1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
|
/* Basic block reordering routines for the GNU compiler.
Copyright (C) 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This (greedy) algorithm constructs traces in several rounds.
The construction starts from "seeds". The seed for the first round
is the entry point of function. When there are more than one seed
that one is selected first that has the lowest key in the heap
(see function bb_to_key). Then the algorithm repeatedly adds the most
probable successor to the end of a trace. Finally it connects the traces.
There are two parameters: Branch Threshold and Exec Threshold.
If the edge to a successor of the actual basic block is lower than
Branch Threshold or the frequency of the successor is lower than
Exec Threshold the successor will be the seed in one of the next rounds.
Each round has these parameters lower than the previous one.
The last round has to have these parameters set to zero
so that the remaining blocks are picked up.
The algorithm selects the most probable successor from all unvisited
successors and successors that have been added to this trace.
The other successors (that has not been "sent" to the next round) will be
other seeds for this round and the secondary traces will start in them.
If the successor has not been visited in this trace it is added to the trace
(however, there is some heuristic for simple branches).
If the successor has been visited in this trace the loop has been found.
If the loop has many iterations the loop is rotated so that the
source block of the most probable edge going out from the loop
is the last block of the trace.
If the loop has few iterations and there is no edge from the last block of
the loop going out from loop the loop header is duplicated.
Finally, the construction of the trace is terminated.
When connecting traces it first checks whether there is an edge from the
last block of one trace to the first block of another trace.
When there are still some unconnected traces it checks whether there exists
a basic block BB such that BB is a successor of the last bb of one trace
and BB is a predecessor of the first block of another trace. In this case,
BB is duplicated and the traces are connected through this duplicate.
The rest of traces are simply connected so there will be a jump to the
beginning of the rest of trace.
References:
"Software Trace Cache"
A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
http://citeseer.nj.nec.com/15361.html
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "flags.h"
#include "timevar.h"
#include "output.h"
#include "cfglayout.h"
#include "fibheap.h"
#include "target.h"
#include "function.h"
#include "tm_p.h"
#include "obstack.h"
#include "expr.h"
#include "params.h"
#include "toplev.h"
#include "tree-pass.h"
#ifndef HAVE_conditional_execution
#define HAVE_conditional_execution 0
#endif
/* The number of rounds. In most cases there will only be 4 rounds, but
when partitioning hot and cold basic blocks into separate sections of
the .o file there will be an extra round.*/
#define N_ROUNDS 5
/* Stubs in case we don't have a return insn.
We have to check at runtime too, not only compiletime. */
#ifndef HAVE_return
#define HAVE_return 0
#define gen_return() NULL_RTX
#endif
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
/* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
block the edge destination is not duplicated while connecting traces. */
#define DUPLICATION_THRESHOLD 100
/* Length of unconditional jump instruction. */
static int uncond_jump_length;
/* Structure to hold needed information for each basic block. */
typedef struct bbro_basic_block_data_def
{
/* Which trace is the bb start of (-1 means it is not a start of a trace). */
int start_of_trace;
/* Which trace is the bb end of (-1 means it is not an end of a trace). */
int end_of_trace;
/* Which trace is the bb in? */
int in_trace;
/* Which heap is BB in (if any)? */
fibheap_t heap;
/* Which heap node is BB in (if any)? */
fibnode_t node;
} bbro_basic_block_data;
/* The current size of the following dynamic array. */
static int array_size;
/* The array which holds needed information for basic blocks. */
static bbro_basic_block_data *bbd;
/* To avoid frequent reallocation the size of arrays is greater than needed,
the number of elements is (not less than) 1.25 * size_wanted. */
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
/* Free the memory and set the pointer to NULL. */
#define FREE(P) (gcc_assert (P), free (P), P = 0)
/* Structure for holding information about a trace. */
struct trace
{
/* First and last basic block of the trace. */
basic_block first, last;
/* The round of the STC creation which this trace was found in. */
int round;
/* The length (i.e. the number of basic blocks) of the trace. */
int length;
};
/* Maximum frequency and count of one of the entry blocks. */
static int max_entry_frequency;
static gcov_type max_entry_count;
/* Local function prototypes. */
static void find_traces (int *, struct trace *);
static basic_block rotate_loop (edge, struct trace *, int);
static void mark_bb_visited (basic_block, int);
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
int, fibheap_t *, int);
static basic_block copy_bb (basic_block, edge, basic_block, int);
static fibheapkey_t bb_to_key (basic_block);
static bool better_edge_p (basic_block, edge, int, int, int, int, edge);
static void connect_traces (int, struct trace *);
static bool copy_bb_p (basic_block, int);
static int get_uncond_jump_length (void);
static bool push_to_next_round_p (basic_block, int, int, int, gcov_type);
static void find_rarely_executed_basic_blocks_and_crossing_edges (edge *,
int *,
int *);
static void add_labels_and_missing_jumps (edge *, int);
static void add_reg_crossing_jump_notes (void);
static void fix_up_fall_thru_edges (void);
static void fix_edges_for_rarely_executed_code (edge *, int);
static void fix_crossing_conditional_branches (void);
static void fix_crossing_unconditional_branches (void);
/* Check to see if bb should be pushed into the next round of trace
collections or not. Reasons for pushing the block forward are 1).
