1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
|
/* Breadth-first and depth-first routines for
searching multiple-inheritance lattice for GNU C++.
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2002, 2003 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* High-level class interface. */
#include "config.h"
#include "system.h"
#include "tree.h"
#include "cp-tree.h"
#include "obstack.h"
#include "flags.h"
#include "rtl.h"
#include "output.h"
#include "ggc.h"
#include "toplev.h"
#include "stack.h"
/* Obstack used for remembering decision points of breadth-first. */
static struct obstack search_obstack;
/* Methods for pushing and popping objects to and from obstacks. */
struct stack_level *
push_stack_level (obstack, tp, size)
struct obstack *obstack;
char *tp; /* Sony NewsOS 5.0 compiler doesn't like void * here. */
int size;
{
struct stack_level *stack;
obstack_grow (obstack, tp, size);
stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
obstack_finish (obstack);
stack->obstack = obstack;
stack->first = (tree *) obstack_base (obstack);
stack->limit = obstack_room (obstack) / sizeof (tree *);
return stack;
}
struct stack_level *
pop_stack_level (stack)
struct stack_level *stack;
{
struct stack_level *tem = stack;
struct obstack *obstack = tem->obstack;
stack = tem->prev;
obstack_free (obstack, tem);
return stack;
}
#define search_level stack_level
static struct search_level *search_stack;
struct vbase_info
{
/* The class dominating the hierarchy. */
tree type;
/* A pointer to a complete object of the indicated TYPE. */
tree decl_ptr;
tree inits;
};
static int is_subobject_of_p PARAMS ((tree, tree, tree));
static int is_subobject_of_p_1 PARAMS ((tree, tree, tree));
static tree dfs_check_overlap PARAMS ((tree, void *));
static tree dfs_no_overlap_yet PARAMS ((tree, void *));
static base_kind lookup_base_r
PARAMS ((tree, tree, base_access, int, tree *));
static int dynamic_cast_base_recurse PARAMS ((tree, tree, int, tree *));
static tree marked_pushdecls_p PARAMS ((tree, void *));
static tree unmarked_pushdecls_p PARAMS ((tree, void *));
static tree dfs_debug_unmarkedp PARAMS ((tree, void *));
static tree dfs_debug_mark PARAMS ((tree, void *));
static tree dfs_get_vbase_types PARAMS ((tree, void *));
static tree dfs_push_type_decls PARAMS ((tree, void *));
static tree dfs_push_decls PARAMS ((tree, void *));
static tree dfs_unuse_fields PARAMS ((tree, void *));
static tree add_conversions PARAMS ((tree, void *));
static int covariant_return_p PARAMS ((tree, tree));
static int look_for_overrides_r PARAMS ((tree, tree));
static struct search_level *push_search_level
PARAMS ((struct stack_level *, struct obstack *));
static struct search_level *pop_search_level
PARAMS ((struct stack_level *));
static tree bfs_walk
PARAMS ((tree, tree (*) (tree, void *), tree (*) (tree, void *),
void *));
static tree lookup_field_queue_p PARAMS ((tree, void *));
static int shared_member_p PARAMS ((tree));
static tree lookup_field_r PARAMS ((tree, void *));
static tree canonical_binfo PARAMS ((tree));
static tree shared_marked_p PARAMS ((tree, void *));
static tree shared_unmarked_p PARAMS ((tree, void *));
static int dependent_base_p PARAMS ((tree));
static tree dfs_accessible_queue_p PARAMS ((tree, void *));
static tree dfs_accessible_p PARAMS ((tree, void *));
static tree dfs_access_in_type PARAMS ((tree, void *));
static access_kind access_in_type PARAMS ((tree, tree));
static tree dfs_canonical_queue PARAMS ((tree, void *));
static tree dfs_assert_unmarked_p PARAMS ((tree, void *));
static void assert_canonical_unmarked PARAMS ((tree));
static int protected_accessible_p PARAMS ((tree, tree, tree));
static int friend_accessible_p PARAMS ((tree, tree, tree));
static void setup_class_bindings PARAMS ((tree, int));
static int template_self_reference_p PARAMS ((tree, tree));
static tree dfs_find_vbase_instance PARAMS ((tree, void *));
static tree dfs_get_pure_virtuals PARAMS ((tree, void *));
static tree dfs_build_inheritance_graph_order PARAMS ((tree, void *));
/* Allocate a level of searching. */
static struct search_level *
push_search_level (stack, obstack)
struct stack_level *stack;
struct obstack *obstack;
{
struct search_level tem;
tem.prev = stack;
return push_stack_level (obstack, (char *)&tem, sizeof (tem));
}
/* Discard a level of search allocation. */
static struct search_level *
pop_search_level (obstack)
struct stack_level *obstack;
{
register struct search_level *stack = pop_stack_level (obstack);
return stack;
}
/* Variables for gathering statistics. */
#ifdef GATHER_STATISTICS
static int n_fields_searched;
static int n_calls_lookup_field, n_calls_lookup_field_1;
static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
static int n_calls_get_base_type;
static int n_outer_fields_searched;
static int n_contexts_saved;
#endif /* GATHER_STATISTICS */
/* Worker for lookup_base. BINFO is the binfo we are searching at,
BASE is the RECORD_TYPE we are searching for. ACCESS is the
required access checks. IS_VIRTUAL indicates if BINFO is morally
virtual.
If BINFO is of the required type, then *BINFO_PTR is examined to
compare with any other instance of BASE we might have already
discovered. *BINFO_PTR is initialized and a base_kind return value
indicates what kind of base was located.
Otherwise BINFO's bases are searched. */
static base_kind
lookup_base_r (binfo, base, access, is_virtual, binfo_ptr)
tree binfo, base;
base_access access;
int is_virtual; /* inside a virtual part */
tree *binfo_ptr;
{
int i;
tree bases;
base_kind found = bk_not_base;
if (same_type_p (BINFO_TYPE (binfo), base))
{
/* We have found a base. Check against what we have found
already. */
found = bk_same_type;
if (is_virtual)
found = bk_via_virtual;
if (!*binfo_ptr)
*binfo_ptr = binfo;
else if (!is_virtual || !tree_int_cst_equal (BINFO_OFFSET (binfo),
BINFO_OFFSET (*binfo_ptr)))
{
if (access != ba_any)
*binfo_ptr = NULL;
else if (!is_virtual)
/* Prefer a non-virtual base. */
*binfo_ptr = binfo;
found = bk_ambig;
}
return found;
}
bases = BINFO_BASETYPES (binfo);
if (!bases)
return bk_not_base;
for (i = TREE_VEC_LENGTH (bases); i--;)
{
tree base_binfo = TREE_VEC_ELT (bases, i);
base_kind bk;
bk = lookup_base_r (base_binfo, base,
access,
is_virtual || TREE_VIA_VIRTUAL (base_binfo),
binfo_ptr);
switch (bk)
{
case bk_ambig:
if (access != ba_any)
return bk;
found = bk;
break;
case bk_same_type:
bk = bk_proper_base;
/* FALLTHROUGH */
case bk_proper_base:
my_friendly_assert (found == bk_not_base, 20010723);
found = bk;
break;
case bk_via_virtual:
if (found != bk_ambig)
found = bk;
break;
case bk_not_base:
break;
default:
abort ();
}
}
return found;
}
/* Returns true if type BASE is accessible in T. (BASE is known to be
a base class of T.) */
bool
accessible_base_p (tree t, tree base)
{
tree decl;
/* [class.access.base]
A base class is said to be accessible if an invented public
member of the base class is accessible. */
/* Rather than inventing a public member, we use the implicit
public typedef created in the scope of every class. */
decl = TYPE_FIELDS (base);
while (!DECL_SELF_REFERENCE_P (decl))
decl = TREE_CHAIN (decl);
while (ANON_AGGR_TYPE_P (t))
t = TYPE_CONTEXT (t);
return accessible_p (t, decl);
}
/* Lookup BASE in the hierarchy dominated by T. Do access checking as
ACCESS specifies. Return the binfo we discover (which might not be
canonical). If KIND_PTR is non-NULL, fill with information about
what kind of base we discovered.
If the base is inaccessible, or ambiguous, and the ba_quiet bit is
not set in ACCESS, then an error is issued and error_mark_node is
returned. If the ba_quiet bit is set, then no error is issued and
NULL_TREE is returned. */
tree
lookup_base (t, base, access, kind_ptr)
tree t, base;
base_access access;
base_kind *kind_ptr;
{
tree binfo = NULL; /* The binfo we've found so far. */
tree t_binfo = NULL;
base_kind bk;
if (t == error_mark_node || base == error_mark_node)
{
if (kind_ptr)
*kind_ptr = bk_not_base;
return error_mark_node;
}
my_friendly_assert (TYPE_P (base), 20011127);
if (!TYPE_P (t))
{
t_binfo = t;
t = BINFO_TYPE (t);
}
else
t_binfo = TYPE_BINFO (t);
/* Ensure that the types are instantiated. */
t = complete_type (TYPE_MAIN_VARIANT (t));
base = complete_type (TYPE_MAIN_VARIANT (base));
bk = lookup_base_r (t_binfo, base, access, 0, &binfo);
/* Check that the base is unambiguous and accessible. */
if (access != ba_any)
switch (bk)
{
case bk_not_base:
break;
case bk_ambig:
binfo = NULL_TREE;
if (!(access & ba_quiet))
{
error ("`%T' is an ambiguous base of `%T'", base, t);
binfo = error_mark_node;
}
break;
default:
if ((access & ~ba_quiet) != ba_ignore
/* If BASE is incomplete, then BASE and TYPE are probably
the same, in which case BASE is accessible. If they
are not the same, then TYPE is invalid. In that case,
there's no need to issue another error here, and
there's no implicit typedef to use in the code that
follows, so we skip the check. */
&& COMPLETE_TYPE_P (base)
&& !accessible_base_p (t, base))
{
if (!(access & ba_quiet))
{
error ("`%T' is an inaccessible base of `%T'", base, t);
binfo = error_mark_node;
}
else
binfo = NULL_TREE;
bk = bk_inaccessible;
}
break;
}
if (kind_ptr)
*kind_ptr = bk;
return binfo;
}
/* Worker function for get_dynamic_cast_base_type. */
static int
dynamic_cast_base_recurse (subtype, binfo, via_virtual, offset_ptr)
tree subtype;
tree binfo;
int via_virtual;
tree *offset_ptr;
{
tree binfos;
int i, n_baselinks;
int worst = -2;
if (BINFO_TYPE (binfo) == subtype)
{
if (via_virtual)
return -1;
else
{
*offset_ptr = BINFO_OFFSET (binfo);
return 0;
}
}
binfos = BINFO_BASETYPES (binfo);
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
for (i = 0; i < n_baselinks; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
int rval;
if (!TREE_VIA_PUBLIC (base_binfo))
continue;
rval = dynamic_cast_base_recurse
(subtype, base_binfo,
via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
if (worst == -2)
worst = rval;
else if (rval >= 0)
worst = worst >= 0 ? -3 : worst;
else if (rval == -1)
worst = -1;
else if (rval == -3 && worst != -1)
worst = -3;
}
return worst;
}
/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
started from is related to the required TARGET type, in order to optimize
the inheritance graph search. This information is independent of the
current context, and ignores private paths, hence get_base_distance is
inappropriate. Return a TREE specifying the base offset, BOFF.
BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
and there are no public virtual SUBTYPE bases.
BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
BOFF == -2, SUBTYPE is not a public base.
BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
tree
get_dynamic_cast_base_type (subtype, target)
tree subtype;
tree target;
{
tree offset = NULL_TREE;
int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
0, &offset);
if (!boff)
return offset;
offset = build_int_2 (boff, -1);
TREE_TYPE (offset) = ssizetype;
return offset;
}
/* Search for a member with name NAME in a multiple inheritance lattice
specified by TYPE. If it does not exist, return NULL_TREE.
If the member is ambiguously referenced, return `error_mark_node'.
Otherwise, return the FIELD_DECL. */
/* Do a 1-level search for NAME as a member of TYPE. The caller must
figure out whether it can access this field. (Since it is only one
level, this is reasonable.) */
tree
lookup_field_1 (tree type, tree name, bool want_type)
{
register tree field;
if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
|| TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
|| TREE_CODE (type) == TYPENAME_TYPE)
/* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
the code often worked even when we treated the index as a list
of fields!)
The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
return NULL_TREE;
if (TYPE_NAME (type)
&& DECL_LANG_SPECIFIC (TYPE_NAME (type))
&& DECL_SORTED_FIELDS (TYPE_NAME (type)))
{
tree *fields = &TREE_VEC_ELT (DECL_SORTED_FIELDS (TYPE_NAME (type)), 0);
int lo = 0, hi = TREE_VEC_LENGTH (DECL_SORTED_FIELDS (TYPE_NAME (type)));
int i;
while (lo < hi)
{
i = (lo + hi) / 2;
#ifdef GATHER_STATISTICS
n_fields_searched++;
#endif /* GATHER_STATISTICS */
if (DECL_NAME (fields[i]) > name)
hi = i;
else if (DECL_NAME (fields[i]) < name)
lo = i + 1;
else
{
field = NULL_TREE;
/* We might have a nested class and a field with the
same name; we sorted them appropriately via
field_decl_cmp, so just look for the first or last
field with this name. */
if (want_type)
{
do
field = fields[i--];
while (i >= lo && DECL_NAME (fields[i]) == name);
if (TREE_CODE (field) != TYPE_DECL
&& !DECL_CLASS_TEMPLATE_P (field))
field = NULL_TREE;
}
else
{
do
field = fields[i++];
while (i < hi && DECL_NAME (fields[i]) == name);
}
return field;
}
}
return NULL_TREE;
}
field = TYPE_FIELDS (type);
#ifdef GATHER_STATISTICS
n_calls_lookup_field_1++;
#endif /* GATHER_STATISTICS */
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
#ifdef GATHER_STATISTICS
n_fields_searched++;
#endif /* GATHER_STATISTICS */
my_friendly_assert (DECL_P (field), 0);
if (DECL_NAME (field) == NULL_TREE
&& ANON_AGGR_TYPE_P (TREE_TYPE (field)))
{
tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
if (temp)
return temp;
}
if (TREE_CODE (field) == USING_DECL)
/* For now, we're just treating member using declarations as
old ARM-style access declarations. Thus, there's no reason
to return a USING_DECL, and the rest of the compiler can't
handle it. Once the class is defined, these are purged
from TYPE_FIELDS anyhow; see handle_using_decl. */
continue;
if (DECL_NAME (field) == name
&& (!want_type
|| TREE_CODE (field) == TYPE_DECL
|| DECL_CLASS_TEMPLATE_P (field)))
return field;
}
/* Not found. */
if (name == vptr_identifier)
{
/* Give the user what s/he thinks s/he wants. */
if (TYPE_POLYMORPHIC_P (type))
return TYPE_VFIELD (type);
}
return NULL_TREE;
}
/* There are a number of cases we need to be aware of here:
current_class_type current_function_decl
global NULL NULL
fn-local NULL SET
class-local SET NULL
class->fn SET SET
fn->class SET SET
Those last two make life interesting. If we're in a function which is
itself inside a class, we need decls to go into the fn's decls (our
second case below). But if we're in a class and the class itself is
inside a function, we need decls to go into the decls for the class. To
achieve this last goal, we must see if, when both current_class_ptr and
current_function_decl are set, the class was declared inside that
function. If so, we know to put the decls into the class's scope. */
tree
current_scope ()
{
if (current_function_decl == NULL_TREE)
return current_class_type;
if (current_class_type == NULL_TREE)
return current_function_decl;
if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
&& same_type_p (DECL_CONTEXT (current_function_decl),
current_class_type))
|| (DECL_FRIEND_CONTEXT (current_function_decl)
&& same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
current_class_type)))
return current_function_decl;
return current_class_type;
}
/* Returns nonzero if we are currently in a function scope. Note
that this function returns zero if we are within a local class, but
not within a member function body of the local class. */
int
at_function_scope_p ()
{
tree cs = current_scope ();
return cs && TREE_CODE (cs) == FUNCTION_DECL;
}
/* Returns true if the innermost active scope is a class scope. */
bool
at_class_scope_p ()
{
tree cs = current_scope ();
return cs && TYPE_P (cs);
}
/* Return the scope of DECL, as appropriate when doing name-lookup. */
tree
context_for_name_lookup (decl)
tree decl;
{
/* [class.union]
For the purposes of name lookup, after the anonymous union
definition, the members of the anonymous union are considered to
have been defined in the scope in which the anonymous union is
declared. */
tree context = DECL_CONTEXT (decl);
while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
context = TYPE_CONTEXT (context);
if (!context)
context = global_namespace;
return context;
}
/* Return a canonical BINFO if BINFO is a virtual base, or just BINFO
otherwise. */
static tree
canonical_binfo (binfo)
tree binfo;
{
return (TREE_VIA_VIRTUAL (binfo)
? TYPE_BINFO (BINFO_TYPE (binfo)) : binfo);
}
/* A queue function that simply ensures that we walk into the
canonical versions of virtual bases. */
static tree
dfs_canonical_queue (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return canonical_binfo (binfo);
}
/* Called via dfs_walk from assert_canonical_unmarked. */
static tree
dfs_assert_unmarked_p (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
my_friendly_assert (!BINFO_MARKED (binfo), 0);
return NULL_TREE;
}
/* Asserts that all the nodes below BINFO (using the canonical
versions of virtual bases) are unmarked. */
static void
assert_canonical_unmarked (binfo)
tree binfo;
{
dfs_walk (binfo, dfs_assert_unmarked_p, dfs_canonical_queue, 0);
}
/* If BINFO is marked, return a canonical version of BINFO.
Otherwise, return NULL_TREE. */
static tree
shared_marked_p (binfo, data)
tree binfo;
void *data;
{
binfo = canonical_binfo (binfo);
return markedp (binfo, data);
}
/* If BINFO is not marked, return a canonical version of BINFO.
