1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
|
/* Global common subexpression elimination/Partial redundancy elimination
and global constant/copy propagation for GNU compiler.
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* TODO
- reordering of memory allocation and freeing to be more space efficient
- do rough calc of how many regs are needed in each block, and a rough
calc of how many regs are available in each class and use that to
throttle back the code in cases where RTX_COST is minimal.
- a store to the same address as a load does not kill the load if the
source of the store is also the destination of the load. Handling this
allows more load motion, particularly out of loops.
- ability to realloc sbitmap vectors would allow one initial computation
of reg_set_in_block with only subsequent additions, rather than
recomputing it for each pass
*/
/* References searched while implementing this.
Compilers Principles, Techniques and Tools
Aho, Sethi, Ullman
Addison-Wesley, 1988
Global Optimization by Suppression of Partial Redundancies
E. Morel, C. Renvoise
communications of the acm, Vol. 22, Num. 2, Feb. 1979
A Portable Machine-Independent Global Optimizer - Design and Measurements
Frederick Chow
Stanford Ph.D. thesis, Dec. 1983
A Fast Algorithm for Code Movement Optimization
D.M. Dhamdhere
SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
A Solution to a Problem with Morel and Renvoise's
Global Optimization by Suppression of Partial Redundancies
K-H Drechsler, M.P. Stadel
ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
Practical Adaptation of the Global Optimization
Algorithm of Morel and Renvoise
D.M. Dhamdhere
ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph
R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
Lazy Code Motion
J. Knoop, O. Ruthing, B. Steffen
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
What's In a Region? Or Computing Control Dependence Regions in Near-Linear
Time for Reducible Flow Control
Thomas Ball
ACM Letters on Programming Languages and Systems,
Vol. 2, Num. 1-4, Mar-Dec 1993
An Efficient Representation for Sparse Sets
Preston Briggs, Linda Torczon
ACM Letters on Programming Languages and Systems,
Vol. 2, Num. 1-4, Mar-Dec 1993
A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
K-H Drechsler, M.P. Stadel
ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
Partial Dead Code Elimination
J. Knoop, O. Ruthing, B. Steffen
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
Effective Partial Redundancy Elimination
P. Briggs, K.D. Cooper
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
The Program Structure Tree: Computing Control Regions in Linear Time
R. Johnson, D. Pearson, K. Pingali
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
Optimal Code Motion: Theory and Practice
J. Knoop, O. Ruthing, B. Steffen
ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
The power of assignment motion
J. Knoop, O. Ruthing, B. Steffen
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
Global code motion / global value numbering
C. Click
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
Value Driven Redundancy Elimination
L.T. Simpson
Rice University Ph.D. thesis, Apr. 1996
Value Numbering
L.T. Simpson
Massively Scalar Compiler Project, Rice University, Sep. 1996
High Performance Compilers for Parallel Computing
Michael Wolfe
Addison-Wesley, 1996
Advanced Compiler Design and Implementation
Steven Muchnick
Morgan Kaufmann, 1997
Building an Optimizing Compiler
Robert Morgan
Digital Press, 1998
People wishing to speed up the code here should read:
Elimination Algorithms for Data Flow Analysis
B.G. Ryder, M.C. Paull
ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
How to Analyze Large Programs Efficiently and Informatively
D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
People wishing to do something different can find various possibilities
in the above papers and elsewhere.
*/
#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "expr.h"
#include "except.h"
#include "ggc.h"
#include "params.h"
#include "cselib.h"
#include "obstack.h"
/* Propagate flow information through back edges and thus enable PRE's
moving loop invariant calculations out of loops.
Originally this tended to create worse overall code, but several
improvements during the development of PRE seem to have made following
back edges generally a win.
Note much of the loop invariant code motion done here would normally
be done by loop.c, which has more heuristics for when to move invariants
out of loops. At some point we might need to move some of those
heuristics into gcse.c. */
/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
are a superset of those done by GCSE.
We perform the following steps:
1) Compute basic block information.
2) Compute table of places where registers are set.
3) Perform copy/constant propagation.
4) Perform global cse.
5) Perform another pass of copy/constant propagation.
Two passes of copy/constant propagation are done because the first one
enables more GCSE and the second one helps to clean up the copies that
GCSE creates. This is needed more for PRE than for Classic because Classic
GCSE will try to use an existing register containing the common
subexpression rather than create a new one. This is harder to do for PRE
because of the code motion (which Classic GCSE doesn't do).
Expressions we are interested in GCSE-ing are of the form
(set (pseudo-reg) (expression)).
Function want_to_gcse_p says what these are.
PRE handles moving invariant expressions out of loops (by treating them as
partially redundant).
Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
assignment) based GVN (global value numbering). L. T. Simpson's paper
(Rice University) on value numbering is a useful reference for this.
**********************
We used to support multiple passes but there are diminishing returns in
doing so. The first pass usually makes 90% of the changes that are doable.
A second pass can make a few more changes made possible by the first pass.
Experiments show any further passes don't make enough changes to justify
the expense.
A study of spec92 using an unlimited number of passes:
[1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
[6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
[12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
It was found doing copy propagation between each pass enables further
substitutions.
PRE is quite expensive in complicated functions because the DFA can take
awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
be modified if one wants to experiment.
**********************
The steps for PRE are:
1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
2) Perform the data flow analysis for PRE.
3) Delete the redundant instructions
4) Insert the required copies [if any] that make the partially
redundant instructions fully redundant.
5) For other reaching expressions, insert an instruction to copy the value
to a newly created pseudo that will reach the redundant instruction.
The deletion is done first so that when we do insertions we
know which pseudo reg to use.
Various papers have argued that PRE DFA is expensive (O(n^2)) and others
argue it is not. The number of iterations for the algorithm to converge
is typically 2-4 so I don't view it as that expensive (relatively speaking).
PRE GCSE depends heavily on the second CSE pass to clean up the copies
we create. To make an expression reach the place where it's redundant,
the result of the expression is copied to a new register, and the redundant
expression is deleted by replacing it with this new register. Classic GCSE
doesn't have this problem as much as it computes the reaching defs of
each register in each block and thus can try to use an existing register.
**********************
A fair bit of simplicity is created by creating small functions for simple
tasks, even when the function is only called in one place. This may
measurably slow things down [or may not] by creating more function call
overhead than is necessary. The source is laid out so that it's trivial
to make the affected functions inline so that one can measure what speed
up, if any, can be achieved, and maybe later when things settle things can
be rearranged.
Help stamp out big monolithic functions! */
/* GCSE global vars. */
/* -dG dump file. */
static FILE *gcse_file;
/* Note whether or not we should run jump optimization after gcse. We
want to do this for two cases.
* If we changed any jumps via cprop.
* If we added any labels via edge splitting. */
static int run_jump_opt_after_gcse;
/* Bitmaps are normally not included in debugging dumps.
However it's useful to be able to print them from GDB.
We could create special functions for this, but it's simpler to
just allow passing stderr to the dump_foo fns. Since stderr can
be a macro, we store a copy here. */
static FILE *debug_stderr;
/* An obstack for our working variables. */
static struct obstack gcse_obstack;
/* Nonzero for each mode that supports (set (reg) (reg)).
This is trivially true for integer and floating point values.
It may or may not be true for condition codes. */
static char can_copy_p[(int) NUM_MACHINE_MODES];
/* Nonzero if can_copy_p has been initialized. */
static int can_copy_init_p;
struct reg_use {rtx reg_rtx; };
/* Hash table of expressions. */
struct expr
{
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
rtx expr;
/* Index in the available expression bitmaps. */
int bitmap_index;
/* Next entry with the same hash. */
struct expr *next_same_hash;
/* List of anticipatable occurrences in basic blocks in the function.
An "anticipatable occurrence" is one that is the first occurrence in the
basic block, the operands are not modified in the basic block prior
to the occurrence and the output is not used between the start of
the block and the occurrence. */
struct occr *antic_occr;
/* List of available occurrence in basic blocks in the function.
An "available occurrence" is one that is the last occurrence in the
basic block and the operands are not modified by following statements in
the basic block [including this insn]. */
struct occr *avail_occr;
/* Non-null if the computation is PRE redundant.
The value is the newly created pseudo-reg to record a copy of the
expression in all the places that reach the redundant copy. */
rtx reaching_reg;
};
/* Occurrence of an expression.
There is one per basic block. If a pattern appears more than once the
last appearance is used [or first for anticipatable expressions]. */
struct occr
{
/* Next occurrence of this expression. */
struct occr *next;
/* The insn that computes the expression. */
rtx insn;
/* Nonzero if this [anticipatable] occurrence has been deleted. */
char deleted_p;
/* Nonzero if this [available] occurrence has been copied to
reaching_reg. */
/* ??? This is mutually exclusive with deleted_p, so they could share
the same byte. */
char copied_p;
};
/* Expression and copy propagation hash tables.
Each hash table is an array of buckets.
??? It is known that if it were an array of entries, structure elements
`next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
not clear whether in the final analysis a sufficient amount of memory would
be saved as the size of the available expression bitmaps would be larger
[one could build a mapping table without holes afterwards though].
Someday I'll perform the computation and figure it out. */
struct hash_table
{
/* The table itself.
This is an array of `expr_hash_table_size' elements. */
struct expr **table;
/* Size of the hash table, in elements. */
unsigned int size;
/* Number of hash table elements. */
unsigned int n_elems;
/* Whether the table is expression of copy propagation one. */
int set_p;
};
/* Expression hash table. */
static struct hash_table expr_hash_table;
/* Copy propagation hash table. */
static struct hash_table set_hash_table;
/* Mapping of uids to cuids.
Only real insns get cuids. */
static int *uid_cuid;
/* Highest UID in UID_CUID. */
static int max_uid;
/* Get the cuid of an insn. */
#ifdef ENABLE_CHECKING
#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
#else
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
#endif
/* Number of cuids. */
static int max_cuid;
/* Mapping of cuids to insns. */
static rtx *cuid_insn;
/* Get insn from cuid. */
#define CUID_INSN(CUID) (cuid_insn[CUID])
/* Maximum register number in function prior to doing gcse + 1.
Registers created during this pass have regno >= max_gcse_regno.
This is named with "gcse" to not collide with global of same name. */
static unsigned int max_gcse_regno;
/* Table of registers that are modified.
For each register, each element is a list of places where the pseudo-reg
is set.
For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
requires knowledge of which blocks kill which regs [and thus could use
a bitmap instead of the lists `reg_set_table' uses].
`reg_set_table' and could be turned into an array of bitmaps (num-bbs x
num-regs) [however perhaps it may be useful to keep the data as is]. One
advantage of recording things this way is that `reg_set_table' is fairly
sparse with respect to pseudo regs but for hard regs could be fairly dense
[relatively speaking]. And recording sets of pseudo-regs in lists speeds
up functions like compute_transp since in the case of pseudo-regs we only
need to iterate over the number of times a pseudo-reg is set, not over the
number of basic blocks [clearly there is a bit of a slow down in the cases
where a pseudo is set more than once in a block, however it is believed
that the net effect is to speed things up]. This isn't done for hard-regs
because recording call-clobbered hard-regs in `reg_set_table' at each
function call can consume a fair bit of memory, and iterating over
hard-regs stored this way in compute_transp will be more expensive. */
typedef struct reg_set
{
/* The next setting of this register. */
struct reg_set *next;
/* The insn where it was set. */
rtx insn;
} reg_set;
static reg_set **reg_set_table;
/* Size of `reg_set_table'.
The table starts out at max_gcse_regno + slop, and is enlarged as
necessary. */
static int reg_set_table_size;
/* Amount to grow `reg_set_table' by when it's full. */
#define REG_SET_TABLE_SLOP 100
/* This is a list of expressions which are MEMs and will be used by load
or store motion.
Load motion tracks MEMs which aren't killed by
anything except itself. (ie, loads and stores to a single location).
We can then allow movement of these MEM refs with a little special
allowance. (all stores copy the same value to the reaching reg used
for the loads). This means all values used to store into memory must have
no side effects so we can re-issue the setter value.
Store Motion uses this structure as an expression table to track stores
which look interesting, and might be moveable towards the exit block. */
struct ls_expr
{
struct expr * expr; /* Gcse expression reference for LM. */
rtx pattern; /* Pattern of this mem. */
rtx loads; /* INSN list of loads seen. */
rtx stores; /* INSN list of stores seen. */
struct ls_expr * next; /* Next in the list. */
int invalid; /* Invalid for some reason. */
int index; /* If it maps to a bitmap index. */
int hash_index; /* Index when in a hash table. */
rtx reaching_reg; /* Register to use when re-writing. */
};
/* Head of the list of load/store memory refs. */
static struct ls_expr * pre_ldst_mems = NULL;
/* Bitmap containing one bit for each register in the program.
Used when performing GCSE to track which registers have been set since
the start of the basic block. */
static regset reg_set_bitmap;
/* For each block, a bitmap of registers set in the block.
This is used by expr_killed_p and compute_transp.
It is computed during hash table computation and not by compute_sets
as it includes registers added since the last pass (or between cprop and
gcse) and it's currently not easy to realloc sbitmap vectors. */
static sbitmap *reg_set_in_block;
/* Array, indexed by basic block number for a list of insns which modify
memory within that block. */
static rtx * modify_mem_list;
bitmap modify_mem_list_set;
/* This array parallels modify_mem_list, but is kept canonicalized. */
static rtx * canon_modify_mem_list;
bitmap canon_modify_mem_list_set;
/* Various variables for statistics gathering. */
/* Memory used in a pass.
This isn't intended to be absolutely precise. Its intent is only
to keep an eye on memory usage. */
static int bytes_used;
/* GCSE substitutions made. */
static int gcse_subst_count;
/* Number of copy instructions created. */
static int gcse_create_count;
/* Number of constants propagated. */
static int const_prop_count;
/* Number of copys propagated. */
static int copy_prop_count;
/* These variables are used by classic GCSE.
Normally they'd be defined a bit later, but `rd_gen' needs to
be declared sooner. */
/* Each block has a bitmap of each type.
The length of each blocks bitmap is:
max_cuid - for reaching definitions
n_exprs - for available expressions
Thus we view the bitmaps as 2 dimensional arrays. i.e.
rd_kill[block_num][cuid_num]
ae_kill[block_num][expr_num] */
/* For reaching defs */
static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
/* for available exprs */
static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
/* Objects of this type are passed around by the null-pointer check
removal routines. */
struct null_pointer_info
{
/* The basic block being processed. */
basic_block current_block;
/* The first register to be handled in this pass. */
unsigned int min_reg;
/* One greater than the last register to be handled in this pass. */
unsigned int max_reg;
sbitmap *nonnull_local;
sbitmap *nonnull_killed;
};
static void compute_can_copy PARAMS ((void));
static char *gmalloc PARAMS ((unsigned int));
static char *grealloc PARAMS ((char *, unsigned int));
static char *gcse_alloc PARAMS ((unsigned long));
static void alloc_gcse_mem PARAMS ((rtx));
static void free_gcse_mem PARAMS ((void));
static void alloc_reg_set_mem PARAMS ((int));
static void free_reg_set_mem PARAMS ((void));
static int get_bitmap_width PARAMS ((int, int, int));
static void record_one_set PARAMS ((int, rtx));
static void record_set_info PARAMS ((rtx, rtx, void *));
static void compute_sets PARAMS ((rtx));
static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int));
static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *));
static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *));
static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *));
static int want_to_gcse_p PARAMS ((rtx));
static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
static int oprs_anticipatable_p PARAMS ((rtx, rtx));
static int oprs_available_p PARAMS ((rtx, rtx));
static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
int, int, struct hash_table *));
static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
static unsigned int hash_string_1 PARAMS ((const char *));
static unsigned int hash_set PARAMS ((int, int));
static int expr_equiv_p PARAMS ((rtx, rtx));
static void record_last_reg_set_info PARAMS ((rtx, int));
static void record_last_mem_set_info PARAMS ((rtx));
static void record_last_set_info PARAMS ((rtx, rtx, void *));
static void compute_hash_table PARAMS ((struct hash_table *));
static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
static void free_hash_table PARAMS ((struct hash_table *));
static void compute_hash_table_work PARAMS ((struct hash_table *));
static void dump_hash_table PARAMS ((FILE *, const char *,
struct hash_table *));
static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *));
static struct expr *lookup_set PARAMS ((unsigned int, rtx, struct hash_table *));
static struct expr *next_set PARAMS ((unsigned int, struct expr *));
static void reset_opr_set_tables PARAMS ((void));
static int oprs_not_set_p PARAMS ((rtx, rtx));
static void mark_call PARAMS ((rtx));
static void mark_set PARAMS ((rtx, rtx));
static void mark_clobber PARAMS ((rtx, rtx));
static void mark_oprs_set PARAMS ((rtx));
static void alloc_cprop_mem PARAMS ((int, int));
static void free_cprop_mem PARAMS ((void));
static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
static void compute_transpout PARAMS ((void));
static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
struct hash_table *));
static void compute_cprop_data PARAMS ((void));
static void find_used_regs PARAMS ((rtx *, void *));
static int try_replace_reg PARAMS ((rtx, rtx, rtx));
static struct expr *find_avail_set PARAMS ((int, rtx));
static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
static void canon_list_insert PARAMS ((rtx, rtx, void *));
static int cprop_insn PARAMS ((rtx, int));
static int cprop PARAMS ((int));
static int one_cprop_pass PARAMS ((int, int));
static bool constprop_register PARAMS ((rtx, rtx, rtx, int));
static struct expr *find_bypass_set PARAMS ((int, int));
static bool reg_killed_on_edge PARAMS ((rtx, edge));
static int bypass_block PARAMS ((basic_block, rtx, rtx));
static int bypass_conditional_jumps PARAMS ((void));
static void alloc_pre_mem PARAMS ((int, int));
static void free_pre_mem PARAMS ((void));
static void compute_pre_data PARAMS ((void));
static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
basic_block));
static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
static void pre_insert_copies PARAMS ((void));
static int pre_delete PARAMS ((void));
static int pre_gcse PARAMS ((void));
static int one_pre_gcse_pass PARAMS ((int));
static void add_label_notes PARAMS ((rtx, rtx));
static void alloc_code_hoist_mem PARAMS ((int, int));
static void free_code_hoist_mem PARAMS ((void));
static void compute_code_hoist_vbeinout PARAMS ((void));
static void compute_code_hoist_data PARAMS ((void));
static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
char *));
static void hoist_code PARAMS ((void));
static int one_code_hoisting_pass PARAMS ((void));
static void alloc_rd_mem PARAMS ((int, int));
static void free_rd_mem PARAMS ((void));
static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
static void compute_kill_rd PARAMS ((void));
static void compute_rd PARAMS ((void));
static void alloc_avail_expr_mem PARAMS ((int, int));
static void free_avail_expr_mem PARAMS ((void));
static void compute_ae_gen PARAMS ((struct hash_table *));
static int expr_killed_p PARAMS ((rtx, basic_block));
static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
basic_block, int));
static rtx computing_insn PARAMS ((struct expr *, rtx));
static int def_reaches_here_p PARAMS ((rtx, rtx));
static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
static int handle_avail_expr PARAMS ((rtx, struct expr *));
static int classic_gcse PARAMS ((void));
static int one_classic_gcse_pass PARAMS ((int));
static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
sbitmap *, sbitmap *,
struct null_pointer_info *));
static rtx process_insert_insn PARAMS ((struct expr *));
static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
basic_block, int, char *));
static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
basic_block, char *));
static struct ls_expr * ldst_entry PARAMS ((rtx));
static void free_ldst_entry PARAMS ((struct ls_expr *));
static void free_ldst_mems PARAMS ((void));
static void print_ldst_list PARAMS ((FILE *));
static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
static int enumerate_ldsts PARAMS ((void));
static inline struct ls_expr * first_ls_expr PARAMS ((void));
static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
static int simple_mem PARAMS ((rtx));
static void invalidate_any_buried_refs PARAMS ((rtx));
static void compute_ld_motion_mems PARAMS ((void));
static void trim_ld_motion_mems PARAMS ((void));
static void update_ld_motion_stores PARAMS ((struct expr *));
static void reg_set_info PARAMS ((rtx, rtx, void *));
static int store_ops_ok PARAMS ((rtx, basic_block));
static void find_moveable_store PARAMS ((rtx));
static int compute_store_table PARAMS ((void));
static int load_kills_store PARAMS ((rtx, rtx));
static int find_loads PARAMS ((rtx, rtx));
static int store_killed_in_insn PARAMS ((rtx, rtx));
static int store_killed_after PARAMS ((rtx, rtx, basic_block));
static int store_killed_before PARAMS ((rtx, rtx, basic_block));
static void build_store_vectors PARAMS ((void));
static void insert_insn_start_bb PARAMS ((rtx, basic_block));
static int insert_store PARAMS ((struct ls_expr *, edge));
static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
static void delete_store PARAMS ((struct ls_expr *,
basic_block));
static void free_store_memory PARAMS ((void));
static void store_motion PARAMS ((void));
static void free_insn_expr_list_list PARAMS ((rtx *));
static void clear_modify_mem_tables PARAMS ((void));
static void free_modify_mem_tables PARAMS ((void));
static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
static void local_cprop_find_used_regs PARAMS ((rtx *, void *));
static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*));
static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*));
static void local_cprop_pass PARAMS ((int));
/* Entry point for global common subexpression elimination.