If the block is cold, we are doing partitioning, and there will be
another round (cold partition blocks are not supposed to be
collected into traces until the very last round); or 2). There will
be another round, and the basic block is not "hot enough" for the
current round of trace collection. */
static bool
push_to_next_round_p (basic_block bb, int round, int number_of_rounds,
int exec_th, gcov_type count_th)
{
bool there_exists_another_round;
bool block_not_hot_enough;
there_exists_another_round = round < number_of_rounds - 1;
block_not_hot_enough = (bb->frequency < exec_th
|| bb->count < count_th
|| probably_never_executed_bb_p (bb));
if (there_exists_another_round
&& block_not_hot_enough)
return true;
else
return false;
}
/* Find the traces for Software Trace Cache. Chain each trace through
RBI()->next. Store the number of traces to N_TRACES and description of
traces to TRACES. */
static void
find_traces (int *n_traces, struct trace *traces)
{
int i;
int number_of_rounds;
edge e;
edge_iterator ei;
fibheap_t heap;
/* Add one extra round of trace collection when partitioning hot/cold
basic blocks into separate sections. The last round is for all the
cold blocks (and ONLY the cold blocks). */
number_of_rounds = N_ROUNDS - 1;
/* Insert entry points of function into heap. */
heap = fibheap_new ();
max_entry_frequency = 0;
max_entry_count = 0;
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
{
bbd[e->dest->index].heap = heap;
bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
e->dest);
if (e->dest->frequency > max_entry_frequency)
max_entry_frequency = e->dest->frequency;
if (e->dest->count > max_entry_count)
max_entry_count = e->dest->count;
}
/* Find the traces. */
for (i = 0; i < number_of_rounds; i++)
{
gcov_type count_threshold;
if (dump_file)
fprintf (dump_file, "STC - round %d\n", i + 1);
if (max_entry_count < INT_MAX / 1000)
count_threshold = max_entry_count * exec_threshold[i] / 1000;
else
count_threshold = max_entry_count / 1000 * exec_threshold[i];
find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
max_entry_frequency * exec_threshold[i] / 1000,
count_threshold, traces, n_traces, i, &heap,
number_of_rounds);
}
fibheap_delete (heap);
if (dump_file)
{
for (i = 0; i < *n_traces; i++)
{
basic_block bb;
fprintf (dump_file, "Trace %d (round %d): ", i + 1,
traces[i].round + 1);
for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
}
fflush (dump_file);
}
}
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
(with sequential number TRACE_N). */
static basic_block
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
{
basic_block bb;
/* Information about the best end (end after rotation) of the loop. */
basic_block best_bb = NULL;
edge best_edge = NULL;
int best_freq = -1;
gcov_type best_count = -1;
/* The best edge is preferred when its destination is not visited yet
or is a start block of some trace. */
bool is_preferred = false;
/* Find the most frequent edge that goes out from current trace. */
bb = back_edge->dest;
do
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest != EXIT_BLOCK_PTR
&& e->dest->il.rtl->visited != trace_n
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX))
{
if (is_preferred)
{
/* The best edge is preferred. */
if (!e->dest->il.rtl->visited
|| bbd[e->dest->index].start_of_trace >= 0)
{
/* The current edge E is also preferred. */
int freq = EDGE_FREQUENCY (e);
if (freq > best_freq || e->count > best_count)
{
best_freq = freq;
best_count = e->count;
best_edge = e;
best_bb = bb;
}
}
}
else
{
if (!e->dest->il.rtl->visited
|| bbd[e->dest->index].start_of_trace >= 0)
{
/* The current edge E is preferred. */
is_preferred = true;
best_freq = EDGE_FREQUENCY (e);
best_count = e->count;
best_edge = e;
best_bb = bb;
}
else
{
int freq = EDGE_FREQUENCY (e);
if (!best_edge || freq > best_freq || e->count > best_count)
{
best_freq = freq;
best_count = e->count;
best_edge = e;
best_bb = bb;
}
}
}
}
bb = bb->aux;
}
while (bb != back_edge->dest);
if (best_bb)
{
/* Rotate the loop so that the BEST_EDGE goes out from the last block of
the trace. */
if (back_edge->dest == trace->first)
{
trace->first = best_bb->aux;
}
else
{
basic_block prev_bb;
for (prev_bb = trace->first;
prev_bb->aux != back_edge->dest;
prev_bb = prev_bb->aux)
;
prev_bb->aux = best_bb->aux;
/* Try to get rid of uncond jump to cond jump. */
if (single_succ_p (prev_bb))
{
basic_block header = single_succ (prev_bb);
/* Duplicate HEADER if it is a small block containing cond jump
in the end. */
if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
&& !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
NULL_RTX))
copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
}
}
}
else
{
/* We have not found suitable loop tail so do no rotation. */
best_bb = back_edge->src;
}
best_bb->aux = NULL;
return best_bb;
}
/* This function marks BB that it was visited in trace number TRACE. */
static void
mark_bb_visited (basic_block bb, int trace)
{
bb->il.rtl->visited = trace;
if (bbd[bb->index].heap)
{
fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
bbd[bb->index].heap = NULL;
bbd[bb->index].node = NULL;
}
}
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
not include basic blocks their probability is lower than BRANCH_TH or their
frequency is lower than EXEC_TH into traces (or count is lower than
COUNT_TH). It stores the new traces into TRACES and modifies the number of
traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
expects that starting basic blocks are in *HEAP and at the end it deletes
*HEAP and stores starting points for the next round into new *HEAP. */
static void
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
struct trace *traces, int *n_traces, int round,
fibheap_t *heap, int number_of_rounds)
{
/* Heap for discarded basic blocks which are possible starting points for
the next round. */
fibheap_t new_heap = fibheap_new ();
while (!fibheap_empty (*heap))
{
basic_block bb;
struct trace *trace;
edge best_edge, e;
fibheapkey_t key;
edge_iterator ei;
bb = fibheap_extract_min (*heap);
bbd[bb->index].heap = NULL;
bbd[bb->index].node = NULL;
if (dump_file)
fprintf (dump_file, "Getting bb %d\n", bb->index);
/* If the BB's frequency is too low send BB to the next round. When
partitioning hot/cold blocks into separate sections, make sure all
the cold blocks (and ONLY the cold blocks) go into the (extra) final
round. */
if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
count_th))
{
int key = bb_to_key (bb);
bbd[bb->index].heap = new_heap;
bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
if (dump_file)
fprintf (dump_file,
" Possible start point of next round: %d (key: %d)\n",
bb->index, key);
continue;
}
trace = traces + *n_traces;
trace->first = bb;
trace->round = round;
trace->length = 0;
bbd[bb->index].in_trace = *n_traces;
(*n_traces)++;
do
{
int prob, freq;
bool ends_in_call;
/* The probability and frequency of the best edge. */
int best_prob = INT_MIN / 2;
int best_freq = INT_MIN / 2;
best_edge = NULL;
mark_bb_visited (bb, *n_traces);
trace->length++;
if (dump_file)
fprintf (dump_file, "Basic block %d was visited in trace %d\n",
bb->index, *n_traces - 1);
ends_in_call = block_ends_with_call_p (bb);
/* Select the successor that will be placed after BB. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
gcc_assert (!(e->flags & EDGE_FAKE));
if (e->dest == EXIT_BLOCK_PTR)
continue;
if (e->dest->il.rtl->visited
&& e->dest->il.rtl->visited != *n_traces)
continue;
if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
continue;
prob = e->probability;
freq = e->dest->frequency;
/* The only sensible preference for a call instruction is the
fallthru edge. Don't bother selecting anything else. */
if (ends_in_call)
{
if (e->flags & EDGE_CAN_FALLTHRU)
{
best_edge = e;
best_prob = prob;
best_freq = freq;
}
continue;
}
/* Edge that cannot be fallthru or improbable or infrequent
successor (i.e. it is unsuitable successor). */
if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
|| prob < branch_th || EDGE_FREQUENCY (e) < exec_th
|| e->count < count_th)
continue;
/* If partitioning hot/cold basic blocks, don't consider edges
that cross section boundaries. */
if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
best_edge))
{
best_edge = e;
best_prob = prob;
best_freq = freq;
}
}
/* If the best destination has multiple predecessors, and can be
duplicated cheaper than a jump, don't allow it to be added
to a trace. We'll duplicate it when connecting traces. */
if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
&& copy_bb_p (best_edge->dest, 0))
best_edge = NULL;
/* Add all non-selected successors to the heaps. */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e == best_edge
|| e->dest == EXIT_BLOCK_PTR
|| e->dest->il.rtl->visited)
continue;
key = bb_to_key (e->dest);
if (bbd[e->dest->index].heap)
{
/* E->DEST is already in some heap. */
if (key != bbd[e->dest->index].node->key)
{
if (dump_file)
{
fprintf (dump_file,
"Changing key for bb %d from %ld to %ld.\n",
e->dest->index,
(long) bbd[e->dest->index].node->key,
key);
}
fibheap_replace_key (bbd[e->dest->index].heap,
bbd[e->dest->index].node, key);
}
}
else
{
fibheap_t which_heap = *heap;
prob = e->probability;
freq = EDGE_FREQUENCY (e);
if (!(e->flags & EDGE_CAN_FALLTHRU)
|| (e->flags & EDGE_COMPLEX)
|| prob < branch_th || freq < exec_th
|| e->count < count_th)
{
/* When partitioning hot/cold basic blocks, make sure
the cold blocks (and only the cold blocks) all get
pushed to the last round of trace collection. */
if (push_to_next_round_p (e->dest, round,
number_of_rounds,
exec_th, count_th))
which_heap = new_heap;
}
bbd[e->dest->index].heap = which_heap;
bbd[e->dest->index].node = fibheap_insert (which_heap,
key, e->dest);
if (dump_file)
{
fprintf (dump_file,
" Possible start of %s round: %d (key: %ld)\n",
(which_heap == new_heap) ? "next" : "this",
e->dest->index, (long) key);
}
}
}
if (best_edge) /* Suitable successor was found. */
{
if (best_edge->dest->il.rtl->visited == *n_traces)
{
/* We do nothing with one basic block loops. */
if (best_edge->dest != bb)
{
if (EDGE_FREQUENCY (best_edge)
> 4 * best_edge->dest->frequency / 5)
{
/* The loop has at least 4 iterations. If the loop
header is not the first block of the function
we can rotate the loop. */
if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
{
if (dump_file)
{
fprintf (dump_file,
"Rotating loop %d - %d\n",
best_edge->dest->index, bb->index);
}
bb->aux = best_edge->dest;
bbd[best_edge->dest->index].in_trace =
(*n_traces) - 1;
bb = rotate_loop (best_edge, trace, *n_traces);
}
}
else
{
/* The loop has less than 4 iterations. */
if (single_succ_p (bb)
&& copy_bb_p (best_edge->dest, !optimize_size))
{
bb = copy_bb (best_edge->dest, best_edge, bb,
*n_traces);
trace->length++;
}
}
}
/* Terminate the trace. */
break;
}
else
{
/* Check for a situation
A
/|
B |
\|
C
where
EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
>= EDGE_FREQUENCY (AC).