Otherwise, return NULL_TREE. */
static tree
shared_unmarked_p (binfo, data)
tree binfo;
void *data;
{
binfo = canonical_binfo (binfo);
return unmarkedp (binfo, data);
}
/* The accessibility routines use BINFO_ACCESS for scratch space
during the computation of the accssibility of some declaration. */
#define BINFO_ACCESS(NODE) \
((access_kind) ((TREE_LANG_FLAG_1 (NODE) << 1) | TREE_LANG_FLAG_6 (NODE)))
/* Set the access associated with NODE to ACCESS. */
#define SET_BINFO_ACCESS(NODE, ACCESS) \
((TREE_LANG_FLAG_1 (NODE) = ((ACCESS) & 2) != 0), \
(TREE_LANG_FLAG_6 (NODE) = ((ACCESS) & 1) != 0))
/* Called from access_in_type via dfs_walk. Calculate the access to
DATA (which is really a DECL) in BINFO. */
static tree
dfs_access_in_type (binfo, data)
tree binfo;
void *data;
{
tree decl = (tree) data;
tree type = BINFO_TYPE (binfo);
access_kind access = ak_none;
if (context_for_name_lookup (decl) == type)
{
/* If we have desceneded to the scope of DECL, just note the
appropriate access. */
if (TREE_PRIVATE (decl))
access = ak_private;
else if (TREE_PROTECTED (decl))
access = ak_protected;
else
access = ak_public;
}
else
{
/* First, check for an access-declaration that gives us more
access to the DECL. The CONST_DECL for an enumeration
constant will not have DECL_LANG_SPECIFIC, and thus no
DECL_ACCESS. */
if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
{
tree decl_access = purpose_member (type, DECL_ACCESS (decl));
if (decl_access)
access = ((access_kind)
TREE_INT_CST_LOW (TREE_VALUE (decl_access)));
}
if (!access)
{
int i;
int n_baselinks;
tree binfos;
/* Otherwise, scan our baseclasses, and pick the most favorable
access. */
binfos = BINFO_BASETYPES (binfo);
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
for (i = 0; i < n_baselinks; ++i)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
access_kind base_access
= BINFO_ACCESS (canonical_binfo (base_binfo));
if (base_access == ak_none || base_access == ak_private)
/* If it was not accessible in the base, or only
accessible as a private member, we can't access it
all. */
base_access = ak_none;
else if (TREE_VIA_PROTECTED (base_binfo))
/* Public and protected members in the base are
protected here. */
base_access = ak_protected;
else if (!TREE_VIA_PUBLIC (base_binfo))
/* Public and protected members in the base are
private here. */
base_access = ak_private;
/* See if the new access, via this base, gives more
access than our previous best access. */
if (base_access != ak_none
&& (base_access == ak_public
|| (base_access == ak_protected
&& access != ak_public)
|| (base_access == ak_private
&& access == ak_none)))
{
access = base_access;
/* If the new access is public, we can't do better. */
if (access == ak_public)
break;
}
}
}
}
/* Note the access to DECL in TYPE. */
SET_BINFO_ACCESS (binfo, access);
/* Mark TYPE as visited so that if we reach it again we do not
duplicate our efforts here. */
SET_BINFO_MARKED (binfo);
return NULL_TREE;
}
/* Return the access to DECL in TYPE. */
static access_kind
access_in_type (type, decl)
tree type;
tree decl;
{
tree binfo = TYPE_BINFO (type);
/* We must take into account
[class.paths]
If a name can be reached by several paths through a multiple
inheritance graph, the access is that of the path that gives
most access.
The algorithm we use is to make a post-order depth-first traversal
of the base-class hierarchy. As we come up the tree, we annotate
each node with the most lenient access. */
dfs_walk_real (binfo, 0, dfs_access_in_type, shared_unmarked_p, decl);
dfs_walk (binfo, dfs_unmark, shared_marked_p, 0);
assert_canonical_unmarked (binfo);
return BINFO_ACCESS (binfo);
}
/* Called from dfs_accessible_p via dfs_walk. */
static tree
dfs_accessible_queue_p (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
if (BINFO_MARKED (binfo))
return NULL_TREE;
/* If this class is inherited via private or protected inheritance,
then we can't see it, unless we are a friend of the subclass. */
if (!TREE_VIA_PUBLIC (binfo)
&& !is_friend (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
current_scope ()))
return NULL_TREE;
return canonical_binfo (binfo);
}
/* Called from dfs_accessible_p via dfs_walk. */
static tree
dfs_accessible_p (binfo, data)
tree binfo;
void *data;
{
int protected_ok = data != 0;
access_kind access;
SET_BINFO_MARKED (binfo);
access = BINFO_ACCESS (binfo);
if (access == ak_public || (access == ak_protected && protected_ok))
return binfo;
else if (access != ak_none
&& is_friend (BINFO_TYPE (binfo), current_scope ()))
return binfo;
return NULL_TREE;
}
/* Returns nonzero if it is OK to access DECL through an object
indiated by BINFO in the context of DERIVED. */
static int
protected_accessible_p (decl, derived, binfo)
tree decl;
tree derived;
tree binfo;
{
access_kind access;
/* We're checking this clause from [class.access.base]
m as a member of N is protected, and the reference occurs in a
member or friend of class N, or in a member or friend of a
class P derived from N, where m as a member of P is private or
protected.
Here DERIVED is a possible P and DECL is m. accessible_p will
iterate over various values of N, but the access to m in DERIVED
does not change.
Note that I believe that the passage above is wrong, and should read
"...is private or protected or public"; otherwise you get bizarre results
whereby a public using-decl can prevent you from accessing a protected
member of a base. (jason 2000/02/28) */
/* If DERIVED isn't derived from m's class, then it can't be a P. */
if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
return 0;
access = access_in_type (derived, decl);
/* If m is inaccessible in DERIVED, then it's not a P. */
if (access == ak_none)
return 0;
/* [class.protected]
When a friend or a member function of a derived class references
a protected nonstatic member of a base class, an access check
applies in addition to those described earlier in clause
_class.access_) Except when forming a pointer to member
(_expr.unary.op_), the access must be through a pointer to,
reference to, or object of the derived class itself (or any class
derived from that class) (_expr.ref_). If the access is to form
a pointer to member, the nested-name-specifier shall name the
derived class (or any class derived from that class). */
if (DECL_NONSTATIC_MEMBER_P (decl))
{
/* We can tell through what the reference is occurring by
chasing BINFO up to the root. */
tree t = binfo;
while (BINFO_INHERITANCE_CHAIN (t))
t = BINFO_INHERITANCE_CHAIN (t);
if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
return 0;
}
return 1;
}
/* Returns nonzero if SCOPE is a friend of a type which would be able
to access DECL through the object indicated by BINFO. */
static int
friend_accessible_p (scope, decl, binfo)
tree scope;
tree decl;
tree binfo;
{
tree befriending_classes;
tree t;
if (!scope)
return 0;
if (TREE_CODE (scope) == FUNCTION_DECL
|| DECL_FUNCTION_TEMPLATE_P (scope))
befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
else if (TYPE_P (scope))
befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
else
return 0;
for (t = befriending_classes; t; t = TREE_CHAIN (t))
if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
return 1;
/* Nested classes are implicitly friends of their enclosing types, as
per core issue 45 (this is a change from the standard). */
if (TYPE_P (scope))
for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
if (protected_accessible_p (decl, t, binfo))
return 1;
if (TREE_CODE (scope) == FUNCTION_DECL
|| DECL_FUNCTION_TEMPLATE_P (scope))
{
/* Perhaps this SCOPE is a member of a class which is a
friend. */
if (DECL_CLASS_SCOPE_P (decl)
&& friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
return 1;
/* Or an instantiation of something which is a friend. */
if (DECL_TEMPLATE_INFO (scope))
return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
}
else if (CLASSTYPE_TEMPLATE_INFO (scope))
return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);
return 0;
}
/* Perform access control on TYPE_DECL or TEMPLATE_DECL VAL, which was
looked up in TYPE. This is fairly complex, so here's the design:
The lang_extdef nonterminal sets type_lookups to NULL_TREE before we
start to process a top-level declaration.
As we process the decl-specifier-seq for the declaration, any types we
see that might need access control are passed to type_access_control,
which defers checking by adding them to type_lookups.
When we are done with the decl-specifier-seq, we record the lookups we've
seen in the lookups field of the typed_declspecs nonterminal.
When we process the first declarator, either in parse_decl or
begin_function_definition, we call save_type_access_control,
which stores the lookups from the decl-specifier-seq in
current_type_lookups.
As we finish with each declarator, we process everything in type_lookups
via decl_type_access_control, which resets type_lookups to the value of
current_type_lookups for subsequent declarators.
When we enter a function, we set type_lookups to error_mark_node, so all
lookups are processed immediately. */
void
type_access_control (type, val)
tree type, val;
{
if (val == NULL_TREE
|| (TREE_CODE (val) != TEMPLATE_DECL && TREE_CODE (val) != TYPE_DECL)
|| ! DECL_CLASS_SCOPE_P (val))
return;
if (type_lookups == error_mark_node)
enforce_access (type, val);
else if (! accessible_p (type, val))
type_lookups = tree_cons (type, val, type_lookups);
}
/* DECL is a declaration from a base class of TYPE, which was the
class used to name DECL. Return nonzero if, in the current
context, DECL is accessible. If TYPE is actually a BINFO node,
then we can tell in what context the access is occurring by looking
at the most derived class along the path indicated by BINFO. */
int
accessible_p (type, decl)
tree type;
tree decl;
{
tree binfo;
tree t;
/* Nonzero if it's OK to access DECL if it has protected
accessibility in TYPE. */
int protected_ok = 0;
/* If we're not checking access, everything is accessible. */
if (!flag_access_control)
return 1;
/* If this declaration is in a block or namespace scope, there's no
access control. */
if (!TYPE_P (context_for_name_lookup (decl)))
return 1;
if (!TYPE_P (type))
{
binfo = type;
type = BINFO_TYPE (type);
}
else
binfo = TYPE_BINFO (type);
/* [class.access.base]
A member m is accessible when named in class N if
--m as a member of N is public, or
--m as a member of N is private, and the reference occurs in a
member or friend of class N, or
--m as a member of N is protected, and the reference occurs in a
member or friend of class N, or in a member or friend of a
class P derived from N, where m as a member of P is private or
protected, or
--there exists a base class B of N that is accessible at the point
of reference, and m is accessible when named in class B.
