File: ieee754-sf.S

package info (click to toggle)
gccxml 0.9.0%2Bcvs20100501-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 79,132 kB
  • ctags: 73,371
  • sloc: ansic: 751,436; cpp: 34,175; asm: 26,833; sh: 5,077; makefile: 4,696; lex: 589; awk: 566; perl: 334; yacc: 271; pascal: 86; python: 29
file content (976 lines) | stat: -rw-r--r-- 28,828 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/* ieee754-sf.S single-precision floating point support for ARM

   Copyright (C) 2003, 2004, 2005  Free Software Foundation, Inc.
   Contributed by Nicolas Pitre (nico@cam.org)

   This file is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version.

   In addition to the permissions in the GNU General Public License, the
   Free Software Foundation gives you unlimited permission to link the
   compiled version of this file into combinations with other programs,
   and to distribute those combinations without any restriction coming
   from the use of this file.  (The General Public License restrictions
   do apply in other respects; for example, they cover modification of
   the file, and distribution when not linked into a combine
   executable.)

   This file is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not, write to
   the Free Software Foundation, 51 Franklin Street, Fifth Floor,
   Boston, MA 02110-1301, USA.  */

/*
 * Notes:
 *
 * The goal of this code is to be as fast as possible.  This is
 * not meant to be easy to understand for the casual reader.
 *
 * Only the default rounding mode is intended for best performances.
 * Exceptions aren't supported yet, but that can be added quite easily
 * if necessary without impacting performances.
 */

#ifdef L_negsf2
        
ARM_FUNC_START negsf2
ARM_FUNC_ALIAS aeabi_fneg negsf2

        eor        r0, r0, #0x80000000        @ flip sign bit
        RET

        FUNC_END aeabi_fneg
        FUNC_END negsf2

#endif

#ifdef L_addsubsf3

ARM_FUNC_START aeabi_frsub

        eor        r0, r0, #0x80000000        @ flip sign bit of first arg
        b        1f

ARM_FUNC_START subsf3
ARM_FUNC_ALIAS aeabi_fsub subsf3

        eor        r1, r1, #0x80000000        @ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
        b        1f                        @ Skip Thumb-code prologue
#endif

ARM_FUNC_START addsf3
ARM_FUNC_ALIAS aeabi_fadd addsf3

1:        @ Look for zeroes, equal values, INF, or NAN.
        movs        r2, r0, lsl #1
        movnes        r3, r1, lsl #1
        teqne        r2, r3
        mvnnes        ip, r2, asr #24
        mvnnes        ip, r3, asr #24
        beq        LSYM(Lad_s)

        @ Compute exponent difference.  Make largest exponent in r2,
        @ corresponding arg in r0, and positive exponent difference in r3.
        mov        r2, r2, lsr #24
        rsbs        r3, r2, r3, lsr #24
        addgt        r2, r2, r3
        eorgt        r1, r0, r1
        eorgt        r0, r1, r0
        eorgt        r1, r0, r1
        rsblt        r3, r3, #0

        @ If exponent difference is too large, return largest argument
        @ already in r0.  We need up to 25 bit to handle proper rounding
        @ of 0x1p25 - 1.1.
        cmp        r3, #25
        RETc(hi)

        @ Convert mantissa to signed integer.
        tst        r0, #0x80000000
        orr        r0, r0, #0x00800000
        bic        r0, r0, #0xff000000
        rsbne        r0, r0, #0
        tst        r1, #0x80000000
        orr        r1, r1, #0x00800000
        bic        r1, r1, #0xff000000
        rsbne        r1, r1, #0

        @ If exponent == difference, one or both args were denormalized.
        @ Since this is not common case, rescale them off line.
        teq        r2, r3
        beq        LSYM(Lad_d)
LSYM(Lad_x):

        @ Compensate for the exponent overlapping the mantissa MSB added later
        sub        r2, r2, #1

