File: ieee754-df.S

package info (click to toggle)
gccxml 0.9.0%2Bcvs20100501-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 79,132 kB
  • ctags: 73,371
  • sloc: ansic: 751,436; cpp: 34,175; asm: 26,833; sh: 5,077; makefile: 4,696; lex: 589; awk: 566; perl: 334; yacc: 271; pascal: 86; python: 29
file content (1335 lines) | stat: -rw-r--r-- 41,443 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
/* ieee754-df.S double-precision floating point support for ARM

   Copyright (C) 2003, 2004, 2005  Free Software Foundation, Inc.
   Contributed by Nicolas Pitre (nico@cam.org)

   This file is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version.

   In addition to the permissions in the GNU General Public License, the
   Free Software Foundation gives you unlimited permission to link the
   compiled version of this file into combinations with other programs,
   and to distribute those combinations without any restriction coming
   from the use of this file.  (The General Public License restrictions
   do apply in other respects; for example, they cover modification of
   the file, and distribution when not linked into a combine
   executable.)

   This file is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not, write to
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

/*
 * Notes: 
 * 
 * The goal of this code is to be as fast as possible.  This is
 * not meant to be easy to understand for the casual reader.
 * For slightly simpler code please see the single precision version
 * of this file.
 * 
 * Only the default rounding mode is intended for best performances.
 * Exceptions aren't supported yet, but that can be added quite easily
 * if necessary without impacting performances.
 */


@ For FPA, float words are always big-endian.
@ For VFP, floats words follow the memory system mode.
#if defined(__VFP_FP__) && !defined(__ARMEB__)
#define xl r0
#define xh r1
#define yl r2
#define yh r3
#else
#define xh r0
#define xl r1
#define yh r2
#define yl r3
#endif


#ifdef L_negdf2

ARM_FUNC_START negdf2
ARM_FUNC_ALIAS aeabi_dneg negdf2

        @ flip sign bit
        eor        xh, xh, #0x80000000
        RET

        FUNC_END aeabi_dneg
        FUNC_END negdf2

#endif

#ifdef L_addsubdf3

ARM_FUNC_START aeabi_drsub

        eor        xh, xh, #0x80000000        @ flip sign bit of first arg
        b        1f        

ARM_FUNC_START subdf3
ARM_FUNC_ALIAS aeabi_dsub subdf3

        eor        yh, yh, #0x80000000        @ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
        b        1f                        @ Skip Thumb-code prologue
#endif

ARM_FUNC_START adddf3
ARM_FUNC_ALIAS aeabi_dadd adddf3

1:        stmfd        sp!, {r4, r5, lr}

        @ Look for zeroes, equal values, INF, or NAN.
        mov        r4, xh, lsl #1
        mov        r5, yh, lsl #1
        teq        r4, r5
        teqeq        xl, yl
        orrnes        ip, r4, xl
        orrnes        ip, r5, yl
        mvnnes        ip, r4, asr #21
        mvnnes        ip, r5, asr #21
        beq        LSYM(Lad_s)

        @ Compute exponent difference.  Make largest exponent in r4,
        @ corresponding arg in xh-xl, and positive exponent difference in r5.
        mov        r4, r4, lsr #21
        rsbs        r5, r4, r5, lsr #21
        rsblt        r5, r5, #0
        ble        1f
        add        r4, r4, r5
        eor        yl, xl, yl
        eor        yh, xh, yh
        eor        xl, yl, xl
        eor        xh, yh, xh
        eor        yl, xl, yl
        eor        yh, xh, yh
1:
        @ If exponent difference is too large, return largest argument
        @ already in xh-xl.  We need up to 54 bit to handle proper rounding
        @ of 0x1p54 - 1.1.
        cmp        r5, #54
        RETLDM        "r4, r5" hi

        @ Convert mantissa to signed integer.
        tst        xh, #0x80000000
        mov        xh, xh, lsl #12
        mov        ip, #0x00100000
        orr        xh, ip, xh, lsr #12
        beq        1f
        rsbs        xl, xl, #0
        rsc        xh, xh, #0
1:
        tst        yh, #0x80000000
        mov        yh, yh, lsl #12
        orr        yh, ip, yh, lsr #12
        beq        1f
        rsbs        yl, yl, #0
        rsc        yh, yh, #0
1:
        @ If exponent == difference, one or both args were denormalized.
        @ Since this is not common case, rescale them off line.
        teq        r4, r5
        beq        LSYM(Lad_d)
LSYM(Lad_x):

        @ Compensate for the exponent overlapping the mantissa MSB added later
        sub        r4, r4, #1

        @ Shift yh-yl right per r5, add to xh-xl, keep leftover bits into ip.
        rsbs        lr, r5, #32
        blt        1f
        mov        ip, yl, lsl lr
        adds        xl, xl, yl, lsr r5
        adc        xh, xh, #0
        adds        xl, xl, yh, lsl lr
        adcs        xh, xh, yh, asr r5
        b        2f
1:        sub        r5, r5, #32
        add        lr, lr, #32
        cmp        yl, #1
        mov        ip, yh, lsl lr
        orrcs        ip, ip, #2                @ 2 not 1, to allow lsr #1 later
        adds        xl, xl, yh, asr r5
        adcs        xh, xh, yh, asr #31
2:
        @ We now have a result in xh-xl-ip.
        @ Keep absolute value in xh-xl-ip, sign in r5 (the n bit was set above)
        and        r5, xh, #0x80000000
        bpl        LSYM(Lad_p)
        rsbs        ip, ip, #0
        rscs        xl, xl, #0
        rsc        xh, xh, #0