We walk the base class hierarchy, checking these conditions. */
/* Figure out where the reference is occurring. Check to see if
DECL is private or protected in this scope, since that will
determine whether protected access is allowed. */
if (current_class_type)
protected_ok = protected_accessible_p (decl, current_class_type, binfo);
/* Now, loop through the classes of which we are a friend. */
if (!protected_ok)
protected_ok = friend_accessible_p (current_scope (), decl, binfo);
/* Standardize the binfo that access_in_type will use. We don't
need to know what path was chosen from this point onwards. */
binfo = TYPE_BINFO (type);
/* Compute the accessibility of DECL in the class hierarchy
dominated by type. */
access_in_type (type, decl);
/* Walk the hierarchy again, looking for a base class that allows
access. */
t = dfs_walk (binfo, dfs_accessible_p,
dfs_accessible_queue_p,
protected_ok ? &protected_ok : 0);
/* Clear any mark bits. Note that we have to walk the whole tree
here, since we have aborted the previous walk from some point
deep in the tree. */
dfs_walk (binfo, dfs_unmark, dfs_canonical_queue, 0);
assert_canonical_unmarked (binfo);
return t != NULL_TREE;
}
/* Recursive helper funciton for is_subobject_of_p; see that routine
for documentation of the parameters. */
static int
is_subobject_of_p_1 (parent, binfo, most_derived)
tree parent, binfo, most_derived;
{
tree binfos;
int i, n_baselinks;
if (parent == binfo)
return 1;
binfos = BINFO_BASETYPES (binfo);
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
/* Iterate through the base types. */
for (i = 0; i < n_baselinks; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
tree base_type;
base_type = TREE_TYPE (base_binfo);
if (!CLASS_TYPE_P (base_type))
/* If we see a TEMPLATE_TYPE_PARM, or some such, as a base
class there's no way to descend into it. */
continue;
/* Avoid walking into the same virtual base more than once. */
if (TREE_VIA_VIRTUAL (base_binfo))
{
if (CLASSTYPE_MARKED4 (base_type))
continue;
SET_CLASSTYPE_MARKED4 (base_type);
base_binfo = binfo_for_vbase (base_type, most_derived);
}
if (is_subobject_of_p_1 (parent, base_binfo, most_derived))
return 1;
}
return 0;
}
/* Routine to see if the sub-object denoted by the binfo PARENT can be
found as a base class and sub-object of the object denoted by
BINFO. MOST_DERIVED is the most derived type of the hierarchy being
searched. */
static int
is_subobject_of_p (tree parent, tree binfo, tree most_derived)
{
int result;
tree vbase;
result = is_subobject_of_p_1 (parent, binfo, most_derived);
/* Clear the mark bits on virtual bases. */
for (vbase = CLASSTYPE_VBASECLASSES (most_derived);
vbase;
vbase = TREE_CHAIN (vbase))
CLEAR_CLASSTYPE_MARKED4 (TREE_TYPE (TREE_VALUE (vbase)));
return result;
}
struct lookup_field_info {
/* The type in which we're looking. */
tree type;
/* The name of the field for which we're looking. */
tree name;
/* If non-NULL, the current result of the lookup. */
tree rval;
/* The path to RVAL. */
tree rval_binfo;
/* If non-NULL, the lookup was ambiguous, and this is a list of the
candidates. */
tree ambiguous;
/* If nonzero, we are looking for types, not data members. */
int want_type;
/* If nonzero, RVAL was found by looking through a dependent base. */
int from_dep_base_p;
/* If something went wrong, a message indicating what. */
const char *errstr;
};
/* Returns nonzero if BINFO is not hidden by the value found by the
lookup so far. If BINFO is hidden, then there's no need to look in
it. DATA is really a struct lookup_field_info. Called from
lookup_field via breadth_first_search. */
static tree
lookup_field_queue_p (binfo, data)
tree binfo;
void *data;
{
struct lookup_field_info *lfi = (struct lookup_field_info *) data;
/* Don't look for constructors or destructors in base classes. */
if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
return NULL_TREE;
/* If this base class is hidden by the best-known value so far, we
don't need to look. */
binfo = CANONICAL_BINFO (binfo, lfi->type);
if (!lfi->from_dep_base_p && lfi->rval_binfo
&& is_subobject_of_p (binfo, lfi->rval_binfo, lfi->type))
return NULL_TREE;
return binfo;
}
/* Within the scope of a template class, you can refer to the to the
current specialization with the name of the template itself. For
example:
template <typename T> struct S { S* sp; }
Returns nonzero if DECL is such a declaration in a class TYPE. */
static int
template_self_reference_p (type, decl)
tree type;
tree decl;
{
return (CLASSTYPE_USE_TEMPLATE (type)
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
&& TREE_CODE (decl) == TYPE_DECL
&& DECL_ARTIFICIAL (decl)
&& DECL_NAME (decl) == constructor_name (type));
}
/* Nonzero for a class member means that it is shared between all objects
of that class.
[class.member.lookup]:If the resulting set of declarations are not all
from sub-objects of the same type, or the set has a nonstatic member
and includes members from distinct sub-objects, there is an ambiguity
and the program is ill-formed.
This function checks that T contains no nonstatic members. */
static int
shared_member_p (t)
tree t;
{
if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
|| TREE_CODE (t) == CONST_DECL)
return 1;
if (is_overloaded_fn (t))
{
for (; t; t = OVL_NEXT (t))
{
tree fn = OVL_CURRENT (t);
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
return 0;
}
return 1;
}
return 0;
}
/* DATA is really a struct lookup_field_info. Look for a field with
the name indicated there in BINFO. If this function returns a
non-NULL value it is the result of the lookup. Called from
lookup_field via breadth_first_search. */
static tree
lookup_field_r (binfo, data)
tree binfo;
void *data;
{
struct lookup_field_info *lfi = (struct lookup_field_info *) data;
tree type = BINFO_TYPE (binfo);
tree nval = NULL_TREE;
int from_dep_base_p;
/* First, look for a function. There can't be a function and a data
member with the same name, and if there's a function and a type
with the same name, the type is hidden by the function. */
if (!lfi->want_type)
{
int idx = lookup_fnfields_1 (type, lfi->name);
if (idx >= 0)
nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
}
if (!nval)
/* Look for a data member or type. */
nval = lookup_field_1 (type, lfi->name, lfi->want_type);
/* If there is no declaration with the indicated name in this type,
then there's nothing to do. */
if (!nval)
return NULL_TREE;
/* If we're looking up a type (as with an elaborated type specifier)
we ignore all non-types we find. */
if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
&& !DECL_CLASS_TEMPLATE_P (nval))
{
if (lfi->name == TYPE_IDENTIFIER (type))
{
/* If the aggregate has no user defined constructors, we allow
it to have fields with the same name as the enclosing type.
If we are looking for that name, find the corresponding
TYPE_DECL. */
for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
if (DECL_NAME (nval) == lfi->name
&& TREE_CODE (nval) == TYPE_DECL)
break;
}
else
nval = NULL_TREE;
if (!nval && CLASSTYPE_NESTED_UDTS (type) != NULL)
{
binding_entry e = binding_table_find (CLASSTYPE_NESTED_UDTS (type),
lfi->name);
if (e != NULL)
nval = TYPE_MAIN_DECL (e->type);
else
return NULL_TREE;
}
}
/* You must name a template base class with a template-id. */
if (!same_type_p (type, lfi->type)
&& template_self_reference_p (type, nval))
return NULL_TREE;
from_dep_base_p = dependent_base_p (binfo);
if (lfi->from_dep_base_p && !from_dep_base_p)
{
/* If the new declaration is not found via a dependent base, and
the old one was, then we must prefer the new one. We weren't
really supposed to be able to find the old one, so we don't
want to be affected by a specialization. Consider:
struct B { typedef int I; };
template <typename T> struct D1 : virtual public B {};
template <typename T> struct D :
public D1, virtual pubic B { I i; };
The `I' in `D<T>' is unambigousuly `B::I', regardless of how
D1 is specialized. */
lfi->from_dep_base_p = 0;
lfi->rval = NULL_TREE;
lfi->rval_binfo = NULL_TREE;
lfi->ambiguous = NULL_TREE;
lfi->errstr = 0;
}
else if (lfi->rval_binfo && !lfi->from_dep_base_p && from_dep_base_p)
/* Similarly, if the old declaration was not found via a dependent
base, and the new one is, ignore the new one. */
return NULL_TREE;
/* If the lookup already found a match, and the new value doesn't
hide the old one, we might have an ambiguity. */
if (lfi->rval_binfo && !is_subobject_of_p (lfi->rval_binfo, binfo, lfi->type))
{
if (nval == lfi->rval && shared_member_p (nval))
/* The two things are really the same. */
;
else if (is_subobject_of_p (binfo, lfi->rval_binfo, lfi->type))
/* The previous value hides the new one. */
;
else
{
/* We have a real ambiguity. We keep a chain of all the
candidates. */
if (!lfi->ambiguous && lfi->rval)
{
/* This is the first time we noticed an ambiguity. Add
what we previously thought was a reasonable candidate
to the list. */
lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
TREE_TYPE (lfi->ambiguous) = error_mark_node;
}
/* Add the new value. */
lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
TREE_TYPE (lfi->ambiguous) = error_mark_node;
lfi->errstr = "request for member `%D' is ambiguous";
}
}
else
{
if (from_dep_base_p && TREE_CODE (nval) != TYPE_DECL
/* We need to return a member template class so we can
define partial specializations. Is there a better
way? */
&& !DECL_CLASS_TEMPLATE_P (nval))
/* The thing we're looking for isn't a type, so the implicit
typename extension doesn't apply, so we just pretend we
didn't find anything. */
return NULL_TREE;
lfi->rval = nval;
lfi->from_dep_base_p = from_dep_base_p;
lfi->rval_binfo = binfo;
}
return NULL_TREE;
}
/* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
FUNCTIONS, and OPTYPE respectively. */
tree
build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
{
tree baselink;
my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
|| TREE_CODE (functions) == TEMPLATE_DECL
|| TREE_CODE (functions) == TEMPLATE_ID_EXPR
|| TREE_CODE (functions) == OVERLOAD,
20020730);
my_friendly_assert (!optype || TYPE_P (optype), 20020730);
my_friendly_assert (TREE_TYPE (functions), 20020805);
baselink = build (BASELINK, TREE_TYPE (functions), NULL_TREE,
NULL_TREE, NULL_TREE);
BASELINK_BINFO (baselink) = binfo;
BASELINK_ACCESS_BINFO (baselink) = access_binfo;
BASELINK_FUNCTIONS (baselink) = functions;
BASELINK_OPTYPE (baselink) = optype;
return baselink;
}
/* Look for a member named NAME in an inheritance lattice dominated by
XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
is 1, we enforce accessibility. If PROTECT is zero, then, for an
ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
messages about inaccessible or ambiguous lookup. If PROTECT is 2,
we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
TREE_VALUEs are the list of ambiguous candidates.