(i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
Best ordering is then A B C.
This situation is created for example by:
if (A) B;
C;
*/
FOR_EACH_EDGE (e, ei, bb->succs)
if (e != best_edge
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX)
&& !e->dest->il.rtl->visited
&& single_pred_p (e->dest)
&& !(e->flags & EDGE_CROSSING)
&& single_succ_p (e->dest)
&& (single_succ_edge (e->dest)->flags
& EDGE_CAN_FALLTHRU)
&& !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
&& single_succ (e->dest) == best_edge->dest
&& 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
{
best_edge = e;
if (dump_file)
fprintf (dump_file, "Selecting BB %d\n",
best_edge->dest->index);
break;
}
bb->aux = best_edge->dest;
bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
bb = best_edge->dest;
}
}
}
while (best_edge);
trace->last = bb;
bbd[trace->first->index].start_of_trace = *n_traces - 1;
bbd[trace->last->index].end_of_trace = *n_traces - 1;
/* The trace is terminated so we have to recount the keys in heap
(some block can have a lower key because now one of its predecessors
is an end of the trace). */
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR
|| e->dest->il.rtl->visited)
continue;
if (bbd[e->dest->index].heap)
{
key = bb_to_key (e->dest);
if (key != bbd[e->dest->index].node->key)
{
if (dump_file)
{
fprintf (dump_file,
"Changing key for bb %d from %ld to %ld.\n",
e->dest->index,
(long) bbd[e->dest->index].node->key, key);
}
fibheap_replace_key (bbd[e->dest->index].heap,
bbd[e->dest->index].node,
key);
}
}
}
}
fibheap_delete (*heap);
/* "Return" the new heap. */
*heap = new_heap;
}
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
it to trace after BB, mark OLD_BB visited and update pass' data structures
(TRACE is a number of trace which OLD_BB is duplicated to). */
static basic_block
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
{
basic_block new_bb;
new_bb = duplicate_block (old_bb, e, bb);
BB_COPY_PARTITION (new_bb, old_bb);
gcc_assert (e->dest == new_bb);
gcc_assert (!e->dest->il.rtl->visited);
if (dump_file)
fprintf (dump_file,
"Duplicated bb %d (created bb %d)\n",
old_bb->index, new_bb->index);
new_bb->il.rtl->visited = trace;
new_bb->aux = bb->aux;
bb->aux = new_bb;
if (new_bb->index >= array_size || last_basic_block > array_size)
{
int i;
int new_size;
new_size = MAX (last_basic_block, new_bb->index + 1);
new_size = GET_ARRAY_SIZE (new_size);
bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
for (i = array_size; i < new_size; i++)
{
bbd[i].start_of_trace = -1;
bbd[i].in_trace = -1;
bbd[i].end_of_trace = -1;
bbd[i].heap = NULL;
bbd[i].node = NULL;
}
array_size = new_size;
if (dump_file)
{
fprintf (dump_file,
"Growing the dynamic array to %d elements.\n",
array_size);
}
}
bbd[new_bb->index].in_trace = trace;
return new_bb;
}
/* Compute and return the key (for the heap) of the basic block BB. */
static fibheapkey_t
bb_to_key (basic_block bb)
{
edge e;
edge_iterator ei;
int priority = 0;
/* Do not start in probably never executed blocks. */
if (BB_PARTITION (bb) == BB_COLD_PARTITION
|| probably_never_executed_bb_p (bb))
return BB_FREQ_MAX;
/* Prefer blocks whose predecessor is an end of some trace
or whose predecessor edge is EDGE_DFS_BACK. */
FOR_EACH_EDGE (e, ei, bb->preds)
{
if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
|| (e->flags & EDGE_DFS_BACK))
{
int edge_freq = EDGE_FREQUENCY (e);
if (edge_freq > priority)
priority = edge_freq;
}
}
if (priority)
/* The block with priority should have significantly lower key. */
return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
return -bb->frequency;
}
/* Return true when the edge E from basic block BB is better than the temporary
best edge (details are in function). The probability of edge E is PROB. The
frequency of the successor is FREQ. The current best probability is
BEST_PROB, the best frequency is BEST_FREQ.
The edge is considered to be equivalent when PROB does not differ much from
BEST_PROB; similarly for frequency. */
static bool
better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
int best_freq, edge cur_best_edge)
{
bool is_better_edge;
/* The BEST_* values do not have to be best, but can be a bit smaller than
maximum values. */
int diff_prob = best_prob / 10;
int diff_freq = best_freq / 10;
if (prob > best_prob + diff_prob)
/* The edge has higher probability than the temporary best edge. */
is_better_edge = true;
else if (prob < best_prob - diff_prob)
/* The edge has lower probability than the temporary best edge. */
is_better_edge = false;
else if (freq < best_freq - diff_freq)
/* The edge and the temporary best edge have almost equivalent
probabilities. The higher frequency of a successor now means
that there is another edge going into that successor.