        @ Determine how to normalize the result.
LSYM(Lad_p):
        cmp        xh, #0x00100000
        bcc        LSYM(Lad_a)
        cmp        xh, #0x00200000
        bcc        LSYM(Lad_e)

        @ Result needs to be shifted right.
        movs        xh, xh, lsr #1
        movs        xl, xl, rrx
        mov        ip, ip, rrx
        add        r4, r4, #1

        @ Make sure we did not bust our exponent.
        mov        r2, r4, lsl #21
        cmn        r2, #(2 << 21)
        bcs        LSYM(Lad_o)

        @ Our result is now properly aligned into xh-xl, remaining bits in ip.
        @ Round with MSB of ip. If halfway between two numbers, round towards
        @ LSB of xl = 0.
        @ Pack final result together.
LSYM(Lad_e):
        cmp        ip, #0x80000000
        moveqs        ip, xl, lsr #1
        adcs        xl, xl, #0
        adc        xh, xh, r4, lsl #20
        orr        xh, xh, r5
        RETLDM        "r4, r5"

        @ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
        movs        ip, ip, lsl #1
        adcs        xl, xl, xl
        adc        xh, xh, xh
        tst        xh, #0x00100000
        sub        r4, r4, #1
        bne        LSYM(Lad_e)

        @ No rounding necessary since ip will always be 0 at this point.
LSYM(Lad_l):

#if __ARM_ARCH__ < 5

        teq        xh, #0
        movne        r3, #20
        moveq        r3, #52
        moveq        xh, xl
        moveq        xl, #0
        mov        r2, xh
        cmp        r2, #(1 << 16)
        movhs        r2, r2, lsr #16
        subhs        r3, r3, #16
        cmp        r2, #(1 << 8)
        movhs        r2, r2, lsr #8
        subhs        r3, r3, #8
        cmp        r2, #(1 << 4)
        movhs        r2, r2, lsr #4
        subhs        r3, r3, #4
        cmp        r2, #(1 << 2)
        subhs        r3, r3, #2
        sublo        r3, r3, r2, lsr #1
        sub        r3, r3, r2, lsr #3

#else

        teq        xh, #0
        moveq        xh, xl
        moveq        xl, #0
        clz        r3, xh
        addeq        r3, r3, #32
        sub        r3, r3, #11

#endif

        @ determine how to shift the value.
        subs        r2, r3, #32
        bge        2f
        adds        r2, r2, #12
        ble        1f

        @ shift value left 21 to 31 bits, or actually right 11 to 1 bits
        @ since a register switch happened above.
        add        ip, r2, #20
        rsb        r2, r2, #12
        mov        xl, xh, lsl ip
        mov        xh, xh, lsr r2
        b        3f

        @ actually shift value left 1 to 20 bits, which might also represent
        @ 32 to 52 bits if counting the register switch that happened earlier.
1:        add        r2, r2, #20
2:        rsble        ip, r2, #32
        mov        xh, xh, lsl r2
        orrle        xh, xh, xl, lsr ip
        movle        xl, xl, lsl r2

        @ adjust exponent accordingly.
3:        subs        r4, r4, r3
        addge        xh, xh, r4, lsl #20
        orrge        xh, xh, r5
        RETLDM        "r4, r5" ge

        @ Exponent too small, denormalize result.
        @ Find out proper shift value.
        mvn        r4, r4
        subs        r4, r4, #31
        bge        2f
        adds        r4, r4, #12
        bgt        1f

        @ shift result right of 1 to 20 bits, sign is in r5.
        add        r4, r4, #20
        rsb        r2, r4, #32
        mov        xl, xl, lsr r4
        orr        xl, xl, xh, lsl r2
        orr        xh, r5, xh, lsr r4
        RETLDM        "r4, r5"

        @ shift result right of 21 to 31 bits, or left 11 to 1 bits after
        @ a register switch from xh to xl.
1:        rsb        r4, r4, #12
        rsb        r2, r4, #32
        mov        xl, xl, lsr r2
        orr        xl, xl, xh, lsl r4
        mov        xh, r5
        RETLDM        "r4, r5"

        @ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
        @ from xh to xl.
2:        mov        xl, xh, lsr r4
        mov        xh, r5
        RETLDM        "r4, r5"

        @ Adjust exponents for denormalized arguments.
        @ Note that r4 must not remain equal to 0.
LSYM(Lad_d):
        teq        r4, #0
        eor        yh, yh, #0x00100000
        eoreq        xh, xh, #0x00100000
        addeq        r4, r4, #1
        subne        r5, r5, #1
        b        LSYM(Lad_x)


LSYM(Lad_s):
        mvns        ip, r4, asr #21
        mvnnes        ip, r5, asr #21
        beq        LSYM(Lad_i)

        teq        r4, r5
        teqeq        xl, yl
        beq        1f

        @ Result is x + 0.0 = x or 0.0 + y = y.
        orrs        ip, r4, xl
        moveq        xh, yh
        moveq        xl, yl
        RETLDM        "r4, r5"

1:        teq        xh, yh

        @ Result is x - x = 0.
        movne        xh, #0
        movne        xl, #0
        RETLDM        "r4, r5" ne

        @ Result is x + x = 2x.
        movs        ip, r4, lsr #21
        bne        2f
        movs        xl, xl, lsl #1
        adcs        xh, xh, xh
        orrcs        xh, xh, #0x80000000
        RETLDM        "r4, r5"
2:        adds        r4, r4, #(2 << 21)
        addcc        xh, xh, #(1 << 20)
        RETLDM        "r4, r5" cc
        and        r5, xh, #0x80000000