        @ Shift and add second arg to first arg in r0.
        @ Keep leftover bits into r1.
        adds        r0, r0, r1, asr r3
        rsb        r3, r3, #32
        mov        r1, r1, lsl r3

        @ Keep absolute value in r0-r1, sign in r3 (the n bit was set above)
        and        r3, r0, #0x80000000
        bpl        LSYM(Lad_p)
        rsbs        r1, r1, #0
        rsc        r0, r0, #0

        @ Determine how to normalize the result.
LSYM(Lad_p):
        cmp        r0, #0x00800000
        bcc        LSYM(Lad_a)
        cmp        r0, #0x01000000
        bcc        LSYM(Lad_e)

        @ Result needs to be shifted right.
        movs        r0, r0, lsr #1
        mov        r1, r1, rrx
        add        r2, r2, #1

        @ Make sure we did not bust our exponent.
        cmp        r2, #254
        bhs        LSYM(Lad_o)

        @ Our result is now properly aligned into r0, remaining bits in r1.
        @ Pack final result together.
        @ Round with MSB of r1. If halfway between two numbers, round towards
        @ LSB of r0 = 0. 
LSYM(Lad_e):
        cmp        r1, #0x80000000
        adc        r0, r0, r2, lsl #23
        biceq        r0, r0, #1
        orr        r0, r0, r3
        RET

        @ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
        movs        r1, r1, lsl #1
        adc        r0, r0, r0
        tst        r0, #0x00800000
        sub        r2, r2, #1
        bne        LSYM(Lad_e)
        
        @ No rounding necessary since r1 will always be 0 at this point.
LSYM(Lad_l):

#if __ARM_ARCH__ < 5

        movs        ip, r0, lsr #12
        moveq        r0, r0, lsl #12
        subeq        r2, r2, #12
        tst        r0, #0x00ff0000
        moveq        r0, r0, lsl #8
        subeq        r2, r2, #8
        tst        r0, #0x00f00000
        moveq        r0, r0, lsl #4
        subeq        r2, r2, #4
        tst        r0, #0x00c00000
        moveq        r0, r0, lsl #2
        subeq        r2, r2, #2
        cmp        r0, #0x00800000
        movcc        r0, r0, lsl #1
        sbcs        r2, r2, #0

#else

        clz        ip, r0
        sub        ip, ip, #8
        subs        r2, r2, ip
        mov        r0, r0, lsl ip

#endif

        @ Final result with sign
        @ If exponent negative, denormalize result.
        addge        r0, r0, r2, lsl #23
        rsblt        r2, r2, #0
        orrge        r0, r0, r3
        orrlt        r0, r3, r0, lsr r2
        RET

        @ Fixup and adjust bit position for denormalized arguments.
        @ Note that r2 must not remain equal to 0.
LSYM(Lad_d):
        teq        r2, #0
        eor        r1, r1, #0x00800000
        eoreq        r0, r0, #0x00800000
        addeq        r2, r2, #1
        subne        r3, r3, #1
        b        LSYM(Lad_x)

LSYM(Lad_s):
        mov        r3, r1, lsl #1

        mvns        ip, r2, asr #24
        mvnnes        ip, r3, asr #24
        beq        LSYM(Lad_i)

        teq        r2, r3
        beq        1f

        @ Result is x + 0.0 = x or 0.0 + y = y.
        teq        r2, #0
        moveq        r0, r1
        RET

1:        teq        r0, r1

        @ Result is x - x = 0.
        movne        r0, #0
        RETc(ne)

        @ Result is x + x = 2x.
        tst        r2, #0xff000000
        bne        2f
        movs        r0, r0, lsl #1
        orrcs        r0, r0, #0x80000000
        RET
2:        adds        r2, r2, #(2 << 24)
        addcc        r0, r0, #(1 << 23)
        RETc(cc)
        and        r3, r0, #0x80000000

