1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
|
/* Definitions of target machine for GNU compiler. NS32000 version.
Copyright (C) 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
builtin_define ("__ns32000__"); \
\
/* CPU type */ \
if (TARGET_32532) \
builtin_define ("__ns32532__"); \
else if (TARGET_32332) \
builtin_define ("__ns32332__"); \
else \
builtin_define ("__ns32032__"); \
\
/* FPU type */ \
if (TARGET_32381) \
builtin_define ("__ns32381__"); \
else if (TARGET_32081) \
builtin_define ("__ns32081__"); \
\
/* Misc. */ \
if (TARGET_RTD) \
builtin_define ("__RTD__"); \
\
builtin_assert ("cpu=ns32k"); \
builtin_assert ("machine=ns32k"); \
} \
while (0)
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
/* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
to cover most NS32k addressing syntax variations. This way we don't
need to redefine long macros in all the tm.h files for just slight
variations in assembler syntax. */
#ifndef ABSOLUTE_PREFIX
#define ABSOLUTE_PREFIX '@'
#endif
#if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
#define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
#else
#define PUT_IMMEDIATE_PREFIX(FILE)
#endif
#if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
#define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
#else
#define PUT_ABSOLUTE_PREFIX(FILE)
#endif
#if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
#define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
#else
#define PUT_EXTERNAL_PREFIX(FILE)
#endif
/* Run-time compilation parameters selecting different hardware subsets. */
extern int target_flags;
/* Masks for target_flags */
#define MASK_32081 1
#define MASK_RTD 2
#define MASK_REGPARM 4
#define MASK_32532 8
#define MASK_32332 16
#define MASK_NO_SB 32
#define MASK_NO_BITFIELD 64
#define MASK_HIMEM 128
#define MASK_32381 256
#define MASK_MULT_ADD 512
#define MASK_SRC 1024
#define MASK_IEEE_COMPARE 2048
/* Macros used in the machine description to test the flags. */
/* Compile 32081 insns for floating point (not library calls). */
#define TARGET_32081 (target_flags & MASK_32081)
#define TARGET_32381 (target_flags & MASK_32381)
/* The use of multiply-add instructions is optional because there may
* be cases where it produces worse code.
*/
#define TARGET_MULT_ADD (target_flags & MASK_MULT_ADD)
/* Compile using rtd insn calling sequence.
This will not work unless you use prototypes at least
for all functions that can take varying numbers of args. */
#define TARGET_RTD (target_flags & MASK_RTD)
/* Compile passing first two args in regs 0 and 1. */
#define TARGET_REGPARM (target_flags & MASK_REGPARM)
/* Options to select type of CPU, for better optimization.
The output is correct for any kind of 32000 regardless of these options. */
#define TARGET_32532 (target_flags & MASK_32532)
#define TARGET_32332 (target_flags & MASK_32332)
/* Ok to use the static base register (and presume it's 0) */
#define TARGET_SB ((target_flags & MASK_NO_SB) == 0)
#define TARGET_HIMEM (target_flags & MASK_HIMEM)
/* Compile using bit-field insns. */
#define TARGET_BITFIELD ((target_flags & MASK_NO_BITFIELD) == 0)
#define TARGET_IEEE_COMPARE (target_flags & MASK_IEEE_COMPARE)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
#define TARGET_SWITCHES \
{ { "32081", MASK_32081, N_("Use hardware fp")}, \
{ "soft-float", -(MASK_32081|MASK_32381), \
N_("Don't use hardware fp")}, \
{ "rtd", MASK_RTD, N_("Alternative calling convention")}, \
{ "nortd", -MASK_RTD, N_("Use normal calling convention")}, \
{ "regparm", MASK_REGPARM, N_("Pass some arguments in registers")}, \
{ "noregparm", -MASK_REGPARM, N_("Pass all arguments on stack")}, \
{ "32532", MASK_32532|MASK_32332, N_("Optimize for 32532 cpu")}, \
{ "32332", MASK_32332, N_("Optimize for 32332 cpu")}, \
{ "32332", -MASK_32532, 0}, \
{ "32032", -(MASK_32532|MASK_32332), N_("Optimize for 32032")}, \
{ "sb", -MASK_NO_SB, \
N_("Register sb is zero. Use for absolute addressing")}, \
{ "nosb", MASK_NO_SB, N_("Do not use register sb")}, \
{ "bitfield", -MASK_NO_BITFIELD, \
N_("Use bit-field instructions")}, \
{ "nobitfield", MASK_NO_BITFIELD, \
N_("Do not use bit-field instructions")}, \
{ "himem", MASK_HIMEM, N_("Generate code for high memory")}, \