        @ Overflow: return INF.
LSYM(Lad_o):
        orr        xh, r5, #0x7f000000
        orr        xh, xh, #0x00f00000
        mov        xl, #0
        RETLDM        "r4, r5"

        @ At least one of x or y is INF/NAN.
        @   if xh-xl != INF/NAN: return yh-yl (which is INF/NAN)
        @   if yh-yl != INF/NAN: return xh-xl (which is INF/NAN)
        @   if either is NAN: return NAN
        @   if opposite sign: return NAN
        @   otherwise return xh-xl (which is INF or -INF)
LSYM(Lad_i):
        mvns        ip, r4, asr #21
        movne        xh, yh
        movne        xl, yl
        mvneqs        ip, r5, asr #21
        movne        yh, xh
        movne        yl, xl
        orrs        r4, xl, xh, lsl #12
        orreqs        r5, yl, yh, lsl #12
        teqeq        xh, yh
        orrne        xh, xh, #0x00080000        @ quiet NAN
        RETLDM        "r4, r5"

        FUNC_END aeabi_dsub
        FUNC_END subdf3
        FUNC_END aeabi_dadd
        FUNC_END adddf3

ARM_FUNC_START floatunsidf
ARM_FUNC_ALIAS aeabi_ui2d floatunsidf

        teq        r0, #0
        moveq        r1, #0
        RETc(eq)
        stmfd        sp!, {r4, r5, lr}
        mov        r4, #0x400                @ initial exponent
        add        r4, r4, #(52-1 - 1)
        mov        r5, #0                        @ sign bit is 0
        .ifnc        xl, r0
        mov        xl, r0
        .endif
        mov        xh, #0
        b        LSYM(Lad_l)

        FUNC_END aeabi_ui2d
        FUNC_END floatunsidf

ARM_FUNC_START floatsidf
ARM_FUNC_ALIAS aeabi_i2d floatsidf

        teq        r0, #0
        moveq        r1, #0
        RETc(eq)
        stmfd        sp!, {r4, r5, lr}
        mov        r4, #0x400                @ initial exponent
        add        r4, r4, #(52-1 - 1)
        ands        r5, r0, #0x80000000        @ sign bit in r5
        rsbmi        r0, r0, #0                @ absolute value
        .ifnc        xl, r0
        mov        xl, r0
        .endif
        mov        xh, #0
        b        LSYM(Lad_l)

        FUNC_END aeabi_i2d
        FUNC_END floatsidf

ARM_FUNC_START extendsfdf2
ARM_FUNC_ALIAS aeabi_f2d extendsfdf2

        movs        r2, r0, lsl #1                @ toss sign bit
        mov        xh, r2, asr #3                @ stretch exponent
        mov        xh, xh, rrx                @ retrieve sign bit
        mov        xl, r2, lsl #28                @ retrieve remaining bits
        andnes        r3, r2, #0xff000000        @ isolate exponent
        teqne        r3, #0xff000000                @ if not 0, check if INF or NAN
        eorne        xh, xh, #0x38000000        @ fixup exponent otherwise.
        RETc(ne)                        @ and return it.

        teq        r2, #0                        @ if actually 0
        teqne        r3, #0xff000000                @ or INF or NAN
        RETc(eq)                        @ we are done already.

        @ value was denormalized.  We can normalize it now.
        stmfd        sp!, {r4, r5, lr}
        mov        r4, #0x380                @ setup corresponding exponent
        and        r5, xh, #0x80000000        @ move sign bit in r5
        bic        xh, xh, #0x80000000
        b        LSYM(Lad_l)

        FUNC_END aeabi_f2d
        FUNC_END extendsfdf2

ARM_FUNC_START floatundidf
ARM_FUNC_ALIAS aeabi_ul2d floatundidf

        orrs        r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        mvfeqd        f0, #0.0
#endif
        RETc(eq)

#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        @ For hard FPA code we want to return via the tail below so that
        @ we can return the result in f0 as well as in r0/r1 for backwards
        @ compatibility.
        adr        ip, LSYM(f0_ret)
        stmfd        sp!, {r4, r5, ip, lr}
#else
        stmfd        sp!, {r4, r5, lr}
#endif

        mov        r5, #0
        b        2f

ARM_FUNC_START floatdidf
ARM_FUNC_ALIAS aeabi_l2d floatdidf

        orrs        r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        mvfeqd        f0, #0.0
#endif
        RETc(eq)

#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        @ For hard FPA code we want to return via the tail below so that
        @ we can return the result in f0 as well as in r0/r1 for backwards
        @ compatibility.
        adr        ip, LSYM(f0_ret)
        stmfd        sp!, {r4, r5, ip, lr}
#else
        stmfd        sp!, {r4, r5, lr}
#endif

        ands        r5, ah, #0x80000000        @ sign bit in r5
        bpl        2f
        rsbs        al, al, #0
        rsc        ah, ah, #0
2:
        mov        r4, #0x400                @ initial exponent
        add        r4, r4, #(52-1 - 1)

        @ FPA little-endian: must swap the word order.
        .ifnc        xh, ah
        mov        ip, al
        mov        xh, ah
        mov        xl, ip
        .endif

        movs        ip, xh, lsr #22
        beq        LSYM(Lad_p)