        @ Overflow: return INF.
LSYM(Lad_o):
        orr        r0, r3, #0x7f000000
        orr        r0, r0, #0x00800000
        RET

        @ At least one of r0/r1 is INF/NAN.
        @   if r0 != INF/NAN: return r1 (which is INF/NAN)
        @   if r1 != INF/NAN: return r0 (which is INF/NAN)
        @   if r0 or r1 is NAN: return NAN
        @   if opposite sign: return NAN
        @   otherwise return r0 (which is INF or -INF)
LSYM(Lad_i):
        mvns        r2, r2, asr #24
        movne        r0, r1
        mvneqs        r3, r3, asr #24
        movne        r1, r0
        movs        r2, r0, lsl #9
        moveqs        r3, r1, lsl #9
        teqeq        r0, r1
        orrne        r0, r0, #0x00400000        @ quiet NAN
        RET

        FUNC_END aeabi_frsub
        FUNC_END aeabi_fadd
        FUNC_END addsf3
        FUNC_END aeabi_fsub
        FUNC_END subsf3

ARM_FUNC_START floatunsisf
ARM_FUNC_ALIAS aeabi_ui2f floatunsisf
                
        mov        r3, #0
        b        1f

ARM_FUNC_START floatsisf
ARM_FUNC_ALIAS aeabi_i2f floatsisf
        
        ands        r3, r0, #0x80000000
        rsbmi        r0, r0, #0

1:        movs        ip, r0
        RETc(eq)

        @ Add initial exponent to sign
        orr        r3, r3, #((127 + 23) << 23)

        .ifnc        ah, r0
        mov        ah, r0
        .endif
        mov        al, #0
        b        2f

        FUNC_END aeabi_i2f
        FUNC_END floatsisf
        FUNC_END aeabi_ui2f
        FUNC_END floatunsisf

ARM_FUNC_START floatundisf
ARM_FUNC_ALIAS aeabi_ul2f floatundisf

        orrs        r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        mvfeqs        f0, #0.0
#endif
        RETc(eq)

        mov        r3, #0
        b        1f

ARM_FUNC_START floatdisf
ARM_FUNC_ALIAS aeabi_l2f floatdisf

        orrs        r2, r0, r1
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        mvfeqs        f0, #0.0
#endif
        RETc(eq)

        ands        r3, ah, #0x80000000        @ sign bit in r3
        bpl        1f
        rsbs        al, al, #0
        rsc        ah, ah, #0
1:
#if !defined (__VFP_FP__) && !defined(__SOFTFP__)
        @ For hard FPA code we want to return via the tail below so that
        @ we can return the result in f0 as well as in r0 for backwards
        @ compatibility.
        str        lr, [sp, #-8]!
        adr        lr, LSYM(f0_ret)
#endif

        movs        ip, ah
        moveq        ip, al
        moveq        ah, al
        moveq        al, #0

        @ Add initial exponent to sign
        orr        r3, r3, #((127 + 23 + 32) << 23)
        subeq        r3, r3, #(32 << 23)
2:        sub        r3, r3, #(1 << 23)

#if __ARM_ARCH__ < 5

        mov        r2, #23
        cmp        ip, #(1 << 16)
        movhs        ip, ip, lsr #16
        subhs        r2, r2, #16
        cmp        ip, #(1 << 8)
        movhs        ip, ip, lsr #8
        subhs        r2, r2, #8
        cmp        ip, #(1 << 4)
        movhs        ip, ip, lsr #4
        subhs        r2, r2, #4
        cmp        ip, #(1 << 2)
        subhs        r2, r2, #2
        sublo        r2, r2, ip, lsr #1
        subs        r2, r2, ip, lsr #3

#else

        clz        r2, ip
        subs        r2, r2, #8

#endif

        sub        r3, r3, r2, lsl #23
        blt        3f

        add        r3, r3, ah, lsl r2
        mov        ip, al, lsl r2
        rsb        r2, r2, #32
        cmp        ip, #0x80000000
        adc        r0, r3, al, lsr r2
        biceq        r0, r0, #1
        RET

