File: lib1funcs.asm

package info (click to toggle)
gccxml 0.9.0%2Bcvs20100501-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 79,132 kB
  • ctags: 73,371
  • sloc: ansic: 751,436; cpp: 34,175; asm: 26,833; sh: 5,077; makefile: 4,696; lex: 589; awk: 566; perl: 334; yacc: 271; pascal: 86; python: 29
file content (1309 lines) | stat: -rw-r--r-- 39,198 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
@ libgcc routines for ARM cpu.
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)

/* Copyright 1995, 1996, 1998, 1999, 2000, 2003, 2004, 2005
   Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */
/* ------------------------------------------------------------------------ */

/* We need to know what prefix to add to function names.  */

#ifndef __USER_LABEL_PREFIX__
#error  __USER_LABEL_PREFIX__ not defined
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

#ifdef __ELF__
#ifdef __thumb__
#define __PLT__  /* Not supported in Thumb assembler (for now).  */
#else
#define __PLT__ (PLT)
#endif
#define TYPE(x) .type SYM(x),function
#define SIZE(x) .size SYM(x), . - SYM(x)
#define LSYM(x) .x
#else
#define __PLT__
#define TYPE(x)
#define SIZE(x)
#define LSYM(x) x
#endif

/* Function end macros.  Variants for interworking.  */

@ This selects the minimum architecture level required.
#define __ARM_ARCH__ 3

#if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \
        || defined(__ARM_ARCH_4T__)
/* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with
   long multiply instructions.  That includes v3M.  */
# undef __ARM_ARCH__
# define __ARM_ARCH__ 4
#endif
        
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
        || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
        || defined(__ARM_ARCH_5TEJ__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 5
#endif

#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
        || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
        || defined(__ARM_ARCH_6ZK__)
# undef __ARM_ARCH__
# define __ARM_ARCH__ 6
#endif

#ifndef __ARM_ARCH__
#error Unable to determine architecture.
#endif

/* How to return from a function call depends on the architecture variant.  */

#if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__)

# define RET                bx        lr
# define RETc(x)        bx##x        lr

/* Special precautions for interworking on armv4t.  */
# if (__ARM_ARCH__ == 4)

/* Always use bx, not ldr pc.  */
#  if (defined(__thumb__) || defined(__THUMB_INTERWORK__))
#    define __INTERWORKING__
#   endif /* __THUMB__ || __THUMB_INTERWORK__ */

/* Include thumb stub before arm mode code.  */
#  if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
#   define __INTERWORKING_STUBS__
#  endif /* __thumb__ && !__THUMB_INTERWORK__ */

#endif /* __ARM_ARCH == 4 */

#else

# define RET                mov        pc, lr
# define RETc(x)        mov##x        pc, lr

#endif

.macro        cfi_pop                advance, reg, cfa_offset
#ifdef __ELF__
        .pushsection        .debug_frame
        .byte        0x4                /* DW_CFA_advance_loc4 */
        .4byte        \advance
        .byte        (0xc0 | \reg)        /* DW_CFA_restore */
        .byte        0xe                /* DW_CFA_def_cfa_offset */
        .uleb128 \cfa_offset
        .popsection
#endif
.endm
.macro        cfi_push        advance, reg, offset, cfa_offset
#ifdef __ELF__
        .pushsection        .debug_frame
        .byte        0x4                /* DW_CFA_advance_loc4 */
        .4byte        \advance
        .byte        (0x80 | \reg)        /* DW_CFA_offset */
        .uleb128 (\offset / -4)
        .byte        0xe                /* DW_CFA_def_cfa_offset */
        .uleb128 \cfa_offset
        .popsection
#endif
.endm
.macro cfi_start        start_label, end_label
#ifdef __ELF__
        .pushsection        .debug_frame
LSYM(Lstart_frame):
        .4byte        LSYM(Lend_cie) - LSYM(Lstart_cie) @ Length of CIE
LSYM(Lstart_cie):
        .4byte        0xffffffff        @ CIE Identifier Tag
        .byte        0x1        @ CIE Version
        .ascii        "\0"        @ CIE Augmentation
        .uleb128 0x1        @ CIE Code Alignment Factor
        .sleb128 -4        @ CIE Data Alignment Factor
        .byte        0xe        @ CIE RA Column
        .byte        0xc        @ DW_CFA_def_cfa
        .uleb128 0xd
        .uleb128 0x0

        .align 2
LSYM(Lend_cie):
        .4byte        LSYM(Lend_fde)-LSYM(Lstart_fde)        @ FDE Length
LSYM(Lstart_fde):
        .4byte        LSYM(Lstart_frame)        @ FDE CIE offset
        .4byte        \start_label        @ FDE initial location
        .4byte        \end_label-\start_label        @ FDE address range
        .popsection
#endif
.endm
.macro cfi_end        end_label
#ifdef __ELF__
        .pushsection        .debug_frame
        .align        2
LSYM(Lend_fde):
        .popsection
\end_label:
#endif
.endm