        @ The value is too big.  Scale it down a bit...
        mov        r2, #3
        movs        ip, ip, lsr #3
        addne        r2, r2, #3
        movs        ip, ip, lsr #3
        addne        r2, r2, #3
        add        r2, r2, ip, lsr #3

        rsb        r3, r2, #32
        mov        ip, xl, lsl r3
        mov        xl, xl, lsr r2
        orr        xl, xl, xh, lsl r3
        mov        xh, xh, lsr r2
        add        r4, r4, r2
        b        LSYM(Lad_p)

#if !defined (__VFP_FP__) && !defined(__SOFTFP__)

        @ Legacy code expects the result to be returned in f0.  Copy it
        @ there as well.
LSYM(f0_ret):
        stmfd        sp!, {r0, r1}
        ldfd        f0, [sp], #8
        RETLDM

#endif

        FUNC_END floatdidf
        FUNC_END aeabi_l2d
        FUNC_END floatundidf
        FUNC_END aeabi_ul2d

#endif /* L_addsubdf3 */

#ifdef L_muldivdf3

ARM_FUNC_START muldf3
ARM_FUNC_ALIAS aeabi_dmul muldf3
        stmfd        sp!, {r4, r5, r6, lr}

        @ Mask out exponents, trap any zero/denormal/INF/NAN.
        mov        ip, #0xff
        orr        ip, ip, #0x700
        ands        r4, ip, xh, lsr #20
        andnes        r5, ip, yh, lsr #20
        teqne        r4, ip
        teqne        r5, ip
        bleq        LSYM(Lml_s)

        @ Add exponents together
        add        r4, r4, r5

        @ Determine final sign.
        eor        r6, xh, yh

        @ Convert mantissa to unsigned integer.
        @ If power of two, branch to a separate path.
        bic        xh, xh, ip, lsl #21
        bic        yh, yh, ip, lsl #21
        orrs        r5, xl, xh, lsl #12
        orrnes        r5, yl, yh, lsl #12
        orr        xh, xh, #0x00100000
        orr        yh, yh, #0x00100000
        beq        LSYM(Lml_1)

#if __ARM_ARCH__ < 4

        @ Put sign bit in r6, which will be restored in yl later.
        and   r6, r6, #0x80000000

        @ Well, no way to make it shorter without the umull instruction.
        stmfd        sp!, {r6, r7, r8, r9, sl, fp}
        mov        r7, xl, lsr #16
        mov        r8, yl, lsr #16
        mov        r9, xh, lsr #16
        mov        sl, yh, lsr #16
        bic        xl, xl, r7, lsl #16
        bic        yl, yl, r8, lsl #16
        bic        xh, xh, r9, lsl #16
        bic        yh, yh, sl, lsl #16
        mul        ip, xl, yl
        mul        fp, xl, r8
        mov        lr, #0
        adds        ip, ip, fp, lsl #16
        adc        lr, lr, fp, lsr #16
        mul        fp, r7, yl
        adds        ip, ip, fp, lsl #16
        adc        lr, lr, fp, lsr #16
        mul        fp, xl, sl
        mov        r5, #0
        adds        lr, lr, fp, lsl #16
        adc        r5, r5, fp, lsr #16
        mul        fp, r7, yh
        adds        lr, lr, fp, lsl #16
        adc        r5, r5, fp, lsr #16
        mul        fp, xh, r8
        adds        lr, lr, fp, lsl #16
        adc        r5, r5, fp, lsr #16
        mul        fp, r9, yl
        adds        lr, lr, fp, lsl #16
        adc        r5, r5, fp, lsr #16
        mul        fp, xh, sl
        mul        r6, r9, sl
        adds        r5, r5, fp, lsl #16
        adc        r6, r6, fp, lsr #16
        mul        fp, r9, yh
        adds        r5, r5, fp, lsl #16
        adc        r6, r6, fp, lsr #16
        mul        fp, xl, yh
        adds        lr, lr, fp
        mul        fp, r7, sl
        adcs        r5, r5, fp
        mul        fp, xh, yl
        adc        r6, r6, #0
        adds        lr, lr, fp
        mul        fp, r9, r8
        adcs        r5, r5, fp
        mul        fp, r7, r8
        adc        r6, r6, #0
        adds        lr, lr, fp
        mul        fp, xh, yh
        adcs        r5, r5, fp
        adc        r6, r6, #0
        ldmfd        sp!, {yl, r7, r8, r9, sl, fp}

#else

        @ Here is the actual multiplication.
        umull        ip, lr, xl, yl
        mov        r5, #0
        umlal        lr, r5, xh, yl
        and        yl, r6, #0x80000000
        umlal        lr, r5, xl, yh
        mov        r6, #0
        umlal        r5, r6, xh, yh

#endif

        @ The LSBs in ip are only significant for the final rounding.
        @ Fold them into lr.
        teq        ip, #0
        orrne        lr, lr, #1

        @ Adjust result upon the MSB position.
        sub        r4, r4, #0xff
        cmp        r6, #(1 << (20-11))
        sbc        r4, r4, #0x300
        bcs        1f
        movs        lr, lr, lsl #1
        adcs        r5, r5, r5
        adc        r6, r6, r6
1:
        @ Shift to final position, add sign to result.
        orr        xh, yl, r6, lsl #11
        orr        xh, xh, r5, lsr #21
        mov        xl, r5, lsl #11
        orr        xl, xl, lr, lsr #21
        mov        lr, lr, lsl #11

        @ Check exponent range for under/overflow.
        subs        ip, r4, #(254 - 1)
        cmphi        ip, #0x700
        bhi        LSYM(Lml_u)