3:        add        r2, r2, #32
        mov        ip, ah, lsl r2
        rsb        r2, r2, #32
        orrs        al, al, ip, lsl #1
        adc        r0, r3, ah, lsr r2
        biceq        r0, r0, ip, lsr #31
        RET

#if !defined (__VFP_FP__) && !defined(__SOFTFP__)

LSYM(f0_ret):
        str        r0, [sp, #-4]!
        ldfs        f0, [sp], #4
        RETLDM

#endif

        FUNC_END floatdisf
        FUNC_END aeabi_l2f
        FUNC_END floatundisf
        FUNC_END aeabi_ul2f

#endif /* L_addsubsf3 */

#ifdef L_muldivsf3

ARM_FUNC_START mulsf3
ARM_FUNC_ALIAS aeabi_fmul mulsf3

        @ Mask out exponents, trap any zero/denormal/INF/NAN.
        mov        ip, #0xff
        ands        r2, ip, r0, lsr #23
        andnes        r3, ip, r1, lsr #23
        teqne        r2, ip
        teqne        r3, ip
        beq        LSYM(Lml_s)
LSYM(Lml_x):

        @ Add exponents together
        add        r2, r2, r3

        @ Determine final sign.
        eor        ip, r0, r1

        @ Convert mantissa to unsigned integer.
        @ If power of two, branch to a separate path.
        @ Make up for final alignment.
        movs        r0, r0, lsl #9
        movnes        r1, r1, lsl #9
        beq        LSYM(Lml_1)
        mov        r3, #0x08000000
        orr        r0, r3, r0, lsr #5
        orr        r1, r3, r1, lsr #5

#if __ARM_ARCH__ < 4

        @ Put sign bit in r3, which will be restored into r0 later.
        and        r3, ip, #0x80000000

        @ Well, no way to make it shorter without the umull instruction.
        stmfd        sp!, {r3, r4, r5}
        mov        r4, r0, lsr #16
        mov        r5, r1, lsr #16
        bic        r0, r0, r4, lsl #16
        bic        r1, r1, r5, lsl #16
        mul        ip, r4, r5
        mul        r3, r0, r1
        mul        r0, r5, r0
        mla        r0, r4, r1, r0
        adds        r3, r3, r0, lsl #16
        adc        r1, ip, r0, lsr #16
        ldmfd        sp!, {r0, r4, r5}

#else

        @ The actual multiplication.
        umull        r3, r1, r0, r1

        @ Put final sign in r0.
        and        r0, ip, #0x80000000

#endif

        @ Adjust result upon the MSB position.
        cmp        r1, #(1 << 23)
        movcc        r1, r1, lsl #1
        orrcc        r1, r1, r3, lsr #31
        movcc        r3, r3, lsl #1

        @ Add sign to result.
        orr        r0, r0, r1

        @ Apply exponent bias, check for under/overflow.
        sbc        r2, r2, #127
        cmp        r2, #(254 - 1)
        bhi        LSYM(Lml_u)

        @ Round the result, merge final exponent.
        cmp        r3, #0x80000000
        adc        r0, r0, r2, lsl #23
        biceq        r0, r0, #1
        RET

        @ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
        teq        r0, #0
        and        ip, ip, #0x80000000
        moveq        r1, r1, lsl #9
        orr        r0, ip, r0, lsr #9
        orr        r0, r0, r1, lsr #9
        subs        r2, r2, #127
        rsbgts        r3, r2, #255
        orrgt        r0, r0, r2, lsl #23
        RETc(gt)

        @ Under/overflow: fix things up for the code below.
        orr        r0, r0, #0x00800000
        mov        r3, #0
        subs        r2, r2, #1

LSYM(Lml_u):
        @ Overflow?
        bgt        LSYM(Lml_o)