/* Don't pass dirn, it's there just to get token pasting right.  */

.macro        RETLDM        regs=, cond=, unwind=, dirn=ia
#if defined (__INTERWORKING__)
        .ifc "\regs",""
        ldr\cond        lr, [sp], #8
        .else
        ldm\cond\dirn        sp!, {\regs, lr}
        .endif
        .ifnc "\unwind", ""
        /* Mark LR as restored.  */
97:        cfi_pop 97b - \unwind, 0xe, 0x0
        .endif
        bx\cond        lr
#else
        .ifc "\regs",""
        ldr\cond        pc, [sp], #8
        .else
        ldm\cond\dirn        sp!, {\regs, pc}
        .endif
#endif
.endm


.macro ARM_LDIV0 name
        str        lr, [sp, #-8]!
98:        cfi_push 98b - __\name, 0xe, -0x8, 0x8
        bl        SYM (__div0) __PLT__
        mov        r0, #0                        @ About as wrong as it could be.
        RETLDM        unwind=98b
.endm


.macro THUMB_LDIV0 name
        push        { r1, lr }
98:        cfi_push 98b - __\name, 0xe, -0x4, 0x8
        bl        SYM (__div0)
        mov        r0, #0                        @ About as wrong as it could be.
#if defined (__INTERWORKING__)
        pop        { r1, r2 }
        bx        r2
#else
        pop        { r1, pc }
#endif
.endm

.macro FUNC_END name
        SIZE (__\name)
.endm

.macro DIV_FUNC_END name
        cfi_start        __\name, LSYM(Lend_div0)
LSYM(Ldiv0):
#ifdef __thumb__
        THUMB_LDIV0 \name
#else
        ARM_LDIV0 \name
#endif
        cfi_end        LSYM(Lend_div0)
        FUNC_END \name
.endm

.macro THUMB_FUNC_START name
        .globl        SYM (\name)
        TYPE        (\name)
        .thumb_func
SYM (\name):
.endm

/* Function start macros.  Variants for ARM and Thumb.  */

#ifdef __thumb__
#define THUMB_FUNC .thumb_func
#define THUMB_CODE .force_thumb
#else
#define THUMB_FUNC
#define THUMB_CODE
#endif
        
.macro FUNC_START name
        .text
        .globl SYM (__\name)
        TYPE (__\name)
        .align 0
        THUMB_CODE
        THUMB_FUNC
SYM (__\name):
.endm

/* Special function that will always be coded in ARM assembly, even if
   in Thumb-only compilation.  */

#if defined(__INTERWORKING_STUBS__)
.macro        ARM_FUNC_START name
        FUNC_START \name
        bx        pc
        nop
        .arm
/* A hook to tell gdb that we've switched to ARM mode.  Also used to call
   directly from other local arm routines.  */
_L__\name:                
.endm
#define EQUIV .thumb_set
/* Branch directly to a function declared with ARM_FUNC_START.
   Must be called in arm mode.  */
.macro  ARM_CALL name
        bl        _L__\name
.endm
#else
.macro        ARM_FUNC_START name
        .text
        .globl SYM (__\name)
        TYPE (__\name)
        .align 0
        .arm
SYM (__\name):
.endm
#define EQUIV .set
.macro  ARM_CALL name
        bl        __\name
.endm
#endif

.macro        FUNC_ALIAS new old
        .globl        SYM (__\new)
#if defined (__thumb__)
        .thumb_set        SYM (__\new), SYM (__\old)
#else
        .set        SYM (__\new), SYM (__\old)
#endif
.endm

.macro        ARM_FUNC_ALIAS new old
        .globl        SYM (__\new)
        EQUIV        SYM (__\new), SYM (__\old)
#if defined(__INTERWORKING_STUBS__)
        .set        SYM (_L__\new), SYM (_L__\old)
#endif
.endm

#ifdef __thumb__
/* Register aliases.  */

work                .req        r4        @ XXXX is this safe ?
dividend        .req        r0
divisor                .req        r1
overdone        .req        r2
result                .req        r2
curbit                .req        r3
#endif
#if 0
ip                .req        r12
sp                .req        r13
lr                .req        r14
pc                .req        r15
#endif

/* ------------------------------------------------------------------------ */
/*                Bodies of the division and modulo routines.                    */
/* ------------------------------------------------------------------------ */        
.macro ARM_DIV_BODY dividend, divisor, result, curbit

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

        clz        \curbit, \dividend
        clz        \result, \divisor
        sub        \curbit, \result, \curbit
        rsbs        \curbit, \curbit, #31
        addne        \curbit, \curbit, \curbit, lsl #1
        mov        \result, #0
        addne        pc, pc, \curbit, lsl #2
        nop
        .set        shift, 32
        .rept        32
        .set        shift, shift - 1
        cmp        \dividend, \divisor, lsl #shift
        adc        \result, \result, \result
        subcs        \dividend, \dividend, \divisor, lsl #shift
        .endr