        @ Round the result, merge final exponent.
        cmp        lr, #0x80000000
        moveqs        lr, xl, lsr #1
        adcs        xl, xl, #0
        adc        xh, xh, r4, lsl #20
        RETLDM        "r4, r5, r6"

        @ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
        and        r6, r6, #0x80000000
        orr        xh, r6, xh
        orr        xl, xl, yl
        eor        xh, xh, yh
        subs        r4, r4, ip, lsr #1
        rsbgts        r5, r4, ip
        orrgt        xh, xh, r4, lsl #20
        RETLDM        "r4, r5, r6" gt

        @ Under/overflow: fix things up for the code below.
        orr        xh, xh, #0x00100000
        mov        lr, #0
        subs        r4, r4, #1

LSYM(Lml_u):
        @ Overflow?
        bgt        LSYM(Lml_o)

        @ Check if denormalized result is possible, otherwise return signed 0.
        cmn        r4, #(53 + 1)
        movle        xl, #0
        bicle        xh, xh, #0x7fffffff
        RETLDM        "r4, r5, r6" le

        @ Find out proper shift value.
        rsb        r4, r4, #0
        subs        r4, r4, #32
        bge        2f
        adds        r4, r4, #12
        bgt        1f

        @ shift result right of 1 to 20 bits, preserve sign bit, round, etc.
        add        r4, r4, #20
        rsb        r5, r4, #32
        mov        r3, xl, lsl r5
        mov        xl, xl, lsr r4
        orr        xl, xl, xh, lsl r5
        and        r2, xh, #0x80000000
        bic        xh, xh, #0x80000000
        adds        xl, xl, r3, lsr #31
        adc        xh, r2, xh, lsr r4
        orrs        lr, lr, r3, lsl #1
        biceq        xl, xl, r3, lsr #31
        RETLDM        "r4, r5, r6"

        @ shift result right of 21 to 31 bits, or left 11 to 1 bits after
        @ a register switch from xh to xl. Then round.
1:        rsb        r4, r4, #12
        rsb        r5, r4, #32
        mov        r3, xl, lsl r4
        mov        xl, xl, lsr r5
        orr        xl, xl, xh, lsl r4
        bic        xh, xh, #0x7fffffff
        adds        xl, xl, r3, lsr #31
        adc        xh, xh, #0
        orrs        lr, lr, r3, lsl #1
        biceq        xl, xl, r3, lsr #31
        RETLDM        "r4, r5, r6"

        @ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
        @ from xh to xl.  Leftover bits are in r3-r6-lr for rounding.
2:        rsb        r5, r4, #32
        orr        lr, lr, xl, lsl r5
        mov        r3, xl, lsr r4
        orr        r3, r3, xh, lsl r5
        mov        xl, xh, lsr r4
        bic        xh, xh, #0x7fffffff
        bic        xl, xl, xh, lsr r4
        add        xl, xl, r3, lsr #31
        orrs        lr, lr, r3, lsl #1
        biceq        xl, xl, r3, lsr #31
        RETLDM        "r4, r5, r6"

        @ One or both arguments are denormalized.
        @ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
        teq        r4, #0
        bne        2f
        and        r6, xh, #0x80000000
1:        movs        xl, xl, lsl #1
        adc        xh, xh, xh
        tst        xh, #0x00100000
        subeq        r4, r4, #1
        beq        1b
        orr        xh, xh, r6
        teq        r5, #0
        movne        pc, lr
2:        and        r6, yh, #0x80000000
3:        movs        yl, yl, lsl #1
        adc        yh, yh, yh
        tst        yh, #0x00100000
        subeq        r5, r5, #1
        beq        3b
        orr        yh, yh, r6
        mov        pc, lr

LSYM(Lml_s):
        @ Isolate the INF and NAN cases away
        teq        r4, ip
        and        r5, ip, yh, lsr #20
        teqne        r5, ip
        beq        1f

        @ Here, one or more arguments are either denormalized or zero.
        orrs        r6, xl, xh, lsl #1
        orrnes        r6, yl, yh, lsl #1
        bne        LSYM(Lml_d)

        @ Result is 0, but determine sign anyway.
LSYM(Lml_z):
        eor        xh, xh, yh
        bic        xh, xh, #0x7fffffff
        mov        xl, #0
        RETLDM        "r4, r5, r6"

1:        @ One or both args are INF or NAN.
        orrs        r6, xl, xh, lsl #1
        moveq        xl, yl
        moveq        xh, yh
        orrnes        r6, yl, yh, lsl #1
        beq        LSYM(Lml_n)                @ 0 * INF or INF * 0 -> NAN
        teq        r4, ip
        bne        1f
        orrs        r6, xl, xh, lsl #12
        bne        LSYM(Lml_n)                @ NAN * <anything> -> NAN
1:        teq        r5, ip
        bne        LSYM(Lml_i)
        orrs        r6, yl, yh, lsl #12
        movne        xl, yl
        movne        xh, yh
        bne        LSYM(Lml_n)                @ <anything> * NAN -> NAN

        @ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
        eor        xh, xh, yh

        @ Overflow: return INF (sign already in xh).
LSYM(Lml_o):
        and        xh, xh, #0x80000000
        orr        xh, xh, #0x7f000000
        orr        xh, xh, #0x00f00000
        mov        xl, #0
        RETLDM        "r4, r5, r6"

        @ Return a quiet NAN.
LSYM(Lml_n):
        orr        xh, xh, #0x7f000000
        orr        xh, xh, #0x00f80000
        RETLDM        "r4, r5, r6"