        @ Check if denormalized result is possible, otherwise return signed 0.
        cmn        r2, #(24 + 1)
        bicle        r0, r0, #0x7fffffff
        RETc(le)

        @ Shift value right, round, etc.
        rsb        r2, r2, #0
        movs        r1, r0, lsl #1
        mov        r1, r1, lsr r2
        rsb        r2, r2, #32
        mov        ip, r0, lsl r2
        movs        r0, r1, rrx
        adc        r0, r0, #0
        orrs        r3, r3, ip, lsl #1
        biceq        r0, r0, ip, lsr #31
        RET

        @ One or both arguments are denormalized.
        @ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
        teq        r2, #0
        and        ip, r0, #0x80000000
1:        moveq        r0, r0, lsl #1
        tsteq        r0, #0x00800000
        subeq        r2, r2, #1
        beq        1b
        orr        r0, r0, ip
        teq        r3, #0
        and        ip, r1, #0x80000000
2:        moveq        r1, r1, lsl #1
        tsteq        r1, #0x00800000
        subeq        r3, r3, #1
        beq        2b
        orr        r1, r1, ip
        b        LSYM(Lml_x)

LSYM(Lml_s):
        @ Isolate the INF and NAN cases away
        and        r3, ip, r1, lsr #23
        teq        r2, ip
        teqne        r3, ip
        beq        1f

        @ Here, one or more arguments are either denormalized or zero.
        bics        ip, r0, #0x80000000
        bicnes        ip, r1, #0x80000000
        bne        LSYM(Lml_d)

        @ Result is 0, but determine sign anyway.
LSYM(Lml_z):
        eor        r0, r0, r1
        bic        r0, r0, #0x7fffffff
        RET

1:        @ One or both args are INF or NAN.
        teq        r0, #0x0
        teqne        r0, #0x80000000
        moveq        r0, r1
        teqne        r1, #0x0
        teqne        r1, #0x80000000
        beq        LSYM(Lml_n)                @ 0 * INF or INF * 0 -> NAN
        teq        r2, ip
        bne        1f
        movs        r2, r0, lsl #9
        bne        LSYM(Lml_n)                @ NAN * <anything> -> NAN
1:        teq        r3, ip
        bne        LSYM(Lml_i)
        movs        r3, r1, lsl #9
        movne        r0, r1
        bne        LSYM(Lml_n)                @ <anything> * NAN -> NAN

        @ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
        eor        r0, r0, r1

        @ Overflow: return INF (sign already in r0).
LSYM(Lml_o):
        and        r0, r0, #0x80000000
        orr        r0, r0, #0x7f000000
        orr        r0, r0, #0x00800000
        RET

        @ Return a quiet NAN.
LSYM(Lml_n):
        orr        r0, r0, #0x7f000000
        orr        r0, r0, #0x00c00000
        RET

        FUNC_END aeabi_fmul
        FUNC_END mulsf3

ARM_FUNC_START divsf3
ARM_FUNC_ALIAS aeabi_fdiv divsf3

        @ Mask out exponents, trap any zero/denormal/INF/NAN.
        mov        ip, #0xff
        ands        r2, ip, r0, lsr #23
        andnes        r3, ip, r1, lsr #23
        teqne        r2, ip
        teqne        r3, ip
        beq        LSYM(Ldv_s)
LSYM(Ldv_x):

        @ Substract divisor exponent from dividend''s
        sub        r2, r2, r3

        @ Preserve final sign into ip.
        eor        ip, r0, r1

        @ Convert mantissa to unsigned integer.
        @ Dividend -> r3, divisor -> r1.
        movs        r1, r1, lsl #9
        mov        r0, r0, lsl #9
        beq        LSYM(Ldv_1)
        mov        r3, #0x10000000
        orr        r1, r3, r1, lsr #4
        orr        r3, r3, r0, lsr #4

        @ Initialize r0 (result) with final sign bit.
        and        r0, ip, #0x80000000