F is the first instruction in the function. */
int
gcse_main (f, file)
rtx f;
FILE *file;
{
int changed, pass;
/* Bytes used at start of pass. */
int initial_bytes_used;
/* Maximum number of bytes used by a pass. */
int max_pass_bytes;
/* Point to release obstack data from for each pass. */
char *gcse_obstack_bottom;
/* Insertion of instructions on edges can create new basic blocks; we
need the original basic block count so that we can properly deallocate
arrays sized on the number of basic blocks originally in the cfg. */
int orig_bb_count;
/* We do not construct an accurate cfg in functions which call
setjmp, so just punt to be safe. */
if (current_function_calls_setjmp)
return 0;
/* Assume that we do not need to run jump optimizations after gcse. */
run_jump_opt_after_gcse = 0;
/* For calling dump_foo fns from gdb. */
debug_stderr = stderr;
gcse_file = file;
/* Identify the basic block information for this function, including
successors and predecessors. */
max_gcse_regno = max_reg_num ();
if (file)
dump_flow_info (file);
orig_bb_count = n_basic_blocks;
/* Return if there's nothing to do. */
if (n_basic_blocks <= 1)
return 0;
/* Trying to perform global optimizations on flow graphs which have
a high connectivity will take a long time and is unlikely to be
particularly useful.
In normal circumstances a cfg should have about twice as many edges
as blocks. But we do not want to punish small functions which have
a couple switch statements. So we require a relatively large number
of basic blocks and the ratio of edges to blocks to be high. */
if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
{
if (warn_disabled_optimization)
warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
n_basic_blocks, n_edges / n_basic_blocks);
return 0;
}
/* If allocating memory for the cprop bitmap would take up too much
storage it's better just to disable the optimization. */
if ((n_basic_blocks
* SBITMAP_SET_SIZE (max_gcse_regno)
* sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
{
if (warn_disabled_optimization)
warning ("GCSE disabled: %d basic blocks and %d registers",
n_basic_blocks, max_gcse_regno);
return 0;
}
/* See what modes support reg/reg copy operations. */
if (! can_copy_init_p)
{
compute_can_copy ();
can_copy_init_p = 1;
}
gcc_obstack_init (&gcse_obstack);
bytes_used = 0;
/* We need alias. */
init_alias_analysis ();
/* Record where pseudo-registers are set. This data is kept accurate
during each pass. ??? We could also record hard-reg information here
[since it's unchanging], however it is currently done during hash table
computation.
It may be tempting to compute MEM set information here too, but MEM sets
will be subject to code motion one day and thus we need to compute
information about memory sets when we build the hash tables. */
alloc_reg_set_mem (max_gcse_regno);
compute_sets (f);
pass = 0;
initial_bytes_used = bytes_used;
max_pass_bytes = 0;
gcse_obstack_bottom = gcse_alloc (1);
changed = 1;
while (changed && pass < MAX_GCSE_PASSES)
{
changed = 0;
if (file)
fprintf (file, "GCSE pass %d\n\n", pass + 1);
/* Initialize bytes_used to the space for the pred/succ lists,
and the reg_set_table data. */
bytes_used = initial_bytes_used;
/* Each pass may create new registers, so recalculate each time. */
max_gcse_regno = max_reg_num ();
alloc_gcse_mem (f);
/* Don't allow constant propagation to modify jumps
during this pass. */
changed = one_cprop_pass (pass + 1, 0);
if (optimize_size)
changed |= one_classic_gcse_pass (pass + 1);
else
{
changed |= one_pre_gcse_pass (pass + 1);
/* We may have just created new basic blocks. Release and
recompute various things which are sized on the number of
basic blocks. */
if (changed)
{
free_modify_mem_tables ();
modify_mem_list
= (rtx *) gmalloc (last_basic_block * sizeof (rtx));
canon_modify_mem_list
= (rtx *) gmalloc (last_basic_block * sizeof (rtx));
memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
orig_bb_count = n_basic_blocks;
}
free_reg_set_mem ();
alloc_reg_set_mem (max_reg_num ());
compute_sets (f);
run_jump_opt_after_gcse = 1;
}
if (max_pass_bytes < bytes_used)
max_pass_bytes = bytes_used;
/* Free up memory, then reallocate for code hoisting. We can
not re-use the existing allocated memory because the tables
will not have info for the insns or registers created by
partial redundancy elimination. */
free_gcse_mem ();
/* It does not make sense to run code hoisting unless we optimizing
for code size -- it rarely makes programs faster, and can make
them bigger if we did partial redundancy elimination (when optimizing
for space, we use a classic gcse algorithm instead of partial
redundancy algorithms). */
if (optimize_size)
{
max_gcse_regno = max_reg_num ();
alloc_gcse_mem (f);
changed |= one_code_hoisting_pass ();
free_gcse_mem ();
if (max_pass_bytes < bytes_used)
max_pass_bytes = bytes_used;
}
if (file)
{
fprintf (file, "\n");
fflush (file);
}
obstack_free (&gcse_obstack, gcse_obstack_bottom);
pass++;
}
/* Do one last pass of copy propagation, including cprop into
conditional jumps. */
max_gcse_regno = max_reg_num ();
alloc_gcse_mem (f);
/* This time, go ahead and allow cprop to alter jumps. */
one_cprop_pass (pass + 1, 1);
free_gcse_mem ();
if (file)
{
fprintf (file, "GCSE of %s: %d basic blocks, ",
current_function_name, n_basic_blocks);
fprintf (file, "%d pass%s, %d bytes\n\n",
pass, pass > 1 ? "es" : "", max_pass_bytes);
}
obstack_free (&gcse_obstack, NULL);
free_reg_set_mem ();
/* We are finished with alias. */
end_alias_analysis ();
allocate_reg_info (max_reg_num (), FALSE, FALSE);
/* Store motion disabled until it is fixed. */
if (0 && !optimize_size && flag_gcse_sm)
store_motion ();
/* Record where pseudo-registers are set. */
return run_jump_opt_after_gcse;
}
/* Misc. utilities. */
/* Compute which modes support reg/reg copy operations. */
static void
compute_can_copy ()
{
int i;
#ifndef AVOID_CCMODE_COPIES
rtx reg, insn;
#endif
memset (can_copy_p, 0, NUM_MACHINE_MODES);
start_sequence ();
for (i = 0; i < NUM_MACHINE_MODES; i++)
if (GET_MODE_CLASS (i) == MODE_CC)
{
#ifdef AVOID_CCMODE_COPIES
can_copy_p[i] = 0;
#else
reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
if (recog (PATTERN (insn), insn, NULL) >= 0)
can_copy_p[i] = 1;
#endif
}
else
can_copy_p[i] = 1;
end_sequence ();
}
/* Cover function to xmalloc to record bytes allocated. */
static char *
gmalloc (size)
unsigned int size;
{
bytes_used += size;
return xmalloc (size);
}
/* Cover function to xrealloc.
We don't record the additional size since we don't know it.
It won't affect memory usage stats much anyway. */
static char *
grealloc (ptr, size)
char *ptr;
unsigned int size;
{
return xrealloc (ptr, size);
}
/* Cover function to obstack_alloc. */
static char *
gcse_alloc (size)
unsigned long size;
{
bytes_used += size;
return (char *) obstack_alloc (&gcse_obstack, size);
}
/* Allocate memory for the cuid mapping array,
and reg/memory set tracking tables.
This is called at the start of each pass. */
static void
alloc_gcse_mem (f)
rtx f;
{
int i, n;
rtx insn;
/* Find the largest UID and create a mapping from UIDs to CUIDs.
CUIDs are like UIDs except they increase monotonically, have no gaps,
and only apply to real insns. */
max_uid = get_max_uid ();
n = (max_uid + 1) * sizeof (int);
uid_cuid = (int *) gmalloc (n);
memset ((char *) uid_cuid, 0, n);
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
uid_cuid[INSN_UID (insn)] = i++;
else
uid_cuid[INSN_UID (insn)] = i;
}
/* Create a table mapping cuids to insns. */
max_cuid = i;
n = (max_cuid + 1) * sizeof (rtx);
cuid_insn = (rtx *) gmalloc (n);
memset ((char *) cuid_insn, 0, n);
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
CUID_INSN (i++) = insn;
/* Allocate vars to track sets of regs. */
reg_set_bitmap = BITMAP_XMALLOC ();
/* Allocate vars to track sets of regs, memory per block. */
reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
max_gcse_regno);
/* Allocate array to keep a list of insns which modify memory in each
basic block. */
modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
modify_mem_list_set = BITMAP_XMALLOC ();
canon_modify_mem_list_set = BITMAP_XMALLOC ();
}
/* Free memory allocated by alloc_gcse_mem. */
static void
free_gcse_mem ()
{
free (uid_cuid);
free (cuid_insn);
BITMAP_XFREE (reg_set_bitmap);
sbitmap_vector_free (reg_set_in_block);
free_modify_mem_tables ();
BITMAP_XFREE (modify_mem_list_set);
BITMAP_XFREE (canon_modify_mem_list_set);
}
/* Many of the global optimization algorithms work by solving dataflow
equations for various expressions. Initially, some local value is
computed for each expression in each block. Then, the values across the
various blocks are combined (by following flow graph edges) to arrive at
global values. Conceptually, each set of equations is independent. We
may therefore solve all the equations in parallel, solve them one at a
time, or pick any intermediate approach.
When you're going to need N two-dimensional bitmaps, each X (say, the
number of blocks) by Y (say, the number of expressions), call this
function. It's not important what X and Y represent; only that Y
correspond to the things that can be done in parallel. This function will
return an appropriate chunking factor C; you should solve C sets of
equations in parallel. By going through this function, we can easily
trade space against time; by solving fewer equations in parallel we use
less space. */
static int
get_bitmap_width (n, x, y)
int n;
int x;
int y;
{
/* It's not really worth figuring out *exactly* how much memory will
be used by a particular choice. The important thing is to get
something approximately right. */
size_t max_bitmap_memory = 10 * 1024 * 1024;
/* The number of bytes we'd use for a single column of minimum
width. */
size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
/* Often, it's reasonable just to solve all the equations in
parallel. */
if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
return y;
/* Otherwise, pick the largest width we can, without going over the
limit. */
return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
/ column_size);
}
/* Compute the local properties of each recorded expression.
Local properties are those that are defined by the block, irrespective of
other blocks.
An expression is transparent in a block if its operands are not modified
in the block.
An expression is computed (locally available) in a block if it is computed
at least once and expression would contain the same value if the
computation was moved to the end of the block.
An expression is locally anticipatable in a block if it is computed at
least once and expression would contain the same value if the computation
was moved to the beginning of the block.
We call this routine for cprop, pre and code hoisting. They all compute
basically the same information and thus can easily share this code.
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
properties. If NULL, then it is not necessary to compute or record that
particular property.
TABLE controls which hash table to look at. If it is set hash table,
additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
ABSALTERED. */
static void
compute_local_properties (transp, comp, antloc, table)
sbitmap *transp;
sbitmap *comp;
sbitmap *antloc;
struct hash_table *table;
{
unsigned int i;
/* Initialize any bitmaps that were passed in. */
if (transp)
{
if (table->set_p)
sbitmap_vector_zero (transp, last_basic_block);
else
sbitmap_vector_ones (transp, last_basic_block);
}
if (comp)
sbitmap_vector_zero (comp, last_basic_block);
if (antloc)
sbitmap_vector_zero (antloc, last_basic_block);
for (i = 0; i < table->size; i++)
{
struct expr *expr;
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
{
int indx = expr->bitmap_index;
struct occr *occr;
/* The expression is transparent in this block if it is not killed.
We start by assuming all are transparent [none are killed], and
then reset the bits for those that are. */
if (transp)
compute_transp (expr->expr, indx, transp, table->set_p);
/* The occurrences recorded in antic_occr are exactly those that
we want to set to nonzero in ANTLOC. */
if (antloc)
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{
SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
/* While we're scanning the table, this is a good place to
initialize this. */
occr->deleted_p = 0;
}
/* The occurrences recorded in avail_occr are exactly those that
we want to set to nonzero in COMP. */
if (comp)
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
{
SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
/* While we're scanning the table, this is a good place to
initialize this. */
occr->copied_p = 0;
}
/* While we're scanning the table, this is a good place to
initialize this. */
expr->reaching_reg = 0;
}
}
}
/* Register set information.
`reg_set_table' records where each register is set or otherwise
modified. */
static struct obstack reg_set_obstack;
static void
alloc_reg_set_mem (n_regs)
int n_regs;
{
unsigned int n;
reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
n = reg_set_table_size * sizeof (struct reg_set *);
reg_set_table = (struct reg_set **) gmalloc (n);
memset ((char *) reg_set_table, 0, n);
gcc_obstack_init (®_set_obstack);
}
static void
free_reg_set_mem ()
{
free (reg_set_table);
obstack_free (®_set_obstack, NULL);
}
/* Record REGNO in the reg_set table. */
static void
record_one_set (regno, insn)
int regno;
rtx insn;
{
/* Allocate a new reg_set element and link it onto the list. */
struct reg_set *new_reg_info;
/* If the table isn't big enough, enlarge it. */
if (regno >= reg_set_table_size)
{
int new_size = regno + REG_SET_TABLE_SLOP;
reg_set_table
= (struct reg_set **) grealloc ((char *) reg_set_table,
new_size * sizeof (struct reg_set *));
memset ((char *) (reg_set_table + reg_set_table_size), 0,
(new_size - reg_set_table_size) * sizeof (struct reg_set *));
reg_set_table_size = new_size;
}
new_reg_info = (struct reg_set *) obstack_alloc (®_set_obstack,
sizeof (struct reg_set));
bytes_used += sizeof (struct reg_set);
new_reg_info->insn = insn;
new_reg_info->next = reg_set_table[regno];
reg_set_table[regno] = new_reg_info;
}
/* Called from compute_sets via note_stores to handle one SET or CLOBBER in
an insn. The DATA is really the instruction in which the SET is
occurring. */
static void
record_set_info (dest, setter, data)
rtx dest, setter ATTRIBUTE_UNUSED;
void *data;
{
rtx record_set_insn = (rtx) data;
if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
record_one_set (REGNO (dest), record_set_insn);
}
/* Scan the function and record each set of each pseudo-register.
This is called once, at the start of the gcse pass. See the comments for
`reg_set_table' for further documenation. */
static void
compute_sets (f)
rtx f;
{
rtx insn;
for (insn = f; insn != 0; insn = NEXT_INSN (insn))
if (INSN_P (insn))
note_stores (PATTERN (insn), record_set_info, insn);
}
/* Hash table support. */
struct reg_avail_info
{
basic_block last_bb;
int first_set;
int last_set;
};
static struct reg_avail_info *reg_avail_info;
static basic_block current_bb;
/* See whether X, the source of a set, is something we want to consider for
GCSE. */
static GTY(()) rtx test_insn;
static int
want_to_gcse_p (x)
rtx x;
{
int num_clobbers = 0;
int icode;
switch (GET_CODE (x))
{
case REG:
case SUBREG:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case CALL:
return 0;
default:
break;
}
/* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
if (general_operand (x, GET_MODE (x)))
return 1;
else if (GET_MODE (x) == VOIDmode)
return 0;
/* Otherwise, check if we can make a valid insn from it. First initialize
our test insn if we haven't already. */
if (test_insn == 0)
{
test_insn
= make_insn_raw (gen_rtx_SET (VOIDmode,
gen_rtx_REG (word_mode,
FIRST_PSEUDO_REGISTER * 2),
const0_rtx));
NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
}
/* Now make an insn like the one we would make when GCSE'ing and see if
valid. */
PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
SET_SRC (PATTERN (test_insn)) = x;
return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
&& (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
}
/* Return nonzero if the operands of expression X are unchanged from the
start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
static int
oprs_unchanged_p (x, insn, avail_p)
rtx x, insn;
int avail_p;
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
{
struct reg_avail_info *info = ®_avail_info[REGNO (x)];
if (info->last_bb != current_bb)
return 1;
if (avail_p)
return info->last_set < INSN_CUID (insn);
else
return info->first_set >= INSN_CUID (insn);
}
case MEM:
if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
x, avail_p))
return 0;
else
return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
return 0;
case PC:
case CC0: /*FIXME*/
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 1;
default:
break;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call needed at this
level, change it into iteration. This function is called enough
to be worth it. */
if (i == 0)
return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
return 0;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
return 0;
}
return 1;
}
/* Used for communication between mems_conflict_for_gcse_p and
load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
conflict between two memory references. */
static int gcse_mems_conflict_p;
/* Used for communication between mems_conflict_for_gcse_p and
load_killed_in_block_p. A memory reference for a load instruction,
mems_conflict_for_gcse_p will see if a memory store conflicts with
this memory load. */
static rtx gcse_mem_operand;
/* DEST is the output of an instruction. If it is a memory reference, and
possibly conflicts with the load found in gcse_mem_operand, then set
gcse_mems_conflict_p to a nonzero value. */
static void
mems_conflict_for_gcse_p (dest, setter, data)
rtx dest, setter ATTRIBUTE_UNUSED;
void *data ATTRIBUTE_UNUSED;
{
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If DEST is not a MEM, then it will not conflict with the load. Note
that function calls are assumed to clobber memory, but are handled
elsewhere. */
if (GET_CODE (dest) != MEM)
return;
/* If we are setting a MEM in our list of specially recognized MEMs,
don't mark as killed this time. */
if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
{
if (!find_rtx_in_ldst (dest))
gcse_mems_conflict_p = 1;
return;
}
if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
rtx_addr_varies_p))
gcse_mems_conflict_p = 1;
}
/* Return nonzero if the expression in X (a memory reference) is killed
in block BB before or after the insn with the CUID in UID_LIMIT.
AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
before UID_LIMIT.
To check the entire block, set UID_LIMIT to max_uid + 1 and
AVAIL_P to 0. */
static int
load_killed_in_block_p (bb, uid_limit, x, avail_p)
basic_block bb;
int uid_limit;
rtx x;
int avail_p;
{
rtx list_entry = modify_mem_list[bb->index];
while (list_entry)
{
rtx setter;
/* Ignore entries in the list that do not apply. */
if ((avail_p
&& INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
|| (! avail_p
&& INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
{
list_entry = XEXP (list_entry, 1);
continue;
}
setter = XEXP (list_entry, 0);
/* If SETTER is a call everything is clobbered. Note that calls
to pure functions are never put on the list, so we need not
worry about them. */
if (GET_CODE (setter) == CALL_INSN)
return 1;
/* SETTER must be an INSN of some kind that sets memory. Call
note_stores to examine each hunk of memory that is modified.
The note_stores interface is pretty limited, so we have to
communicate via global variables. Yuk. */
gcse_mem_operand = x;
gcse_mems_conflict_p = 0;
note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
if (gcse_mems_conflict_p)
return 1;
list_entry = XEXP (list_entry, 1);
}
return 0;
}
/* Return nonzero if the operands of expression X are unchanged from
the start of INSN's basic block up to but not including INSN. */
static int
oprs_anticipatable_p (x, insn)
rtx x, insn;
{
return oprs_unchanged_p (x, insn, 0);
}
/* Return nonzero if the operands of expression X are unchanged from
INSN to the end of INSN's basic block. */
static int
oprs_available_p (x, insn)
rtx x, insn;
{
return oprs_unchanged_p (x, insn, 1);
}
/* Hash expression X.
MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
indicating if a volatile operand is found or if the expression contains
something we don't want to insert in the table.
??? One might want to merge this with canon_hash. Later. */
static unsigned int
hash_expr (x, mode, do_not_record_p, hash_table_size)
rtx x;
enum machine_mode mode;
int *do_not_record_p;
int hash_table_size;
{
unsigned int hash;
*do_not_record_p = 0;
hash = hash_expr_1 (x, mode, do_not_record_p);
return hash % hash_table_size;
}
/* Hash a string. Just add its bytes up. */
static inline unsigned
hash_string_1 (ps)
const char *ps;
{
unsigned hash = 0;
const unsigned char *p = (const unsigned char *) ps;
if (p)
while (*p)
hash += *p++;
return hash;
}
/* Subroutine of hash_expr to do the actual work. */
static unsigned int
hash_expr_1 (x, mode, do_not_record_p)
rtx x;
enum machine_mode mode;
int *do_not_record_p;
{
int i, j;
unsigned hash = 0;
enum rtx_code code;
const char *fmt;
/* Used to turn recursion into iteration. We can't rely on GCC's
tail-recursion eliminatio since we need to keep accumulating values
in HASH. */
if (x == 0)
return hash;
repeat:
code = GET_CODE (x);
switch (code)
{
case REG:
hash += ((unsigned int) REG << 7) + REGNO (x);
return hash;
case CONST_INT:
hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
+ (unsigned int) INTVAL (x));
return hash;
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
if (GET_MODE (x) != VOIDmode)
for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
hash += (unsigned int) XWINT (x, i);
else
hash += ((unsigned int) CONST_DOUBLE_LOW (x)
+ (unsigned int) CONST_DOUBLE_HIGH (x));
return hash;
case CONST_VECTOR:
{
int units;
rtx elt;
units = CONST_VECTOR_NUNITS (x);
for (i = 0; i < units; ++i)
{
elt = CONST_VECTOR_ELT (x, i);
hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
}
return hash;
}
/* Assume there is only one rtx object for any given label. */
case LABEL_REF:
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
differences and differences between each stage's debugging dumps. */
hash += (((unsigned int) LABEL_REF << 7)
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
return hash;
case SYMBOL_REF:
{
/* Don't hash on the symbol's address to avoid bootstrap differences.