        FUNC_END aeabi_dmul
        FUNC_END muldf3

ARM_FUNC_START divdf3
ARM_FUNC_ALIAS aeabi_ddiv divdf3
        
        stmfd        sp!, {r4, r5, r6, lr}

        @ Mask out exponents, trap any zero/denormal/INF/NAN.
        mov        ip, #0xff
        orr        ip, ip, #0x700
        ands        r4, ip, xh, lsr #20
        andnes        r5, ip, yh, lsr #20
        teqne        r4, ip
        teqne        r5, ip
        bleq        LSYM(Ldv_s)

        @ Substract divisor exponent from dividend''s.
        sub        r4, r4, r5

        @ Preserve final sign into lr.
        eor        lr, xh, yh

        @ Convert mantissa to unsigned integer.
        @ Dividend -> r5-r6, divisor -> yh-yl.
        orrs        r5, yl, yh, lsl #12
        mov        xh, xh, lsl #12
        beq        LSYM(Ldv_1)
        mov        yh, yh, lsl #12
        mov        r5, #0x10000000
        orr        yh, r5, yh, lsr #4
        orr        yh, yh, yl, lsr #24
        mov        yl, yl, lsl #8
        orr        r5, r5, xh, lsr #4
        orr        r5, r5, xl, lsr #24
        mov        r6, xl, lsl #8

        @ Initialize xh with final sign bit.
        and        xh, lr, #0x80000000

        @ Ensure result will land to known bit position.
        @ Apply exponent bias accordingly.
        cmp        r5, yh
        cmpeq        r6, yl
        adc        r4, r4, #(255 - 2)
        add        r4, r4, #0x300
        bcs        1f
        movs        yh, yh, lsr #1
        mov        yl, yl, rrx
1:
        @ Perform first substraction to align result to a nibble.
        subs        r6, r6, yl
        sbc        r5, r5, yh
        movs        yh, yh, lsr #1
        mov        yl, yl, rrx
        mov        xl, #0x00100000
        mov        ip, #0x00080000

        @ The actual division loop.
1:        subs        lr, r6, yl
        sbcs        lr, r5, yh
        subcs        r6, r6, yl
        movcs        r5, lr
        orrcs        xl, xl, ip
        movs        yh, yh, lsr #1
        mov        yl, yl, rrx
        subs        lr, r6, yl
        sbcs        lr, r5, yh
        subcs        r6, r6, yl
        movcs        r5, lr
        orrcs        xl, xl, ip, lsr #1
        movs        yh, yh, lsr #1
        mov        yl, yl, rrx
        subs        lr, r6, yl
        sbcs        lr, r5, yh
        subcs        r6, r6, yl
        movcs        r5, lr
        orrcs        xl, xl, ip, lsr #2
        movs        yh, yh, lsr #1
        mov        yl, yl, rrx
        subs        lr, r6, yl
        sbcs        lr, r5, yh
        subcs        r6, r6, yl
        movcs        r5, lr
        orrcs        xl, xl, ip, lsr #3

        orrs        lr, r5, r6
        beq        2f
        mov        r5, r5, lsl #4
        orr        r5, r5, r6, lsr #28
        mov        r6, r6, lsl #4
        mov        yh, yh, lsl #3
        orr        yh, yh, yl, lsr #29
        mov        yl, yl, lsl #3
        movs        ip, ip, lsr #4
        bne        1b

        @ We are done with a word of the result.
        @ Loop again for the low word if this pass was for the high word.
        tst        xh, #0x00100000
        bne        3f
        orr        xh, xh, xl
        mov        xl, #0
        mov        ip, #0x80000000
        b        1b
2:
        @ Be sure result starts in the high word.
        tst        xh, #0x00100000
        orreq        xh, xh, xl
        moveq        xl, #0
3:
        @ Check exponent range for under/overflow.
        subs        ip, r4, #(254 - 1)
        cmphi        ip, #0x700
        bhi        LSYM(Lml_u)

        @ Round the result, merge final exponent.
        subs        ip, r5, yh
        subeqs        ip, r6, yl
        moveqs        ip, xl, lsr #1
        adcs        xl, xl, #0
        adc        xh, xh, r4, lsl #20
        RETLDM        "r4, r5, r6"

        @ Division by 0x1p*: shortcut a lot of code.
LSYM(Ldv_1):
        and        lr, lr, #0x80000000
        orr        xh, lr, xh, lsr #12
        adds        r4, r4, ip, lsr #1
        rsbgts        r5, r4, ip
        orrgt        xh, xh, r4, lsl #20
        RETLDM        "r4, r5, r6" gt

        orr        xh, xh, #0x00100000
        mov        lr, #0
        subs        r4, r4, #1
        b        LSYM(Lml_u)

        @ Result mightt need to be denormalized: put remainder bits
        @ in lr for rounding considerations.
LSYM(Ldv_u):
        orr        lr, r5, r6
        b        LSYM(Lml_u)