WANT_TYPE is 1 when we should only return TYPE_DECLs.
If nothing can be found return NULL_TREE and do not issue an error. */
tree
lookup_member (xbasetype, name, protect, want_type)
register tree xbasetype, name;
int protect, want_type;
{
tree rval, rval_binfo = NULL_TREE;
tree type = NULL_TREE, basetype_path = NULL_TREE;
struct lookup_field_info lfi;
/* rval_binfo is the binfo associated with the found member, note,
this can be set with useful information, even when rval is not
set, because it must deal with ALL members, not just non-function
members. It is used for ambiguity checking and the hidden
checks. Whereas rval is only set if a proper (not hidden)
non-function member is found. */
const char *errstr = 0;
if (xbasetype == current_class_type && TYPE_BEING_DEFINED (xbasetype)
&& IDENTIFIER_CLASS_VALUE (name))
{
tree field = IDENTIFIER_CLASS_VALUE (name);
if (! is_overloaded_fn (field)
&& ! (want_type && TREE_CODE (field) != TYPE_DECL))
/* We're in the scope of this class, and the value has already
been looked up. Just return the cached value. */
return field;
}
if (TREE_CODE (xbasetype) == TREE_VEC)
{
type = BINFO_TYPE (xbasetype);
basetype_path = xbasetype;
}
else if (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)))
{
type = xbasetype;
basetype_path = TYPE_BINFO (type);
my_friendly_assert (BINFO_INHERITANCE_CHAIN (basetype_path) == NULL_TREE,
980827);
}
else
abort ();
complete_type (type);
#ifdef GATHER_STATISTICS
n_calls_lookup_field++;
#endif /* GATHER_STATISTICS */
memset ((PTR) &lfi, 0, sizeof (lfi));
lfi.type = type;
lfi.name = name;
lfi.want_type = want_type;
bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
rval = lfi.rval;
rval_binfo = lfi.rval_binfo;
if (rval_binfo)
type = BINFO_TYPE (rval_binfo);
errstr = lfi.errstr;
/* If we are not interested in ambiguities, don't report them;
just return NULL_TREE. */
if (!protect && lfi.ambiguous)
return NULL_TREE;
if (protect == 2)
{
if (lfi.ambiguous)
return lfi.ambiguous;
else
protect = 0;
}
/* [class.access]
In the case of overloaded function names, access control is
applied to the function selected by overloaded resolution. */
if (rval && protect && !is_overloaded_fn (rval)
&& !enforce_access (xbasetype, rval))
return error_mark_node;
if (errstr && protect)
{
error (errstr, name, type);
if (lfi.ambiguous)
print_candidates (lfi.ambiguous);
rval = error_mark_node;
}
/* If the thing we found was found via the implicit typename
extension, build the typename type. */
if (rval && lfi.from_dep_base_p && !DECL_CLASS_TEMPLATE_P (rval))
rval = TYPE_STUB_DECL (build_typename_type (BINFO_TYPE (basetype_path),
name, name,
TREE_TYPE (rval)));
if (rval && is_overloaded_fn (rval))
rval = build_baselink (rval_binfo, basetype_path, rval,
(IDENTIFIER_TYPENAME_P (name)
? TREE_TYPE (name): NULL_TREE));
return rval;
}
/* Like lookup_member, except that if we find a function member we
return NULL_TREE. */
tree
lookup_field (xbasetype, name, protect, want_type)
register tree xbasetype, name;
int protect, want_type;
{
tree rval = lookup_member (xbasetype, name, protect, want_type);
/* Ignore functions. */
if (rval && BASELINK_P (rval))
return NULL_TREE;
return rval;
}
/* Like lookup_member, except that if we find a non-function member we
return NULL_TREE. */
tree
lookup_fnfields (xbasetype, name, protect)
register tree xbasetype, name;
int protect;
{
tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/0);
/* Ignore non-functions. */
if (rval && !BASELINK_P (rval))
return NULL_TREE;
return rval;
}
/* Try to find NAME inside a nested class. */
tree
lookup_nested_field (name, complain)
tree name;
int complain;
{
register tree t;
tree id = NULL_TREE;
if (TYPE_MAIN_DECL (current_class_type))
{
/* Climb our way up the nested ladder, seeing if we're trying to
modify a field in an enclosing class. If so, we should only
be able to modify if it's static. */
for (t = TYPE_MAIN_DECL (current_class_type);
t && DECL_CONTEXT (t);
t = TYPE_MAIN_DECL (DECL_CONTEXT (t)))
{
if (TREE_CODE (DECL_CONTEXT (t)) != RECORD_TYPE)
break;
/* N.B.: lookup_field will do the access checking for us */
id = lookup_field (DECL_CONTEXT (t), name, complain, 0);
if (id == error_mark_node)
{
id = NULL_TREE;
continue;
}
if (id != NULL_TREE)
{
if (TREE_CODE (id) == FIELD_DECL
&& ! TREE_STATIC (id)
&& TREE_TYPE (id) != error_mark_node)
{
if (complain)
{
/* At parse time, we don't want to give this error, since
we won't have enough state to make this kind of
decision properly. But there are times (e.g., with
enums in nested classes) when we do need to call
this fn at parse time. So, in those cases, we pass
complain as a 0 and just return a NULL_TREE. */
error ("assignment to non-static member `%D' of enclosing class `%T'",
id, DECL_CONTEXT (t));
/* Mark this for do_identifier(). It would otherwise
claim that the variable was undeclared. */
TREE_TYPE (id) = error_mark_node;
}
else
{
id = NULL_TREE;
continue;
}
}
break;
}
}
}
return id;
}
/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
corresponding to "operator TYPE ()", or -1 if there is no such
operator. Only CLASS_TYPE itself is searched; this routine does
not scan the base classes of CLASS_TYPE. */
static int
lookup_conversion_operator (tree class_type, tree type)
{
int pass;
int i;
tree methods = CLASSTYPE_METHOD_VEC (class_type);
for (pass = 0; pass < 2; ++pass)
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
i < TREE_VEC_LENGTH (methods);
++i)
{
tree fn = TREE_VEC_ELT (methods, i);
/* The size of the vector may have some unused slots at the
end. */
if (!fn)
break;
/* All the conversion operators come near the beginning of the
class. Therefore, if FN is not a conversion operator, there
is no matching conversion operator in CLASS_TYPE. */
fn = OVL_CURRENT (fn);
if (!DECL_CONV_FN_P (fn))
break;
if (pass == 0)
{
/* On the first pass we only consider exact matches. If
the types match, this slot is the one where the right
conversion operators can be found. */
if (TREE_CODE (fn) != TEMPLATE_DECL
&& same_type_p (DECL_CONV_FN_TYPE (fn), type))
return i;
}
else
{
/* On the second pass we look for template conversion
operators. It may be possible to instantiate the
template to get the type desired. All of the template
conversion operators share a slot. By looking for
templates second we ensure that specializations are
preferred over templates. */
if (TREE_CODE (fn) == TEMPLATE_DECL)
return i;
}
}
return -1;
}
/* TYPE is a class type. Return the index of the fields within
the method vector with name NAME, or -1 is no such field exists. */
int
lookup_fnfields_1 (tree type, tree name)
{
tree method_vec;
tree *methods;
tree tmp;
int i;
int len;
if (!CLASS_TYPE_P (type))
return -1;
method_vec = CLASSTYPE_METHOD_VEC (type);
if (!method_vec)
return -1;
methods = &TREE_VEC_ELT (method_vec, 0);
len = TREE_VEC_LENGTH (method_vec);
#ifdef GATHER_STATISTICS
n_calls_lookup_fnfields_1++;
#endif /* GATHER_STATISTICS */
/* Constructors are first... */
if (name == ctor_identifier)
return (methods[CLASSTYPE_CONSTRUCTOR_SLOT]
? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
/* and destructors are second. */
if (name == dtor_identifier)
return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
? CLASSTYPE_DESTRUCTOR_SLOT : -1);
if (IDENTIFIER_TYPENAME_P (name))
return lookup_conversion_operator (type, TREE_TYPE (name));
/* Skip the conversion operators. */
i = CLASSTYPE_FIRST_CONVERSION_SLOT;
while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
i++;
/* If the type is complete, use binary search. */
if (COMPLETE_TYPE_P (type))
{
int lo = i;
int hi = len;
while (lo < hi)
{
i = (lo + hi) / 2;
#ifdef GATHER_STATISTICS
n_outer_fields_searched++;
#endif /* GATHER_STATISTICS */
tmp = methods[i];
/* This slot may be empty; we allocate more slots than we
need. In that case, the entry we're looking for is
closer to the beginning of the list. */
if (tmp)
tmp = DECL_NAME (OVL_CURRENT (tmp));
if (!tmp || tmp > name)
hi = i;
else if (tmp < name)
lo = i + 1;
else
return i;
}
}
else
for (; i < len && methods[i]; ++i)
{
#ifdef GATHER_STATISTICS
n_outer_fields_searched++;
#endif /* GATHER_STATISTICS */
tmp = OVL_CURRENT (methods[i]);
if (DECL_NAME (tmp) == name)
return i;
}
return -1;
}
/* DECL is the result of a qualified name lookup. QUALIFYING_CLASS
was the class used to qualify the name. CONTEXT_CLASS is the class
corresponding to the object in which DECL will be used. Return a
possibly modified version of DECL that takes into account the
CONTEXT_CLASS.