Different hash values may cause expressions to be recorded in
different orders and thus different registers to be used in the
final assembler. This also avoids differences in the dump files
between various stages. */
unsigned int h = 0;
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
while (*p)
h += (h << 7) + *p++; /* ??? revisit */
hash += ((unsigned int) SYMBOL_REF << 7) + h;
return hash;
}
case MEM:
if (MEM_VOLATILE_P (x))
{
*do_not_record_p = 1;
return 0;
}
hash += (unsigned int) MEM;
/* We used alias set for hashing, but this is not good, since the alias
set may differ in -fprofile-arcs and -fbranch-probabilities compilation
causing the profiles to fail to match. */
x = XEXP (x, 0);
goto repeat;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PC:
case CC0:
case CALL:
case UNSPEC_VOLATILE:
*do_not_record_p = 1;
return 0;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
{
*do_not_record_p = 1;
return 0;
}
else
{
/* We don't want to take the filename and line into account. */
hash += (unsigned) code + (unsigned) GET_MODE (x)
+ hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
+ hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
+ (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
{
hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
GET_MODE (ASM_OPERANDS_INPUT (x, i)),
do_not_record_p)
+ hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
(x, i)));
}
hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
x = ASM_OPERANDS_INPUT (x, 0);
mode = GET_MODE (x);
goto repeat;
}
return hash;
}
default:
break;
}
hash += (unsigned) code + (unsigned) GET_MODE (x);
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = XEXP (x, i);
goto repeat;
}
hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
if (*do_not_record_p)
return 0;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
{
hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
if (*do_not_record_p)
return 0;
}
else if (fmt[i] == 's')
hash += hash_string_1 (XSTR (x, i));
else if (fmt[i] == 'i')
hash += (unsigned int) XINT (x, i);
else
abort ();
}
return hash;
}
/* Hash a set of register REGNO.
Sets are hashed on the register that is set. This simplifies the PRE copy
propagation code.
??? May need to make things more elaborate. Later, as necessary. */
static unsigned int
hash_set (regno, hash_table_size)
int regno;
int hash_table_size;
{
unsigned int hash;
hash = regno;
return hash % hash_table_size;
}
/* Return nonzero if exp1 is equivalent to exp2.
??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
static int
expr_equiv_p (x, y)
rtx x, y;
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == y)
return 1;
if (x == 0 || y == 0)
return x == y;
code = GET_CODE (x);
if (code != GET_CODE (y))
return 0;
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
if (GET_MODE (x) != GET_MODE (y))
return 0;
switch (code)
{
case PC:
case CC0:
return x == y;
case CONST_INT:
return INTVAL (x) == INTVAL (y);
case LABEL_REF:
return XEXP (x, 0) == XEXP (y, 0);
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
case REG:
return REGNO (x) == REGNO (y);
case MEM:
/* Can't merge two expressions in different alias sets, since we can
decide that the expression is transparent in a block when it isn't,
due to it being set with the different alias set. */
if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
return 0;
break;
/* For commutative operations, check both orders. */
case PLUS:
case MULT:
case AND:
case IOR:
case XOR:
case NE:
case EQ:
return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
|| (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
&& expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
case ASM_OPERANDS:
/* We don't use the generic code below because we want to
disregard filename and line numbers. */
/* A volatile asm isn't equivalent to any other. */
if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
return 0;
if (GET_MODE (x) != GET_MODE (y)
|| strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
|| strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
|| ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
|| ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
return 0;
if (ASM_OPERANDS_INPUT_LENGTH (x))
{
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
ASM_OPERANDS_INPUT (y, i))
|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
return 0;
}
return 1;
default:
break;
}
/* Compare the elements. If any pair of corresponding elements
fail to match, return 0 for the whole thing. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'e':
if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
return 0;
break;
case 'E':
if (XVECLEN (x, i) != XVECLEN (y, i))
return 0;
for (j = 0; j < XVECLEN (x, i); j++)
if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
return 0;
break;
case 's':
if (strcmp (XSTR (x, i), XSTR (y, i)))
return 0;
break;
case 'i':
if (XINT (x, i) != XINT (y, i))
return 0;
break;
case 'w':
if (XWINT (x, i) != XWINT (y, i))
return 0;
break;
case '0':
break;
default:
abort ();
}
}
return 1;
}
/* Insert expression X in INSN in the hash TABLE.
If it is already present, record it as the last occurrence in INSN's
basic block.
MODE is the mode of the value X is being stored into.
It is only used if X is a CONST_INT.
ANTIC_P is nonzero if X is an anticipatable expression.
AVAIL_P is nonzero if X is an available expression. */
static void
insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
rtx x;
enum machine_mode mode;
rtx insn;
int antic_p, avail_p;
struct hash_table *table;
{
int found, do_not_record_p;
unsigned int hash;
struct expr *cur_expr, *last_expr = NULL;
struct occr *antic_occr, *avail_occr;
struct occr *last_occr = NULL;
hash = hash_expr (x, mode, &do_not_record_p, table->size);
/* Do not insert expression in table if it contains volatile operands,
or if hash_expr determines the expression is something we don't want
to or can't handle. */
if (do_not_record_p)
return;
cur_expr = table->table[hash];
found = 0;
while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
{
/* If the expression isn't found, save a pointer to the end of
the list. */
last_expr = cur_expr;
cur_expr = cur_expr->next_same_hash;
}
if (! found)
{
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
bytes_used += sizeof (struct expr);
if (table->table[hash] == NULL)
/* This is the first pattern that hashed to this index. */
table->table[hash] = cur_expr;
else
/* Add EXPR to end of this hash chain. */
last_expr->next_same_hash = cur_expr;
/* Set the fields of the expr element. */
cur_expr->expr = x;
cur_expr->bitmap_index = table->n_elems++;
cur_expr->next_same_hash = NULL;
cur_expr->antic_occr = NULL;
cur_expr->avail_occr = NULL;
}
/* Now record the occurrence(s). */
if (antic_p)
{
antic_occr = cur_expr->antic_occr;
/* Search for another occurrence in the same basic block. */
while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
{
/* If an occurrence isn't found, save a pointer to the end of
the list. */
last_occr = antic_occr;
antic_occr = antic_occr->next;
}
if (antic_occr)
/* Found another instance of the expression in the same basic block.
Prefer the currently recorded one. We want the first one in the
block and the block is scanned from start to end. */
; /* nothing to do */
else
{
/* First occurrence of this expression in this basic block. */
antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
bytes_used += sizeof (struct occr);
/* First occurrence of this expression in any block? */
if (cur_expr->antic_occr == NULL)
cur_expr->antic_occr = antic_occr;
else
last_occr->next = antic_occr;
antic_occr->insn = insn;
antic_occr->next = NULL;
}
}
if (avail_p)
{
avail_occr = cur_expr->avail_occr;
/* Search for another occurrence in the same basic block. */
while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
{
/* If an occurrence isn't found, save a pointer to the end of
the list. */
last_occr = avail_occr;
avail_occr = avail_occr->next;
}
if (avail_occr)
/* Found another instance of the expression in the same basic block.
Prefer this occurrence to the currently recorded one. We want
the last one in the block and the block is scanned from start
to end. */
avail_occr->insn = insn;
else
{
/* First occurrence of this expression in this basic block. */
avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
bytes_used += sizeof (struct occr);
/* First occurrence of this expression in any block? */
if (cur_expr->avail_occr == NULL)
cur_expr->avail_occr = avail_occr;
else
last_occr->next = avail_occr;
avail_occr->insn = insn;
avail_occr->next = NULL;
}
}
}
/* Insert pattern X in INSN in the hash table.
X is a SET of a reg to either another reg or a constant.
If it is already present, record it as the last occurrence in INSN's
basic block. */
static void
insert_set_in_table (x, insn, table)
rtx x;
rtx insn;
struct hash_table *table;
{
int found;
unsigned int hash;
struct expr *cur_expr, *last_expr = NULL;
struct occr *cur_occr, *last_occr = NULL;
if (GET_CODE (x) != SET
|| GET_CODE (SET_DEST (x)) != REG)
abort ();
hash = hash_set (REGNO (SET_DEST (x)), table->size);
cur_expr = table->table[hash];
found = 0;
while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
{
/* If the expression isn't found, save a pointer to the end of
the list. */
last_expr = cur_expr;
cur_expr = cur_expr->next_same_hash;
}
if (! found)
{
cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
bytes_used += sizeof (struct expr);
if (table->table[hash] == NULL)
/* This is the first pattern that hashed to this index. */
table->table[hash] = cur_expr;
else
/* Add EXPR to end of this hash chain. */
last_expr->next_same_hash = cur_expr;
/* Set the fields of the expr element.
We must copy X because it can be modified when copy propagation is
performed on its operands. */
cur_expr->expr = copy_rtx (x);
cur_expr->bitmap_index = table->n_elems++;
cur_expr->next_same_hash = NULL;
cur_expr->antic_occr = NULL;
cur_expr->avail_occr = NULL;
}
/* Now record the occurrence. */
cur_occr = cur_expr->avail_occr;
/* Search for another occurrence in the same basic block. */
while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
{
/* If an occurrence isn't found, save a pointer to the end of
the list. */
last_occr = cur_occr;
cur_occr = cur_occr->next;
}
if (cur_occr)
/* Found another instance of the expression in the same basic block.
Prefer this occurrence to the currently recorded one. We want the
last one in the block and the block is scanned from start to end. */
cur_occr->insn = insn;
else
{
/* First occurrence of this expression in this basic block. */
cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
bytes_used += sizeof (struct occr);
/* First occurrence of this expression in any block? */
if (cur_expr->avail_occr == NULL)
cur_expr->avail_occr = cur_occr;
else
last_occr->next = cur_occr;
cur_occr->insn = insn;
cur_occr->next = NULL;
}
}
/* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
expression one). */
static void
hash_scan_set (pat, insn, table)
rtx pat, insn;
struct hash_table *table;
{
rtx src = SET_SRC (pat);
rtx dest = SET_DEST (pat);
rtx note;
if (GET_CODE (src) == CALL)
hash_scan_call (src, insn, table);
else if (GET_CODE (dest) == REG)
{
unsigned int regno = REGNO (dest);
rtx tmp;
/* If this is a single set and we are doing constant propagation,
see if a REG_NOTE shows this equivalent to a constant. */
if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
&& CONSTANT_P (XEXP (note, 0)))
src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
/* Only record sets of pseudo-regs in the hash table. */
if (! table->set_p
&& regno >= FIRST_PSEUDO_REGISTER
/* Don't GCSE something if we can't do a reg/reg copy. */
&& can_copy_p [GET_MODE (dest)]
/* GCSE commonly inserts instruction after the insn. We can't
do that easily for EH_REGION notes so disable GCSE on these
for now. */
&& !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
/* Is SET_SRC something we want to gcse? */
&& want_to_gcse_p (src)
/* Don't CSE a nop. */
&& ! set_noop_p (pat)
/* Don't GCSE if it has attached REG_EQUIV note.
At this point this only function parameters should have
REG_EQUIV notes and if the argument slot is used somewhere
explicitly, it means address of parameter has been taken,
so we should not extend the lifetime of the pseudo. */
&& ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
|| GET_CODE (XEXP (note, 0)) != MEM))
{
/* An expression is not anticipatable if its operands are
modified before this insn or if this is not the only SET in
this insn. */
int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
/* An expression is not available if its operands are
subsequently modified, including this insn. It's also not
available if this is a branch, because we can't insert
a set after the branch. */
int avail_p = (oprs_available_p (src, insn)
&& ! JUMP_P (insn));
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
}
/* Record sets for constant/copy propagation. */
else if (table->set_p
&& regno >= FIRST_PSEUDO_REGISTER
&& ((GET_CODE (src) == REG
&& REGNO (src) >= FIRST_PSEUDO_REGISTER
&& can_copy_p [GET_MODE (dest)]
&& REGNO (src) != regno)
|| CONSTANT_P (src))
/* A copy is not available if its src or dest is subsequently
modified. Here we want to search from INSN+1 on, but
oprs_available_p searches from INSN on. */
&& (insn == BLOCK_END (BLOCK_NUM (insn))
|| ((tmp = next_nonnote_insn (insn)) != NULL_RTX
&& oprs_available_p (pat, tmp))))
insert_set_in_table (pat, insn, table);
}
}
static void
hash_scan_clobber (x, insn, table)
rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
struct hash_table *table ATTRIBUTE_UNUSED;
{
/* Currently nothing to do. */
}
static void
hash_scan_call (x, insn, table)
rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
struct hash_table *table ATTRIBUTE_UNUSED;
{
/* Currently nothing to do. */
}
/* Process INSN and add hash table entries as appropriate.
Only available expressions that set a single pseudo-reg are recorded.
Single sets in a PARALLEL could be handled, but it's an extra complication
that isn't dealt with right now. The trick is handling the CLOBBERs that
are also in the PARALLEL. Later.
If SET_P is nonzero, this is for the assignment hash table,
otherwise it is for the expression hash table.
If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
not record any expressions. */
static void
hash_scan_insn (insn, table, in_libcall_block)
rtx insn;
struct hash_table *table;
int in_libcall_block;
{
rtx pat = PATTERN (insn);
int i;
if (in_libcall_block)
return;
/* Pick out the sets of INSN and for other forms of instructions record
what's been modified. */
if (GET_CODE (pat) == SET)
hash_scan_set (pat, insn, table);
else if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx x = XVECEXP (pat, 0, i);
if (GET_CODE (x) == SET)
hash_scan_set (x, insn, table);
else if (GET_CODE (x) == CLOBBER)
hash_scan_clobber (x, insn, table);
else if (GET_CODE (x) == CALL)
hash_scan_call (x, insn, table);
}
else if (GET_CODE (pat) == CLOBBER)
hash_scan_clobber (pat, insn, table);
else if (GET_CODE (pat) == CALL)
hash_scan_call (pat, insn, table);
}
static void
dump_hash_table (file, name, table)
FILE *file;
const char *name;
struct hash_table *table;
{
int i;
/* Flattened out table, so it's printed in proper order. */
struct expr **flat_table;
unsigned int *hash_val;
struct expr *expr;
flat_table
= (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));
for (i = 0; i < (int) table->size; i++)
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
{
flat_table[expr->bitmap_index] = expr;
hash_val[expr->bitmap_index] = i;
}
fprintf (file, "%s hash table (%d buckets, %d entries)\n",
name, table->size, table->n_elems);
for (i = 0; i < (int) table->n_elems; i++)
if (flat_table[i] != 0)
{
expr = flat_table[i];
fprintf (file, "Index %d (hash value %d)\n ",
expr->bitmap_index, hash_val[i]);
print_rtl (file, expr->expr);
fprintf (file, "\n");
}
fprintf (file, "\n");
free (flat_table);
free (hash_val);
}
/* Record register first/last/block set information for REGNO in INSN.
first_set records the first place in the block where the register
is set and is used to compute "anticipatability".
last_set records the last place in the block where the register
is set and is used to compute "availability".
last_bb records the block for which first_set and last_set are
valid, as a quick test to invalidate them.
reg_set_in_block records whether the register is set in the block
and is used to compute "transparency". */
static void
record_last_reg_set_info (insn, regno)
rtx insn;
int regno;
{
struct reg_avail_info *info = ®_avail_info[regno];
int cuid = INSN_CUID (insn);
info->last_set = cuid;
if (info->last_bb != current_bb)
{
info->last_bb = current_bb;
info->first_set = cuid;
SET_BIT (reg_set_in_block[current_bb->index], regno);
}
}
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
Note we store a pair of elements in the list, so they have to be
taken off pairwise. */
static void
canon_list_insert (dest, unused1, v_insn)
rtx dest ATTRIBUTE_UNUSED;
rtx unused1 ATTRIBUTE_UNUSED;
void * v_insn;
{
rtx dest_addr, insn;
int bb;
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If DEST is not a MEM, then it will not conflict with a load. Note
that function calls are assumed to clobber memory, but are handled
elsewhere. */
if (GET_CODE (dest) != MEM)
return;
dest_addr = get_addr (XEXP (dest, 0));
dest_addr = canon_rtx (dest_addr);
insn = (rtx) v_insn;
bb = BLOCK_NUM (insn);
canon_modify_mem_list[bb] =
alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
canon_modify_mem_list[bb] =
alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
bitmap_set_bit (canon_modify_mem_list_set, bb);
}
/* Record memory modification information for INSN. We do not actually care
about the memory location(s) that are set, or even how they are set (consider
a CALL_INSN). We merely need to record which insns modify memory. */
static void
record_last_mem_set_info (insn)
rtx insn;
{
int bb = BLOCK_NUM (insn);
/* load_killed_in_block_p will handle the case of calls clobbering
everything. */
modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
bitmap_set_bit (modify_mem_list_set, bb);
if (GET_CODE (insn) == CALL_INSN)
{
/* Note that traversals of this loop (other than for free-ing)
will break after encountering a CALL_INSN. So, there's no
need to insert a pair of items, as canon_list_insert does. */
canon_modify_mem_list[bb] =
alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
bitmap_set_bit (canon_modify_mem_list_set, bb);
}
else
note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
}
/* Called from compute_hash_table via note_stores to handle one
SET or CLOBBER in an insn. DATA is really the instruction in which
the SET is taking place. */
static void
record_last_set_info (dest, setter, data)
rtx dest, setter ATTRIBUTE_UNUSED;
void *data;
{
rtx last_set_insn = (rtx) data;
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
record_last_reg_set_info (last_set_insn, REGNO (dest));
else if (GET_CODE (dest) == MEM
/* Ignore pushes, they clobber nothing. */
&& ! push_operand (dest, GET_MODE (dest)))
record_last_mem_set_info (last_set_insn);
}
/* Top level function to create an expression or assignment hash table.
Expression entries are placed in the hash table if
- they are of the form (set (pseudo-reg) src),
- src is something we want to perform GCSE on,
- none of the operands are subsequently modified in the block
Assignment entries are placed in the hash table if
- they are of the form (set (pseudo-reg) src),
- src is something we want to perform const/copy propagation on,
- none of the operands or target are subsequently modified in the block
Currently src must be a pseudo-reg or a const_int.
F is the first insn.
TABLE is the table computed. */
static void
compute_hash_table_work (table)
struct hash_table *table;
{
unsigned int i;
/* While we compute the hash table we also compute a bit array of which
registers are set in which blocks.
??? This isn't needed during const/copy propagation, but it's cheap to
compute. Later. */
sbitmap_vector_zero (reg_set_in_block, last_basic_block);
/* re-Cache any INSN_LIST nodes we have allocated. */
clear_modify_mem_tables ();
/* Some working arrays used to track first and last set in each block. */
reg_avail_info = (struct reg_avail_info*)
gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
for (i = 0; i < max_gcse_regno; ++i)
reg_avail_info[i].last_bb = NULL;
FOR_EACH_BB (current_bb)
{
rtx insn;
unsigned int regno;
int in_libcall_block;
/* First pass over the instructions records information used to
determine when registers and memory are first and last set.
??? hard-reg reg_set_in_block computation
could be moved to compute_sets since they currently don't change. */
for (insn = current_bb->head;
insn && insn != NEXT_INSN (current_bb->end);
insn = NEXT_INSN (insn))
{
if (! INSN_P (insn))
continue;
if (GET_CODE (insn) == CALL_INSN)
{
bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP
&& find_reg_note (insn, REG_SETJMP, NULL_RTX))
clobbers_all = true;
#endif
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (clobbers_all
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
record_last_reg_set_info (insn, regno);
mark_call (insn);
}
note_stores (PATTERN (insn), record_last_set_info, insn);
}
/* The next pass builds the hash table. */
for (insn = current_bb->head, in_libcall_block = 0;
insn && insn != NEXT_INSN (current_bb->end);
insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
in_libcall_block = 1;
else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
in_libcall_block = 0;
hash_scan_insn (insn, table, in_libcall_block);
if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
in_libcall_block = 0;
}
}
free (reg_avail_info);
reg_avail_info = NULL;
}
/* Allocate space for the set/expr hash TABLE.
N_INSNS is the number of instructions in the function.
It is used to determine the number of buckets to use.
SET_P determines whether set or expression table will
be created. */
static void
alloc_hash_table (n_insns, table, set_p)
int n_insns;
struct hash_table *table;
int set_p;
{
int n;
table->size = n_insns / 4;
if (table->size < 11)
table->size = 11;
/* Attempt to maintain efficient use of hash table.
Making it an odd number is simplest for now.
??? Later take some measurements. */
table->size |= 1;
n = table->size * sizeof (struct expr *);
table->table = (struct expr **) gmalloc (n);
table->set_p = set_p;
}
/* Free things allocated by alloc_hash_table. */
static void
free_hash_table (table)
struct hash_table *table;
{
free (table->table);
}
/* Compute the hash TABLE for doing copy/const propagation or
expression hash table. */
static void
compute_hash_table (table)
struct hash_table *table;
{
/* Initialize count of number of entries in hash table. */
table->n_elems = 0;
memset ((char *) table->table, 0,
table->size * sizeof (struct expr *));
compute_hash_table_work (table);
}
/* Expression tracking support. */
/* Lookup pattern PAT in the expression TABLE.