{ "nohimem", -MASK_HIMEM, N_("Generate code for low memory")}, \
{ "32381", MASK_32381, N_("32381 fpu")}, \
{ "mult-add", MASK_MULT_ADD, \
N_("Use multiply-accumulate fp instructions")}, \
{ "nomult-add", -MASK_MULT_ADD, \
N_("Do not use multiply-accumulate fp instructions") }, \
{ "src", MASK_SRC, N_("\"Small register classes\" kludge")}, \
{ "nosrc", -MASK_SRC, N_("No \"Small register classes\" kludge")}, \
{ "ieee-compare", MASK_IEEE_COMPARE, N_("Use IEEE math for fp comparisons")}, \
{ "noieee-compare", -MASK_IEEE_COMPARE, \
N_("Do not use IEEE math for fp comparisons")}, \
{ "", TARGET_DEFAULT, 0}}
/* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
/* When we are generating PIC, the sb is used as a pointer
to the GOT. 32381 is a superset of 32081 */
#define OVERRIDE_OPTIONS \
{ \
if (target_flags & MASK_32532) \
target_flags |= MASK_32332; \
if (flag_pic || TARGET_HIMEM) \
target_flags |= MASK_NO_SB; \
if (TARGET_32381) \
target_flags |= MASK_32081; \
else \
target_flags &= ~MASK_MULT_ADD; \
if (flag_unsafe_math_optimizations) \
target_flags &= ~MASK_IEEE_COMPARE; \
}
/* Zero or more C statements that may conditionally modify two
variables `fixed_regs' and `call_used_regs' (both of type `char
[]') after they have been initialized from the two preceding
macros.
This is necessary in case the fixed or call-clobbered registers
depend on target flags.
You need not define this macro if it has no work to do.
If the usage of an entire class of registers depends on the target
flags, you may indicate this to GCC by using this macro to modify
`fixed_regs' and `call_used_regs' to 1 for each of the registers in
the classes which should not be used by GCC. Also define the macro
`REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
letter for a class that shouldn't be used.
(However, if this class is not included in `GENERAL_REGS' and all
of the insn patterns whose constraints permit this class are
controlled by target switches, then GCC will automatically avoid
using these registers when the target switches are opposed to
them.) */
#define CONDITIONAL_REGISTER_USAGE \
do \
{ \
if (!TARGET_32081) \
{ \
int regno; \
\
for (regno = F0_REGNUM; regno <= F0_REGNUM + 8; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
if (!TARGET_32381) \
{ \
int regno; \
\
for (regno = L1_REGNUM; regno <= L1_REGNUM + 8; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
} \
} \
while (0)
/* target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the ns32k. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is not true on the ns32k. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered. This is not true on the ns32k. */
#define WORDS_BIG_ENDIAN 0
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 16
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Set this nonzero if move instructions will actually fail to work
when given unaligned data. National claims that the NS32032
works without strict alignment, but rumor has it that operands
crossing a page boundary cause unpredictable results. */
#define STRICT_ALIGNMENT 1
/* If bit field type is int, don't let it cross an int,
and give entire struct the alignment of an int. */
/* Required on the 386 since it doesn't have a full set of bit-field insns.
(There is no signed extv insn.) */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 26
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On the ns32k, these are the FP, SP, (SB and PC are not included here). */
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 0, 0, 0, 0, \
1, 1, 0, 0, 0, 0, 0, 0, \
1, 1}
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"l1", "l1h","l3", "l3h","l5", "l5h","l7", "l7h", \
"fp", "sp"}
#define ADDITIONAL_REGISTER_NAMES \
{{"l0", 8}, {"l2", 10}, {"l4", 12}, {"l6", 14}}
/* l0-7 are not recognized by the assembler. These are the names to use,
* but we don't want ambiguous names in REGISTER_NAMES
*/
#define OUTPUT_REGISTER_NAMES \
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f1", "l1h","f3", "l3h","f5", "l5h","f7", "f7h", \
"fp", "sp"}
#define REG_ALLOC_ORDER \
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 10, 11, 18, 12, 13, 20, 14, 15, 22, 24, 25, 17, 19, 23}
/* How to renumber registers for dbx and gdb.