This successor has lower frequency so it is better. */
is_better_edge = true;
else if (freq > best_freq + diff_freq)
/* This successor has higher frequency so it is worse. */
is_better_edge = false;
else if (e->dest->prev_bb == bb)
/* The edges have equivalent probabilities and the successors
have equivalent frequencies. Select the previous successor. */
is_better_edge = true;
else
is_better_edge = false;
/* If we are doing hot/cold partitioning, make sure that we always favor
non-crossing edges over crossing edges. */
if (!is_better_edge
&& flag_reorder_blocks_and_partition
&& cur_best_edge
&& (cur_best_edge->flags & EDGE_CROSSING)
&& !(e->flags & EDGE_CROSSING))
is_better_edge = true;
return is_better_edge;
}
/* Connect traces in array TRACES, N_TRACES is the count of traces. */
static void
connect_traces (int n_traces, struct trace *traces)
{
int i;
bool *connected;
bool two_passes;
int last_trace;
int current_pass;
int current_partition;
int freq_threshold;
gcov_type count_threshold;
freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
if (max_entry_count < INT_MAX / 1000)
count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
else
count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
connected = XCNEWVEC (bool, n_traces);
last_trace = -1;
current_pass = 1;
current_partition = BB_PARTITION (traces[0].first);
two_passes = false;
if (flag_reorder_blocks_and_partition)
for (i = 0; i < n_traces && !two_passes; i++)
if (BB_PARTITION (traces[0].first)
!= BB_PARTITION (traces[i].first))
two_passes = true;
for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
{
int t = i;
int t2;
edge e, best;
int best_len;
if (i >= n_traces)
{
gcc_assert (two_passes && current_pass == 1);
i = 0;
t = i;
current_pass = 2;
if (current_partition == BB_HOT_PARTITION)
current_partition = BB_COLD_PARTITION;
else
current_partition = BB_HOT_PARTITION;
}
if (connected[t])
continue;
if (two_passes
&& BB_PARTITION (traces[t].first) != current_partition)
continue;
connected[t] = true;
/* Find the predecessor traces. */
for (t2 = t; t2 > 0;)
{
edge_iterator ei;
best = NULL;
best_len = 0;
FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
{
int si = e->src->index;
if (e->src != ENTRY_BLOCK_PTR
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX)
&& bbd[si].end_of_trace >= 0
&& !connected[bbd[si].end_of_trace]
&& (BB_PARTITION (e->src) == current_partition)
&& (!best
|| e->probability > best->probability
|| (e->probability == best->probability
&& traces[bbd[si].end_of_trace].length > best_len)))
{
best = e;
best_len = traces[bbd[si].end_of_trace].length;
}
}
if (best)
{
best->src->aux = best->dest;
t2 = bbd[best->src->index].end_of_trace;
connected[t2] = true;
if (dump_file)
{
fprintf (dump_file, "Connection: %d %d\n",
best->src->index, best->dest->index);
}
}
else
break;
}
if (last_trace >= 0)
traces[last_trace].last->aux = traces[t2].first;
last_trace = t;
/* Find the successor traces. */
while (1)
{
/* Find the continuation of the chain. */
edge_iterator ei;
best = NULL;
best_len = 0;
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
{
int di = e->dest->index;
if (e->dest != EXIT_BLOCK_PTR
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX)
&& bbd[di].start_of_trace >= 0
&& !connected[bbd[di].start_of_trace]
&& (BB_PARTITION (e->dest) == current_partition)
&& (!best
|| e->probability > best->probability
|| (e->probability == best->probability
&& traces[bbd[di].start_of_trace].length > best_len)))
{
best = e;
best_len = traces[bbd[di].start_of_trace].length;
}
}
if (best)
{
if (dump_file)
{
fprintf (dump_file, "Connection: %d %d\n",
best->src->index, best->dest->index);
}
t = bbd[best->dest->index].start_of_trace;
traces[last_trace].last->aux = traces[t].first;
connected[t] = true;
last_trace = t;
}
else
{
/* Try to connect the traces by duplication of 1 block. */
edge e2;
basic_block next_bb = NULL;
bool try_copy = false;
FOR_EACH_EDGE (e, ei, traces[t].last->succs)
if (e->dest != EXIT_BLOCK_PTR
&& (e->flags & EDGE_CAN_FALLTHRU)
&& !(e->flags & EDGE_COMPLEX)
&& (!best || e->probability > best->probability))
{
edge_iterator ei;
edge best2 = NULL;
int best2_len = 0;
/* If the destination is a start of a trace which is only
one block long, then no need to search the successor
blocks of the trace. Accept it. */
if (bbd[e->dest->index].start_of_trace >= 0
&& traces[bbd[e->dest->index].start_of_trace].length
== 1)
{
best = e;
try_copy = true;
continue;
}
FOR_EACH_EDGE (e2, ei, e->dest->succs)
{
int di = e2->dest->index;
if (e2->dest == EXIT_BLOCK_PTR
|| ((e2->flags & EDGE_CAN_FALLTHRU)
&& !(e2->flags & EDGE_COMPLEX)
&& bbd[di].start_of_trace >= 0
&& !connected[bbd[di].start_of_trace]
&& (BB_PARTITION (e2->dest) == current_partition)
&& (EDGE_FREQUENCY (e2) >= freq_threshold)
&& (e2->count >= count_threshold)
&& (!best2
|| e2->probability > best2->probability
|| (e2->probability == best2->probability
&& traces[bbd[di].start_of_trace].length
> best2_len))))
{
best = e;
best2 = e2;
if (e2->dest != EXIT_BLOCK_PTR)
best2_len = traces[bbd[di].start_of_trace].length;
else
best2_len = INT_MAX;
next_bb = e2->dest;
try_copy = true;
}
}
}
if (flag_reorder_blocks_and_partition)
try_copy = false;
/* Copy tiny blocks always; copy larger blocks only when the
edge is traversed frequently enough. */
if (try_copy
&& copy_bb_p (best->dest,
!optimize_size
&& EDGE_FREQUENCY (best) >= freq_threshold
&& best->count >= count_threshold))
{
basic_block new_bb;
if (dump_file)
{
fprintf (dump_file, "Connection: %d %d ",
traces[t].last->index, best->dest->index);
if (!next_bb)
fputc ('\n', dump_file);
else if (next_bb == EXIT_BLOCK_PTR)
fprintf (dump_file, "exit\n");
else
fprintf (dump_file, "%d\n", next_bb->index);
}
new_bb = copy_bb (best->dest, best, traces[t].last, t);
traces[t].last = new_bb;
if (next_bb && next_bb != EXIT_BLOCK_PTR)
{
t = bbd[next_bb->index].start_of_trace;
traces[last_trace].last->aux = traces[t].first;
connected[t] = true;
last_trace = t;
}
else
break; /* Stop finding the successor traces. */
}
else
break; /* Stop finding the successor traces. */
}
}
}
if (dump_file)
{
basic_block bb;
fprintf (dump_file, "Final order:\n");
for (bb = traces[0].first; bb; bb = bb->aux)
fprintf (dump_file, "%d ", bb->index);
fprintf (dump_file, "\n");
fflush (dump_file);
}
FREE (connected);
}
/* Return true when BB can and should be copied. CODE_MAY_GROW is true
when code size is allowed to grow by duplication. */
static bool
copy_bb_p (basic_block bb, int code_may_grow)
{
int size = 0;
int max_size = uncond_jump_length;
rtx insn;
if (!bb->frequency)
return false;
if (EDGE_COUNT (bb->preds) < 2)
return false;
if (!can_duplicate_block_p (bb))
return false;
/* Avoid duplicating blocks which have many successors (PR/13430). */
if (EDGE_COUNT (bb->succs) > 8)
return false;
if (code_may_grow && maybe_hot_bb_p (bb))
max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