The result is a pointer to the table entry, or NULL if not found. */
static struct expr *
lookup_expr (pat, table)
rtx pat;
struct hash_table *table;
{
int do_not_record_p;
unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
table->size);
struct expr *expr;
if (do_not_record_p)
return NULL;
expr = table->table[hash];
while (expr && ! expr_equiv_p (expr->expr, pat))
expr = expr->next_same_hash;
return expr;
}
/* Lookup REGNO in the set TABLE. If PAT is non-NULL look for the entry that
matches it, otherwise return the first entry for REGNO. The result is a
pointer to the table entry, or NULL if not found. */
static struct expr *
lookup_set (regno, pat, table)
unsigned int regno;
rtx pat;
struct hash_table *table;
{
unsigned int hash = hash_set (regno, table->size);
struct expr *expr;
expr = table->table[hash];
if (pat)
{
while (expr && ! expr_equiv_p (expr->expr, pat))
expr = expr->next_same_hash;
}
else
{
while (expr && REGNO (SET_DEST (expr->expr)) != regno)
expr = expr->next_same_hash;
}
return expr;
}
/* Return the next entry for REGNO in list EXPR. */
static struct expr *
next_set (regno, expr)
unsigned int regno;
struct expr *expr;
{
do
expr = expr->next_same_hash;
while (expr && REGNO (SET_DEST (expr->expr)) != regno);
return expr;
}
/* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
types may be mixed. */
static void
free_insn_expr_list_list (listp)
rtx *listp;
{
rtx list, next;
for (list = *listp; list ; list = next)
{
next = XEXP (list, 1);
if (GET_CODE (list) == EXPR_LIST)
free_EXPR_LIST_node (list);
else
free_INSN_LIST_node (list);
}
*listp = NULL;
}
/* Clear canon_modify_mem_list and modify_mem_list tables. */
static void
clear_modify_mem_tables ()
{
int i;
EXECUTE_IF_SET_IN_BITMAP
(modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
bitmap_clear (modify_mem_list_set);
EXECUTE_IF_SET_IN_BITMAP
(canon_modify_mem_list_set, 0, i,
free_insn_expr_list_list (canon_modify_mem_list + i));
bitmap_clear (canon_modify_mem_list_set);
}
/* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
static void
free_modify_mem_tables ()
{
clear_modify_mem_tables ();
free (modify_mem_list);
free (canon_modify_mem_list);
modify_mem_list = 0;
canon_modify_mem_list = 0;
}
/* Reset tables used to keep track of what's still available [since the
start of the block]. */
static void
reset_opr_set_tables ()
{
/* Maintain a bitmap of which regs have been set since beginning of
the block. */
CLEAR_REG_SET (reg_set_bitmap);
/* Also keep a record of the last instruction to modify memory.
For now this is very trivial, we only record whether any memory
location has been modified. */
clear_modify_mem_tables ();
}
/* Return nonzero if the operands of X are not set before INSN in
INSN's basic block. */
static int
oprs_not_set_p (x, insn)
rtx x, insn;
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return 1;
code = GET_CODE (x);
switch (code)
{
case PC:
case CC0:
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 1;
case MEM:
if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
INSN_CUID (insn), x, 0))
return 0;
else
return oprs_not_set_p (XEXP (x, 0), insn);
case REG:
return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
default:
break;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
return oprs_not_set_p (XEXP (x, i), insn);
if (! oprs_not_set_p (XEXP (x, i), insn))
return 0;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
return 0;
}
return 1;
}
/* Mark things set by a CALL. */
static void
mark_call (insn)
rtx insn;
{
if (! CONST_OR_PURE_CALL_P (insn))
record_last_mem_set_info (insn);
}
/* Mark things set by a SET. */
static void
mark_set (pat, insn)
rtx pat, insn;
{
rtx dest = SET_DEST (pat);
while (GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == SIGN_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == REG)
SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
else if (GET_CODE (dest) == MEM)
record_last_mem_set_info (insn);
if (GET_CODE (SET_SRC (pat)) == CALL)
mark_call (insn);
}
/* Record things set by a CLOBBER. */
static void
mark_clobber (pat, insn)
rtx pat, insn;
{
rtx clob = XEXP (pat, 0);
while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
clob = XEXP (clob, 0);
if (GET_CODE (clob) == REG)
SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
else
record_last_mem_set_info (insn);
}
/* Record things set by INSN.
This data is used by oprs_not_set_p. */
static void
mark_oprs_set (insn)
rtx insn;
{
rtx pat = PATTERN (insn);
int i;
if (GET_CODE (pat) == SET)
mark_set (pat, insn);
else if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx x = XVECEXP (pat, 0, i);
if (GET_CODE (x) == SET)
mark_set (x, insn);
else if (GET_CODE (x) == CLOBBER)
mark_clobber (x, insn);
else if (GET_CODE (x) == CALL)
mark_call (insn);
}
else if (GET_CODE (pat) == CLOBBER)
mark_clobber (pat, insn);
else if (GET_CODE (pat) == CALL)
mark_call (insn);
}
/* Classic GCSE reaching definition support. */
/* Allocate reaching def variables. */
static void
alloc_rd_mem (n_blocks, n_insns)
int n_blocks, n_insns;
{
rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
sbitmap_vector_zero (rd_kill, n_blocks);
rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
sbitmap_vector_zero (rd_gen, n_blocks);
reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
sbitmap_vector_zero (reaching_defs, n_blocks);
rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
sbitmap_vector_zero (rd_out, n_blocks);
}
/* Free reaching def variables. */
static void
free_rd_mem ()
{
sbitmap_vector_free (rd_kill);
sbitmap_vector_free (rd_gen);
sbitmap_vector_free (reaching_defs);
sbitmap_vector_free (rd_out);
}
/* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
static void
handle_rd_kill_set (insn, regno, bb)
rtx insn;
int regno;
basic_block bb;
{
struct reg_set *this_reg;
for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
}
/* Compute the set of kill's for reaching definitions. */
static void
compute_kill_rd ()
{
int cuid;
unsigned int regno;
int i;
basic_block bb;
/* For each block
For each set bit in `gen' of the block (i.e each insn which
generates a definition in the block)
Call the reg set by the insn corresponding to that bit regx
Look at the linked list starting at reg_set_table[regx]
For each setting of regx in the linked list, which is not in
this block
Set the bit in `kill' corresponding to that insn. */
FOR_EACH_BB (bb)
for (cuid = 0; cuid < max_cuid; cuid++)
if (TEST_BIT (rd_gen[bb->index], cuid))
{
rtx insn = CUID_INSN (cuid);
rtx pat = PATTERN (insn);
if (GET_CODE (insn) == CALL_INSN)
{
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
handle_rd_kill_set (insn, regno, bb);
}
if (GET_CODE (pat) == PARALLEL)
{
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
{
enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
if ((code == SET || code == CLOBBER)
&& GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
handle_rd_kill_set (insn,
REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
bb);
}
}
else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
/* Each setting of this register outside of this block
must be marked in the set of kills in this block. */
handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
}
}
/* Compute the reaching definitions as in
Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
Chapter 10. It is the same algorithm as used for computing available
expressions but applied to the gens and kills of reaching definitions. */
static void
compute_rd ()
{
int changed, passes;
basic_block bb;
FOR_EACH_BB (bb)
sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
passes = 0;
changed = 1;
while (changed)
{
changed = 0;
FOR_EACH_BB (bb)
{
sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
reaching_defs[bb->index], rd_kill[bb->index]);
}
passes++;
}
if (gcse_file)
fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
}
/* Classic GCSE available expression support. */
/* Allocate memory for available expression computation. */
static void
alloc_avail_expr_mem (n_blocks, n_exprs)
int n_blocks, n_exprs;
{
ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
sbitmap_vector_zero (ae_kill, n_blocks);
ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
sbitmap_vector_zero (ae_gen, n_blocks);
ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
sbitmap_vector_zero (ae_in, n_blocks);
ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
sbitmap_vector_zero (ae_out, n_blocks);
}
static void
free_avail_expr_mem ()
{
sbitmap_vector_free (ae_kill);
sbitmap_vector_free (ae_gen);
sbitmap_vector_free (ae_in);
sbitmap_vector_free (ae_out);
}
/* Compute the set of available expressions generated in each basic block. */
static void
compute_ae_gen (expr_hash_table)
struct hash_table *expr_hash_table;
{
unsigned int i;
struct expr *expr;
struct occr *occr;
/* For each recorded occurrence of each expression, set ae_gen[bb][expr].
This is all we have to do because an expression is not recorded if it
is not available, and the only expressions we want to work with are the
ones that are recorded. */
for (i = 0; i < expr_hash_table->size; i++)
for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
for (occr = expr->avail_occr; occr != 0; occr = occr->next)
SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
}
/* Return nonzero if expression X is killed in BB. */
static int
expr_killed_p (x, bb)
rtx x;
basic_block bb;
{
int i, j;
enum rtx_code code;
const char *fmt;
if (x == 0)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
case MEM:
if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
return 1;
else
return expr_killed_p (XEXP (x, 0), bb);
case PC:
case CC0: /*FIXME*/
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 0;
default:
break;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
return expr_killed_p (XEXP (x, i), bb);
else if (expr_killed_p (XEXP (x, i), bb))
return 1;
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
if (expr_killed_p (XVECEXP (x, i, j), bb))
return 1;
}
return 0;
}
/* Compute the set of available expressions killed in each basic block. */
static void
compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
sbitmap *ae_gen, *ae_kill;
struct hash_table *expr_hash_table;
{
basic_block bb;
unsigned int i;
struct expr *expr;
FOR_EACH_BB (bb)
for (i = 0; i < expr_hash_table->size; i++)
for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
{
/* Skip EXPR if generated in this block. */
if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
continue;
if (expr_killed_p (expr->expr, bb))
SET_BIT (ae_kill[bb->index], expr->bitmap_index);
}
}
/* Actually perform the Classic GCSE optimizations. */
/* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
as a positive reach. We want to do this when there are two computations
of the expression in the block.
VISITED is a pointer to a working buffer for tracking which BB's have
been visited. It is NULL for the top-level call.
We treat reaching expressions that go through blocks containing the same
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2 as not reaching. The intent is to improve the probability of finding
only one reaching expression and to reduce register lifetimes by picking
the closest such expression. */
static int
expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
struct occr *occr;
struct expr *expr;
basic_block bb;
int check_self_loop;
char *visited;
{
edge pred;
for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
{
basic_block pred_bb = pred->src;
if (visited[pred_bb->index])
/* This predecessor has already been visited. Nothing to do. */
;
else if (pred_bb == bb)
{
/* BB loops on itself. */
if (check_self_loop
&& TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
&& BLOCK_NUM (occr->insn) == pred_bb->index)
return 1;
visited[pred_bb->index] = 1;
}
/* Ignore this predecessor if it kills the expression. */
else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
visited[pred_bb->index] = 1;
/* Does this predecessor generate this expression? */
else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
{
/* Is this the occurrence we're looking for?
Note that there's only one generating occurrence per block
so we just need to check the block number. */
if (BLOCK_NUM (occr->insn) == pred_bb->index)
return 1;
visited[pred_bb->index] = 1;
}
/* Neither gen nor kill. */
else
{
visited[pred_bb->index] = 1;
if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
visited))
return 1;
}
}
/* All paths have been checked. */
return 0;
}
/* This wrapper for expr_reaches_here_p_work() is to ensure that any
memory allocated for that function is returned. */
static int
expr_reaches_here_p (occr, expr, bb, check_self_loop)
struct occr *occr;
struct expr *expr;
basic_block bb;
int check_self_loop;
{
int rval;
char *visited = (char *) xcalloc (last_basic_block, 1);
rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
free (visited);
return rval;
}
/* Return the instruction that computes EXPR that reaches INSN's basic block.
If there is more than one such instruction, return NULL.
Called only by handle_avail_expr. */
static rtx
computing_insn (expr, insn)
struct expr *expr;
rtx insn;
{
basic_block bb = BLOCK_FOR_INSN (insn);
if (expr->avail_occr->next == NULL)
{
if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
/* The available expression is actually itself
(i.e. a loop in the flow graph) so do nothing. */
return NULL;
/* (FIXME) Case that we found a pattern that was created by
a substitution that took place. */
return expr->avail_occr->insn;
}
else
{
/* Pattern is computed more than once.
Search backwards from this insn to see how many of these
computations actually reach this insn. */
struct occr *occr;
rtx insn_computes_expr = NULL;
int can_reach = 0;
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
{
if (BLOCK_FOR_INSN (occr->insn) == bb)
{
/* The expression is generated in this block.
The only time we care about this is when the expression
is generated later in the block [and thus there's a loop].
We let the normal cse pass handle the other cases. */
if (INSN_CUID (insn) < INSN_CUID (occr->insn)
&& expr_reaches_here_p (occr, expr, bb, 1))
{
can_reach++;
if (can_reach > 1)
return NULL;
insn_computes_expr = occr->insn;
}
}
else if (expr_reaches_here_p (occr, expr, bb, 0))
{
can_reach++;
if (can_reach > 1)
return NULL;
insn_computes_expr = occr->insn;
}
}
if (insn_computes_expr == NULL)
abort ();
return insn_computes_expr;
}
}
/* Return nonzero if the definition in DEF_INSN can reach INSN.
Only called by can_disregard_other_sets. */
static int
def_reaches_here_p (insn, def_insn)
rtx insn, def_insn;
{
rtx reg;
if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
return 1;
if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
{
if (INSN_CUID (def_insn) < INSN_CUID (insn))
{
if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
return 1;
else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
reg = XEXP (PATTERN (def_insn), 0);
else if (GET_CODE (PATTERN (def_insn)) == SET)
reg = SET_DEST (PATTERN (def_insn));
else
abort ();
return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
}
else
return 0;
}
return 0;
}
/* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
value returned is the number of definitions that reach INSN. Returning a
value of zero means that [maybe] more than one definition reaches INSN and
the caller can't perform whatever optimization it is trying. i.e. it is
always safe to return zero. */
static int
can_disregard_other_sets (addr_this_reg, insn, for_combine)
struct reg_set **addr_this_reg;
rtx insn;
int for_combine;
{
int number_of_reaching_defs = 0;
struct reg_set *this_reg;
for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
if (def_reaches_here_p (insn, this_reg->insn))
{
number_of_reaching_defs++;
/* Ignore parallels for now. */
if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
return 0;
if (!for_combine
&& (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
|| ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
SET_SRC (PATTERN (insn)))))
/* A setting of the reg to a different value reaches INSN. */
return 0;
if (number_of_reaching_defs > 1)
{
/* If in this setting the value the register is being set to is
equal to the previous value the register was set to and this
setting reaches the insn we are trying to do the substitution
on then we are ok. */
if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
return 0;
else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
SET_SRC (PATTERN (insn))))
return 0;
}
*addr_this_reg = this_reg;
}
return number_of_reaching_defs;
}
/* Expression computed by insn is available and the substitution is legal,
so try to perform the substitution.
The result is nonzero if any changes were made. */
static int
handle_avail_expr (insn, expr)
rtx insn;
struct expr *expr;
{
rtx pat, insn_computes_expr, expr_set;
rtx to;
struct reg_set *this_reg;
int found_setting, use_src;
int changed = 0;
/* We only handle the case where one computation of the expression
reaches this instruction. */
insn_computes_expr = computing_insn (expr, insn);
if (insn_computes_expr == NULL)
return 0;
expr_set = single_set (insn_computes_expr);
if (!expr_set)
abort ();
found_setting = 0;
use_src = 0;
/* At this point we know only one computation of EXPR outside of this
block reaches this insn. Now try to find a register that the
expression is computed into. */
if (GET_CODE (SET_SRC (expr_set)) == REG)
{
/* This is the case when the available expression that reaches
here has already been handled as an available expression. */
unsigned int regnum_for_replacing
= REGNO (SET_SRC (expr_set));
/* If the register was created by GCSE we can't use `reg_set_table',
however we know it's set only once. */
if (regnum_for_replacing >= max_gcse_regno
/* If the register the expression is computed into is set only once,
or only one set reaches this insn, we can use it. */
|| (((this_reg = reg_set_table[regnum_for_replacing]),
this_reg->next == NULL)
|| can_disregard_other_sets (&this_reg, insn, 0)))
{
use_src = 1;
found_setting = 1;
}
}
if (!found_setting)
{
unsigned int regnum_for_replacing
= REGNO (SET_DEST (expr_set));
/* This shouldn't happen. */
if (regnum_for_replacing >= max_gcse_regno)
abort ();
this_reg = reg_set_table[regnum_for_replacing];
/* If the register the expression is computed into is set only once,
or only one set reaches this insn, use it. */
if (this_reg->next == NULL
|| can_disregard_other_sets (&this_reg, insn, 0))
found_setting = 1;
}
if (found_setting)
{
pat = PATTERN (insn);
if (use_src)
to = SET_SRC (expr_set);
else
to = SET_DEST (expr_set);
changed = validate_change (insn, &SET_SRC (pat), to, 0);
/* We should be able to ignore the return code from validate_change but
to play it safe we check. */
if (changed)
{
gcse_subst_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
INSN_UID (insn));
fprintf (gcse_file, " reg %d %s insn %d\n",
REGNO (to), use_src ? "from" : "set in",
INSN_UID (insn_computes_expr));
}
}
}
/* The register that the expr is computed into is set more than once. */
else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
{
/* Insert an insn after insnx that copies the reg set in insnx
into a new pseudo register call this new register REGN.
From insnb until end of basic block or until REGB is set
replace all uses of REGB with REGN. */
rtx new_insn;
to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
/* Generate the new insn. */
/* ??? If the change fails, we return 0, even though we created
an insn. I think this is ok. */
new_insn
= emit_insn_after (gen_rtx_SET (VOIDmode, to,
SET_DEST (expr_set)),
insn_computes_expr);
/* Keep register set table up to date. */
record_one_set (REGNO (to), new_insn);
gcse_create_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
INSN_UID (NEXT_INSN (insn_computes_expr)),
REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
fprintf (gcse_file, ", computed in insn %d,\n",
INSN_UID (insn_computes_expr));
fprintf (gcse_file, " into newly allocated reg %d\n",
REGNO (to));
}
pat = PATTERN (insn);
/* Do register replacement for INSN. */
changed = validate_change (insn, &SET_SRC (pat),
SET_DEST (PATTERN
(NEXT_INSN (insn_computes_expr))),
0);
/* We should be able to ignore the return code from validate_change but
to play it safe we check. */
if (changed)
{
gcse_subst_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file,
"GCSE: Replacing the source in insn %d with reg %d ",
INSN_UID (insn),
REGNO (SET_DEST (PATTERN (NEXT_INSN
(insn_computes_expr)))));
fprintf (gcse_file, "set in insn %d\n",
INSN_UID (insn_computes_expr));
}
}
}
return changed;
}
/* Perform classic GCSE. This is called by one_classic_gcse_pass after all
the dataflow analysis has been done.
The result is nonzero if a change was made. */
static int
classic_gcse ()
{
int changed;
rtx insn;
basic_block bb;
/* Note we start at block 1. */
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
return 0;
changed = 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
{
/* Reset tables used to keep track of what's still valid [since the
start of the block]. */
reset_opr_set_tables ();
for (insn = bb->head;
insn != NULL && insn != NEXT_INSN (bb->end);
insn = NEXT_INSN (insn))
{
/* Is insn of form (set (pseudo-reg) ...)? */
if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
&& REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
{
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
struct expr *expr;
if (want_to_gcse_p (src)
/* Is the expression recorded? */
&& ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
/* Is the expression available [at the start of the
block]? */
&& TEST_BIT (ae_in[bb->index], expr->bitmap_index)
/* Are the operands unchanged since the start of the
block? */
&& oprs_not_set_p (src, insn))
changed |= handle_avail_expr (insn, expr);
}
/* Keep track of everything modified by this insn. */
/* ??? Need to be careful w.r.t. mods done to INSN. */
if (INSN_P (insn))
mark_oprs_set (insn);
}
}
return changed;
}
/* Top level routine to perform one classic GCSE pass.