        @ Ensure result will land to known bit position.
        @ Apply exponent bias accordingly.
        cmp        r3, r1
        movcc        r3, r3, lsl #1
        adc        r2, r2, #(127 - 2)

        @ The actual division loop.
        mov        ip, #0x00800000
1:        cmp        r3, r1
        subcs        r3, r3, r1
        orrcs        r0, r0, ip
        cmp        r3, r1, lsr #1
        subcs        r3, r3, r1, lsr #1
        orrcs        r0, r0, ip, lsr #1
        cmp        r3, r1, lsr #2
        subcs        r3, r3, r1, lsr #2
        orrcs        r0, r0, ip, lsr #2
        cmp        r3, r1, lsr #3
        subcs        r3, r3, r1, lsr #3
        orrcs        r0, r0, ip, lsr #3
        movs        r3, r3, lsl #4
        movnes        ip, ip, lsr #4
        bne        1b

        @ Check exponent for under/overflow.
        cmp        r2, #(254 - 1)
        bhi        LSYM(Lml_u)

        @ Round the result, merge final exponent.
        cmp        r3, r1
        adc        r0, r0, r2, lsl #23
        biceq        r0, r0, #1
        RET

        @ Division by 0x1p*: let''s shortcut a lot of code.
LSYM(Ldv_1):
        and        ip, ip, #0x80000000
        orr        r0, ip, r0, lsr #9
        adds        r2, r2, #127
        rsbgts        r3, r2, #255
        orrgt        r0, r0, r2, lsl #23
        RETc(gt)

        orr        r0, r0, #0x00800000
        mov        r3, #0
        subs        r2, r2, #1
        b        LSYM(Lml_u)

        @ One or both arguments are denormalized.
        @ Scale them leftwards and preserve sign bit.
LSYM(Ldv_d):
        teq        r2, #0
        and        ip, r0, #0x80000000
1:        moveq        r0, r0, lsl #1
        tsteq        r0, #0x00800000
        subeq        r2, r2, #1
        beq        1b
        orr        r0, r0, ip
        teq        r3, #0
        and        ip, r1, #0x80000000
2:        moveq        r1, r1, lsl #1
        tsteq        r1, #0x00800000
        subeq        r3, r3, #1
        beq        2b
        orr        r1, r1, ip
        b        LSYM(Ldv_x)

        @ One or both arguments are either INF, NAN, zero or denormalized.
LSYM(Ldv_s):
        and        r3, ip, r1, lsr #23
        teq        r2, ip
        bne        1f
        movs        r2, r0, lsl #9
        bne        LSYM(Lml_n)                @ NAN / <anything> -> NAN
        teq        r3, ip
        bne        LSYM(Lml_i)                @ INF / <anything> -> INF
        mov        r0, r1
        b        LSYM(Lml_n)                @ INF / (INF or NAN) -> NAN
1:        teq        r3, ip
        bne        2f
        movs        r3, r1, lsl #9
        beq        LSYM(Lml_z)                @ <anything> / INF -> 0
        mov        r0, r1
        b        LSYM(Lml_n)                @ <anything> / NAN -> NAN
2:        @ If both are nonzero, we need to normalize and resume above.
        bics        ip, r0, #0x80000000
        bicnes        ip, r1, #0x80000000
        bne        LSYM(Ldv_d)
        @ One or both arguments are zero.
        bics        r2, r0, #0x80000000
        bne        LSYM(Lml_i)                @ <non_zero> / 0 -> INF
        bics        r3, r1, #0x80000000
        bne        LSYM(Lml_z)                @ 0 / <non_zero> -> 0
        b        LSYM(Lml_n)                @ 0 / 0 -> NAN