FOR_BB_INSNS (bb, insn)
{
if (INSN_P (insn))
size += get_attr_min_length (insn);
}
if (size <= max_size)
return true;
if (dump_file)
{
fprintf (dump_file,
"Block %d can't be copied because its size = %d.\n",
bb->index, size);
}
return false;
}
/* Return the length of unconditional jump instruction. */
static int
get_uncond_jump_length (void)
{
rtx label, jump;
int length;
label = emit_label_before (gen_label_rtx (), get_insns ());
jump = emit_jump_insn (gen_jump (label));
length = get_attr_min_length (jump);
delete_insn (jump);
delete_insn (label);
return length;
}
/* Find the basic blocks that are rarely executed and need to be moved to
a separate section of the .o file (to cut down on paging and improve
cache locality). */
static void
find_rarely_executed_basic_blocks_and_crossing_edges (edge *crossing_edges,
int *n_crossing_edges,
int *max_idx)
{
basic_block bb;
bool has_hot_blocks = false;
edge e;
int i;
edge_iterator ei;
/* Mark which partition (hot/cold) each basic block belongs in. */
FOR_EACH_BB (bb)
{
if (probably_never_executed_bb_p (bb))
BB_SET_PARTITION (bb, BB_COLD_PARTITION);
else
{
BB_SET_PARTITION (bb, BB_HOT_PARTITION);
has_hot_blocks = true;
}
}
/* Mark every edge that crosses between sections. */
i = 0;
FOR_EACH_BB (bb)
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->src != ENTRY_BLOCK_PTR
&& e->dest != EXIT_BLOCK_PTR
&& BB_PARTITION (e->src) != BB_PARTITION (e->dest))
{
e->flags |= EDGE_CROSSING;
if (i == *max_idx)
{
*max_idx *= 2;
crossing_edges = xrealloc (crossing_edges,
(*max_idx) * sizeof (edge));
}
crossing_edges[i++] = e;
}
else
e->flags &= ~EDGE_CROSSING;
}
*n_crossing_edges = i;
}
/* If any destination of a crossing edge does not have a label, add label;
Convert any fall-through crossing edges (for blocks that do not contain
a jump) to unconditional jumps. */
static void
add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
{
int i;
basic_block src;
basic_block dest;
rtx label;
rtx barrier;
rtx new_jump;
for (i=0; i < n_crossing_edges; i++)
{
if (crossing_edges[i])
{
src = crossing_edges[i]->src;
dest = crossing_edges[i]->dest;
/* Make sure dest has a label. */
if (dest && (dest != EXIT_BLOCK_PTR))
{
label = block_label (dest);
/* Make sure source block ends with a jump. */
if (src && (src != ENTRY_BLOCK_PTR))
{
if (!JUMP_P (BB_END (src)))
/* bb just falls through. */
{
/* make sure there's only one successor */
gcc_assert (single_succ_p (src));
/* Find label in dest block. */
label = block_label (dest);
new_jump = emit_jump_insn_after (gen_jump (label),
BB_END (src));
barrier = emit_barrier_after (new_jump);
JUMP_LABEL (new_jump) = label;
LABEL_NUSES (label) += 1;
src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
/* Mark edge as non-fallthru. */
crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
} /* end: 'if (GET_CODE ... ' */
} /* end: 'if (src && src->index...' */
} /* end: 'if (dest && dest->index...' */
} /* end: 'if (crossing_edges[i]...' */
} /* end for loop */
}
/* Find any bb's where the fall-through edge is a crossing edge (note that
these bb's must also contain a conditional jump; we've already
dealt with fall-through edges for blocks that didn't have a
conditional jump in the call to add_labels_and_missing_jumps).
Convert the fall-through edge to non-crossing edge by inserting a
new bb to fall-through into. The new bb will contain an
unconditional jump (crossing edge) to the original fall through
destination. */
static void
fix_up_fall_thru_edges (void)
{
basic_block cur_bb;
basic_block new_bb;
edge succ1;
edge succ2;
edge fall_thru;
edge cond_jump = NULL;
edge e;
bool cond_jump_crosses;
int invert_worked;
rtx old_jump;
rtx fall_thru_label;
rtx barrier;
FOR_EACH_BB (cur_bb)
{
fall_thru = NULL;
if (EDGE_COUNT (cur_bb->succs) > 0)
succ1 = EDGE_SUCC (cur_bb, 0);
else
succ1 = NULL;
if (EDGE_COUNT (cur_bb->succs) > 1)
succ2 = EDGE_SUCC (cur_bb, 1);
else
succ2 = NULL;
/* Find the fall-through edge. */
if (succ1
&& (succ1->flags & EDGE_FALLTHRU))
{
fall_thru = succ1;
cond_jump = succ2;
}
else if (succ2
&& (succ2->flags & EDGE_FALLTHRU))
{
fall_thru = succ2;
cond_jump = succ1;
}
if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
{
/* Check to see if the fall-thru edge is a crossing edge. */
if (fall_thru->flags & EDGE_CROSSING)
{
/* The fall_thru edge crosses; now check the cond jump edge, if
it exists. */
cond_jump_crosses = true;
invert_worked = 0;
old_jump = BB_END (cur_bb);
/* Find the jump instruction, if there is one. */
if (cond_jump)
{
if (!(cond_jump->flags & EDGE_CROSSING))
cond_jump_crosses = false;
/* We know the fall-thru edge crosses; if the cond
jump edge does NOT cross, and its destination is the
next block in the bb order, invert the jump
(i.e. fix it so the fall thru does not cross and
the cond jump does). */
if (!cond_jump_crosses
&& cur_bb->aux == cond_jump->dest)
{
/* Find label in fall_thru block. We've already added
any missing labels, so there must be one. */
fall_thru_label = block_label (fall_thru->dest);
if (old_jump && fall_thru_label)
invert_worked = invert_jump (old_jump,
fall_thru_label,0);
if (invert_worked)
{
fall_thru->flags &= ~EDGE_FALLTHRU;
cond_jump->flags |= EDGE_FALLTHRU;
update_br_prob_note (cur_bb);
e = fall_thru;
fall_thru = cond_jump;
cond_jump = e;
cond_jump->flags |= EDGE_CROSSING;
fall_thru->flags &= ~EDGE_CROSSING;
}
}
}
if (cond_jump_crosses || !invert_worked)
{
/* This is the case where both edges out of the basic
block are crossing edges. Here we will fix up the
fall through edge. The jump edge will be taken care
of later. */
new_bb = force_nonfallthru (fall_thru);
if (new_bb)
{
new_bb->aux = cur_bb->aux;
cur_bb->aux = new_bb;
/* Make sure new fall-through bb is in same
partition as bb it's falling through from. */
BB_COPY_PARTITION (new_bb, cur_bb);
single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
}
/* Add barrier after new jump */
if (new_bb)
{
barrier = emit_barrier_after (BB_END (new_bb));
new_bb->il.rtl->footer = unlink_insn_chain (barrier,
barrier);
}
else
{
barrier = emit_barrier_after (BB_END (cur_bb));
cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
barrier);
}
}
}
}
}
}
/* This function checks the destination blockof a "crossing jump" to
see if it has any crossing predecessors that begin with a code label
and end with an unconditional jump. If so, it returns that predecessor
block. (This is to avoid creating lots of new basic blocks that all
contain unconditional jumps to the same destination). */
static basic_block
find_jump_block (basic_block jump_dest)
{
basic_block source_bb = NULL;
edge e;
rtx insn;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, jump_dest->preds)
if (e->flags & EDGE_CROSSING)
{
basic_block src = e->src;
/* Check each predecessor to see if it has a label, and contains
only one executable instruction, which is an unconditional jump.