In particular, consider an expression like `B::m' in the context of
a derived class `D'. If `B::m' has been resolved to a BASELINK,
then the most derived class indicated by the BASELINK_BINFO will be
`B', not `D'. This function makes that adjustment. */
tree
adjust_result_of_qualified_name_lookup (tree decl,
tree qualifying_class,
tree context_class)
{
my_friendly_assert (CLASS_TYPE_P (qualifying_class), 20020808);
my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);
if (BASELINK_P (decl)
&& DERIVED_FROM_P (qualifying_class, context_class))
{
tree base;
/* Look for the QUALIFYING_CLASS as a base of the CONTEXT_CLASS.
Because we do not yet know which function will be chosen by
overload resolution, we cannot yet check either accessibility
or ambiguity -- in either case, the choice of a static member
function might make the usage valid. */
base = lookup_base (context_class, qualifying_class,
ba_ignore | ba_quiet, NULL);
if (base)
{
BASELINK_ACCESS_BINFO (decl) = base;
BASELINK_BINFO (decl)
= lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
ba_ignore | ba_quiet,
NULL);
}
}
return decl;
}
/* Walk the class hierarchy dominated by TYPE. FN is called for each
type in the hierarchy, in a breadth-first preorder traversal.
If it ever returns a non-NULL value, that value is immediately
returned and the walk is terminated. At each node, FN is passed a
BINFO indicating the path from the curently visited base-class to
TYPE. Before each base-class is walked QFN is called. If the
value returned is nonzero, the base-class is walked; otherwise it
is not. If QFN is NULL, it is treated as a function which always
returns 1. Both FN and QFN are passed the DATA whenever they are
called. */
static tree
bfs_walk (binfo, fn, qfn, data)
tree binfo;
tree (*fn) PARAMS ((tree, void *));
tree (*qfn) PARAMS ((tree, void *));
void *data;
{
size_t head;
size_t tail;
tree rval = NULL_TREE;
/* An array of the base classes of BINFO. These will be built up in
breadth-first order, except where QFN prunes the search. */
varray_type bfs_bases;
/* Start with enough room for ten base classes. That will be enough
for most hierarchies. */
VARRAY_TREE_INIT (bfs_bases, 10, "search_stack");
/* Put the first type into the stack. */
VARRAY_TREE (bfs_bases, 0) = binfo;
tail = 1;
for (head = 0; head < tail; ++head)
{
int i;
int n_baselinks;
tree binfos;
/* Pull the next type out of the queue. */
binfo = VARRAY_TREE (bfs_bases, head);
/* If this is the one we're looking for, we're done. */
rval = (*fn) (binfo, data);
if (rval)
break;
/* Queue up the base types. */
binfos = BINFO_BASETYPES (binfo);
n_baselinks = binfos ? TREE_VEC_LENGTH (binfos): 0;
for (i = 0; i < n_baselinks; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
if (qfn)
base_binfo = (*qfn) (base_binfo, data);
if (base_binfo)
{
if (tail == VARRAY_SIZE (bfs_bases))
VARRAY_GROW (bfs_bases, 2 * VARRAY_SIZE (bfs_bases));
VARRAY_TREE (bfs_bases, tail) = base_binfo;
++tail;
}
}
}
return rval;
}
/* Exactly like bfs_walk, except that a depth-first traversal is
performed, and PREFN is called in preorder, while POSTFN is called
in postorder. */
tree
dfs_walk_real (binfo, prefn, postfn, qfn, data)
tree binfo;
tree (*prefn) PARAMS ((tree, void *));
tree (*postfn) PARAMS ((tree, void *));
tree (*qfn) PARAMS ((tree, void *));
void *data;
{
int i;
int n_baselinks;
tree binfos;
tree rval = NULL_TREE;
/* Call the pre-order walking function. */
if (prefn)
{
rval = (*prefn) (binfo, data);
if (rval)
return rval;
}
/* Process the basetypes. */
binfos = BINFO_BASETYPES (binfo);
n_baselinks = BINFO_N_BASETYPES (binfo);
for (i = 0; i < n_baselinks; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
if (qfn)
base_binfo = (*qfn) (base_binfo, data);
if (base_binfo)
{
rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
if (rval)
return rval;
}
}
/* Call the post-order walking function. */
if (postfn)
rval = (*postfn) (binfo, data);
return rval;
}
/* Exactly like bfs_walk, except that a depth-first post-order traversal is
performed. */
tree
dfs_walk (binfo, fn, qfn, data)
tree binfo;
tree (*fn) PARAMS ((tree, void *));
tree (*qfn) PARAMS ((tree, void *));
void *data;
{
return dfs_walk_real (binfo, 0, fn, qfn, data);
}
/* Returns > 0 if a function with type DRETTYPE overriding a function
with type BRETTYPE is covariant, as defined in [class.virtual].
Returns 1 if trivial covariance, 2 if non-trivial (requiring runtime
adjustment), or -1 if pedantically invalid covariance. */
static int
covariant_return_p (brettype, drettype)
tree brettype, drettype;
{
tree binfo;
base_kind kind;
if (TREE_CODE (brettype) == FUNCTION_DECL)
{
brettype = TREE_TYPE (TREE_TYPE (brettype));
drettype = TREE_TYPE (TREE_TYPE (drettype));
}
else if (TREE_CODE (brettype) == METHOD_TYPE)
{
brettype = TREE_TYPE (brettype);
drettype = TREE_TYPE (drettype);
}
if (same_type_p (brettype, drettype))
return 0;
if (! (TREE_CODE (brettype) == TREE_CODE (drettype)
&& (TREE_CODE (brettype) == POINTER_TYPE
|| TREE_CODE (brettype) == REFERENCE_TYPE)
&& TYPE_QUALS (brettype) == TYPE_QUALS (drettype)))
return 0;
if (! can_convert (brettype, drettype))
return 0;
brettype = TREE_TYPE (brettype);
drettype = TREE_TYPE (drettype);
/* If not pedantic, allow any standard pointer conversion. */
if (! IS_AGGR_TYPE (drettype) || ! IS_AGGR_TYPE (brettype))
return -1;
binfo = lookup_base (drettype, brettype, ba_check | ba_quiet, &kind);
if (!binfo)
return 0;
if (BINFO_OFFSET_ZEROP (binfo) && kind != bk_via_virtual)
return 1;
return 2;
}
/* Check that virtual overrider OVERRIDER is acceptable for base function
BASEFN. Issue diagnostic, and return zero, if unacceptable. */
int
check_final_overrider (overrider, basefn)
tree overrider, basefn;
{
tree over_type = TREE_TYPE (overrider);
tree base_type = TREE_TYPE (basefn);
tree over_return = TREE_TYPE (over_type);
tree base_return = TREE_TYPE (base_type);
tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
int i;
if (same_type_p (base_return, over_return))
/* OK */;
else if ((i = covariant_return_p (base_return, over_return)))
{
if (i == 2)
sorry ("adjusting pointers for covariant returns");
if (pedantic && i == -1)
{
cp_pedwarn_at ("invalid covariant return type for `%#D'", overrider);
cp_pedwarn_at (" overriding `%#D' (must be pointer or reference to class)", basefn);
}
}
else if (IS_AGGR_TYPE_2 (base_return, over_return)
&& same_or_base_type_p (base_return, over_return))
{
cp_error_at ("invalid covariant return type for `%#D'", overrider);
cp_error_at (" overriding `%#D' (must use pointer or reference)", basefn);
return 0;
}
else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)) == NULL_TREE)
{
cp_error_at ("conflicting return type specified for `%#D'", overrider);
cp_error_at (" overriding `%#D'", basefn);
SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
DECL_CONTEXT (overrider));
return 0;
}
/* Check throw specifier is at least as strict. */
if (!comp_except_specs (base_throw, over_throw, 0))
{
cp_error_at ("looser throw specifier for `%#F'", overrider);
cp_error_at (" overriding `%#F'", basefn);
return 0;
}
return 1;
}
/* Given a class TYPE, and a function decl FNDECL, look for
virtual functions in TYPE's hierarchy which FNDECL overrides.
We do not look in TYPE itself, only its bases.
Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
find that it overrides anything.