NS32000 may need more change in the numeration. XXX */
#define DBX_REGISTER_NUMBER(REGNO) \
((REGNO) < L1_REGNUM? (REGNO) \
: (REGNO) < FRAME_POINTER_REGNUM? (REGNO) - L1_REGNUM + 22 \
: (REGNO) == FRAME_POINTER_REGNUM? 17 \
: 16)
/* dwarf2out.c can't understand the funny DBX register numbering.
* We use dwarf2out.c for exception handling even though we use DBX
* for debugging
*/
#define DWARF_FRAME_REGNUM(REGNO) (REGNO)
#define R0_REGNUM 0
#define F0_REGNUM 8
#define L1_REGNUM 16
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* NS32000 pc is not overloaded on a register. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 25
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 24
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
On the ns32k, all registers are 32 bits long except for the 32381 "long"
registers but we treat those as pairs */
#define LONG_FP_REGS_P(REGNO) ((REGNO) >= L1_REGNUM && (REGNO) < L1_REGNUM + 8)
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output.
Early documentation says SI and DI are not tieable if some reg can
be OK for SI but not for DI. However other ports (mips, i860, mvs
and tahoe) don't meet the above criterion. Evidently the real
requirement is somewhat laxer. Documentation was changed for gcc
2.8 but was not picked up by egcs (at least egcs 1.0). Having all
integer modes tieable definitely generates faster code. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
((FLOAT_MODE_P(MODE1) && FLOAT_MODE_P(MODE2) \
&& (GET_MODE_UNIT_SIZE(MODE1) == GET_MODE_UNIT_SIZE(MODE2))) \
|| (!FLOAT_MODE_P(MODE1) && !FLOAT_MODE_P(MODE2)))
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 24
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 1
/* Register in which address to store a structure value
is passed to a function. */
#define STRUCT_VALUE_REGNUM 2
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{ NO_REGS, GENERAL_REGS, FLOAT_REG0, LONG_FLOAT_REG0, FLOAT_REGS,
FP_REGS, GEN_AND_FP_REGS, FRAME_POINTER_REG, STACK_POINTER_REG,
GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{"NO_REGS", "GENERAL_REGS", "FLOAT_REG0", "LONG_FLOAT_REG0", "FLOAT_REGS", \
"FP_REGS", "GEN_AND_FP_REGS", "FRAME_POINTER_REG", "STACK_POINTER_REG", \
"GEN_AND_MEM_REGS", "ALL_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{{0}, /* NO_REGS */ \
{0x00ff}, /* GENERAL_REGS */ \
{0x100}, /* FLOAT_REG0 */ \
{0x300}, /* LONG_FLOAT_REG0 */ \
{0xff00}, /* FLOAT_REGS */ \
{0xffff00}, /* FP_REGS */ \
{0xffffff}, /* GEN_AND_FP_REGS */ \
{0x1000000}, /* FRAME_POINTER_REG */ \
{0x2000000}, /* STACK_POINTER_REG */ \
{0x30000ff}, /* GEN_AND_MEM_REGS */ \
{0x3ffffff} /* ALL_REGS */ \
}
#define SUBSET_P(CLASS1, CLASS2) \
((ns32k_reg_class_contents[CLASS1][0] \
& ~ns32k_reg_class_contents[CLASS2][0]) == 0)
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GEN_AND_MEM_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'u' ? FLOAT_REG0 \
: (C) == 'v' ? LONG_FLOAT_REG0 \
: (C) == 'f' ? FLOAT_REGS \
: (C) == 'l' ? FP_REGS \
: (C) == 'x' ? FRAME_POINTER_REG \
: (C) == 'y' ? STACK_POINTER_REG \
: NO_REGS)
/* The letters I, J, K, L and M in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
On the ns32k, these letters are used as follows:
I : Matches integers which are valid shift amounts for scaled indexing.
These are 0, 1, 2, 3 for byte, word, double, and quadword.
Used for matching arithmetic shifts only on 32032 & 32332.