        FUNC_END aeabi_fdiv
        FUNC_END divsf3

#endif /* L_muldivsf3 */

#ifdef L_cmpsf2

        @ The return value in r0 is
        @
        @   0  if the operands are equal
        @   1  if the first operand is greater than the second, or
        @      the operands are unordered and the operation is
        @      CMP, LT, LE, NE, or EQ.
        @   -1 if the first operand is less than the second, or
        @      the operands are unordered and the operation is GT
        @      or GE.
        @
        @ The Z flag will be set iff the operands are equal.
        @
        @ The following registers are clobbered by this function:
        @   ip, r0, r1, r2, r3

ARM_FUNC_START gtsf2
ARM_FUNC_ALIAS gesf2 gtsf2
        mov        ip, #-1
        b        1f

ARM_FUNC_START ltsf2
ARM_FUNC_ALIAS lesf2 ltsf2
        mov        ip, #1
        b        1f

ARM_FUNC_START cmpsf2
ARM_FUNC_ALIAS nesf2 cmpsf2
ARM_FUNC_ALIAS eqsf2 cmpsf2
        mov        ip, #1                        @ how should we specify unordered here?

1:        str        ip, [sp, #-4]

        @ Trap any INF/NAN first.
        mov        r2, r0, lsl #1
        mov        r3, r1, lsl #1
        mvns        ip, r2, asr #24
        mvnnes        ip, r3, asr #24
        beq        3f

        @ Compare values.
        @ Note that 0.0 is equal to -0.0.
2:        orrs        ip, r2, r3, lsr #1        @ test if both are 0, clear C flag
        teqne        r0, r1                        @ if not 0 compare sign
        subpls        r0, r2, r3                @ if same sign compare values, set r0

        @ Result:
        movhi        r0, r1, asr #31
        mvnlo        r0, r1, asr #31
        orrne        r0, r0, #1
        RET

        @ Look for a NAN. 
3:        mvns        ip, r2, asr #24
        bne        4f
        movs        ip, r0, lsl #9
        bne        5f                        @ r0 is NAN
4:        mvns        ip, r3, asr #24
        bne        2b
        movs        ip, r1, lsl #9
        beq        2b                        @ r1 is not NAN
5:        ldr        r0, [sp, #-4]                @ return unordered code.
        RET

        FUNC_END gesf2
        FUNC_END gtsf2
        FUNC_END lesf2
        FUNC_END ltsf2
        FUNC_END nesf2
        FUNC_END eqsf2
        FUNC_END cmpsf2

ARM_FUNC_START aeabi_cfrcmple

        mov        ip, r0
        mov        r0, r1
        mov        r1, ip
        b        6f

ARM_FUNC_START aeabi_cfcmpeq
ARM_FUNC_ALIAS aeabi_cfcmple aeabi_cfcmpeq

        @ The status-returning routines are required to preserve all
        @ registers except ip, lr, and cpsr.
6:        stmfd        sp!, {r0, r1, r2, r3, lr}
        ARM_CALL cmpsf2
        @ Set the Z flag correctly, and the C flag unconditionally.
        cmp         r0, #0
        @ Clear the C flag if the return value was -1, indicating
        @ that the first operand was smaller than the second.
        cmnmi         r0, #0
        RETLDM  "r0, r1, r2, r3"

        FUNC_END aeabi_cfcmple
        FUNC_END aeabi_cfcmpeq
        FUNC_END aeabi_cfrcmple

ARM_FUNC_START        aeabi_fcmpeq

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cfcmple
        moveq        r0, #1        @ Equal to.
        movne        r0, #0        @ Less than, greater than, or unordered.
        RETLDM

        FUNC_END aeabi_fcmpeq

ARM_FUNC_START        aeabi_fcmplt

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cfcmple
        movcc        r0, #1        @ Less than.
        movcs        r0, #0        @ Equal to, greater than, or unordered.
        RETLDM

        FUNC_END aeabi_fcmplt

ARM_FUNC_START        aeabi_fcmple

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cfcmple
        movls        r0, #1  @ Less than or equal to.
        movhi        r0, #0        @ Greater than or unordered.
        RETLDM

