1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
;; ARM 926EJ-S Pipeline Description
;; Copyright (C) 2003 Free Software Foundation, Inc.
;; Written by CodeSourcery, LLC.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING. If not, write to the Free
;; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
;; 02110-1301, USA. */
;; These descriptions are based on the information contained in the
;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
;; Limited.
;;
;; This automaton provides a pipeline description for the ARM
;; 926EJ-S core.
;;
;; The model given here assumes that the condition for all conditional
;; instructions is "true", i.e., that all of the instructions are
;; actually executed.
(define_automaton "arm926ejs")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Pipelines
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; There is a single pipeline
;;
;; The ALU pipeline has fetch, decode, execute, memory, and
;; write stages. We only need to model the execute, memory and write
;; stages.
(define_cpu_unit "e,m,w" "arm926ejs")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ALU instructions require three cycles to execute, and use the ALU
;; pipeline in each of the three stages. The results are available
;; after the execute stage stage has finished.
;;
;; If the destination register is the PC, the pipelines are stalled
;; for several cycles. That case is not modeled here.
;; ALU operations with no shifted operand
(define_insn_reservation "9_alu_op" 1
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "alu,alu_shift"))
"e,m,w")
;; ALU operations with a shift-by-register operand
;; These really stall in the decoder, in order to read
;; the shift value in a second cycle. Pretend we take two cycles in
;; the execute stage.
(define_insn_reservation "9_alu_shift_reg_op" 2
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "alu_shift_reg"))
"e*2,m,w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Multiplication instructions loop in the execute stage until the
;; instruction has been passed through the multiplier array enough
;; times. Multiply operations occur in both the execute and memory
;; stages of the pipeline
(define_insn_reservation "9_mult1" 3
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "smlalxy,mul,mla"))
"e*2,m,w")
(define_insn_reservation "9_mult2" 4
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "muls,mlas"))
"e*3,m,w")
(define_insn_reservation "9_mult3" 4
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "umull,umlal,smull,smlal"))
"e*3,m,w")
(define_insn_reservation "9_mult4" 5
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "umulls,umlals,smulls,smlals"))
"e*4,m,w")
(define_insn_reservation "9_mult5" 2
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "smulxy,smlaxy,smlawx"))
"e,m,w")
(define_insn_reservation "9_mult6" 3
(and (eq_attr "tune" "arm926ejs")
(eq_attr "insn" "smlalxy"))
"e*2,m,w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Load/Store Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The models for load/store instructions do not accurately describe
;; the difference between operations with a base register writeback
;; (such as "ldm!"). These models assume that all memory references
;; hit in dcache.
;; Loads with a shifted offset take 3 cycles, and are (a) probably the
;; most common and (b) the pessimistic assumption will lead to fewer stalls.
(define_insn_reservation "9_load1_op" 3
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "load1,load_byte"))
"e*2,m,w")
(define_insn_reservation "9_store1_op" 0
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "store1"))
"e,m,w")
;; multiple word loads and stores
(define_insn_reservation "9_load2_op" 3
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "load2"))
"e,m*2,w")
(define_insn_reservation "9_load3_op" 4
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "load3"))
"e,m*3,w")
(define_insn_reservation "9_load4_op" 5
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "load4"))
"e,m*4,w")
(define_insn_reservation "9_store2_op" 0
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "store2"))
"e,m*2,w")
(define_insn_reservation "9_store3_op" 0
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "store3"))
"e,m*3,w")
(define_insn_reservation "9_store4_op" 0
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "store4"))
"e,m*4,w")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch and Call Instructions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Branch instructions are difficult to model accurately. The ARM
;; core can predict most branches. If the branch is predicted
;; correctly, and predicted early enough, the branch can be completely
;; eliminated from the instruction stream. Some branches can
;; therefore appear to require zero cycles to execute. We assume that
;; all branches are predicted correctly, and that the latency is
;; therefore the minimum value.
(define_insn_reservation "9_branch_op" 0
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "branch"))
"nothing")
;; The latency for a call is not predictable. Therefore, we use 32 as
;; roughly equivalent to positive infinity.
(define_insn_reservation "9_call_op" 32
(and (eq_attr "tune" "arm926ejs")
(eq_attr "type" "call"))
"nothing")
|