limited by K&R C. */
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
|| (defined _ABI64 && _MIPS_SIM == _ABI64)
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
.set noreorder\n\
bal 1f\n\
nop\n\
1: .set reorder\n\
.cpsetup $31, $2, 1b\n\
jal " USER_LABEL_PREFIX #FUNC "\n\
" TEXT_SECTION_ASM_OP);
#endif
#endif
|