        FUNC_END aeabi_fcmple

ARM_FUNC_START        aeabi_fcmpge

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cfrcmple
        movls        r0, #1        @ Operand 2 is less than or equal to operand 1.
        movhi        r0, #0        @ Operand 2 greater than operand 1, or unordered.
        RETLDM

        FUNC_END aeabi_fcmpge

ARM_FUNC_START        aeabi_fcmpgt

        str        lr, [sp, #-8]!
        ARM_CALL aeabi_cfrcmple
        movcc        r0, #1        @ Operand 2 is less than operand 1.
        movcs        r0, #0  @ Operand 2 is greater than or equal to operand 1,
                        @ or they are unordered.
        RETLDM

        FUNC_END aeabi_fcmpgt

#endif /* L_cmpsf2 */

#ifdef L_unordsf2

ARM_FUNC_START unordsf2
ARM_FUNC_ALIAS aeabi_fcmpun unordsf2

        mov        r2, r0, lsl #1
        mov        r3, r1, lsl #1
        mvns        ip, r2, asr #24
        bne        1f
        movs        ip, r0, lsl #9
        bne        3f                        @ r0 is NAN
1:        mvns        ip, r3, asr #24
        bne        2f
        movs        ip, r1, lsl #9
        bne        3f                        @ r1 is NAN
2:        mov        r0, #0                        @ arguments are ordered.
        RET
3:        mov        r0, #1                        @ arguments are unordered.
        RET

        FUNC_END aeabi_fcmpun
        FUNC_END unordsf2

#endif /* L_unordsf2 */

#ifdef L_fixsfsi

ARM_FUNC_START fixsfsi
ARM_FUNC_ALIAS aeabi_f2iz fixsfsi

        @ check exponent range.
        mov        r2, r0, lsl #1
        cmp        r2, #(127 << 24)
        bcc        1f                        @ value is too small
        mov        r3, #(127 + 31)
        subs        r2, r3, r2, lsr #24
        bls        2f                        @ value is too large

        @ scale value
        mov        r3, r0, lsl #8
        orr        r3, r3, #0x80000000
        tst        r0, #0x80000000                @ the sign bit
        mov        r0, r3, lsr r2
        rsbne        r0, r0, #0
        RET

1:        mov        r0, #0
        RET

2:        cmp        r2, #(127 + 31 - 0xff)
        bne        3f
        movs        r2, r0, lsl #9
        bne        4f                        @ r0 is NAN.
3:        ands        r0, r0, #0x80000000        @ the sign bit
        moveq        r0, #0x7fffffff                @ the maximum signed positive si
        RET

4:        mov        r0, #0                        @ What should we convert NAN to?
        RET

        FUNC_END aeabi_f2iz
        FUNC_END fixsfsi

#endif /* L_fixsfsi */

#ifdef L_fixunssfsi

ARM_FUNC_START fixunssfsi
ARM_FUNC_ALIAS aeabi_f2uiz fixunssfsi

        @ check exponent range.
        movs        r2, r0, lsl #1
        bcs        1f                        @ value is negative
        cmp        r2, #(127 << 24)
        bcc        1f                        @ value is too small
        mov        r3, #(127 + 31)
        subs        r2, r3, r2, lsr #24
        bmi        2f                        @ value is too large

        @ scale the value
        mov        r3, r0, lsl #8
        orr        r3, r3, #0x80000000
        mov        r0, r3, lsr r2
        RET

1:        mov        r0, #0
        RET

2:        cmp        r2, #(127 + 31 - 0xff)
        bne        3f
        movs        r2, r0, lsl #9
        bne        4f                        @ r0 is NAN.
3:        mov        r0, #0xffffffff                @ maximum unsigned si
        RET

4:        mov        r0, #0                        @ What should we convert NAN to?
        RET

        FUNC_END aeabi_f2uiz
        FUNC_END fixunssfsi

#endif /* L_fixunssfsi */