        @ One or both arguments is either INF, NAN or zero.
LSYM(Ldv_s):
        and        r5, ip, yh, lsr #20
        teq        r4, ip
        teqeq        r5, ip
        beq        LSYM(Lml_n)                @ INF/NAN / INF/NAN -> NAN
        teq        r4, ip
        bne        1f
        orrs        r4, xl, xh, lsl #12
        bne        LSYM(Lml_n)                @ NAN / <anything> -> NAN
        teq        r5, ip
        bne        LSYM(Lml_i)                @ INF / <anything> -> INF
        mov        xl, yl
        mov        xh, yh
        b        LSYM(Lml_n)                @ INF / (INF or NAN) -> NAN
1:        teq        r5, ip
        bne        2f
        orrs        r5, yl, yh, lsl #12
        beq        LSYM(Lml_z)                @ <anything> / INF -> 0
        mov        xl, yl
        mov        xh, yh
        b        LSYM(Lml_n)                @ <anything> / NAN -> NAN
2:        @ If both are nonzero, we need to normalize and resume above.
        orrs        r6, xl, xh, lsl #1
        orrnes        r6, yl, yh, lsl #1
        bne        LSYM(Lml_d)
        @ One or both arguments are 0.
        orrs        r4, xl, xh, lsl #1
        bne        LSYM(Lml_i)                @ <non_zero> / 0 -> INF
        orrs        r5, yl, yh, lsl #1
        bne        LSYM(Lml_z)                @ 0 / <non_zero> -> 0
        b        LSYM(Lml_n)                @ 0 / 0 -> NAN

        FUNC_END aeabi_ddiv
        FUNC_END divdf3

#endif /* L_muldivdf3 */

#ifdef L_cmpdf2

@ Note: only r0 (return value) and ip are clobbered here.

ARM_FUNC_START gtdf2
ARM_FUNC_ALIAS gedf2 gtdf2
        mov        ip, #-1
        b        1f

ARM_FUNC_START ltdf2
ARM_FUNC_ALIAS ledf2 ltdf2
        mov        ip, #1
        b        1f

ARM_FUNC_START cmpdf2
ARM_FUNC_ALIAS nedf2 cmpdf2
ARM_FUNC_ALIAS eqdf2 cmpdf2
        mov        ip, #1                        @ how should we specify unordered here?

1:        str        ip, [sp, #-4]

        @ Trap any INF/NAN first.
        mov        ip, xh, lsl #1
        mvns        ip, ip, asr #21
        mov        ip, yh, lsl #1
        mvnnes        ip, ip, asr #21
        beq        3f

        @ Test for equality.
        @ Note that 0.0 is equal to -0.0.
2:        orrs        ip, xl, xh, lsl #1        @ if x == 0.0 or -0.0
        orreqs        ip, yl, yh, lsl #1        @ and y == 0.0 or -0.0
        teqne        xh, yh                        @ or xh == yh
        teqeq        xl, yl                        @ and xl == yl
        moveq        r0, #0                        @ then equal.
        RETc(eq)

        @ Clear C flag
        cmn        r0, #0

        @ Compare sign, 
        teq        xh, yh

        @ Compare values if same sign
        cmppl        xh, yh
        cmpeq        xl, yl

        @ Result:
        movcs        r0, yh, asr #31
        mvncc        r0, yh, asr #31
        orr        r0, r0, #1
        RET

        @ Look for a NAN.
3:        mov        ip, xh, lsl #1
        mvns        ip, ip, asr #21
        bne        4f
        orrs        ip, xl, xh, lsl #12
        bne        5f                        @ x is NAN
4:        mov        ip, yh, lsl #1
        mvns        ip, ip, asr #21
        bne        2b
        orrs        ip, yl, yh, lsl #12
        beq        2b                        @ y is not NAN
5:        ldr        r0, [sp, #-4]                @ unordered return code
        RET

        FUNC_END gedf2
        FUNC_END gtdf2
        FUNC_END ledf2
        FUNC_END ltdf2
        FUNC_END nedf2
        FUNC_END eqdf2
        FUNC_END cmpdf2

ARM_FUNC_START aeabi_cdrcmple

        mov        ip, r0
        mov        r0, r2
        mov        r2, ip
        mov        ip, r1
        mov        r1, r3
        mov        r3, ip
        b        6f
        
ARM_FUNC_START aeabi_cdcmpeq
ARM_FUNC_ALIAS aeabi_cdcmple aeabi_cdcmpeq

        @ The status-returning routines are required to preserve all
        @ registers except ip, lr, and cpsr.
6:        stmfd        sp!, {r0, lr}
        ARM_CALL cmpdf2
        @ Set the Z flag correctly, and the C flag unconditionally.
        cmp         r0, #0
        @ Clear the C flag if the return value was -1, indicating
        @ that the first operand was smaller than the second.
        cmnmi         r0, #0
        RETLDM   "r0"

        FUNC_END aeabi_cdcmple
        FUNC_END aeabi_cdcmpeq
        FUNC_END aeabi_cdrcmple
        
ARM_FUNC_START        aeabi_dcmpeq

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cdcmple
        moveq        r0, #1        @ Equal to.
        movne        r0, #0        @ Less than, greater than, or unordered.
        RETLDM

        FUNC_END aeabi_dcmpeq

ARM_FUNC_START        aeabi_dcmplt

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cdcmple
        movcc        r0, #1        @ Less than.
        movcs        r0, #0        @ Equal to, greater than, or unordered.
        RETLDM

        FUNC_END aeabi_dcmplt

ARM_FUNC_START        aeabi_dcmple

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cdcmple
        movls        r0, #1  @ Less than or equal to.
        movhi        r0, #0        @ Greater than or unordered.
        RETLDM

        FUNC_END aeabi_dcmple

ARM_FUNC_START        aeabi_dcmpge

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cdrcmple
        movls        r0, #1        @ Operand 2 is less than or equal to operand 1.
        movhi        r0, #0        @ Operand 2 greater than operand 1, or unordered.
        RETLDM

        FUNC_END aeabi_dcmpge

ARM_FUNC_START        aeabi_dcmpgt

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cdrcmple
        movcc        r0, #1        @ Operand 2 is less than operand 1.
        movcs        r0, #0  @ Operand 2 is greater than or equal to operand 1,
                        @ or they are unordered.
        RETLDM