If so, we can use it. */
if (LABEL_P (BB_HEAD (src)))
for (insn = BB_HEAD (src);
!INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
insn = NEXT_INSN (insn))
{
if (INSN_P (insn)
&& insn == BB_END (src)
&& JUMP_P (insn)
&& !any_condjump_p (insn))
{
source_bb = src;
break;
}
}
if (source_bb)
break;
}
return source_bb;
}
/* Find all BB's with conditional jumps that are crossing edges;
insert a new bb and make the conditional jump branch to the new
bb instead (make the new bb same color so conditional branch won't
be a 'crossing' edge). Insert an unconditional jump from the
new bb to the original destination of the conditional jump. */
static void
fix_crossing_conditional_branches (void)
{
basic_block cur_bb;
basic_block new_bb;
basic_block last_bb;
basic_block dest;
basic_block prev_bb;
edge succ1;
edge succ2;
edge crossing_edge;
edge new_edge;
rtx old_jump;
rtx set_src;
rtx old_label = NULL_RTX;
rtx new_label;
rtx new_jump;
rtx barrier;
last_bb = EXIT_BLOCK_PTR->prev_bb;
FOR_EACH_BB (cur_bb)
{
crossing_edge = NULL;
if (EDGE_COUNT (cur_bb->succs) > 0)
succ1 = EDGE_SUCC (cur_bb, 0);
else
succ1 = NULL;
if (EDGE_COUNT (cur_bb->succs) > 1)
succ2 = EDGE_SUCC (cur_bb, 1);
else
succ2 = NULL;
/* We already took care of fall-through edges, so only one successor
can be a crossing edge. */
if (succ1 && (succ1->flags & EDGE_CROSSING))
crossing_edge = succ1;
else if (succ2 && (succ2->flags & EDGE_CROSSING))
crossing_edge = succ2;
if (crossing_edge)
{
old_jump = BB_END (cur_bb);
/* Check to make sure the jump instruction is a
conditional jump. */
set_src = NULL_RTX;
if (any_condjump_p (old_jump))
{
if (GET_CODE (PATTERN (old_jump)) == SET)
set_src = SET_SRC (PATTERN (old_jump));
else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
{
set_src = XVECEXP (PATTERN (old_jump), 0,0);
if (GET_CODE (set_src) == SET)
set_src = SET_SRC (set_src);
else
set_src = NULL_RTX;
}
}
if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
{
if (GET_CODE (XEXP (set_src, 1)) == PC)
old_label = XEXP (set_src, 2);
else if (GET_CODE (XEXP (set_src, 2)) == PC)
old_label = XEXP (set_src, 1);
/* Check to see if new bb for jumping to that dest has
already been created; if so, use it; if not, create
a new one. */
new_bb = find_jump_block (crossing_edge->dest);
if (new_bb)
new_label = block_label (new_bb);
else
{
/* Create new basic block to be dest for
conditional jump. */
new_bb = create_basic_block (NULL, NULL, last_bb);
new_bb->aux = last_bb->aux;
last_bb->aux = new_bb;
prev_bb = last_bb;
last_bb = new_bb;
/* Update register liveness information. */
new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (®_obstack);
new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (®_obstack);
COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
prev_bb->il.rtl->global_live_at_end);
COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
prev_bb->il.rtl->global_live_at_end);
/* Put appropriate instructions in new bb. */
new_label = gen_label_rtx ();
emit_label_before (new_label, BB_HEAD (new_bb));
BB_HEAD (new_bb) = new_label;
if (GET_CODE (old_label) == LABEL_REF)
{
old_label = JUMP_LABEL (old_jump);
new_jump = emit_jump_insn_after (gen_jump
(old_label),
BB_END (new_bb));
}
else
{
gcc_assert (HAVE_return
&& GET_CODE (old_label) == RETURN);
new_jump = emit_jump_insn_after (gen_return (),
BB_END (new_bb));
}
barrier = emit_barrier_after (new_jump);
JUMP_LABEL (new_jump) = old_label;
new_bb->il.rtl->footer = unlink_insn_chain (barrier,
barrier);
/* Make sure new bb is in same partition as source
of conditional branch. */
BB_COPY_PARTITION (new_bb, cur_bb);
}
/* Make old jump branch to new bb. */
redirect_jump (old_jump, new_label, 0);
/* Remove crossing_edge as predecessor of 'dest'. */
dest = crossing_edge->dest;
redirect_edge_succ (crossing_edge, new_bb);
/* Make a new edge from new_bb to old dest; new edge
will be a successor for new_bb and a predecessor
for 'dest'. */
if (EDGE_COUNT (new_bb->succs) == 0)
new_edge = make_edge (new_bb, dest, 0);
else
new_edge = EDGE_SUCC (new_bb, 0);
crossing_edge->flags &= ~EDGE_CROSSING;
new_edge->flags |= EDGE_CROSSING;
}
}
}
}
/* Find any unconditional branches that cross between hot and cold
sections. Convert them into indirect jumps instead. */
static void
fix_crossing_unconditional_branches (void)
{
basic_block cur_bb;
rtx last_insn;
rtx label;
rtx label_addr;
rtx indirect_jump_sequence;
rtx jump_insn = NULL_RTX;
rtx new_reg;
rtx cur_insn;
edge succ;
FOR_EACH_BB (cur_bb)
{
last_insn = BB_END (cur_bb);
if (EDGE_COUNT (cur_bb->succs) < 1)
continue;
succ = EDGE_SUCC (cur_bb, 0);
/* Check to see if bb ends in a crossing (unconditional) jump. At
this point, no crossing jumps should be conditional. */
if (JUMP_P (last_insn)
&& (succ->flags & EDGE_CROSSING))
{
rtx label2, table;
gcc_assert (!any_condjump_p (last_insn));
/* Make sure the jump is not already an indirect or table jump. */
if (!computed_jump_p (last_insn)
&& !tablejump_p (last_insn, &label2, &table))
{
/* We have found a "crossing" unconditional branch. Now
we must convert it to an indirect jump. First create
reference of label, as target for jump. */
label = JUMP_LABEL (last_insn);
label_addr = gen_rtx_LABEL_REF (Pmode, label);
LABEL_NUSES (label) += 1;
/* Get a register to use for the indirect jump. */
new_reg = gen_reg_rtx (Pmode);
/* Generate indirect the jump sequence. */
start_sequence ();
emit_move_insn (new_reg, label_addr);
emit_indirect_jump (new_reg);
indirect_jump_sequence = get_insns ();
end_sequence ();
/* Make sure every instruction in the new jump sequence has
its basic block set to be cur_bb. */
for (cur_insn = indirect_jump_sequence; cur_insn;
cur_insn = NEXT_INSN (cur_insn))
{
if (!BARRIER_P (cur_insn))
BLOCK_FOR_INSN (cur_insn) = cur_bb;
if (JUMP_P (cur_insn))
jump_insn = cur_insn;
}
/* Insert the new (indirect) jump sequence immediately before
the unconditional jump, then delete the unconditional jump. */
emit_insn_before (indirect_jump_sequence, last_insn);
delete_insn (last_insn);
/* Make BB_END for cur_bb be the jump instruction (NOT the
barrier instruction at the end of the sequence...). */
BB_END (cur_bb) = jump_insn;
}
}
}
}
/* Add REG_CROSSING_JUMP note to all crossing jump insns. */
static void
add_reg_crossing_jump_notes (void)
{
basic_block bb;
edge e;
edge_iterator ei;
FOR_EACH_BB (bb)
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & EDGE_CROSSING)
&& JUMP_P (BB_END (e->src)))
REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
NULL_RTX,
REG_NOTES (BB_END
(e->src)));
}
/* Hot and cold basic blocks are partitioned and put in separate
sections of the .o file, to reduce paging and improve cache
performance (hopefully). This can result in bits of code from the
same function being widely separated in the .o file. However this
is not obvious to the current bb structure. Therefore we must take
care to ensure that: 1). There are no fall_thru edges that cross
between sections; 2). For those architectures which have "short"
conditional branches, all conditional branches that attempt to
cross between sections are converted to unconditional branches;
and, 3). For those architectures which have "short" unconditional
branches, all unconditional branches that attempt to cross between
sections are converted to indirect jumps.