J : Matches integers which fit a "quick" operand.
K : Matches integers 0 to 7 (for inss and exts instructions).
*/
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
(C) == 'J' ? (VALUE) <= 7 : \
(C) == 'K' ? 0 <= (VALUE) : 0) : 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
/* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
The latter offers no real additional possibilities
and can cause spurious secondary reloading. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
/* On the 32000, this is the size of MODE in words */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* A C expression whose value is RTL representing the location of the
incoming return address at the beginning of any function, before
the prologue. This RTL is either a `REG', indicating that the
return value is saved in `REG', or a `MEM' representing a location
in the stack.
You only need to define this macro if you want to support call
frame debugging information like that provided by DWARF 2.
Before the prologue, RA is at 0(sp). */
#define INCOMING_RETURN_ADDR_RTX \
gen_rtx (MEM, VOIDmode, gen_rtx (REG, VOIDmode, STACK_POINTER_REGNUM))
/* A C expression whose value is RTL representing the value of the
return address for the frame COUNT steps up from the current frame,
after the prologue. FRAMEADDR is the frame pointer of the COUNT
frame, or the frame pointer of the COUNT - 1 frame if
`RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
After the prologue, RA is at 4(fp) in the current frame. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
((COUNT> 0 && flag_omit_frame_pointer)? NULL_RTX \
: gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, (FRAME), GEN_INT(4))))
/* A C expression whose value is an integer giving the offset, in
bytes, from the value of the stack pointer register to the top of
the stack frame at the beginning of any function, before the
prologue. The top of the frame is defined to be the value of the
stack pointer in the previous frame, just before the call
instruction.
You only need to define this macro if you want to support call
frame debugging information like that provided by DWARF 2. */
#define INCOMING_FRAME_SP_OFFSET 4
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On the 32000, sp@- in a byte insn really pushes a BYTE. */
#define PUSH_ROUNDING(BYTES) (BYTES)
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 8
/* Value is the number of byte of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 32000, the RET insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RET can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RET is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
(ns32k_return_pops_args (FUNDECL, FUNTYPE, SIZE))
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
/* On the 32000 the return value is in R0,
or perhaps in F0 if there is fp support. */
#define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE(TYPE_MODE (VALTYPE))
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
/* On the 32000 the return value is in R0,
or perhaps F0 is there is fp support. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, \
FLOAT_MODE_P(MODE) && TARGET_32081 ? F0_REGNUM: R0_REGNUM)
/* Define this if PCC uses the nonreentrant convention for returning
structure and union values. */
#define PCC_STATIC_STRUCT_RETURN
/* 1 if N is a possible register number for a function value.
On the 32000, R0 and F0 are the only registers thus used. */
#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
/* 1 if N is a possible register number for function argument passing.
On the 32000, no registers are used in this way. */
#define FUNCTION_ARG_REGNO_P(N) 0
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the ns32k, this is a single integer, which is a number of bytes
of arguments scanned so far. */
#define CUMULATIVE_ARGS int
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0.
On the ns32k, the offset starts at 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM) = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
: (int_size_in_bytes (TYPE) + 3) & ~3))
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
/* On the 32000 all args are pushed, except if -mregparm is specified
then the first two words of arguments are passed in r0, r1.
*NOTE* -mregparm does not work.
It exists only to test register calling conventions. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
((TARGET_REGPARM && (CUM) < 8 \
&& 8 < ((CUM) + ((MODE) == BLKmode \
? int_size_in_bytes (TYPE) \
: GET_MODE_SIZE (MODE)))) \
? 2 - (CUM) / 4 : 0)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry.
THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero.