Return nonzero if a change was made. */
static int
one_classic_gcse_pass (pass)
int pass;
{
int changed = 0;
gcse_subst_count = 0;
gcse_create_count = 0;
alloc_hash_table (max_cuid, &expr_hash_table, 0);
alloc_rd_mem (last_basic_block, max_cuid);
compute_hash_table (&expr_hash_table);
if (gcse_file)
dump_hash_table (gcse_file, "Expression", &expr_hash_table);
if (expr_hash_table.n_elems > 0)
{
compute_kill_rd ();
compute_rd ();
alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
compute_ae_gen (&expr_hash_table);
compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
compute_available (ae_gen, ae_kill, ae_out, ae_in);
changed = classic_gcse ();
free_avail_expr_mem ();
}
free_rd_mem ();
free_hash_table (&expr_hash_table);
if (gcse_file)
{
fprintf (gcse_file, "\n");
fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
current_function_name, pass, bytes_used, gcse_subst_count);
fprintf (gcse_file, "%d insns created\n", gcse_create_count);
}
return changed;
}
/* Compute copy/constant propagation working variables. */
/* Local properties of assignments. */
static sbitmap *cprop_pavloc;
static sbitmap *cprop_absaltered;
/* Global properties of assignments (computed from the local properties). */
static sbitmap *cprop_avin;
static sbitmap *cprop_avout;
/* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
basic blocks. N_SETS is the number of sets. */
static void
alloc_cprop_mem (n_blocks, n_sets)
int n_blocks, n_sets;
{
cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
}
/* Free vars used by copy/const propagation. */
static void
free_cprop_mem ()
{
sbitmap_vector_free (cprop_pavloc);
sbitmap_vector_free (cprop_absaltered);
sbitmap_vector_free (cprop_avin);
sbitmap_vector_free (cprop_avout);
}
/* For each block, compute whether X is transparent. X is either an
expression or an assignment [though we don't care which, for this context
an assignment is treated as an expression]. For each block where an
element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
bit in BMAP. */
static void
compute_transp (x, indx, bmap, set_p)
rtx x;
int indx;
sbitmap *bmap;
int set_p;
{
int i, j;
basic_block bb;
enum rtx_code code;
reg_set *r;
const char *fmt;
/* repeat is used to turn tail-recursion into iteration since GCC
can't do it when there's no return value. */
repeat:
if (x == 0)
return;
code = GET_CODE (x);
switch (code)
{
case REG:
if (set_p)
{
if (REGNO (x) < FIRST_PSEUDO_REGISTER)
{
FOR_EACH_BB (bb)
if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
SET_BIT (bmap[bb->index], indx);
}
else
{
for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
}
}
else
{
if (REGNO (x) < FIRST_PSEUDO_REGISTER)
{
FOR_EACH_BB (bb)
if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
RESET_BIT (bmap[bb->index], indx);
}
else
{
for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
}
}
return;
case MEM:
FOR_EACH_BB (bb)
{
rtx list_entry = canon_modify_mem_list[bb->index];
while (list_entry)
{
rtx dest, dest_addr;
if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
{
if (set_p)
SET_BIT (bmap[bb->index], indx);
else
RESET_BIT (bmap[bb->index], indx);
break;
}
/* LIST_ENTRY must be an INSN of some kind that sets memory.
Examine each hunk of memory that is modified. */
dest = XEXP (list_entry, 0);
list_entry = XEXP (list_entry, 1);
dest_addr = XEXP (list_entry, 0);
if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
x, rtx_addr_varies_p))
{
if (set_p)
SET_BIT (bmap[bb->index], indx);
else
RESET_BIT (bmap[bb->index], indx);
break;
}
list_entry = XEXP (list_entry, 1);
}
}
x = XEXP (x, 0);
goto repeat;
case PC:
case CC0: /*FIXME*/
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return;
default:
break;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = XEXP (x, i);
goto repeat;
}
compute_transp (XEXP (x, i), indx, bmap, set_p);
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
}
}
/* Top level routine to do the dataflow analysis needed by copy/const
propagation. */
static void
compute_cprop_data ()
{
compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
compute_available (cprop_pavloc, cprop_absaltered,
cprop_avout, cprop_avin);
}
/* Copy/constant propagation. */
/* Maximum number of register uses in an insn that we handle. */
#define MAX_USES 8
/* Table of uses found in an insn.
Allocated statically to avoid alloc/free complexity and overhead. */
static struct reg_use reg_use_table[MAX_USES];
/* Index into `reg_use_table' while building it. */
static int reg_use_count;
/* Set up a list of register numbers used in INSN. The found uses are stored
in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
and contains the number of uses in the table upon exit.
??? If a register appears multiple times we will record it multiple times.
This doesn't hurt anything but it will slow things down. */
static void
find_used_regs (xptr, data)
rtx *xptr;
void *data ATTRIBUTE_UNUSED;
{
int i, j;
enum rtx_code code;
const char *fmt;
rtx x = *xptr;
/* repeat is used to turn tail-recursion into iteration since GCC
can't do it when there's no return value. */
repeat:
if (x == 0)
return;
code = GET_CODE (x);
if (REG_P (x))
{
if (reg_use_count == MAX_USES)
return;
reg_use_table[reg_use_count].reg_rtx = x;
reg_use_count++;
}
/* Recursively scan the operands of this expression. */
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
{
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
find_used_regs (&XEXP (x, i), data);
}
else if (fmt[i] == 'E')
for (j = 0; j < XVECLEN (x, i); j++)
find_used_regs (&XVECEXP (x, i, j), data);
}
}
/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
Returns nonzero is successful. */
static int
try_replace_reg (from, to, insn)
rtx from, to, insn;
{
rtx note = find_reg_equal_equiv_note (insn);
rtx src = 0;
int success = 0;
rtx set = single_set (insn);
validate_replace_src_group (from, to, insn);
if (num_changes_pending () && apply_change_group ())
success = 1;
/* Try to simplify SET_SRC if we have substituted a constant. */
if (success && set && CONSTANT_P (to))
{
src = simplify_rtx (SET_SRC (set));
if (src)
validate_change (insn, &SET_SRC (set), src, 0);
}
if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
{
/* If above failed and this is a single set, try to simplify the source of
the set given our substitution. We could perhaps try this for multiple
SETs, but it probably won't buy us anything. */
src = simplify_replace_rtx (SET_SRC (set), from, to);
if (!rtx_equal_p (src, SET_SRC (set))
&& validate_change (insn, &SET_SRC (set), src, 0))
success = 1;
/* If we've failed to do replacement, have a single SET, don't already
have a note, and have no special SET, add a REG_EQUAL note to not
lose information. */
if (!success && note == 0 && set != 0
&& GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
&& GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
}
/* If there is already a NOTE, update the expression in it with our
replacement. */
else if (note != 0)
XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
/* REG_EQUAL may get simplified into register.
We don't allow that. Remove that note. This code ought
not to hapen, because previous code ought to syntetize
reg-reg move, but be on the safe side. */
if (note && REG_P (XEXP (note, 0)))
remove_note (insn, note);
return success;
}
/* Find a set of REGNOs that are available on entry to INSN's block. Returns
NULL no such set is found. */
static struct expr *
find_avail_set (regno, insn)
int regno;
rtx insn;
{
/* SET1 contains the last set found that can be returned to the caller for
use in a substitution. */
struct expr *set1 = 0;
/* Loops are not possible here. To get a loop we would need two sets
available at the start of the block containing INSN. ie we would
need two sets like this available at the start of the block:
(set (reg X) (reg Y))
(set (reg Y) (reg X))
This can not happen since the set of (reg Y) would have killed the
set of (reg X) making it unavailable at the start of this block. */
while (1)
{
rtx src;
struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
/* Find a set that is available at the start of the block
which contains INSN. */
while (set)
{
if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
break;
set = next_set (regno, set);
}
/* If no available set was found we've reached the end of the
(possibly empty) copy chain. */
if (set == 0)
break;
if (GET_CODE (set->expr) != SET)
abort ();
src = SET_SRC (set->expr);
/* We know the set is available.
Now check that SRC is ANTLOC (i.e. none of the source operands
have changed since the start of the block).
If the source operand changed, we may still use it for the next
iteration of this loop, but we may not use it for substitutions. */
if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
set1 = set;
/* If the source of the set is anything except a register, then
we have reached the end of the copy chain. */
if (GET_CODE (src) != REG)
break;
/* Follow the copy chain, ie start another iteration of the loop
and see if we have an available copy into SRC. */
regno = REGNO (src);
}
/* SET1 holds the last set that was available and anticipatable at
INSN. */
return set1;
}
/* Subroutine of cprop_insn that tries to propagate constants into
JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
it is the instruction that immediately preceeds JUMP, and must be a
single SET of a register. FROM is what we will try to replace,
SRC is the constant we will try to substitute for it. Returns nonzero
if a change was made. */
static int
cprop_jump (bb, setcc, jump, from, src)
basic_block bb;
rtx setcc;
rtx jump;
rtx from;
rtx src;
{
rtx new, new_set;
rtx set = pc_set (jump);
/* First substitute in the INSN condition as the SET_SRC of the JUMP,
then substitute that given values in this expanded JUMP. */
if (setcc != NULL
&& !modified_between_p (from, setcc, jump)
&& !modified_between_p (src, setcc, jump))
{
rtx setcc_set = single_set (setcc);
new_set = simplify_replace_rtx (SET_SRC (set),
SET_DEST (setcc_set),
SET_SRC (setcc_set));
}
else
new_set = set;
new = simplify_replace_rtx (new_set, from, src);
/* If no simplification can be made, then try the next
register. */
if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set)))
return 0;
/* If this is now a no-op delete it, otherwise this must be a valid insn. */
if (new == pc_rtx)
delete_insn (jump);
else
{
/* Ensure the value computed inside the jump insn to be equivalent
to one computed by setcc. */
if (setcc
&& modified_in_p (new, setcc))
return 0;
if (! validate_change (jump, &SET_SRC (set), new, 0))
return 0;
/* If this has turned into an unconditional jump,
then put a barrier after it so that the unreachable
code will be deleted. */
if (GET_CODE (SET_SRC (set)) == LABEL_REF)
emit_barrier_after (jump);
}
#ifdef HAVE_cc0
/* Delete the cc0 setter. */
if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
delete_insn (setcc);
#endif
run_jump_opt_after_gcse = 1;
const_prop_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file,
"CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
REGNO (from), INSN_UID (jump));
print_rtl (gcse_file, src);
fprintf (gcse_file, "\n");
}
purge_dead_edges (bb);
return 1;
}
static bool
constprop_register (insn, from, to, alter_jumps)
rtx insn;
rtx from;
rtx to;
int alter_jumps;
{
rtx sset;
/* Check for reg or cc0 setting instructions followed by
conditional branch instructions first. */
if (alter_jumps
&& (sset = single_set (insn)) != NULL
&& NEXT_INSN (insn)
&& any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
{
rtx dest = SET_DEST (sset);
if ((REG_P (dest) || CC0_P (dest))
&& cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
return 1;
}
/* Handle normal insns next. */
if (GET_CODE (insn) == INSN
&& try_replace_reg (from, to, insn))
return 1;
/* Try to propagate a CONST_INT into a conditional jump.
We're pretty specific about what we will handle in this
code, we can extend this as necessary over time.
Right now the insn in question must look like
(set (pc) (if_then_else ...)) */
else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
return 0;
}
/* Perform constant and copy propagation on INSN.
The result is nonzero if a change was made. */
static int
cprop_insn (insn, alter_jumps)
rtx insn;
int alter_jumps;
{
struct reg_use *reg_used;
int changed = 0;
rtx note;
if (!INSN_P (insn))
return 0;
reg_use_count = 0;
note_uses (&PATTERN (insn), find_used_regs, NULL);
note = find_reg_equal_equiv_note (insn);
/* We may win even when propagating constants into notes. */
if (note)
find_used_regs (&XEXP (note, 0), NULL);
for (reg_used = ®_use_table[0]; reg_use_count > 0;
reg_used++, reg_use_count--)
{
unsigned int regno = REGNO (reg_used->reg_rtx);
rtx pat, src;
struct expr *set;
/* Ignore registers created by GCSE.
We do this because ... */
if (regno >= max_gcse_regno)
continue;
/* If the register has already been set in this block, there's
nothing we can do. */
if (! oprs_not_set_p (reg_used->reg_rtx, insn))
continue;
/* Find an assignment that sets reg_used and is available
at the start of the block. */
set = find_avail_set (regno, insn);
if (! set)
continue;
pat = set->expr;
/* ??? We might be able to handle PARALLELs. Later. */
if (GET_CODE (pat) != SET)
abort ();
src = SET_SRC (pat);
/* Constant propagation. */
if (CONSTANT_P (src))
{
if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
{
changed = 1;
const_prop_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
print_rtl (gcse_file, src);
fprintf (gcse_file, "\n");
}
}
}
else if (GET_CODE (src) == REG
&& REGNO (src) >= FIRST_PSEUDO_REGISTER
&& REGNO (src) != regno)
{
if (try_replace_reg (reg_used->reg_rtx, src, insn))
{
changed = 1;
copy_prop_count++;
if (gcse_file != NULL)
{
fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
regno, INSN_UID (insn));
fprintf (gcse_file, " with reg %d\n", REGNO (src));
}
/* The original insn setting reg_used may or may not now be
deletable. We leave the deletion to flow. */
/* FIXME: If it turns out that the insn isn't deletable,
then we may have unnecessarily extended register lifetimes
and made things worse. */
}
}
}
return changed;
}
/* Like find_used_regs, but avoid recording uses that appear in
input-output contexts such as zero_extract or pre_dec. This
restricts the cases we consider to those for which local cprop
can legitimately make replacements. */
static void
local_cprop_find_used_regs (xptr, data)
rtx *xptr;
void *data;
{
rtx x = *xptr;
if (x == 0)
return;
switch (GET_CODE (x))
{
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case STRICT_LOW_PART:
return;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case PRE_MODIFY:
case POST_MODIFY:
/* Can only legitimately appear this early in the context of
stack pushes for function arguments, but handle all of the
codes nonetheless. */
return;
case SUBREG:
/* Setting a subreg of a register larger than word_mode leaves
the non-written words unchanged. */
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
return;
break;
default:
break;
}
find_used_regs (xptr, data);
}
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
their REG_EQUAL notes need updating. */
static bool
do_local_cprop (x, insn, alter_jumps, libcall_sp)
rtx x;
rtx insn;
int alter_jumps;
rtx *libcall_sp;
{
rtx newreg = NULL, newcnst = NULL;
/* Rule out USE instructions and ASM statements as we don't want to
change the hard registers mentioned. */
if (GET_CODE (x) == REG
&& (REGNO (x) >= FIRST_PSEUDO_REGISTER
|| (GET_CODE (PATTERN (insn)) != USE
&& asm_noperands (PATTERN (insn)) < 0)))
{
cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
struct elt_loc_list *l;
if (!val)
return false;
for (l = val->locs; l; l = l->next)
{
rtx this_rtx = l->loc;
rtx note;
if (l->in_libcall)
continue;
if (CONSTANT_P (this_rtx))
newcnst = this_rtx;
if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
/* Don't copy propagate if it has attached REG_EQUIV note.
At this point this only function parameters should have
REG_EQUIV notes and if the argument slot is used somewhere
explicitly, it means address of parameter has been taken,
so we should not extend the lifetime of the pseudo. */
&& (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
|| GET_CODE (XEXP (note, 0)) != MEM))
newreg = this_rtx;
}
if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
{
/* If we find a case where we can't fix the retval REG_EQUAL notes
match the new register, we either have to abandom this replacement
or fix delete_trivially_dead_insns to preserve the setting insn,
or make it delete the REG_EUAQL note, and fix up all passes that
require the REG_EQUAL note there. */
if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
abort ();
if (gcse_file != NULL)
{
fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
REGNO (x));
fprintf (gcse_file, "insn %d with constant ",
INSN_UID (insn));
print_rtl (gcse_file, newcnst);
fprintf (gcse_file, "\n");
}
const_prop_count++;
return true;
}
else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
{
adjust_libcall_notes (x, newreg, insn, libcall_sp);
if (gcse_file != NULL)
{
fprintf (gcse_file,
"LOCAL COPY-PROP: Replacing reg %d in insn %d",
REGNO (x), INSN_UID (insn));
fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
}
copy_prop_count++;
return true;
}
}
return false;
}
/* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
their REG_EQUAL notes need updating to reflect that OLDREG has been
replaced with NEWVAL in INSN. Return true if all substitutions could
be made. */
static bool
adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
rtx oldreg, newval, insn, *libcall_sp;
{
rtx end;
while ((end = *libcall_sp++))
{
rtx note = find_reg_equal_equiv_note (end);
if (! note)
continue;
if (REG_P (newval))
{
if (reg_set_between_p (newval, PREV_INSN (insn), end))
{
do
{
note = find_reg_equal_equiv_note (end);
if (! note)
continue;
if (reg_mentioned_p (newval, XEXP (note, 0)))
return false;
}
while ((end = *libcall_sp++));
return true;
}
}
XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
insn = end;
}
return true;
}
#define MAX_NESTED_LIBCALLS 9
static void
local_cprop_pass (alter_jumps)
int alter_jumps;
{
rtx insn;
struct reg_use *reg_used;
rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
bool changed = false;
cselib_init ();
libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
*libcall_sp = 0;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (INSN_P (insn))
{
rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
if (note)
{
if (libcall_sp == libcall_stack)
abort ();
*--libcall_sp = XEXP (note, 0);
}
note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
if (note)
libcall_sp++;
note = find_reg_equal_equiv_note (insn);
do
{
reg_use_count = 0;
note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
if (note)
local_cprop_find_used_regs (&XEXP (note, 0), NULL);
for (reg_used = ®_use_table[0]; reg_use_count > 0;
reg_used++, reg_use_count--)
if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
libcall_sp))
{
changed = true;
break;
}
}
while (reg_use_count);
}
cselib_process_insn (insn);
}
cselib_finish ();
/* Global analysis may get into infinite loops for unreachable blocks. */
if (changed && alter_jumps)
{
delete_unreachable_blocks ();
free_reg_set_mem ();
alloc_reg_set_mem (max_reg_num ());
compute_sets (get_insns ());
}
}
/* Forward propagate copies. This includes copies and constants. Return
nonzero if a change was made. */
static int
cprop (alter_jumps)
int alter_jumps;
{
int changed;
basic_block bb;
rtx insn;
/* Note we start at block 1. */
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
{
if (gcse_file != NULL)
fprintf (gcse_file, "\n");
return 0;
}
changed = 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
{
/* Reset tables used to keep track of what's still valid [since the
start of the block]. */
reset_opr_set_tables ();
for (insn = bb->head;
insn != NULL && insn != NEXT_INSN (bb->end);
insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
changed |= cprop_insn (insn, alter_jumps);
/* Keep track of everything modified by this insn. */
/* ??? Need to be careful w.r.t. mods done to INSN. Don't
call mark_oprs_set if we turned the insn into a NOTE. */
if (GET_CODE (insn) != NOTE)
mark_oprs_set (insn);
}
}
if (gcse_file != NULL)
fprintf (gcse_file, "\n");
return changed;
}
/* Perform one copy/constant propagation pass.
F is the first insn in the function.
PASS is the pass count. */
static int
one_cprop_pass (pass, alter_jumps)
int pass;
int alter_jumps;
{
int changed = 0;
const_prop_count = 0;
copy_prop_count = 0;
local_cprop_pass (alter_jumps);
alloc_hash_table (max_cuid, &set_hash_table, 1);
compute_hash_table (&set_hash_table);
if (gcse_file)
dump_hash_table (gcse_file, "SET", &set_hash_table);
if (set_hash_table.n_elems > 0)
{
alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
compute_cprop_data ();
changed = cprop (alter_jumps);
if (alter_jumps)
changed |= bypass_conditional_jumps ();
free_cprop_mem ();
}
free_hash_table (&set_hash_table);
if (gcse_file)
{
fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
current_function_name, pass, bytes_used);
fprintf (gcse_file, "%d const props, %d copy props\n\n",
const_prop_count, copy_prop_count);
}
/* Global analysis may get into infinite loops for unreachable blocks. */
if (changed && alter_jumps)
delete_unreachable_blocks ();
return changed;
}
/* Bypass conditional jumps. */
/* Find a set of REGNO to a constant that is available at the end of basic
block BB. Returns NULL if no such set is found. Based heavily upon
find_avail_set. */
static struct expr *
find_bypass_set (regno, bb)
int regno;
int bb;
{
struct expr *result = 0;
for (;;)
{
rtx src;
struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
while (set)
{
if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
break;
set = next_set (regno, set);
}
if (set == 0)
break;
if (GET_CODE (set->expr) != SET)
abort ();
src = SET_SRC (set->expr);
if (CONSTANT_P (src))
result = set;
if (GET_CODE (src) != REG)
break;
regno = REGNO (src);
}
return result;
}
/* Subroutine of bypass_block that checks whether a pseudo is killed by
any of the instructions inserted on an edge. Jump bypassing places
condition code setters on CFG edges using insert_insn_on_edge. This
function is required to check that our data flow analysis is still
valid prior to commit_edge_insertions. */
static bool
reg_killed_on_edge (reg, e)
rtx reg;
edge e;
{
rtx insn;
for (insn = e->insns; insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_set_p (reg, insn))
return true;
return false;
}
/* Subroutine of bypass_conditional_jumps that attempts to bypass the given
basic block BB which has more than one predecessor. If not NULL, SETCC
is the first instruction of BB, which is immediately followed by JUMP_INSN
JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
Returns nonzero if a change was made.