We check that every function which is overridden, is correctly
overridden. */
int
look_for_overrides (type, fndecl)
tree type, fndecl;
{
tree binfo = TYPE_BINFO (type);
tree basebinfos = BINFO_BASETYPES (binfo);
int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
int ix;
int found = 0;
for (ix = 0; ix != nbasebinfos; ix++)
{
tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
if (TYPE_POLYMORPHIC_P (basetype))
found += look_for_overrides_r (basetype, fndecl);
}
return found;
}
/* Look in TYPE for virtual functions with the same signature as
FNDECL. */
tree
look_for_overrides_here (type, fndecl)
tree type, fndecl;
{
int ix;
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
ix = CLASSTYPE_DESTRUCTOR_SLOT;
else
ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
if (ix >= 0)
{
tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
for (; fns; fns = OVL_NEXT (fns))
{
tree fn = OVL_CURRENT (fns);
if (!DECL_VIRTUAL_P (fn))
/* Not a virtual. */;
else if (DECL_CONTEXT (fn) != type)
/* Introduced with a using declaration. */;
else if (DECL_STATIC_FUNCTION_P (fndecl))
{
tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
if (compparms (TREE_CHAIN (btypes), dtypes))
return fn;
}
else if (same_signature_p (fndecl, fn))
return fn;
}
}
return NULL_TREE;
}
/* Look in TYPE for virtual functions overridden by FNDECL. Check both
TYPE itself and its bases. */
static int
look_for_overrides_r (type, fndecl)
tree type, fndecl;
{
tree fn = look_for_overrides_here (type, fndecl);
if (fn)
{
if (DECL_STATIC_FUNCTION_P (fndecl))
{
/* A static member function cannot match an inherited
virtual member function. */
cp_error_at ("`%#D' cannot be declared", fndecl);
cp_error_at (" since `%#D' declared in base class", fn);
}
else
{
/* It's definitely virtual, even if not explicitly set. */
DECL_VIRTUAL_P (fndecl) = 1;
check_final_overrider (fndecl, fn);
}
return 1;
}
/* We failed to find one declared in this class. Look in its bases. */
return look_for_overrides (type, fndecl);
}
/* A queue function to use with dfs_walk that only walks into
canonical bases. DATA should be the type of the complete object,
or a TREE_LIST whose TREE_PURPOSE is the type of the complete
object. By using this function as a queue function, you will walk
over exactly those BINFOs that actually exist in the complete
object, including those for virtual base classes. If you
SET_BINFO_MARKED for each binfo you process, you are further
guaranteed that you will walk into each virtual base class exactly
once. */
tree
dfs_unmarked_real_bases_queue_p (binfo, data)
tree binfo;
void *data;
{
if (TREE_VIA_VIRTUAL (binfo))
{
tree type = (tree) data;
if (TREE_CODE (type) == TREE_LIST)
type = TREE_PURPOSE (type);
binfo = binfo_for_vbase (BINFO_TYPE (binfo), type);
}
return unmarkedp (binfo, NULL);
}
/* Like dfs_unmarked_real_bases_queue_p but walks only into things
that are marked, rather than unmarked. */
tree
dfs_marked_real_bases_queue_p (binfo, data)
tree binfo;
void *data;
{
if (TREE_VIA_VIRTUAL (binfo))
{
tree type = (tree) data;
if (TREE_CODE (type) == TREE_LIST)
type = TREE_PURPOSE (type);
binfo = binfo_for_vbase (BINFO_TYPE (binfo), type);
}
return markedp (binfo, NULL);
}
/* A queue function that skips all virtual bases (and their
bases). */
tree
dfs_skip_vbases (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
if (TREE_VIA_VIRTUAL (binfo))
return NULL_TREE;
return binfo;
}
/* Called via dfs_walk from dfs_get_pure_virtuals. */
static tree
dfs_get_pure_virtuals (binfo, data)
tree binfo;
void *data;
{
tree type = (tree) data;
/* We're not interested in primary base classes; the derived class
of which they are a primary base will contain the information we
need. */
if (!BINFO_PRIMARY_P (binfo))
{
tree virtuals;
for (virtuals = BINFO_VIRTUALS (binfo);
virtuals;
virtuals = TREE_CHAIN (virtuals))
if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
CLASSTYPE_PURE_VIRTUALS (type)
= tree_cons (NULL_TREE, BV_FN (virtuals),
CLASSTYPE_PURE_VIRTUALS (type));
}
SET_BINFO_MARKED (binfo);
return NULL_TREE;
}
/* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
void
get_pure_virtuals (type)
tree type;
{
tree vbases;
/* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
is going to be overridden. */
CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
/* Now, run through all the bases which are not primary bases, and
collect the pure virtual functions. We look at the vtable in
each class to determine what pure virtual functions are present.
(A primary base is not interesting because the derived class of
which it is a primary base will contain vtable entries for the
pure virtuals in the base class. */
dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals,
dfs_unmarked_real_bases_queue_p, type);
dfs_walk (TYPE_BINFO (type), dfs_unmark,
dfs_marked_real_bases_queue_p, type);
/* Put the pure virtuals in dfs order. */
CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));
for (vbases = CLASSTYPE_VBASECLASSES (type);
vbases;
vbases = TREE_CHAIN (vbases))
{
tree virtuals;
for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
virtuals;
virtuals = TREE_CHAIN (virtuals))
{
tree base_fndecl = BV_FN (virtuals);
if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
error ("`%#D' needs a final overrider", base_fndecl);
}
}
}
/* DEPTH-FIRST SEARCH ROUTINES. */
tree
markedp (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return BINFO_MARKED (binfo) ? binfo : NULL_TREE;
}
tree
unmarkedp (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return !BINFO_MARKED (binfo) ? binfo : NULL_TREE;
}
tree
marked_vtable_pathp (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return BINFO_VTABLE_PATH_MARKED (binfo) ? binfo : NULL_TREE;
}
tree
unmarked_vtable_pathp (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return !BINFO_VTABLE_PATH_MARKED (binfo) ? binfo : NULL_TREE;
}
static tree
marked_pushdecls_p (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return (CLASS_TYPE_P (BINFO_TYPE (binfo))
&& BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
}
static tree
unmarked_pushdecls_p (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return (CLASS_TYPE_P (BINFO_TYPE (binfo))
&& !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
}
/* The worker functions for `dfs_walk'. These do not need to
test anything (vis a vis marking) if they are paired with
a predicate function (above). */
tree
dfs_unmark (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
CLEAR_BINFO_MARKED (binfo);
return NULL_TREE;
}
/* get virtual base class types.
This adds type to the vbase_types list in reverse dfs order.
Ordering is very important, so don't change it. */
static tree
dfs_get_vbase_types (binfo, data)
tree binfo;
void *data;
{
tree type = (tree) data;
if (TREE_VIA_VIRTUAL (binfo))
CLASSTYPE_VBASECLASSES (type)
= tree_cons (BINFO_TYPE (binfo),
binfo,
CLASSTYPE_VBASECLASSES (type));
SET_BINFO_MARKED (binfo);
return NULL_TREE;
}
/* Called via dfs_walk from mark_primary_bases. Builds the
inheritance graph order list of BINFOs. */
static tree
dfs_build_inheritance_graph_order (binfo, data)
tree binfo;
void *data;
{
tree *last_binfo = (tree *) data;
if (*last_binfo)
TREE_CHAIN (*last_binfo) = binfo;
*last_binfo = binfo;
SET_BINFO_MARKED (binfo);
return NULL_TREE;
}
/* Set CLASSTYPE_VBASECLASSES for TYPE. */
void
get_vbase_types (type)
tree type;
{
tree last_binfo;
CLASSTYPE_VBASECLASSES (type) = NULL_TREE;
dfs_walk (TYPE_BINFO (type), dfs_get_vbase_types, unmarkedp, type);
/* Rely upon the reverse dfs ordering from dfs_get_vbase_types, and now
reverse it so that we get normal dfs ordering. */
CLASSTYPE_VBASECLASSES (type) = nreverse (CLASSTYPE_VBASECLASSES (type));
dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, 0);
/* Thread the BINFOs in inheritance-graph order. */
last_binfo = NULL;
dfs_walk_real (TYPE_BINFO (type),
dfs_build_inheritance_graph_order,
NULL,
unmarkedp,
&last_binfo);
dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, NULL);
}
/* Called from find_vbase_instance via dfs_walk. */
static tree
dfs_find_vbase_instance (binfo, data)
tree binfo;
void *data;
{
tree base = TREE_VALUE ((tree) data);
if (BINFO_PRIMARY_P (binfo)
&& same_type_p (BINFO_TYPE (binfo), base))
return binfo;
return NULL_TREE;
}
/* Find the real occurrence of the virtual BASE (a class type) in the
hierarchy dominated by TYPE. */
tree
find_vbase_instance (base, type)
tree base;
tree type;
{
tree instance;
instance = binfo_for_vbase (base, type);
if (!BINFO_PRIMARY_P (instance))
return instance;
return dfs_walk (TYPE_BINFO (type),
dfs_find_vbase_instance,
NULL,
build_tree_list (type, base));
}
/* Debug info for C++ classes can get very large; try to avoid
emitting it everywhere.
Note that this optimization wins even when the target supports
BINCL (if only slightly), and reduces the amount of work for the
linker. */
void
maybe_suppress_debug_info (t)
tree t;
{
/* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
does not support name references between translation units. It supports
symbolic references between translation units, but only within a single
executable or shared library.