We use 0, because using 1 requires hair in output_function_epilogue()
that is worse than the stack adjust we could save. */
/* #define EXIT_IGNORE_STACK 1 */
/* Store in the variable DEPTH the initial difference between the
frame pointer reg contents and the stack pointer reg contents,
as of the start of the function body. This depends on the layout
of the fixed parts of the stack frame and on how registers are saved. */
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
{ \
int regno; \
int offset = -4; \
for (regno = 0; regno < FRAME_POINTER_REGNUM; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += 4; \
if (flag_pic && current_function_uses_pic_offset_table) \
offset += 4; \
(DEPTH) = (offset + get_frame_size () \
+ (get_frame_size () == 0 ? 0 : 4)); \
}
/* Output assembler code for a block containing the constant parts
of a trampoline, leaving space for the variable parts. */
/* On the 32k, the trampoline looks like this:
addr 0(pc),r2
jump @__trampoline
.int STATIC
.int FUNCTION
Doing trampolines with a library assist function is easier than figuring
out how to do stores to memory in reverse byte order (the way immediate
operands on the 32k are stored). */
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
fprintf (FILE, "\taddr 0(pc),r2\n" ); \
fprintf (FILE, "\tjump " ); \
PUT_ABSOLUTE_PREFIX (FILE); \
fprintf (FILE, "__trampoline\n" ); \
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \
}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 20
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 16)), FNADDR); \
}
/* This is the library routine that is used
to transfer control from the trampoline
to the actual nested function. */
/* The function name __transfer_from_trampoline is not actually used.
The function definition just permits use of "asm with operands"
(though the operand list is empty). */
#define TRANSFER_FROM_TRAMPOLINE \
void \
__transfer_from_trampoline () \
{ \
asm (".globl __trampoline"); \
asm ("__trampoline:"); \
asm ("movd 16(r2),tos"); \
asm ("movd 12(r2),r1"); \
asm ("ret 0"); \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
/* #define HAVE_PRE_DECREMENT 0 */
/* #define HAVE_PRE_INCREMENT 0 */
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
/* note that FP and SP cannot be used as an index. What about PC? */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM)
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < F0_REGNUM || (unsigned)reg_renumber[REGNO] < F0_REGNUM \
|| (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
#define FP_REG_P(X) \
(GET_CODE (X) == REG && REGNO (X) >= F0_REGNUM && REGNO (X) < FRAME_POINTER_REGNUM)
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address.
This might not work on future ns32k processors as negative
displacements are not officially allowed but a mode reserved
to National. This works on processors up to 32532, though,
and we don't expect any new ones in the series ;-( */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST \
|| (GET_CODE (X) == CONST_INT \
&& NS32K_DISPLACEMENT_P (INTVAL (X))))
#define CONSTANT_ADDRESS_NO_LABEL_P(X) \
(GET_CODE (X) == CONST_INT \
&& NS32K_DISPLACEMENT_P (INTVAL (X)))
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* Certain machines have the property that some registers cannot be
copied to some other registers without using memory. Define this
macro on those machines to be a C expression that is nonzero if
objects of mode M in registers of CLASS1 can only be copied to
registers of class CLASS2 by storing a register of CLASS1 into
memory and loading that memory location into a register of CLASS2.
On the ns32k, floating point regs can only be loaded through memory
The movdf and movsf insns in ns32k.md copy between general and
floating registers using the stack. In principle, we could get
better code not allowing that case in the constraints and defining
SECONDARY_MEMORY_NEEDED in practice, though the stack slots used
are not available for optimization. */
#if 0
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, M) \
secondary_memory_needed(CLASS1, CLASS2, M)
#endif
/* SMALL_REGISTER_CLASSES is a run time option. This should no longer
be necessay and should go when we have confidence that we won't run
out of spill registers */
#define SMALL_REGISTER_CLASSES (target_flags & MASK_SRC)
/* A C expression whose value is nonzero if pseudos that have been
assigned to registers of class CLASS would likely be spilled
because registers of CLASS are needed for spill registers.
The default definition won't do because class LONG_FLOAT_REG0 has two
registers which are always accessed as a pair */
#define CLASS_LIKELY_SPILLED_P(CLASS) \
(reg_class_size[(int) (CLASS)] == 1 || (CLASS) == LONG_FLOAT_REG0)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO (X) < F0_REGNUM || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as a base reg
of if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) (REGNO (X) < F0_REGNUM || REGNO (X) >= FRAME_POINTER_REGNUM)
/* Nonzero if X is a floating point reg or a pseudo reg. */
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
/* 1 if X is an address that we could indirect through. */
/***** NOTE ***** There is a bug in the Sequent assembler which fails
to fixup addressing information for symbols used as offsets
from registers which are not FP or SP (or SB or PC). This
makes _x(fp) valid, while _x(r0) is invalid. */
#define INDIRECTABLE_1_ADDRESS_P(X) \
(CONSTANT_ADDRESS_P (X) \
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& ((flag_pic || TARGET_HIMEM) ? \
CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
: \
CONSTANT_ADDRESS_P (XEXP (X, 1))) \
&& (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
/* 1 if integer I will fit in a 4 byte displacement field.