During the jump bypassing pass, we may place copies of SETCC instuctions
on CFG edges. The following routine must be careful to pay attention to
these inserted insns when performing its transformations. */
static int
bypass_block (bb, setcc, jump)
basic_block bb;
rtx setcc, jump;
{
rtx insn, note;
edge e, enext, edest;
int i, change;
insn = (setcc != NULL) ? setcc : jump;
/* Determine set of register uses in INSN. */
reg_use_count = 0;
note_uses (&PATTERN (insn), find_used_regs, NULL);
note = find_reg_equal_equiv_note (insn);
if (note)
find_used_regs (&XEXP (note, 0), NULL);
change = 0;
for (e = bb->pred; e; e = enext)
{
enext = e->pred_next;
for (i = 0; i < reg_use_count; i++)
{
struct reg_use *reg_used = ®_use_table[i];
unsigned int regno = REGNO (reg_used->reg_rtx);
basic_block dest, old_dest;
struct expr *set;
rtx src, new;
if (regno >= max_gcse_regno)
continue;
set = find_bypass_set (regno, e->src->index);
if (! set)
continue;
/* Check the data flow is valid after edge insertions. */
if (e->insns && reg_killed_on_edge (reg_used->reg_rtx, e))
continue;
src = SET_SRC (pc_set (jump));
if (setcc != NULL)
src = simplify_replace_rtx (src,
SET_DEST (PATTERN (setcc)),
SET_SRC (PATTERN (setcc)));
new = simplify_replace_rtx (src, reg_used->reg_rtx,
SET_SRC (set->expr));
/* Jump bypassing may have already placed instructions on
edges of the CFG. We can't bypass an outgoing edge that
has instructions associated with it, as these insns won't
get executed if the incoming edge is redirected. */
if (new == pc_rtx)
{
edest = FALLTHRU_EDGE (bb);
dest = edest->insns ? NULL : edest->dest;
}
else if (GET_CODE (new) == LABEL_REF)
{
dest = BLOCK_FOR_INSN (XEXP (new, 0));
/* Don't bypass edges containing instructions. */
for (edest = bb->succ; edest; edest = edest->succ_next)
if (edest->dest == dest && edest->insns)
{
dest = NULL;
break;
}
}
else
dest = NULL;
/* Once basic block indices are stable, we should be able
to use redirect_edge_and_branch_force instead. */
old_dest = e->dest;
if (dest != NULL && dest != old_dest
&& redirect_edge_and_branch (e, dest))
{
/* Copy the register setter to the redirected edge.
Don't copy CC0 setters, as CC0 is dead after jump. */
if (setcc)
{
rtx pat = PATTERN (setcc);
if (!CC0_P (SET_DEST (pat)))
insert_insn_on_edge (copy_insn (pat), e);
}
if (gcse_file != NULL)
{
fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
regno, INSN_UID (jump));
print_rtl (gcse_file, SET_SRC (set->expr));
fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
e->src->index, old_dest->index, dest->index);
}
change = 1;
break;
}
}
}
return change;
}
/* Find basic blocks with more than one predecessor that only contain a
single conditional jump. If the result of the comparison is known at
compile-time from any incoming edge, redirect that edge to the
appropriate target. Returns nonzero if a change was made. */
static int
bypass_conditional_jumps ()
{
basic_block bb;
int changed;
rtx setcc;
rtx insn;
rtx dest;
/* Note we start at block 1. */
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
return 0;
changed = 0;
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
EXIT_BLOCK_PTR, next_bb)
{
/* Check for more than one predecessor. */
if (bb->pred && bb->pred->pred_next)
{
setcc = NULL_RTX;
for (insn = bb->head;
insn != NULL && insn != NEXT_INSN (bb->end);
insn = NEXT_INSN (insn))
if (GET_CODE (insn) == INSN)
{
if (setcc)
break;
if (GET_CODE (PATTERN (insn)) != SET)
break;
dest = SET_DEST (PATTERN (insn));
if (REG_P (dest) || CC0_P (dest))
setcc = insn;
else
break;
}
else if (GET_CODE (insn) == JUMP_INSN)
{
if (any_condjump_p (insn) && onlyjump_p (insn))
changed |= bypass_block (bb, setcc, insn);
break;
}
else if (INSN_P (insn))
break;
}
}
/* If we bypassed any register setting insns, we inserted a
copy on the redirected edge. These need to be commited. */
if (changed)
commit_edge_insertions();
return changed;
}
/* Compute PRE+LCM working variables. */
/* Local properties of expressions. */
/* Nonzero for expressions that are transparent in the block. */
static sbitmap *transp;
/* Nonzero for expressions that are transparent at the end of the block.
This is only zero for expressions killed by abnormal critical edge
created by a calls. */
static sbitmap *transpout;
/* Nonzero for expressions that are computed (available) in the block. */
static sbitmap *comp;
/* Nonzero for expressions that are locally anticipatable in the block. */
static sbitmap *antloc;
/* Nonzero for expressions where this block is an optimal computation
point. */
static sbitmap *pre_optimal;
/* Nonzero for expressions which are redundant in a particular block. */
static sbitmap *pre_redundant;
/* Nonzero for expressions which should be inserted on a specific edge. */
static sbitmap *pre_insert_map;
/* Nonzero for expressions which should be deleted in a specific block. */
static sbitmap *pre_delete_map;
/* Contains the edge_list returned by pre_edge_lcm. */
static struct edge_list *edge_list;
/* Redundant insns. */
static sbitmap pre_redundant_insns;
/* Allocate vars used for PRE analysis. */
static void
alloc_pre_mem (n_blocks, n_exprs)
int n_blocks, n_exprs;
{
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
pre_optimal = NULL;
pre_redundant = NULL;
pre_insert_map = NULL;
pre_delete_map = NULL;
ae_in = NULL;
ae_out = NULL;
ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
/* pre_insert and pre_delete are allocated later. */
}
/* Free vars used for PRE analysis. */
static void
free_pre_mem ()
{
sbitmap_vector_free (transp);
sbitmap_vector_free (comp);
/* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
if (pre_optimal)
sbitmap_vector_free (pre_optimal);
if (pre_redundant)
sbitmap_vector_free (pre_redundant);
if (pre_insert_map)
sbitmap_vector_free (pre_insert_map);
if (pre_delete_map)
sbitmap_vector_free (pre_delete_map);
if (ae_in)
sbitmap_vector_free (ae_in);
if (ae_out)
sbitmap_vector_free (ae_out);
transp = comp = NULL;
pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
ae_in = ae_out = NULL;
}
/* Top level routine to do the dataflow analysis needed by PRE. */
static void
compute_pre_data ()
{
sbitmap trapping_expr;
basic_block bb;
unsigned int ui;
compute_local_properties (transp, comp, antloc, &expr_hash_table);
sbitmap_vector_zero (ae_kill, last_basic_block);
/* Collect expressions which might trap. */
trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
sbitmap_zero (trapping_expr);
for (ui = 0; ui < expr_hash_table.size; ui++)
{
struct expr *e;
for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
if (may_trap_p (e->expr))
SET_BIT (trapping_expr, e->bitmap_index);
}
/* Compute ae_kill for each basic block using:
~(TRANSP | COMP)
This is significantly faster than compute_ae_kill. */
FOR_EACH_BB (bb)
{
edge e;
/* If the current block is the destination of an abnormal edge, we
kill all trapping expressions because we won't be able to properly
place the instruction on the edge. So make them neither
anticipatable nor transparent. This is fairly conservative. */
for (e = bb->pred; e ; e = e->pred_next)
if (e->flags & EDGE_ABNORMAL)
{
sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
break;
}
sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
}
edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
ae_kill, &pre_insert_map, &pre_delete_map);
sbitmap_vector_free (antloc);
antloc = NULL;
sbitmap_vector_free (ae_kill);
ae_kill = NULL;
sbitmap_free (trapping_expr);
}
/* PRE utilities */
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
block BB.
VISITED is a pointer to a working buffer for tracking which BB's have
been visited. It is NULL for the top-level call.
We treat reaching expressions that go through blocks containing the same
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2 as not reaching. The intent is to improve the probability of finding
only one reaching expression and to reduce register lifetimes by picking
the closest such expression. */
static int
pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
basic_block occr_bb;
struct expr *expr;
basic_block bb;
char *visited;
{
edge pred;
for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
{
basic_block pred_bb = pred->src;
if (pred->src == ENTRY_BLOCK_PTR
/* Has predecessor has already been visited? */
|| visited[pred_bb->index])
;/* Nothing to do. */
/* Does this predecessor generate this expression? */
else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
{
/* Is this the occurrence we're looking for?
Note that there's only one generating occurrence per block
so we just need to check the block number. */
if (occr_bb == pred_bb)
return 1;
visited[pred_bb->index] = 1;
}
/* Ignore this predecessor if it kills the expression. */
else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
visited[pred_bb->index] = 1;
/* Neither gen nor kill. */
else
{
visited[pred_bb->index] = 1;
if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
return 1;
}
}
/* All paths have been checked. */
return 0;
}
/* The wrapper for pre_expr_reaches_here_work that ensures that any
memory allocated for that function is returned. */
static int
pre_expr_reaches_here_p (occr_bb, expr, bb)
basic_block occr_bb;
struct expr *expr;
basic_block bb;
{
int rval;
char *visited = (char *) xcalloc (last_basic_block, 1);
rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
free (visited);
return rval;
}
/* Given an expr, generate RTL which we can insert at the end of a BB,
or on an edge. Set the block number of any insns generated to
the value of BB. */
static rtx
process_insert_insn (expr)
struct expr *expr;
{
rtx reg = expr->reaching_reg;
rtx exp = copy_rtx (expr->expr);
rtx pat;
start_sequence ();
/* If the expression is something that's an operand, like a constant,
just copy it to a register. */
if (general_operand (exp, GET_MODE (reg)))
emit_move_insn (reg, exp);
/* Otherwise, make a new insn to compute this expression and make sure the
insn will be recognized (this also adds any needed CLOBBERs). Copy the
expression to make sure we don't have any sharing issues. */
else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
abort ();
pat = get_insns ();
end_sequence ();
return pat;
}
/* Add EXPR to the end of basic block BB.
This is used by both the PRE and code hoisting.
For PRE, we want to verify that the expr is either transparent
or locally anticipatable in the target block. This check makes
no sense for code hoisting. */
static void
insert_insn_end_bb (expr, bb, pre)
struct expr *expr;
basic_block bb;
int pre;
{
rtx insn = bb->end;
rtx new_insn;
rtx reg = expr->reaching_reg;
int regno = REGNO (reg);
rtx pat, pat_end;
pat = process_insert_insn (expr);
if (pat == NULL_RTX || ! INSN_P (pat))
abort ();
pat_end = pat;
while (NEXT_INSN (pat_end) != NULL_RTX)
pat_end = NEXT_INSN (pat_end);
/* If the last insn is a jump, insert EXPR in front [taking care to
handle cc0, etc. properly]. Similary we need to care trapping
instructions in presence of non-call exceptions. */
if (GET_CODE (insn) == JUMP_INSN
|| (GET_CODE (insn) == INSN
&& (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
{
#ifdef HAVE_cc0
rtx note;
#endif
/* It should always be the case that we can put these instructions
anywhere in the basic block with performing PRE optimizations.
Check this. */
if (GET_CODE (insn) == INSN && pre
&& !TEST_BIT (antloc[bb->index], expr->bitmap_index)
&& !TEST_BIT (transp[bb->index], expr->bitmap_index))
abort ();
/* If this is a jump table, then we can't insert stuff here. Since
we know the previous real insn must be the tablejump, we insert
the new instruction just before the tablejump. */
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
insn = prev_real_insn (insn);
#ifdef HAVE_cc0
/* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
if cc0 isn't set. */
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
if (note)
insn = XEXP (note, 0);
else
{
rtx maybe_cc0_setter = prev_nonnote_insn (insn);
if (maybe_cc0_setter
&& INSN_P (maybe_cc0_setter)
&& sets_cc0_p (PATTERN (maybe_cc0_setter)))
insn = maybe_cc0_setter;
}
#endif
/* FIXME: What if something in cc0/jump uses value set in new insn? */
new_insn = emit_insn_before (pat, insn);
}
/* Likewise if the last insn is a call, as will happen in the presence
of exception handling. */
else if (GET_CODE (insn) == CALL_INSN
&& (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
{
/* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
we search backward and place the instructions before the first
parameter is loaded. Do this for everyone for consistency and a
presumtion that we'll get better code elsewhere as well.
It should always be the case that we can put these instructions
anywhere in the basic block with performing PRE optimizations.
Check this. */
if (pre
&& !TEST_BIT (antloc[bb->index], expr->bitmap_index)
&& !TEST_BIT (transp[bb->index], expr->bitmap_index))
abort ();
/* Since different machines initialize their parameter registers
in different orders, assume nothing. Collect the set of all
parameter registers. */
insn = find_first_parameter_load (insn, bb->head);
/* If we found all the parameter loads, then we want to insert
before the first parameter load.
If we did not find all the parameter loads, then we might have
stopped on the head of the block, which could be a CODE_LABEL.
If we inserted before the CODE_LABEL, then we would be putting
the insn in the wrong basic block. In that case, put the insn
after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
while (GET_CODE (insn) == CODE_LABEL
|| NOTE_INSN_BASIC_BLOCK_P (insn))
insn = NEXT_INSN (insn);
new_insn = emit_insn_before (pat, insn);
}
else
new_insn = emit_insn_after (pat, insn);
while (1)
{
if (INSN_P (pat))
{
add_label_notes (PATTERN (pat), new_insn);
note_stores (PATTERN (pat), record_set_info, pat);
}
if (pat == pat_end)
break;
pat = NEXT_INSN (pat);
}
gcse_create_count++;
if (gcse_file)
{
fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
bb->index, INSN_UID (new_insn));
fprintf (gcse_file, "copying expression %d to reg %d\n",
expr->bitmap_index, regno);
}
}
/* Insert partially redundant expressions on edges in the CFG to make
the expressions fully redundant. */
static int
pre_edge_insert (edge_list, index_map)
struct edge_list *edge_list;
struct expr **index_map;
{
int e, i, j, num_edges, set_size, did_insert = 0;
sbitmap *inserted;
/* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
if it reaches any of the deleted expressions. */
set_size = pre_insert_map[0]->size;
num_edges = NUM_EDGES (edge_list);
inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
sbitmap_vector_zero (inserted, num_edges);
for (e = 0; e < num_edges; e++)
{
int indx;
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
{
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
{
struct expr *expr = index_map[j];
struct occr *occr;
/* Now look at each deleted occurrence of this expression. */
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{
if (! occr->deleted_p)
continue;
/* Insert this expression on this edge if if it would
reach the deleted occurrence in BB. */
if (!TEST_BIT (inserted[e], j))
{
rtx insn;
edge eg = INDEX_EDGE (edge_list, e);
/* We can't insert anything on an abnormal and
critical edge, so we insert the insn at the end of
the previous block. There are several alternatives
detailed in Morgans book P277 (sec 10.5) for
handling this situation. This one is easiest for
now. */
if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
insert_insn_end_bb (index_map[j], bb, 0);
else
{
insn = process_insert_insn (index_map[j]);
insert_insn_on_edge (insn, eg);
}
if (gcse_file)
{
fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
bb->index,
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
fprintf (gcse_file, "copy expression %d\n",
expr->bitmap_index);
}
update_ld_motion_stores (expr);
SET_BIT (inserted[e], j);
did_insert = 1;
gcse_create_count++;
}
}
}
}
}
sbitmap_vector_free (inserted);
return did_insert;
}
/* Copy the result of INSN to REG. INDX is the expression number. */
static void
pre_insert_copy_insn (expr, insn)
struct expr *expr;
rtx insn;
{
rtx reg = expr->reaching_reg;
int regno = REGNO (reg);
int indx = expr->bitmap_index;
rtx set = single_set (insn);
rtx new_insn;
if (!set)
abort ();
new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
/* Keep register set table up to date. */
record_one_set (regno, new_insn);
gcse_create_count++;
if (gcse_file)
fprintf (gcse_file,
"PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
BLOCK_NUM (insn), INSN_UID (new_insn), indx,
INSN_UID (insn), regno);
update_ld_motion_stores (expr);
}
/* Copy available expressions that reach the redundant expression
to `reaching_reg'. */
static void
pre_insert_copies ()
{
unsigned int i;
struct expr *expr;
struct occr *occr;
struct occr *avail;
/* For each available expression in the table, copy the result to
`reaching_reg' if the expression reaches a deleted one.
??? The current algorithm is rather brute force.
Need to do some profiling. */
for (i = 0; i < expr_hash_table.size; i++)
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
{
/* If the basic block isn't reachable, PPOUT will be TRUE. However,
we don't want to insert a copy here because the expression may not
really be redundant. So only insert an insn if the expression was
deleted. This test also avoids further processing if the
expression wasn't deleted anywhere. */
if (expr->reaching_reg == NULL)
continue;
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{
if (! occr->deleted_p)
continue;
for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
{
rtx insn = avail->insn;
/* No need to handle this one if handled already. */
if (avail->copied_p)
continue;
/* Don't handle this one if it's a redundant one. */
if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
continue;
/* Or if the expression doesn't reach the deleted one. */
if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
expr,
BLOCK_FOR_INSN (occr->insn)))
continue;
/* Copy the result of avail to reaching_reg. */
pre_insert_copy_insn (expr, insn);
avail->copied_p = 1;
}
}
}
}
/* Emit move from SRC to DEST noting the equivalence with expression computed
in INSN. */
static rtx
gcse_emit_move_after (src, dest, insn)
rtx src, dest, insn;
{
rtx new;
rtx set = single_set (insn), set2;
rtx note;
rtx eqv;
/* This should never fail since we're creating a reg->reg copy
we've verified to be valid. */
new = emit_insn_after (gen_move_insn (dest, src), insn);
/* Note the equivalence for local CSE pass. */
set2 = single_set (new);
if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
return new;
if ((note = find_reg_equal_equiv_note (insn)))
eqv = XEXP (note, 0);
else
eqv = SET_SRC (set);
set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
return new;
}
/* Delete redundant computations.
Deletion is done by changing the insn to copy the `reaching_reg' of
the expression into the result of the SET. It is left to later passes
(cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
Returns nonzero if a change is made. */
static int
pre_delete ()
{
unsigned int i;
int changed;
struct expr *expr;
struct occr *occr;
changed = 0;
for (i = 0; i < expr_hash_table.size; i++)
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
{
int indx = expr->bitmap_index;
/* We only need to search antic_occr since we require
ANTLOC != 0. */
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
{
rtx insn = occr->insn;
rtx set;
basic_block bb = BLOCK_FOR_INSN (insn);
if (TEST_BIT (pre_delete_map[bb->index], indx))
{
set = single_set (insn);
if (! set)
abort ();
/* Create a pseudo-reg to store the result of reaching
expressions into. Get the mode for the new pseudo from
the mode of the original destination pseudo. */
if (expr->reaching_reg == NULL)
expr->reaching_reg
= gen_reg_rtx (GET_MODE (SET_DEST (set)));
gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
delete_insn (insn);
occr->deleted_p = 1;
SET_BIT (pre_redundant_insns, INSN_CUID (insn));
changed = 1;
gcse_subst_count++;
if (gcse_file)
{
fprintf (gcse_file,
"PRE: redundant insn %d (expression %d) in ",
INSN_UID (insn), indx);
fprintf (gcse_file, "bb %d, reaching reg is %d\n",
bb->index, REGNO (expr->reaching_reg));
}
}
}
}
return changed;
}
/* Perform GCSE optimizations using PRE.
This is called by one_pre_gcse_pass after all the dataflow analysis
has been done.
This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
Compiler Design and Implementation.
??? A new pseudo reg is created to hold the reaching expression. The nice
thing about the classical approach is that it would try to use an existing
reg. If the register can't be adequately optimized [i.e. we introduce
reload problems], one could add a pass here to propagate the new register
through the block.
??? We don't handle single sets in PARALLELs because we're [currently] not
able to copy the rest of the parallel when we insert copies to create full
redundancies from partial redundancies. However, there's no reason why we
can't handle PARALLELs in the cases where there are no partial
redundancies. */
static int
pre_gcse ()
{
unsigned int i;
int did_insert, changed;
struct expr **index_map;
struct expr *expr;
/* Compute a mapping from expression number (`bitmap_index') to
hash table entry. */
index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
for (i = 0; i < expr_hash_table.size; i++)
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
index_map[expr->bitmap_index] = expr;
/* Reset bitmap used to track which insns are redundant. */
pre_redundant_insns = sbitmap_alloc (max_cuid);
sbitmap_zero (pre_redundant_insns);
/* Delete the redundant insns first so that
- we know what register to use for the new insns and for the other
ones with reaching expressions
- we know which insns are redundant when we go to create copies */
changed = pre_delete ();
did_insert = pre_edge_insert (edge_list, index_map);
/* In other places with reaching expressions, copy the expression to the
specially allocated pseudo-reg that reaches the redundant expr. */
pre_insert_copies ();
if (did_insert)
{
commit_edge_insertions ();
changed = 1;
}
free (index_map);
sbitmap_free (pre_redundant_insns);
return changed;
}
/* Top level routine to perform one PRE GCSE pass.