For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
that the type was never defined, so we only get the members we
actually define. */
if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
return;
/* We might have set this earlier in cp_finish_decl. */
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
/* If we already know how we're handling this class, handle debug info
the same way. */
if (CLASSTYPE_INTERFACE_KNOWN (t))
{
if (CLASSTYPE_INTERFACE_ONLY (t))
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
/* else don't set it. */
}
/* If the class has a vtable, write out the debug info along with
the vtable. */
else if (TYPE_CONTAINS_VPTR_P (t))
TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
/* Otherwise, just emit the debug info normally. */
}
/* Note that we want debugging information for a base class of a class
whose vtable is being emitted. Normally, this would happen because
calling the constructor for a derived class implies calling the
constructors for all bases, which involve initializing the
appropriate vptr with the vtable for the base class; but in the
presence of optimization, this initialization may be optimized
away, so we tell finish_vtable_vardecl that we want the debugging
information anyway. */
static tree
dfs_debug_mark (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
tree t = BINFO_TYPE (binfo);
CLASSTYPE_DEBUG_REQUESTED (t) = 1;
return NULL_TREE;
}
/* Returns BINFO if we haven't already noted that we want debugging
info for this base class. */
static tree
dfs_debug_unmarkedp (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo))
? binfo : NULL_TREE);
}
/* Write out the debugging information for TYPE, whose vtable is being
emitted. Also walk through our bases and note that we want to
write out information for them. This avoids the problem of not
writing any debug info for intermediate basetypes whose
constructors, and thus the references to their vtables, and thus
the vtables themselves, were optimized away. */
void
note_debug_info_needed (type)
tree type;
{
if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
{
TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
rest_of_type_compilation (type, toplevel_bindings_p ());
}
dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
}
/* Subroutines of push_class_decls (). */
/* Returns 1 iff BINFO is a base we shouldn't really be able to see into,
because it (or one of the intermediate bases) depends on template parms. */
static int
dependent_base_p (binfo)
tree binfo;
{
for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
{
if (currently_open_class (TREE_TYPE (binfo)))
break;
if (uses_template_parms (TREE_TYPE (binfo)))
return 1;
}
return 0;
}
static void
setup_class_bindings (name, type_binding_p)
tree name;
int type_binding_p;
{
tree type_binding = NULL_TREE;
tree value_binding;
/* If we've already done the lookup for this declaration, we're
done. */
if (IDENTIFIER_CLASS_VALUE (name))
return;
/* First, deal with the type binding. */
if (type_binding_p)
{
type_binding = lookup_member (current_class_type, name,
/*protect=*/2,
/*want_type=*/1);
if (TREE_CODE (type_binding) == TREE_LIST
&& TREE_TYPE (type_binding) == error_mark_node)
/* NAME is ambiguous. */
push_class_level_binding (name, type_binding);
else
pushdecl_class_level (type_binding);
}
/* Now, do the value binding. */
value_binding = lookup_member (current_class_type, name,
/*protect=*/2,
/*want_type=*/0);
if (type_binding_p
&& (TREE_CODE (value_binding) == TYPE_DECL
|| DECL_CLASS_TEMPLATE_P (value_binding)
|| (TREE_CODE (value_binding) == TREE_LIST
&& TREE_TYPE (value_binding) == error_mark_node
&& (TREE_CODE (TREE_VALUE (value_binding))
== TYPE_DECL))))
/* We found a type-binding, even when looking for a non-type
binding. This means that we already processed this binding
above. */;
else if (value_binding)
{
if (TREE_CODE (value_binding) == TREE_LIST
&& TREE_TYPE (value_binding) == error_mark_node)
/* NAME is ambiguous. */
push_class_level_binding (name, value_binding);
else
{
if (BASELINK_P (value_binding))
/* NAME is some overloaded functions. */
value_binding = BASELINK_FUNCTIONS (value_binding);
/* Two conversion operators that convert to the same type
may have different names. (See
mangle_conv_op_name_for_type.) To avoid recording the
same conversion operator declaration more than once we
must check to see that the same operator was not already
found under another name. */
if (IDENTIFIER_TYPENAME_P (name)
&& is_overloaded_fn (value_binding))
{
tree fns;
for (fns = value_binding; fns; fns = OVL_NEXT (fns))
if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
return;
}
pushdecl_class_level (value_binding);
}
}
}
/* Push class-level declarations for any names appearing in BINFO that
are TYPE_DECLS. */
static tree
dfs_push_type_decls (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
tree type;
tree fields;
type = BINFO_TYPE (binfo);
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
&& !(!same_type_p (type, current_class_type)
&& template_self_reference_p (type, fields)))
setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);
/* We can't just use BINFO_MARKED because envelope_add_decl uses
DERIVED_FROM_P, which calls get_base_distance. */
SET_BINFO_PUSHDECLS_MARKED (binfo);
return NULL_TREE;
}
/* Push class-level declarations for any names appearing in BINFO that
are not TYPE_DECLS. */
static tree
dfs_push_decls (binfo, data)
tree binfo;
void *data;
{
tree type;
tree method_vec;
int dep_base_p;
type = BINFO_TYPE (binfo);
dep_base_p = (processing_template_decl && type != current_class_type
&& dependent_base_p (binfo));
if (!dep_base_p)
{
tree fields;
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
if (DECL_NAME (fields)
&& TREE_CODE (fields) != TYPE_DECL
&& TREE_CODE (fields) != USING_DECL
&& !DECL_ARTIFICIAL (fields))
setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
else if (TREE_CODE (fields) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
method_vec = (CLASS_TYPE_P (type)
? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
{
tree *methods;
tree *end;
/* Farm out constructors and destructors. */
end = TREE_VEC_END (method_vec);
for (methods = &TREE_VEC_ELT (method_vec, 2);
methods < end && *methods;
methods++)
setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)),
/*type_binding_p=*/0);
}
}
CLEAR_BINFO_PUSHDECLS_MARKED (binfo);
return NULL_TREE;
}
/* When entering the scope of a class, we cache all of the
fields that that class provides within its inheritance
lattice. Where ambiguities result, we mark them
with `error_mark_node' so that if they are encountered
without explicit qualification, we can emit an error
message. */
void
push_class_decls (type)
tree type;
{
search_stack = push_search_level (search_stack, &search_obstack);
/* Enter type declarations and mark. */
dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);
/* Enter non-type declarations and unmark. */
dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
}
/* Here's a subroutine we need because C lacks lambdas. */
static tree
dfs_unuse_fields (binfo, data)
tree binfo;
void *data ATTRIBUTE_UNUSED;
{
tree type = TREE_TYPE (binfo);
tree fields;
for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
{
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
continue;
TREE_USED (fields) = 0;
if (DECL_NAME (fields) == NULL_TREE
&& ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
unuse_fields (TREE_TYPE (fields));
}
return NULL_TREE;
}
void
unuse_fields (type)
tree type;
{
dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
}
void
pop_class_decls ()
{
/* We haven't pushed a search level when dealing with cached classes,
so we'd better not try to pop it. */
if (search_stack)
search_stack = pop_search_level (search_stack);
}
void
print_search_statistics ()
{
#ifdef GATHER_STATISTICS
fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
n_outer_fields_searched, n_calls_lookup_fnfields);
fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
#else /* GATHER_STATISTICS */
fprintf (stderr, "no search statistics\n");
#endif /* GATHER_STATISTICS */
}
void
init_search_processing ()
{
gcc_obstack_init (&search_obstack);
}
void
reinit_search_statistics ()
{
#ifdef GATHER_STATISTICS
n_fields_searched = 0;
n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
n_calls_get_base_type = 0;
n_outer_fields_searched = 0;
n_contexts_saved = 0;
#endif /* GATHER_STATISTICS */
}
static tree
add_conversions (binfo, data)
tree binfo;
void *data;
{
int i;
tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
tree *conversions = (tree *) data;
/* Some builtin types have no method vector, not even an empty one. */
if (!method_vec)
return NULL_TREE;
for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
{
tree tmp = TREE_VEC_ELT (method_vec, i);
tree name;
if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
break;
name = DECL_NAME (OVL_CURRENT (tmp));
/* Make sure we don't already have this conversion. */
if (! IDENTIFIER_MARKED (name))
{
tree t;
/* Make sure that we do not already have a conversion
operator for this type. Merely checking the NAME is not
enough because two conversion operators to the same type
may not have the same NAME. */
for (t = *conversions; t; t = TREE_CHAIN (t))
{
tree fn;
for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
if (same_type_p (TREE_TYPE (name),
DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
break;
if (fn)
break;
}
if (!t)
{
*conversions = tree_cons (binfo, tmp, *conversions);
IDENTIFIER_MARKED (name) = 1;
}
}
}
return NULL_TREE;
}
/* Return a TREE_LIST containing all the non-hidden user-defined
conversion functions for TYPE (and its base-classes). The
TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
containing the conversion functions. The TREE_PURPOSE is the BINFO
from which the conversion functions in this node were selected. */
tree
lookup_conversions (type)
tree type;
{
tree t;
tree conversions = NULL_TREE;
complete_type (type);
bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);
for (t = conversions; t; t = TREE_CHAIN (t))
IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;
return conversions;
}
struct overlap_info
{
tree compare_type;
int found_overlap;
};
/* Check whether the empty class indicated by EMPTY_BINFO is also present
at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
static tree
dfs_check_overlap (empty_binfo, data)
tree empty_binfo;
void *data;
{
struct overlap_info *oi = (struct overlap_info *) data;
tree binfo;
for (binfo = TYPE_BINFO (oi->compare_type);
;
binfo = BINFO_BASETYPE (binfo, 0))
{
if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
{
oi->found_overlap = 1;
break;
}
else if (BINFO_BASETYPES (binfo) == NULL_TREE)
break;
}
return NULL_TREE;
}
/* Trivial function to stop base traversal when we find something. */
static tree
dfs_no_overlap_yet (binfo, data)
tree binfo;
void *data;
{
struct overlap_info *oi = (struct overlap_info *) data;
return !oi->found_overlap ? binfo : NULL_TREE;
}
/* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
int
types_overlap_p (empty_type, next_type)
tree empty_type, next_type;
{
struct overlap_info oi;
if (! IS_AGGR_TYPE (next_type))
return 0;
oi.compare_type = next_type;
oi.found_overlap = 0;
dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
dfs_no_overlap_yet, &oi);
return oi.found_overlap;
}
/* Given a vtable VAR, determine which of the inherited classes the vtable
inherits (in a loose sense) functions from.
FIXME: This does not work with the new ABI. */
tree
binfo_for_vtable (var)
tree var;
{
tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
int i;
for (i = 0; i < n_baseclasses; i++)
{
tree base_binfo = TREE_VEC_ELT (binfos, i);
if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
return base_binfo;
}
/* If no secondary base classes matched, return the primary base, if
there is one. */
if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
return get_primary_binfo (main_binfo);
return main_binfo;
}
/* Returns the binfo of the first direct or indirect virtual base derived
from BINFO, or NULL if binfo is not via virtual. */
tree
binfo_from_vbase (binfo)
tree binfo;
{
for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
{
if (TREE_VIA_VIRTUAL (binfo))
return binfo;
}
return NULL_TREE;
}
/* Returns the binfo of the first direct or indirect virtual base derived
from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
via virtual. */
tree
binfo_via_virtual (binfo, limit)
tree binfo;
tree limit;
{
for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
binfo = BINFO_INHERITANCE_CHAIN (binfo))
{
if (TREE_VIA_VIRTUAL (binfo))
return binfo;
}
return NULL_TREE;
}
/* Returns the BINFO (if any) for the virtual baseclass T of the class
C from the CLASSTYPE_VBASECLASSES list. */
tree
binfo_for_vbase (basetype, classtype)
tree basetype;
tree classtype;
{
tree binfo;
binfo = purpose_member (basetype, CLASSTYPE_VBASECLASSES (classtype));
return binfo ? TREE_VALUE (binfo) : NULL_TREE;
}
|