Strictly speaking, we can't be sure that a symbol will fit this range.
But, in practice, it always will. */
/* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
can handle the full range of displacements--it is only the addresses
that have a limited range. So the following was deleted:
(((i) <= 16777215 && (i) >= -16777216)
|| ((TARGET_32532 || TARGET_32332) && ...)) */
#define NS32K_DISPLACEMENT_P(i) \
((i) < (1 << 29) && (i) >= - (1 << 29))
/* Check for frame pointer or stack pointer. */
#define MEM_REG(X) \
(GET_CODE (X) == REG && (REGNO (X) == FRAME_POINTER_REGNUM \
|| REGNO(X) == STACK_POINTER_REGNUM))
/* A memory ref whose address is the FP or SP, with optional integer offset,
or (on certain machines) a constant address. */
#define INDIRECTABLE_2_ADDRESS_P(X) \
(GET_CODE (X) == MEM \
&& (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
|| (GET_CODE (xfoo0) == PLUS \
&& MEM_REG (XEXP (xfoo0, 0)) \
&& CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
|| (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
/* Go to ADDR if X is a valid address not using indexing.
(This much is the easy part.) */
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
{ \
if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
if (GET_CODE (X) == PLUS) \
if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
goto ADDR; \
}
/* Go to ADDR if X is a valid address not using indexing.
(This much is the easy part.) */
#define GO_IF_INDEXING(X, MODE, ADDR) \
{ register rtx xfoob = (X); \
if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
#define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
{ if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
}
/* 1 if PROD is either a reg times size of mode MODE
or just a reg, if MODE is just one byte. Actually, on the ns32k,
since the index mode is independent of the operand size,
we can match more stuff...
This macro's expansion uses the temporary variables xfoo0, xfoo1
and xfoo2 that must be declared in the surrounding context. */
#define INDEX_TERM_P(PROD, MODE) \
((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
|| (GET_CODE (PROD) == MULT \
&& (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
(GET_CODE (xfoo1) == CONST_INT \
&& GET_CODE (xfoo0) == REG \
&& FITS_INDEX_RANGE (INTVAL (xfoo1)) \
&& REG_OK_FOR_INDEX_P (xfoo0)))))
#define FITS_INDEX_RANGE(X) \
((xfoo2 = (unsigned)(X)-1), \
((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
/* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ register rtx xfooy, xfoo0, xfoo1; \
unsigned xfoo2; \
xfooy = X; \
if (flag_pic && cfun && ! current_function_uses_pic_offset_table \
&& global_symbolic_reference_mentioned_p (X, 1)) \
current_function_uses_pic_offset_table = 1; \
GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
if (GET_CODE (xfooy) == PLUS) \
{ \
if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
&& GET_CODE (XEXP (xfooy, 0)) == PLUS) \
xfooy = XEXP (xfooy, 0); \
else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
&& GET_CODE (XEXP (xfooy, 1)) == PLUS) \
xfooy = XEXP (xfooy, 1); \
GO_IF_INDEXING (xfooy, MODE, ADDR); \
} \
else if (INDEX_TERM_P (xfooy, MODE)) \
goto ADDR; \
else if (GET_CODE (xfooy) == PRE_DEC) \
{ \
if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
else abort (); \
} \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the ns32k, we do nothing */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_PIC_OPERAND_P(X) \
(((! current_function_uses_pic_offset_table \
&& symbolic_reference_mentioned_p (X))? \
(current_function_uses_pic_offset_table = 1):0 \
), (! SYMBOLIC_CONST (X) \
|| GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF))
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the ns32k, only predecrement and postincrement address depend thus
(the amount of decrement or increment being the length of the operand). */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
goto LABEL;}
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction.
HI mode is more efficient but the range is not wide enough for
all programs. */
#define CASE_VECTOR_MODE SImode
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* The number of scalar move insns which should be generated instead
of a string move insn or a library call.