        FUNC_END aeabi_dcmpgt

#endif /* L_cmpdf2 */

#ifdef L_unorddf2

ARM_FUNC_START unorddf2
ARM_FUNC_ALIAS aeabi_dcmpun unorddf2

        mov        ip, xh, lsl #1
        mvns        ip, ip, asr #21
        bne        1f
        orrs        ip, xl, xh, lsl #12
        bne        3f                        @ x is NAN
1:        mov        ip, yh, lsl #1
        mvns        ip, ip, asr #21
        bne        2f
        orrs        ip, yl, yh, lsl #12
        bne        3f                        @ y is NAN
2:        mov        r0, #0                        @ arguments are ordered.
        RET

3:        mov        r0, #1                        @ arguments are unordered.
        RET

        FUNC_END aeabi_dcmpun
        FUNC_END unorddf2

#endif /* L_unorddf2 */

#ifdef L_fixdfsi

ARM_FUNC_START fixdfsi
ARM_FUNC_ALIAS aeabi_d2iz fixdfsi

        @ check exponent range.
        mov        r2, xh, lsl #1
        adds        r2, r2, #(1 << 21)
        bcs        2f                        @ value is INF or NAN
        bpl        1f                        @ value is too small
        mov        r3, #(0xfffffc00 + 31)
        subs        r2, r3, r2, asr #21
        bls        3f                        @ value is too large

        @ scale value
        mov        r3, xh, lsl #11
        orr        r3, r3, #0x80000000
        orr        r3, r3, xl, lsr #21
        tst        xh, #0x80000000                @ the sign bit
        mov        r0, r3, lsr r2
        rsbne        r0, r0, #0
        RET

1:        mov        r0, #0
        RET

2:        orrs        xl, xl, xh, lsl #12
        bne        4f                        @ x is NAN.
3:        ands        r0, xh, #0x80000000        @ the sign bit
        moveq        r0, #0x7fffffff                @ maximum signed positive si
        RET

4:        mov        r0, #0                        @ How should we convert NAN?
        RET

        FUNC_END aeabi_d2iz
        FUNC_END fixdfsi

#endif /* L_fixdfsi */

#ifdef L_fixunsdfsi

ARM_FUNC_START fixunsdfsi
ARM_FUNC_ALIAS aeabi_d2uiz fixunsdfsi

        @ check exponent range.
        movs        r2, xh, lsl #1
        bcs        1f                        @ value is negative
        adds        r2, r2, #(1 << 21)
        bcs        2f                        @ value is INF or NAN
        bpl        1f                        @ value is too small
        mov        r3, #(0xfffffc00 + 31)
        subs        r2, r3, r2, asr #21
        bmi        3f                        @ value is too large

        @ scale value
        mov        r3, xh, lsl #11
        orr        r3, r3, #0x80000000
        orr        r3, r3, xl, lsr #21
        mov        r0, r3, lsr r2
        RET

1:        mov        r0, #0
        RET

2:        orrs        xl, xl, xh, lsl #12
        bne        4f                        @ value is NAN.
3:        mov        r0, #0xffffffff                @ maximum unsigned si
        RET

4:        mov        r0, #0                        @ How should we convert NAN?
        RET

        FUNC_END aeabi_d2uiz
        FUNC_END fixunsdfsi

#endif /* L_fixunsdfsi */

#ifdef L_truncdfsf2

ARM_FUNC_START truncdfsf2
ARM_FUNC_ALIAS aeabi_d2f truncdfsf2

        @ check exponent range.
        mov        r2, xh, lsl #1
        subs        r3, r2, #((1023 - 127) << 21)
        subcss        ip, r3, #(1 << 21)
        rsbcss        ip, ip, #(254 << 21)
        bls        2f                        @ value is out of range

1:        @ shift and round mantissa
        and        ip, xh, #0x80000000
        mov        r2, xl, lsl #3
        orr        xl, ip, xl, lsr #29
        cmp        r2, #0x80000000
        adc        r0, xl, r3, lsl #2
        biceq        r0, r0, #1
        RET

2:        @ either overflow or underflow
        tst        xh, #0x40000000
        bne        3f                        @ overflow

        @ check if denormalized value is possible
        adds        r2, r3, #(23 << 21)
        andlt        r0, xh, #0x80000000        @ too small, return signed 0.
        RETc(lt)

        @ denormalize value so we can resume with the code above afterwards.
        orr        xh, xh, #0x00100000
        mov        r2, r2, lsr #21
        rsb        r2, r2, #24
        rsb        ip, r2, #32
        movs        r3, xl, lsl ip
        mov        xl, xl, lsr r2
        orrne        xl, xl, #1                @ fold r3 for rounding considerations. 
        mov        r3, xh, lsl #11
        mov        r3, r3, lsr #11
        orr        xl, xl, r3, lsl ip
        mov        r3, r3, lsr r2
        mov        r3, r3, lsl #1
        b        1b

3:        @ chech for NAN
        mvns        r3, r2, asr #21
        bne        5f                        @ simple overflow
        orrs        r3, xl, xh, lsl #12
        movne        r0, #0x7f000000
        orrne        r0, r0, #0x00c00000
        RETc(ne)                        @ return NAN

5:        @ return INF with sign
        and        r0, xh, #0x80000000
        orr        r0, r0, #0x7f000000
        orr        r0, r0, #0x00800000
        RET

        FUNC_END aeabi_d2f
        FUNC_END truncdfsf2

#endif /* L_truncdfsf2 */