The code for fixing up fall_thru edges that cross between hot and
cold basic blocks does so by creating new basic blocks containing
unconditional branches to the appropriate label in the "other"
section. The new basic block is then put in the same (hot or cold)
section as the original conditional branch, and the fall_thru edge
is modified to fall into the new basic block instead. By adding
this level of indirection we end up with only unconditional branches
crossing between hot and cold sections.
Conditional branches are dealt with by adding a level of indirection.
A new basic block is added in the same (hot/cold) section as the
conditional branch, and the conditional branch is retargeted to the
new basic block. The new basic block contains an unconditional branch
to the original target of the conditional branch (in the other section).
Unconditional branches are dealt with by converting them into
indirect jumps. */
static void
fix_edges_for_rarely_executed_code (edge *crossing_edges,
int n_crossing_edges)
{
/* Make sure the source of any crossing edge ends in a jump and the
destination of any crossing edge has a label. */
add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
/* Convert all crossing fall_thru edges to non-crossing fall
thrus to unconditional jumps (that jump to the original fall
thru dest). */
fix_up_fall_thru_edges ();
/* If the architecture does not have conditional branches that can
span all of memory, convert crossing conditional branches into
crossing unconditional branches. */
if (!HAS_LONG_COND_BRANCH)
fix_crossing_conditional_branches ();
/* If the architecture does not have unconditional branches that
can span all of memory, convert crossing unconditional branches
into indirect jumps. Since adding an indirect jump also adds
a new register usage, update the register usage information as
well. */
if (!HAS_LONG_UNCOND_BRANCH)
{
fix_crossing_unconditional_branches ();
reg_scan (get_insns(), max_reg_num ());
}
add_reg_crossing_jump_notes ();
}
/* Verify, in the basic block chain, that there is at most one switch
between hot/cold partitions. This is modelled on
rtl_verify_flow_info_1, but it cannot go inside that function
because this condition will not be true until after
reorder_basic_blocks is called. */
static void
verify_hot_cold_block_grouping (void)
{
basic_block bb;
int err = 0;
bool switched_sections = false;
int current_partition = 0;
FOR_EACH_BB (bb)
{
if (!current_partition)
current_partition = BB_PARTITION (bb);
if (BB_PARTITION (bb) != current_partition)
{
if (switched_sections)
{
error ("multiple hot/cold transitions found (bb %i)",
bb->index);
err = 1;
}
else
{
switched_sections = true;
current_partition = BB_PARTITION (bb);
}
}
}
gcc_assert(!err);
}
/* Reorder basic blocks. The main entry point to this file. FLAGS is
the set of flags to pass to cfg_layout_initialize(). */
void
reorder_basic_blocks (unsigned int flags)
{
int n_traces;
int i;
struct trace *traces;
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
return;
if (targetm.cannot_modify_jumps_p ())
return;
cfg_layout_initialize (flags);
set_edge_can_fallthru_flag ();
mark_dfs_back_edges ();
/* We are estimating the length of uncond jump insn only once since the code
for getting the insn length always returns the minimal length now. */
if (uncond_jump_length == 0)
uncond_jump_length = get_uncond_jump_length ();
/* We need to know some information for each basic block. */
array_size = GET_ARRAY_SIZE (last_basic_block);
bbd = XNEWVEC (bbro_basic_block_data, array_size);
for (i = 0; i < array_size; i++)
{
bbd[i].start_of_trace = -1;
bbd[i].in_trace = -1;
bbd[i].end_of_trace = -1;
bbd[i].heap = NULL;
bbd[i].node = NULL;
}
traces = XNEWVEC (struct trace, n_basic_blocks);
n_traces = 0;
find_traces (&n_traces, traces);
connect_traces (n_traces, traces);
FREE (traces);
FREE (bbd);
if (dump_file)
dump_flow_info (dump_file, dump_flags);
cfg_layout_finalize ();
if (flag_reorder_blocks_and_partition)
verify_hot_cold_block_grouping ();
}
/* Determine which partition the first basic block in the function
belongs to, then find the first basic block in the current function
that belongs to a different section, and insert a
NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
instruction stream. When writing out the assembly code,
encountering this note will make the compiler switch between the
hot and cold text sections. */
static void
insert_section_boundary_note (void)
{
basic_block bb;
rtx new_note;
int first_partition = 0;
if (flag_reorder_blocks_and_partition)
FOR_EACH_BB (bb)
{
if (!first_partition)
first_partition = BB_PARTITION (bb);
if (BB_PARTITION (bb) != first_partition)
{
new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
BB_HEAD (bb));
break;
}
}
}
/* Duplicate the blocks containing computed gotos. This basically unfactors
computed gotos that were factored early on in the compilation process to
speed up edge based data flow. We used to not unfactoring them again,
which can seriously pessimize code with many computed jumps in the source
code, such as interpreters. See e.g. PR15242. */
static bool
gate_duplicate_computed_gotos (void)
{
return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
}
static unsigned int
duplicate_computed_gotos (void)
{
basic_block bb, new_bb;
bitmap candidates;
int max_size;
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
return 0;
if (targetm.cannot_modify_jumps_p ())
return 0;
cfg_layout_initialize (0);
/* We are estimating the length of uncond jump insn only once
since the code for getting the insn length always returns
the minimal length now. */
if (uncond_jump_length == 0)
uncond_jump_length = get_uncond_jump_length ();
max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
candidates = BITMAP_ALLOC (NULL);
/* Look for blocks that end in a computed jump, and see if such blocks
are suitable for unfactoring. If a block is a candidate for unfactoring,
mark it in the candidates. */
FOR_EACH_BB (bb)
{
rtx insn;
edge e;
edge_iterator ei;
int size, all_flags;
/* Build the reorder chain for the original order of blocks. */
if (bb->next_bb != EXIT_BLOCK_PTR)
bb->aux = bb->next_bb;
/* Obviously the block has to end in a computed jump. */
if (!computed_jump_p (BB_END (bb)))
continue;
/* Only consider blocks that can be duplicated. */
if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
|| !can_duplicate_block_p (bb))
continue;
/* Make sure that the block is small enough. */
size = 0;
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn))
{
size += get_attr_min_length (insn);
if (size > max_size)
break;
}
if (size > max_size)
continue;
/* Final check: there must not be any incoming abnormal edges. */
all_flags = 0;
FOR_EACH_EDGE (e, ei, bb->preds)
all_flags |= e->flags;
if (all_flags & EDGE_COMPLEX)
continue;
bitmap_set_bit (candidates, bb->index);
}
/* Nothing to do if there is no computed jump here. */
if (bitmap_empty_p (candidates))
goto done;
/* Duplicate computed gotos. */
FOR_EACH_BB (bb)
{
if (bb->il.rtl->visited)
continue;
bb->il.rtl->visited = 1;
/* BB must have one outgoing edge. That edge must not lead to
the exit block or the next block.