Return nonzero if a change was made. */
static int
one_pre_gcse_pass (pass)
int pass;
{
int changed = 0;
gcse_subst_count = 0;
gcse_create_count = 0;
alloc_hash_table (max_cuid, &expr_hash_table, 0);
add_noreturn_fake_exit_edges ();
if (flag_gcse_lm)
compute_ld_motion_mems ();
compute_hash_table (&expr_hash_table);
trim_ld_motion_mems ();
if (gcse_file)
dump_hash_table (gcse_file, "Expression", &expr_hash_table);
if (expr_hash_table.n_elems > 0)
{
alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
compute_pre_data ();
changed |= pre_gcse ();
free_edge_list (edge_list);
free_pre_mem ();
}
free_ldst_mems ();
remove_fake_edges ();
free_hash_table (&expr_hash_table);
if (gcse_file)
{
fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
current_function_name, pass, bytes_used);
fprintf (gcse_file, "%d substs, %d insns created\n",
gcse_subst_count, gcse_create_count);
}
return changed;
}
/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
If notes are added to an insn which references a CODE_LABEL, the
LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
because the following loop optimization pass requires them. */
/* ??? This is very similar to the loop.c add_label_notes function. We
could probably share code here. */
/* ??? If there was a jump optimization pass after gcse and before loop,
then we would not need to do this here, because jump would add the
necessary REG_LABEL notes. */
static void
add_label_notes (x, insn)
rtx x;
rtx insn;
{
enum rtx_code code = GET_CODE (x);
int i, j;
const char *fmt;
if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
{
/* This code used to ignore labels that referred to dispatch tables to
avoid flow generating (slighly) worse code.
We no longer ignore such label references (see LABEL_REF handling in
mark_jump_label for additional information). */
REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
REG_NOTES (insn));
if (LABEL_P (XEXP (x, 0)))
LABEL_NUSES (XEXP (x, 0))++;
return;
}
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
{
if (fmt[i] == 'e')
add_label_notes (XEXP (x, i), insn);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_label_notes (XVECEXP (x, i, j), insn);
}
}
/* Compute transparent outgoing information for each block.
An expression is transparent to an edge unless it is killed by
the edge itself. This can only happen with abnormal control flow,
when the edge is traversed through a call. This happens with
non-local labels and exceptions.
This would not be necessary if we split the edge. While this is
normally impossible for abnormal critical edges, with some effort
it should be possible with exception handling, since we still have
control over which handler should be invoked. But due to increased
EH table sizes, this may not be worthwhile. */
static void
compute_transpout ()
{
basic_block bb;
unsigned int i;
struct expr *expr;
sbitmap_vector_ones (transpout, last_basic_block);
FOR_EACH_BB (bb)
{
/* Note that flow inserted a nop a the end of basic blocks that
end in call instructions for reasons other than abnormal
control flow. */
if (GET_CODE (bb->end) != CALL_INSN)
continue;
for (i = 0; i < expr_hash_table.size; i++)
for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
if (GET_CODE (expr->expr) == MEM)
{
if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
continue;
/* ??? Optimally, we would use interprocedural alias
analysis to determine if this mem is actually killed
by this call. */
RESET_BIT (transpout[bb->index], expr->bitmap_index);
}
}
}
/* Removal of useless null pointer checks */
/* Called via note_stores. X is set by SETTER. If X is a register we must
invalidate nonnull_local and set nonnull_killed. DATA is really a
`null_pointer_info *'.
We ignore hard registers. */
static void
invalidate_nonnull_info (x, setter, data)
rtx x;
rtx setter ATTRIBUTE_UNUSED;
void *data;
{
unsigned int regno;
struct null_pointer_info *npi = (struct null_pointer_info *) data;
while (GET_CODE (x) == SUBREG)
x = SUBREG_REG (x);
/* Ignore anything that is not a register or is a hard register. */
if (GET_CODE (x) != REG
|| REGNO (x) < npi->min_reg
|| REGNO (x) >= npi->max_reg)
return;
regno = REGNO (x) - npi->min_reg;
RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
}
/* Do null-pointer check elimination for the registers indicated in
NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
they are not our responsibility to free. */
static int
delete_null_pointer_checks_1 (block_reg, nonnull_avin,
nonnull_avout, npi)
unsigned int *block_reg;
sbitmap *nonnull_avin;
sbitmap *nonnull_avout;
struct null_pointer_info *npi;
{
basic_block bb, current_block;
sbitmap *nonnull_local = npi->nonnull_local;
sbitmap *nonnull_killed = npi->nonnull_killed;
int something_changed = 0;
/* Compute local properties, nonnull and killed. A register will have
the nonnull property if at the end of the current block its value is
known to be nonnull. The killed property indicates that somewhere in
the block any information we had about the register is killed.
Note that a register can have both properties in a single block. That
indicates that it's killed, then later in the block a new value is
computed. */
sbitmap_vector_zero (nonnull_local, last_basic_block);
sbitmap_vector_zero (nonnull_killed, last_basic_block);
FOR_EACH_BB (current_block)
{
rtx insn, stop_insn;
/* Set the current block for invalidate_nonnull_info. */
npi->current_block = current_block;
/* Scan each insn in the basic block looking for memory references and
register sets. */
stop_insn = NEXT_INSN (current_block->end);
for (insn = current_block->head;
insn != stop_insn;
insn = NEXT_INSN (insn))
{
rtx set;
rtx reg;
/* Ignore anything that is not a normal insn. */
if (! INSN_P (insn))
continue;
/* Basically ignore anything that is not a simple SET. We do have
to make sure to invalidate nonnull_local and set nonnull_killed
for such insns though. */
set = single_set (insn);
if (!set)
{
note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
continue;
}
/* See if we've got a usable memory load. We handle it first
in case it uses its address register as a dest (which kills
the nonnull property). */
if (GET_CODE (SET_SRC (set)) == MEM
&& GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
&& REGNO (reg) >= npi->min_reg
&& REGNO (reg) < npi->max_reg)
SET_BIT (nonnull_local[current_block->index],
REGNO (reg) - npi->min_reg);
/* Now invalidate stuff clobbered by this insn. */
note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
/* And handle stores, we do these last since any sets in INSN can
not kill the nonnull property if it is derived from a MEM
appearing in a SET_DEST. */
if (GET_CODE (SET_DEST (set)) == MEM
&& GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
&& REGNO (reg) >= npi->min_reg
&& REGNO (reg) < npi->max_reg)
SET_BIT (nonnull_local[current_block->index],
REGNO (reg) - npi->min_reg);
}
}
/* Now compute global properties based on the local properties. This
is a classic global availablity algorithm. */
compute_available (nonnull_local, nonnull_killed,
nonnull_avout, nonnull_avin);
/* Now look at each bb and see if it ends with a compare of a value
against zero. */
FOR_EACH_BB (bb)
{
rtx last_insn = bb->end;
rtx condition, earliest;
int compare_and_branch;
/* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
since BLOCK_REG[BB] is zero if this block did not end with a
comparison against zero, this condition works. */
if (block_reg[bb->index] < npi->min_reg
|| block_reg[bb->index] >= npi->max_reg)
continue;
/* LAST_INSN is a conditional jump. Get its condition. */
condition = get_condition (last_insn, &earliest);
/* If we can't determine the condition then skip. */
if (! condition)
continue;
/* Is the register known to have a nonzero value? */
if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
continue;
/* Try to compute whether the compare/branch at the loop end is one or
two instructions. */
if (earliest == last_insn)
compare_and_branch = 1;
else if (earliest == prev_nonnote_insn (last_insn))
compare_and_branch = 2;
else
continue;
/* We know the register in this comparison is nonnull at exit from
this block. We can optimize this comparison. */
if (GET_CODE (condition) == NE)
{
rtx new_jump;
new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
last_insn);
JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
LABEL_NUSES (JUMP_LABEL (new_jump))++;
emit_barrier_after (new_jump);
}
something_changed = 1;
delete_insn (last_insn);
if (compare_and_branch == 2)
delete_insn (earliest);
purge_dead_edges (bb);
/* Don't check this block again. (Note that BLOCK_END is
invalid here; we deleted the last instruction in the
block.) */
block_reg[bb->index] = 0;
}
return something_changed;
}
/* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
at compile time.
This is conceptually similar to global constant/copy propagation and
classic global CSE (it even uses the same dataflow equations as cprop).
If a register is used as memory address with the form (mem (reg)), then we
know that REG can not be zero at that point in the program. Any instruction
which sets REG "kills" this property.
So, if every path leading to a conditional branch has an available memory
reference of that form, then we know the register can not have the value
zero at the conditional branch.
So we merely need to compute the local properies and propagate that data
around the cfg, then optimize where possible.
We run this pass two times. Once before CSE, then again after CSE. This
has proven to be the most profitable approach. It is rare for new
optimization opportunities of this nature to appear after the first CSE
pass.
This could probably be integrated with global cprop with a little work. */
int
delete_null_pointer_checks (f)
rtx f ATTRIBUTE_UNUSED;
{
sbitmap *nonnull_avin, *nonnull_avout;
unsigned int *block_reg;
basic_block bb;
int reg;
int regs_per_pass;
int max_reg;
struct null_pointer_info npi;
int something_changed = 0;
/* If we have only a single block, then there's nothing to do. */
if (n_basic_blocks <= 1)
return 0;
/* Trying to perform global optimizations on flow graphs which have
a high connectivity will take a long time and is unlikely to be
particularly useful.
In normal circumstances a cfg should have about twice as many edges
as blocks. But we do not want to punish small functions which have
a couple switch statements. So we require a relatively large number
of basic blocks and the ratio of edges to blocks to be high. */
if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
return 0;
/* We need four bitmaps, each with a bit for each register in each
basic block. */
max_reg = max_reg_num ();
regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
/* Allocate bitmaps to hold local and global properties. */
npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
/* Go through the basic blocks, seeing whether or not each block
ends with a conditional branch whose condition is a comparison
against zero. Record the register compared in BLOCK_REG. */
block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
FOR_EACH_BB (bb)
{
rtx last_insn = bb->end;
rtx condition, earliest, reg;
/* We only want conditional branches. */
if (GET_CODE (last_insn) != JUMP_INSN
|| !any_condjump_p (last_insn)
|| !onlyjump_p (last_insn))
continue;
/* LAST_INSN is a conditional jump. Get its condition. */
condition = get_condition (last_insn, &earliest);
/* If we were unable to get the condition, or it is not an equality
comparison against zero then there's nothing we can do. */
if (!condition
|| (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
|| GET_CODE (XEXP (condition, 1)) != CONST_INT
|| (XEXP (condition, 1)
!= CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
continue;
/* We must be checking a register against zero. */
reg = XEXP (condition, 0);
if (GET_CODE (reg) != REG)
continue;
block_reg[bb->index] = REGNO (reg);
}
/* Go through the algorithm for each block of registers. */
for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
{
npi.min_reg = reg;
npi.max_reg = MIN (reg + regs_per_pass, max_reg);
something_changed |= delete_null_pointer_checks_1 (block_reg,
nonnull_avin,
nonnull_avout,
&npi);
}
/* Free the table of registers compared at the end of every block. */
free (block_reg);
/* Free bitmaps. */
sbitmap_vector_free (npi.nonnull_local);
sbitmap_vector_free (npi.nonnull_killed);
sbitmap_vector_free (nonnull_avin);
sbitmap_vector_free (nonnull_avout);
return something_changed;
}
/* Code Hoisting variables and subroutines. */
/* Very busy expressions. */
static sbitmap *hoist_vbein;
static sbitmap *hoist_vbeout;
/* Hoistable expressions. */
static sbitmap *hoist_exprs;
/* Dominator bitmaps. */
dominance_info dominators;
/* ??? We could compute post dominators and run this algorithm in
reverse to perform tail merging, doing so would probably be
more effective than the tail merging code in jump.c.
It's unclear if tail merging could be run in parallel with
code hoisting. It would be nice. */
/* Allocate vars used for code hoisting analysis. */
static void
alloc_code_hoist_mem (n_blocks, n_exprs)
int n_blocks, n_exprs;
{
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
}
/* Free vars used for code hoisting analysis. */
static void
free_code_hoist_mem ()
{
sbitmap_vector_free (antloc);
sbitmap_vector_free (transp);
sbitmap_vector_free (comp);
sbitmap_vector_free (hoist_vbein);
sbitmap_vector_free (hoist_vbeout);
sbitmap_vector_free (hoist_exprs);
sbitmap_vector_free (transpout);
free_dominance_info (dominators);
}
/* Compute the very busy expressions at entry/exit from each block.
An expression is very busy if all paths from a given point
compute the expression. */
static void
compute_code_hoist_vbeinout ()
{
int changed, passes;
basic_block bb;
sbitmap_vector_zero (hoist_vbeout, last_basic_block);
sbitmap_vector_zero (hoist_vbein, last_basic_block);
passes = 0;
changed = 1;
while (changed)
{
changed = 0;
/* We scan the blocks in the reverse order to speed up
the convergence. */
FOR_EACH_BB_REVERSE (bb)
{
changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
hoist_vbeout[bb->index], transp[bb->index]);
if (bb->next_bb != EXIT_BLOCK_PTR)
sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
}
passes++;
}
if (gcse_file)
fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
}
/* Top level routine to do the dataflow analysis needed by code hoisting. */
static void
compute_code_hoist_data ()
{
compute_local_properties (transp, comp, antloc, &expr_hash_table);
compute_transpout ();
compute_code_hoist_vbeinout ();
dominators = calculate_dominance_info (CDI_DOMINATORS);
if (gcse_file)
fprintf (gcse_file, "\n");
}
/* Determine if the expression identified by EXPR_INDEX would
reach BB unimpared if it was placed at the end of EXPR_BB.
It's unclear exactly what Muchnick meant by "unimpared". It seems
to me that the expression must either be computed or transparent in
*every* block in the path(s) from EXPR_BB to BB. Any other definition
would allow the expression to be hoisted out of loops, even if
the expression wasn't a loop invariant.
Contrast this to reachability for PRE where an expression is
considered reachable if *any* path reaches instead of *all*
paths. */
static int
hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
basic_block expr_bb;
int expr_index;
basic_block bb;
char *visited;
{
edge pred;
int visited_allocated_locally = 0;
if (visited == NULL)
{
visited_allocated_locally = 1;
visited = xcalloc (last_basic_block, 1);
}
for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
{
basic_block pred_bb = pred->src;
if (pred->src == ENTRY_BLOCK_PTR)
break;
else if (pred_bb == expr_bb)
continue;
else if (visited[pred_bb->index])
continue;
/* Does this predecessor generate this expression? */
else if (TEST_BIT (comp[pred_bb->index], expr_index))
break;
else if (! TEST_BIT (transp[pred_bb->index], expr_index))
break;
/* Not killed. */
else
{
visited[pred_bb->index] = 1;
if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
pred_bb, visited))
break;
}
}
if (visited_allocated_locally)
free (visited);
return (pred == NULL);
}
/* Actually perform code hoisting. */
static void
hoist_code ()
{
basic_block bb, dominated;
basic_block *domby;
unsigned int domby_len;
unsigned int i,j;
struct expr **index_map;
struct expr *expr;
sbitmap_vector_zero (hoist_exprs, last_basic_block);
/* Compute a mapping from expression number (`bitmap_index') to
hash table entry. */
index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
for (i = 0; i < expr_hash_table.size; i++)
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
index_map[expr->bitmap_index] = expr;
/* Walk over each basic block looking for potentially hoistable
expressions, nothing gets hoisted from the entry block. */
FOR_EACH_BB (bb)
{
int found = 0;
int insn_inserted_p;
domby_len = get_dominated_by (dominators, bb, &domby);
/* Examine each expression that is very busy at the exit of this
block. These are the potentially hoistable expressions. */
for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
{
int hoistable = 0;
if (TEST_BIT (hoist_vbeout[bb->index], i)
&& TEST_BIT (transpout[bb->index], i))
{
/* We've found a potentially hoistable expression, now
we look at every block BB dominates to see if it
computes the expression. */
for (j = 0; j < domby_len; j++)
{
dominated = domby[j];
/* Ignore self dominance. */
if (bb == dominated)
continue;
/* We've found a dominated block, now see if it computes
the busy expression and whether or not moving that
expression to the "beginning" of that block is safe. */
if (!TEST_BIT (antloc[dominated->index], i))
continue;
/* Note if the expression would reach the dominated block
unimpared if it was placed at the end of BB.
Keep track of how many times this expression is hoistable
from a dominated block into BB. */
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
hoistable++;
}
/* If we found more than one hoistable occurrence of this
expression, then note it in the bitmap of expressions to
hoist. It makes no sense to hoist things which are computed
in only one BB, and doing so tends to pessimize register
allocation. One could increase this value to try harder
to avoid any possible code expansion due to register
allocation issues; however experiments have shown that
the vast majority of hoistable expressions are only movable
from two successors, so raising this threshhold is likely
to nullify any benefit we get from code hoisting. */
if (hoistable > 1)
{
SET_BIT (hoist_exprs[bb->index], i);
found = 1;
}
}
}
/* If we found nothing to hoist, then quit now. */
if (! found)
{
free (domby);
continue;
}
/* Loop over all the hoistable expressions. */
for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
{
/* We want to insert the expression into BB only once, so
note when we've inserted it. */
insn_inserted_p = 0;
/* These tests should be the same as the tests above. */
if (TEST_BIT (hoist_vbeout[bb->index], i))
{
/* We've found a potentially hoistable expression, now
we look at every block BB dominates to see if it
computes the expression. */
for (j = 0; j < domby_len; j++)
{
dominated = domby[j];
/* Ignore self dominance. */
if (bb == dominated)
continue;
/* We've found a dominated block, now see if it computes
the busy expression and whether or not moving that
expression to the "beginning" of that block is safe. */
if (!TEST_BIT (antloc[dominated->index], i))
continue;
/* The expression is computed in the dominated block and
it would be safe to compute it at the start of the
dominated block. Now we have to determine if the
expression would reach the dominated block if it was
placed at the end of BB. */
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
{
struct expr *expr = index_map[i];
struct occr *occr = expr->antic_occr;
rtx insn;
rtx set;
/* Find the right occurrence of this expression. */
while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
occr = occr->next;
/* Should never happen. */
if (!occr)
abort ();
insn = occr->insn;
set = single_set (insn);
if (! set)
abort ();
/* Create a pseudo-reg to store the result of reaching
expressions into. Get the mode for the new pseudo
from the mode of the original destination pseudo. */
if (expr->reaching_reg == NULL)
expr->reaching_reg
= gen_reg_rtx (GET_MODE (SET_DEST (set)));
gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
delete_insn (insn);
occr->deleted_p = 1;
if (!insn_inserted_p)
{
insert_insn_end_bb (index_map[i], bb, 0);
insn_inserted_p = 1;
}
}
}
}
}
free (domby);
}
free (index_map);
}
/* Top level routine to perform one code hoisting (aka unification) pass
Return nonzero if a change was made. */
static int
one_code_hoisting_pass ()
{
int changed = 0;
alloc_hash_table (max_cuid, &expr_hash_table, 0);
compute_hash_table (&expr_hash_table);
if (gcse_file)
dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
if (expr_hash_table.n_elems > 0)
{
alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
compute_code_hoist_data ();
hoist_code ();
free_code_hoist_mem ();
}
free_hash_table (&expr_hash_table);
return changed;
}
/* Here we provide the things required to do store motion towards
the exit. In order for this to be effective, gcse also needed to
be taught how to move a load when it is kill only by a store to itself.
int i;
float a[10];
void foo(float scale)
{
for (i=0; i<10; i++)
a[i] *= scale;
}
'i' is both loaded and stored to in the loop. Normally, gcse cannot move
the load out since its live around the loop, and stored at the bottom
of the loop.
The 'Load Motion' referred to and implemented in this file is
an enhancement to gcse which when using edge based lcm, recognizes
this situation and allows gcse to move the load out of the loop.
Once gcse has hoisted the load, store motion can then push this
load towards the exit, and we end up with no loads or stores of 'i'
in the loop. */
/* This will search the ldst list for a matching expression. If it
doesn't find one, we create one and initialize it. */
static struct ls_expr *
ldst_entry (x)
rtx x;
{
struct ls_expr * ptr;
for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
if (expr_equiv_p (ptr->pattern, x))
break;
if (!ptr)
{
ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
ptr->next = pre_ldst_mems;
ptr->expr = NULL;
ptr->pattern = x;
ptr->loads = NULL_RTX;
ptr->stores = NULL_RTX;
ptr->reaching_reg = NULL_RTX;
ptr->invalid = 0;
ptr->index = 0;
ptr->hash_index = 0;
pre_ldst_mems = ptr;
}
return ptr;
}
/* Free up an individual ldst entry. */
static void
free_ldst_entry (ptr)
struct ls_expr * ptr;
{
free_INSN_LIST_list (& ptr->loads);
free_INSN_LIST_list (& ptr->stores);
free (ptr);
}
/* Free up all memory associated with the ldst list. */
static void
free_ldst_mems ()
{
while (pre_ldst_mems)
{
struct ls_expr * tmp = pre_ldst_mems;
pre_ldst_mems = pre_ldst_mems->next;
free_ldst_entry (tmp);
}
pre_ldst_mems = NULL;
}
/* Dump debugging info about the ldst list. */
static void
print_ldst_list (file)
FILE * file;
{
struct ls_expr * ptr;
fprintf (file, "LDST list: \n");
for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
{
fprintf (file, " Pattern (%3d): ", ptr->index);
print_rtl (file, ptr->pattern);
fprintf (file, "\n Loads : ");
if (ptr->loads)
print_rtl (file, ptr->loads);
else
fprintf (file, "(nil)");
fprintf (file, "\n Stores : ");
if (ptr->stores)
print_rtl (file, ptr->stores);
else
fprintf (file, "(nil)");
fprintf (file, "\n\n");
}
fprintf (file, "\n");
}
/* Returns 1 if X is in the list of ldst only expressions. */
static struct ls_expr *
find_rtx_in_ldst (x)
rtx x;
{
struct ls_expr * ptr;
for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
return ptr;
return NULL;
}
/* Assign each element of the list of mems a monotonically increasing value. */
static int
enumerate_ldsts ()
{
struct ls_expr * ptr;
int n = 0;
for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
ptr->index = n++;
return n;
}
/* Return first item in the list. */
static inline struct ls_expr *
first_ls_expr ()
{
return pre_ldst_mems;
}
/* Return the next item in ther list after the specified one. */
static inline struct ls_expr *
next_ls_expr (ptr)
struct ls_expr * ptr;
{
return ptr->next;
}
/* Load Motion for loads which only kill themselves. */
/* Return true if x is a simple MEM operation, with no registers or
side effects. These are the types of loads we consider for the
ld_motion list, otherwise we let the usual aliasing take care of it. */
static int
simple_mem (x)
rtx x;
{
if (GET_CODE (x) != MEM)
return 0;
if (MEM_VOLATILE_P (x))
return 0;
if (GET_MODE (x) == BLKmode)
return 0;
if (!rtx_varies_p (XEXP (x, 0), 0))
return 1;
return 0;
}
/* Make sure there isn't a buried reference in this pattern anywhere.