We have a smart movstrsi insn */
#define MOVE_RATIO 0
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 0
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
/* #define SHIFT_COUNT_TRUNCATED */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* We assume that the store-condition-codes instructions store 0 for false
and some other value for true. This is the value stored for true. */
#define STORE_FLAG_VALUE 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* Compute the cost of address ADDRESS. */
#define ADDRESS_COST(RTX) calc_address_cost (RTX)
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) \
return 1; \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
return 3; \
case CONST_DOUBLE: \
return 5;
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). */
/* This bit means that what ought to be in the Z bit
should be tested in the F bit. */
#define CC_Z_IN_F 04000
/* This bit means that what ought to be in the Z bit
is complemented in the F bit. */
#define CC_Z_IN_NOT_F 010000
/* This bit means that the L bit indicates unordered (IEEE) comparison.
*/
#define CC_UNORD 020000
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define NOTICE_UPDATE_CC(EXP, INSN) \
{ if (GET_CODE (EXP) == SET) \
{ if (GET_CODE (SET_DEST (EXP)) == CC0) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (EXP); \
cc_status.value2 = SET_SRC (EXP); \
} \
else if (GET_CODE (SET_SRC (EXP)) == CALL) \
{ CC_STATUS_INIT; } \
else if (GET_CODE (SET_DEST (EXP)) == REG) \
{ if (cc_status.value1 \
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
cc_status.value1 = 0; \
if (cc_status.value2 \
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
cc_status.value2 = 0; \
} \
else if (GET_CODE (SET_DEST (EXP)) == MEM) \
{ CC_STATUS_INIT; } \
} \
else if (GET_CODE (EXP) == PARALLEL \
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
{ if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
{ cc_status.flags = 0; \
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
} \
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
{ if (cc_status.value1 \
&& reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
cc_status.value1 = 0; \
if (cc_status.value2 \
&& reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
cc_status.value2 = 0; \
} \
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
{ CC_STATUS_INIT; } \
} \
else if (GET_CODE (EXP) == CALL) \
{ /* all bets are off */ CC_STATUS_INIT; } \
else { /* nothing happens? CC_STATUS_INIT; */} \
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
&& cc_status.value2 \
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
abort (); \
}
/* Describe the costs of the following register moves which are discouraged:
1.) Moves between the Floating point registers and the frame pointer and stack pointer
2.) Moves between the stack pointer and the frame pointer
3.) Moves between the floating point and general registers
These all involve two memory references. This is worse than a memory
to memory move (default cost 4)
*/
#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
register_move_cost (CLASS1, CLASS2)
#define OUTPUT_JUMP(NORMAL, NO_OV) \
{ if (cc_status.flags & CC_NO_OVERFLOW) \
return NO_OV; \
return NORMAL; }
/* Dividing the output into sections */
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP "\t.text"
/* Output before writable data. */
#define DATA_SECTION_ASM_OP "\t.data"
/* Define the output Assembly Language */
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
/* Output of Data */
/* This is how to output an assembler line defining an external/static
address which is not in tree format (for collect.c). */
/* The prefix to add to user-visible assembler symbols. */
#define USER_LABEL_PREFIX "_"
/* This is how to output an insn to push a register on the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP ".globl "
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s%ld", PREFIX, (long) NUM)
/* This is how to align the code that follows an unconditional branch. */
#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (2)
/* This is how to output an element of a case-vector that is absolute.
(The ns32k does not use such vectors,
but we must define this macro anyway.) */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.long L%d\n", VALUE)
/* This is how to output an element of a case-vector that is relative. */
/* ** Notice that the second element is LI format! */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "\t.long L%d-LI%d\n", VALUE, REL)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
fprintf (FILE, "\t.align %d\n", (LOG))
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %u\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs (".comm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
/* This says how to output an assembler line
to define a local common symbol. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs (".lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%u\n", (ROUNDED)))
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Print an instruction operand X on file FILE.
CODE is the code from the %-spec that requested printing this operand;
if `%z3' was used to print operand 3, then CODE is 'z'. */
/* %$ means print the prefix for an immediate operand. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '$' || (CODE) == '?')
#define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
/* Print a memory operand whose address is X, on file FILE. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
extern const unsigned int ns32k_reg_class_contents[N_REG_CLASSES][1];
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER]; /* smallest class containing REGNO */
/*
Local variables:
version-control: t
End:
*/
|