The destination must have more than one predecessor. */
if (!single_succ_p (bb)
|| single_succ (bb) == EXIT_BLOCK_PTR
|| single_succ (bb) == bb->next_bb
|| single_pred_p (single_succ (bb)))
continue;
/* The successor block has to be a duplication candidate. */
if (!bitmap_bit_p (candidates, single_succ (bb)->index))
continue;
new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
new_bb->aux = bb->aux;
bb->aux = new_bb;
new_bb->il.rtl->visited = 1;
}
done:
cfg_layout_finalize ();
BITMAP_FREE (candidates);
return 0;
}
struct tree_opt_pass pass_duplicate_computed_gotos =
{
"compgotos", /* name */
gate_duplicate_computed_gotos, /* gate */
duplicate_computed_gotos, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_REORDER_BLOCKS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* This function is the main 'entrance' for the optimization that
partitions hot and cold basic blocks into separate sections of the
.o file (to improve performance and cache locality). Ideally it
would be called after all optimizations that rearrange the CFG have
been called. However part of this optimization may introduce new
register usage, so it must be called before register allocation has
occurred. This means that this optimization is actually called
well before the optimization that reorders basic blocks (see
function above).
This optimization checks the feedback information to determine
which basic blocks are hot/cold, updates flags on the basic blocks
to indicate which section they belong in. This information is
later used for writing out sections in the .o file. Because hot
and cold sections can be arbitrarily large (within the bounds of
memory), far beyond the size of a single function, it is necessary
to fix up all edges that cross section boundaries, to make sure the
instructions used can actually span the required distance. The
fixes are described below.
Fall-through edges must be changed into jumps; it is not safe or
legal to fall through across a section boundary. Whenever a
fall-through edge crossing a section boundary is encountered, a new
basic block is inserted (in the same section as the fall-through
source), and the fall through edge is redirected to the new basic
block. The new basic block contains an unconditional jump to the
original fall-through target. (If the unconditional jump is
insufficient to cross section boundaries, that is dealt with a
little later, see below).
In order to deal with architectures that have short conditional
branches (which cannot span all of memory) we take any conditional
jump that attempts to cross a section boundary and add a level of
indirection: it becomes a conditional jump to a new basic block, in
the same section. The new basic block contains an unconditional
jump to the original target, in the other section.
For those architectures whose unconditional branch is also
incapable of reaching all of memory, those unconditional jumps are
converted into indirect jumps, through a register.
IMPORTANT NOTE: This optimization causes some messy interactions
with the cfg cleanup optimizations; those optimizations want to
merge blocks wherever possible, and to collapse indirect jump
sequences (change "A jumps to B jumps to C" directly into "A jumps
to C"). Those optimizations can undo the jump fixes that
partitioning is required to make (see above), in order to ensure
that jumps attempting to cross section boundaries are really able
to cover whatever distance the jump requires (on many architectures
conditional or unconditional jumps are not able to reach all of
memory). Therefore tests have to be inserted into each such
optimization to make sure that it does not undo stuff necessary to
cross partition boundaries. This would be much less of a problem
if we could perform this optimization later in the compilation, but
unfortunately the fact that we may need to create indirect jumps
(through registers) requires that this optimization be performed
before register allocation. */
static void
partition_hot_cold_basic_blocks (void)
{
basic_block cur_bb;
edge *crossing_edges;
int n_crossing_edges;
int max_edges = 2 * last_basic_block;
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
return;
crossing_edges = XCNEWVEC (edge, max_edges);
cfg_layout_initialize (0);
FOR_EACH_BB (cur_bb)
if (cur_bb->index >= NUM_FIXED_BLOCKS
&& cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
cur_bb->aux = cur_bb->next_bb;
find_rarely_executed_basic_blocks_and_crossing_edges (crossing_edges,
&n_crossing_edges,
&max_edges);
if (n_crossing_edges > 0)
fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
free (crossing_edges);
cfg_layout_finalize();
}
static bool
gate_handle_reorder_blocks (void)
{
return (optimize > 0);
}
/* Reorder basic blocks. */
static unsigned int
rest_of_handle_reorder_blocks (void)
{
bool changed;
unsigned int liveness_flags;
/* Last attempt to optimize CFG, as scheduling, peepholing and insn
splitting possibly introduced more crossjumping opportunities. */
liveness_flags = (!HAVE_conditional_execution ? CLEANUP_UPDATE_LIFE : 0);
changed = cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
if (flag_sched2_use_traces && flag_schedule_insns_after_reload)
{
timevar_push (TV_TRACER);
tracer (liveness_flags);
timevar_pop (TV_TRACER);
}
if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
reorder_basic_blocks (liveness_flags);
if (flag_reorder_blocks || flag_reorder_blocks_and_partition
|| (flag_sched2_use_traces && flag_schedule_insns_after_reload))
changed |= cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
/* On conditional execution targets we can not update the life cheaply, so
we deffer the updating to after both cleanups. This may lose some cases
but should not be terribly bad. */
if (changed && HAVE_conditional_execution)
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
PROP_DEATH_NOTES);
/* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
insert_section_boundary_note ();
return 0;
}
struct tree_opt_pass pass_reorder_blocks =
{
"bbro", /* name */
gate_handle_reorder_blocks, /* gate */
rest_of_handle_reorder_blocks, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_REORDER_BLOCKS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
'B' /* letter */
};
static bool
gate_handle_partition_blocks (void)
{
/* The optimization to partition hot/cold basic blocks into separate
sections of the .o file does not work well with linkonce or with
user defined section attributes. Don't call it if either case
arises. */
return (flag_reorder_blocks_and_partition
&& !DECL_ONE_ONLY (current_function_decl)
&& !user_defined_section_attribute);
}
/* Partition hot and cold basic blocks. */
static unsigned int
rest_of_handle_partition_blocks (void)
{
no_new_pseudos = 0;
partition_hot_cold_basic_blocks ();
allocate_reg_life_data ();
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
no_new_pseudos = 1;
return 0;
}
struct tree_opt_pass pass_partition_blocks =
{
"bbpart", /* name */
gate_handle_partition_blocks, /* gate */
rest_of_handle_partition_blocks, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_REORDER_BLOCKS, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
|