If there is, invalidate the entry for it since we're not capable
of fixing it up just yet.. We have to be sure we know about ALL
loads since the aliasing code will allow all entries in the
ld_motion list to not-alias itself. If we miss a load, we will get
the wrong value since gcse might common it and we won't know to
fix it up. */
static void
invalidate_any_buried_refs (x)
rtx x;
{
const char * fmt;
int i, j;
struct ls_expr * ptr;
/* Invalidate it in the list. */
if (GET_CODE (x) == MEM && simple_mem (x))
{
ptr = ldst_entry (x);
ptr->invalid = 1;
}
/* Recursively process the insn. */
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
invalidate_any_buried_refs (XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
invalidate_any_buried_refs (XVECEXP (x, i, j));
}
}
/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
being defined as MEM loads and stores to symbols, with no
side effects and no registers in the expression. If there are any
uses/defs which don't match this criteria, it is invalidated and
trimmed out later. */
static void
compute_ld_motion_mems ()
{
struct ls_expr * ptr;
basic_block bb;
rtx insn;
pre_ldst_mems = NULL;
FOR_EACH_BB (bb)
{
for (insn = bb->head;
insn && insn != NEXT_INSN (bb->end);
insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
if (GET_CODE (PATTERN (insn)) == SET)
{
rtx src = SET_SRC (PATTERN (insn));
rtx dest = SET_DEST (PATTERN (insn));
/* Check for a simple LOAD... */
if (GET_CODE (src) == MEM && simple_mem (src))
{
ptr = ldst_entry (src);
if (GET_CODE (dest) == REG)
ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
else
ptr->invalid = 1;
}
else
{
/* Make sure there isn't a buried load somewhere. */
invalidate_any_buried_refs (src);
}
/* Check for stores. Don't worry about aliased ones, they
will block any movement we might do later. We only care
about this exact pattern since those are the only
circumstance that we will ignore the aliasing info. */
if (GET_CODE (dest) == MEM && simple_mem (dest))
{
ptr = ldst_entry (dest);
if (GET_CODE (src) != MEM
&& GET_CODE (src) != ASM_OPERANDS)
ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
else
ptr->invalid = 1;
}
}
else
invalidate_any_buried_refs (PATTERN (insn));
}
}
}
}
/* Remove any references that have been either invalidated or are not in the
expression list for pre gcse. */
static void
trim_ld_motion_mems ()
{
struct ls_expr * last = NULL;
struct ls_expr * ptr = first_ls_expr ();
while (ptr != NULL)
{
int del = ptr->invalid;
struct expr * expr = NULL;
/* Delete if entry has been made invalid. */
if (!del)
{
unsigned int i;
del = 1;
/* Delete if we cannot find this mem in the expression list. */
for (i = 0; i < expr_hash_table.size && del; i++)
{
for (expr = expr_hash_table.table[i];
expr != NULL;
expr = expr->next_same_hash)
if (expr_equiv_p (expr->expr, ptr->pattern))
{
del = 0;
break;
}
}
}
if (del)
{
if (last != NULL)
{
last->next = ptr->next;
free_ldst_entry (ptr);
ptr = last->next;
}
else
{
pre_ldst_mems = pre_ldst_mems->next;
free_ldst_entry (ptr);
ptr = pre_ldst_mems;
}
}
else
{
/* Set the expression field if we are keeping it. */
last = ptr;
ptr->expr = expr;
ptr = ptr->next;
}
}
/* Show the world what we've found. */
if (gcse_file && pre_ldst_mems != NULL)
print_ldst_list (gcse_file);
}
/* This routine will take an expression which we are replacing with
a reaching register, and update any stores that are needed if
that expression is in the ld_motion list. Stores are updated by
copying their SRC to the reaching register, and then storeing
the reaching register into the store location. These keeps the
correct value in the reaching register for the loads. */
static void
update_ld_motion_stores (expr)
struct expr * expr;
{
struct ls_expr * mem_ptr;
if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
{
/* We can try to find just the REACHED stores, but is shouldn't
matter to set the reaching reg everywhere... some might be
dead and should be eliminated later. */
/* We replace SET mem = expr with
SET reg = expr
SET mem = reg , where reg is the
reaching reg used in the load. */
rtx list = mem_ptr->stores;
for ( ; list != NULL_RTX; list = XEXP (list, 1))
{
rtx insn = XEXP (list, 0);
rtx pat = PATTERN (insn);
rtx src = SET_SRC (pat);
rtx reg = expr->reaching_reg;
rtx copy, new;
/* If we've already copied it, continue. */
if (expr->reaching_reg == src)
continue;
if (gcse_file)
{
fprintf (gcse_file, "PRE: store updated with reaching reg ");
print_rtl (gcse_file, expr->reaching_reg);
fprintf (gcse_file, ":\n ");
print_inline_rtx (gcse_file, insn, 8);
fprintf (gcse_file, "\n");
}
copy = gen_move_insn ( reg, SET_SRC (pat));
new = emit_insn_before (copy, insn);
record_one_set (REGNO (reg), new);
SET_SRC (pat) = reg;
/* un-recognize this pattern since it's probably different now. */
INSN_CODE (insn) = -1;
gcse_create_count++;
}
}
}
/* Store motion code. */
/* This is used to communicate the target bitvector we want to use in the
reg_set_info routine when called via the note_stores mechanism. */
static sbitmap * regvec;
/* Used in computing the reverse edge graph bit vectors. */
static sbitmap * st_antloc;
/* Global holding the number of store expressions we are dealing with. */
static int num_stores;
/* Checks to set if we need to mark a register set. Called from note_stores. */
static void
reg_set_info (dest, setter, data)
rtx dest, setter ATTRIBUTE_UNUSED;
void * data ATTRIBUTE_UNUSED;
{
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
SET_BIT (*regvec, REGNO (dest));
}
/* Return nonzero if the register operands of expression X are killed
anywhere in basic block BB. */
static int
store_ops_ok (x, bb)
rtx x;
basic_block bb;
{
int i;
enum rtx_code code;
const char * fmt;
/* Repeat is used to turn tail-recursion into iteration. */
repeat:
if (x == 0)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
/* If a reg has changed after us in this
block, the operand has been killed. */
return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
case MEM:
x = XEXP (x, 0);
goto repeat;
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
return 0;
case PC:
case CC0: /*FIXME*/
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case CONST_VECTOR:
case SYMBOL_REF:
case LABEL_REF:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 1;
default:
break;
}
i = GET_RTX_LENGTH (code) - 1;
fmt = GET_RTX_FORMAT (code);
for (; i >= 0; i--)
{
if (fmt[i] == 'e')
{
rtx tem = XEXP (x, i);
/* If we are about to do the last recursive call
needed at this level, change it into iteration.
This function is called enough to be worth it. */
if (i == 0)
{
x = tem;
goto repeat;
}
if (! store_ops_ok (tem, bb))
return 0;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
{
if (! store_ops_ok (XVECEXP (x, i, j), bb))
return 0;
}
}
}
return 1;
}
/* Determine whether insn is MEM store pattern that we will consider moving. */
static void
find_moveable_store (insn)
rtx insn;
{
struct ls_expr * ptr;
rtx dest = PATTERN (insn);
if (GET_CODE (dest) != SET
|| GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
return;
dest = SET_DEST (dest);
if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
|| GET_MODE (dest) == BLKmode)
return;
if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
return;
if (rtx_varies_p (XEXP (dest, 0), 0))
return;
ptr = ldst_entry (dest);
ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
}
/* Perform store motion. Much like gcse, except we move expressions the
other way by looking at the flowgraph in reverse. */
static int
compute_store_table ()
{
int ret;
basic_block bb;
unsigned regno;
rtx insn, pat;
max_gcse_regno = max_reg_num ();
reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
max_gcse_regno);
sbitmap_vector_zero (reg_set_in_block, last_basic_block);
pre_ldst_mems = 0;
/* Find all the stores we care about. */
FOR_EACH_BB (bb)
{
regvec = & (reg_set_in_block[bb->index]);
for (insn = bb->end;
insn && insn != PREV_INSN (bb->end);
insn = PREV_INSN (insn))
{
/* Ignore anything that is not a normal insn. */
if (! INSN_P (insn))
continue;
if (GET_CODE (insn) == CALL_INSN)
{
bool clobbers_all = false;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP
&& find_reg_note (insn, REG_SETJMP, NULL_RTX))
clobbers_all = true;
#endif
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (clobbers_all
|| TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
SET_BIT (reg_set_in_block[bb->index], regno);
}
pat = PATTERN (insn);
note_stores (pat, reg_set_info, NULL);
/* Now that we've marked regs, look for stores. */
if (GET_CODE (pat) == SET)
find_moveable_store (insn);
}
}
ret = enumerate_ldsts ();
if (gcse_file)
{
fprintf (gcse_file, "Store Motion Expressions.\n");
print_ldst_list (gcse_file);
}
return ret;
}
/* Check to see if the load X is aliased with STORE_PATTERN. */
static int
load_kills_store (x, store_pattern)
rtx x, store_pattern;
{
if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
return 1;
return 0;
}
/* Go through the entire insn X, looking for any loads which might alias
STORE_PATTERN. Return 1 if found. */
static int
find_loads (x, store_pattern)
rtx x, store_pattern;
{
const char * fmt;
int i, j;
int ret = 0;
if (!x)
return 0;
if (GET_CODE (x) == SET)
x = SET_SRC (x);
if (GET_CODE (x) == MEM)
{
if (load_kills_store (x, store_pattern))
return 1;
}
/* Recursively process the insn. */
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
{
if (fmt[i] == 'e')
ret |= find_loads (XEXP (x, i), store_pattern);
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
ret |= find_loads (XVECEXP (x, i, j), store_pattern);
}
return ret;
}
/* Check if INSN kills the store pattern X (is aliased with it).
Return 1 if it it does. */
static int
store_killed_in_insn (x, insn)
rtx x, insn;
{
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
return 0;
if (GET_CODE (insn) == CALL_INSN)
{
/* A normal or pure call might read from pattern,
but a const call will not. */
return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
}
if (GET_CODE (PATTERN (insn)) == SET)
{
rtx pat = PATTERN (insn);
/* Check for memory stores to aliased objects. */
if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
/* pretend its a load and check for aliasing. */
if (find_loads (SET_DEST (pat), x))
return 1;
return find_loads (SET_SRC (pat), x);
}
else
return find_loads (PATTERN (insn), x);
}
/* Returns 1 if the expression X is loaded or clobbered on or after INSN
within basic block BB. */
static int
store_killed_after (x, insn, bb)
rtx x, insn;
basic_block bb;
{
rtx last = bb->end;
if (insn == last)
return 0;
/* Check if the register operands of the store are OK in this block.
Note that if registers are changed ANYWHERE in the block, we'll
decide we can't move it, regardless of whether it changed above
or below the store. This could be improved by checking the register
operands while lookinng for aliasing in each insn. */
if (!store_ops_ok (XEXP (x, 0), bb))
return 1;
for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
if (store_killed_in_insn (x, insn))
return 1;
return 0;
}
/* Returns 1 if the expression X is loaded or clobbered on or before INSN
within basic block BB. */
static int
store_killed_before (x, insn, bb)
rtx x, insn;
basic_block bb;
{
rtx first = bb->head;
if (insn == first)
return store_killed_in_insn (x, insn);
/* Check if the register operands of the store are OK in this block.
Note that if registers are changed ANYWHERE in the block, we'll
decide we can't move it, regardless of whether it changed above
or below the store. This could be improved by checking the register
operands while lookinng for aliasing in each insn. */
if (!store_ops_ok (XEXP (x, 0), bb))
return 1;
for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
if (store_killed_in_insn (x, insn))
return 1;
return 0;
}
#define ANTIC_STORE_LIST(x) ((x)->loads)
#define AVAIL_STORE_LIST(x) ((x)->stores)
/* Given the table of available store insns at the end of blocks,
determine which ones are not killed by aliasing, and generate
the appropriate vectors for gen and killed. */
static void
build_store_vectors ()
{
basic_block bb, b;
rtx insn, st;
struct ls_expr * ptr;
/* Build the gen_vector. This is any store in the table which is not killed
by aliasing later in its block. */
ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
sbitmap_vector_zero (ae_gen, last_basic_block);
st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
sbitmap_vector_zero (st_antloc, last_basic_block);
for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
{
/* Put all the stores into either the antic list, or the avail list,
or both. */
rtx store_list = ptr->stores;
ptr->stores = NULL_RTX;
for (st = store_list; st != NULL; st = XEXP (st, 1))
{
insn = XEXP (st, 0);
bb = BLOCK_FOR_INSN (insn);
if (!store_killed_after (ptr->pattern, insn, bb))
{
/* If we've already seen an availale expression in this block,
we can delete the one we saw already (It occurs earlier in
the block), and replace it with this one). We'll copy the
old SRC expression to an unused register in case there
are any side effects. */
if (TEST_BIT (ae_gen[bb->index], ptr->index))
{
/* Find previous store. */
rtx st;
for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
break;
if (st)
{
rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
if (gcse_file)
fprintf (gcse_file, "Removing redundant store:\n");
replace_store_insn (r, XEXP (st, 0), bb);
XEXP (st, 0) = insn;
continue;
}
}
SET_BIT (ae_gen[bb->index], ptr->index);
AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
AVAIL_STORE_LIST (ptr));
}
if (!store_killed_before (ptr->pattern, insn, bb))
{
SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
ANTIC_STORE_LIST (ptr));
}
}
/* Free the original list of store insns. */
free_INSN_LIST_list (&store_list);
}
ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
sbitmap_vector_zero (ae_kill, last_basic_block);
transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
sbitmap_vector_zero (transp, last_basic_block);
for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
FOR_EACH_BB (b)
{
if (store_killed_after (ptr->pattern, b->head, b))
{
/* The anticipatable expression is not killed if it's gen'd. */
/*
We leave this check out for now. If we have a code sequence
in a block which looks like:
ST MEMa = x
L y = MEMa
ST MEMa = z
We should flag this as having an ANTIC expression, NOT
transparent, NOT killed, and AVAIL.
Unfortunately, since we haven't re-written all loads to
use the reaching reg, we'll end up doing an incorrect
Load in the middle here if we push the store down. It happens in
gcc.c-torture/execute/960311-1.c with -O3
If we always kill it in this case, we'll sometimes do
uneccessary work, but it shouldn't actually hurt anything.
if (!TEST_BIT (ae_gen[b], ptr->index)). */
SET_BIT (ae_kill[b->index], ptr->index);
}
else
SET_BIT (transp[b->index], ptr->index);
}
/* Any block with no exits calls some non-returning function, so
we better mark the store killed here, or we might not store to
it at all. If we knew it was abort, we wouldn't have to store,
but we don't know that for sure. */
if (gcse_file)
{
fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
print_ldst_list (gcse_file);
dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
}
}
/* Insert an instruction at the begining of a basic block, and update
the BLOCK_HEAD if needed. */
static void
insert_insn_start_bb (insn, bb)
rtx insn;
basic_block bb;
{
/* Insert at start of successor block. */
rtx prev = PREV_INSN (bb->head);
rtx before = bb->head;
while (before != 0)
{
if (GET_CODE (before) != CODE_LABEL
&& (GET_CODE (before) != NOTE
|| NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
break;
prev = before;
if (prev == bb->end)
break;
before = NEXT_INSN (before);
}
insn = emit_insn_after (insn, prev);
if (gcse_file)
{
fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
bb->index);
print_inline_rtx (gcse_file, insn, 6);
fprintf (gcse_file, "\n");
}
}
/* This routine will insert a store on an edge. EXPR is the ldst entry for
the memory reference, and E is the edge to insert it on. Returns nonzero
if an edge insertion was performed. */
static int
insert_store (expr, e)
struct ls_expr * expr;
edge e;
{
rtx reg, insn;
basic_block bb;
edge tmp;
/* We did all the deleted before this insert, so if we didn't delete a
store, then we haven't set the reaching reg yet either. */
if (expr->reaching_reg == NULL_RTX)
return 0;
reg = expr->reaching_reg;
insn = gen_move_insn (expr->pattern, reg);
/* If we are inserting this expression on ALL predecessor edges of a BB,
insert it at the start of the BB, and reset the insert bits on the other
edges so we don't try to insert it on the other edges. */
bb = e->dest;
for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
{
int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
if (index == EDGE_INDEX_NO_EDGE)
abort ();
if (! TEST_BIT (pre_insert_map[index], expr->index))
break;
}
/* If tmp is NULL, we found an insertion on every edge, blank the
insertion vector for these edges, and insert at the start of the BB. */
if (!tmp && bb != EXIT_BLOCK_PTR)
{
for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
{
int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
RESET_BIT (pre_insert_map[index], expr->index);
}
insert_insn_start_bb (insn, bb);
return 0;
}
/* We can't insert on this edge, so we'll insert at the head of the
successors block. See Morgan, sec 10.5. */
if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
{
insert_insn_start_bb (insn, bb);
return 0;
}
insert_insn_on_edge (insn, e);
if (gcse_file)
{
fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
e->src->index, e->dest->index);
print_inline_rtx (gcse_file, insn, 6);
fprintf (gcse_file, "\n");
}
return 1;
}
/* This routine will replace a store with a SET to a specified register. */
static void
replace_store_insn (reg, del, bb)
rtx reg, del;
basic_block bb;
{
rtx insn;
insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
insn = emit_insn_after (insn, del);
if (gcse_file)
{
fprintf (gcse_file,
"STORE_MOTION delete insn in BB %d:\n ", bb->index);
print_inline_rtx (gcse_file, del, 6);
fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
print_inline_rtx (gcse_file, insn, 6);
fprintf (gcse_file, "\n");
}
delete_insn (del);
}
/* Delete a store, but copy the value that would have been stored into
the reaching_reg for later storing. */
static void
delete_store (expr, bb)
struct ls_expr * expr;
basic_block bb;
{
rtx reg, i, del;
if (expr->reaching_reg == NULL_RTX)
expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
/* If there is more than 1 store, the earlier ones will be dead,
but it doesn't hurt to replace them here. */
reg = expr->reaching_reg;
for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
{
del = XEXP (i, 0);
if (BLOCK_FOR_INSN (del) == bb)
{
/* We know there is only one since we deleted redundant
ones during the available computation. */
replace_store_insn (reg, del, bb);
break;
}
}
}
/* Free memory used by store motion. */
static void
free_store_memory ()
{
free_ldst_mems ();
if (ae_gen)
sbitmap_vector_free (ae_gen);
if (ae_kill)
sbitmap_vector_free (ae_kill);
if (transp)
sbitmap_vector_free (transp);
if (st_antloc)
sbitmap_vector_free (st_antloc);
if (pre_insert_map)
sbitmap_vector_free (pre_insert_map);
if (pre_delete_map)
sbitmap_vector_free (pre_delete_map);
if (reg_set_in_block)
sbitmap_vector_free (reg_set_in_block);
ae_gen = ae_kill = transp = st_antloc = NULL;
pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
}
/* Perform store motion. Much like gcse, except we move expressions the
other way by looking at the flowgraph in reverse. */
static void
store_motion ()
{
basic_block bb;
int x;
struct ls_expr * ptr;
int update_flow = 0;
if (gcse_file)
{
fprintf (gcse_file, "before store motion\n");
print_rtl (gcse_file, get_insns ());
}
init_alias_analysis ();
/* Find all the stores that are live to the end of their block. */
num_stores = compute_store_table ();
if (num_stores == 0)
{
sbitmap_vector_free (reg_set_in_block);
end_alias_analysis ();
return;
}
/* Now compute whats actually available to move. */
add_noreturn_fake_exit_edges ();
build_store_vectors ();
edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
st_antloc, ae_kill, &pre_insert_map,
&pre_delete_map);
/* Now we want to insert the new stores which are going to be needed. */
for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
{
FOR_EACH_BB (bb)
if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
delete_store (ptr, bb);
for (x = 0; x < NUM_EDGES (edge_list); x++)
if (TEST_BIT (pre_insert_map[x], ptr->index))
update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
}
if (update_flow)
commit_edge_insertions ();
free_store_memory ();
free_edge_list (edge_list);
remove_fake_edges ();
end_alias_analysis ();
}
#include "gt-gcse.h"
|