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

        clz        \curbit, \divisor
        clz        \result, \dividend
        sub        \result, \curbit, \result
        mov        \curbit, #1
        mov        \divisor, \divisor, lsl \result
        mov        \curbit, \curbit, lsl \result
        mov        \result, #0
        
#else /* __ARM_ARCH__ < 5 */

        @ Initially shift the divisor left 3 bits if possible,
        @ set curbit accordingly.  This allows for curbit to be located
        @ at the left end of each 4 bit nibbles in the division loop
        @ to save one loop in most cases.
        tst        \divisor, #0xe0000000
        moveq        \divisor, \divisor, lsl #3
        moveq        \curbit, #8
        movne        \curbit, #1

        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
1:        cmp        \divisor, #0x10000000
        cmplo        \divisor, \dividend
        movlo        \divisor, \divisor, lsl #4
        movlo        \curbit, \curbit, lsl #4
        blo        1b

        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
1:        cmp        \divisor, #0x80000000
        cmplo        \divisor, \dividend
        movlo        \divisor, \divisor, lsl #1
        movlo        \curbit, \curbit, lsl #1
        blo        1b

        mov        \result, #0

#endif /* __ARM_ARCH__ < 5 */

        @ Division loop
1:        cmp        \dividend, \divisor
        subhs        \dividend, \dividend, \divisor
        orrhs        \result,   \result,   \curbit
        cmp        \dividend, \divisor,  lsr #1
        subhs        \dividend, \dividend, \divisor, lsr #1
        orrhs        \result,   \result,   \curbit,  lsr #1
        cmp        \dividend, \divisor,  lsr #2
        subhs        \dividend, \dividend, \divisor, lsr #2
        orrhs        \result,   \result,   \curbit,  lsr #2
        cmp        \dividend, \divisor,  lsr #3
        subhs        \dividend, \dividend, \divisor, lsr #3
        orrhs        \result,   \result,   \curbit,  lsr #3
        cmp        \dividend, #0                        @ Early termination?
        movnes        \curbit,   \curbit,  lsr #4        @ No, any more bits to do?
        movne        \divisor,  \divisor, lsr #4
        bne        1b

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */        
.macro ARM_DIV2_ORDER divisor, order

#if __ARM_ARCH__ >= 5

        clz        \order, \divisor
        rsb        \order, \order, #31

#else

        cmp        \divisor, #(1 << 16)
        movhs        \divisor, \divisor, lsr #16
        movhs        \order, #16
        movlo        \order, #0

        cmp        \divisor, #(1 << 8)
        movhs        \divisor, \divisor, lsr #8
        addhs        \order, \order, #8

        cmp        \divisor, #(1 << 4)
        movhs        \divisor, \divisor, lsr #4
        addhs        \order, \order, #4

        cmp        \divisor, #(1 << 2)
        addhi        \order, \order, #3
        addls        \order, \order, \divisor, lsr #1

#endif

.endm
/* ------------------------------------------------------------------------ */
.macro ARM_MOD_BODY dividend, divisor, order, spare

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

        clz        \order, \divisor
        clz        \spare, \dividend
        sub        \order, \order, \spare
        rsbs        \order, \order, #31
        addne        pc, pc, \order, lsl #3
        nop
        .set        shift, 32
        .rept        32
        .set        shift, shift - 1
        cmp        \dividend, \divisor, lsl #shift
        subcs        \dividend, \dividend, \divisor, lsl #shift
        .endr

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

        clz        \order, \divisor
        clz        \spare, \dividend
        sub        \order, \order, \spare
        mov        \divisor, \divisor, lsl \order
        
#else /* __ARM_ARCH__ < 5 */

        mov        \order, #0

        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
1:        cmp        \divisor, #0x10000000
        cmplo        \divisor, \dividend
        movlo        \divisor, \divisor, lsl #4
        addlo        \order, \order, #4
        blo        1b

        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
1:        cmp        \divisor, #0x80000000
        cmplo        \divisor, \dividend
        movlo        \divisor, \divisor, lsl #1
        addlo        \order, \order, #1
        blo        1b

#endif /* __ARM_ARCH__ < 5 */

        @ Perform all needed substractions to keep only the reminder.
        @ Do comparisons in batch of 4 first.
        subs        \order, \order, #3                @ yes, 3 is intended here
        blt        2f

1:        cmp        \dividend, \divisor
        subhs        \dividend, \dividend, \divisor
        cmp        \dividend, \divisor,  lsr #1
        subhs        \dividend, \dividend, \divisor, lsr #1
        cmp        \dividend, \divisor,  lsr #2
        subhs        \dividend, \dividend, \divisor, lsr #2
        cmp        \dividend, \divisor,  lsr #3
        subhs        \dividend, \dividend, \divisor, lsr #3
        cmp        \dividend, #1
        mov        \divisor, \divisor, lsr #4
        subges        \order, \order, #4
        bge        1b

        tst        \order, #3
        teqne        \dividend, #0
        beq        5f

        @ Either 1, 2 or 3 comparison/substractions are left.
2:        cmn        \order, #2
        blt        4f
        beq        3f
        cmp        \dividend, \divisor
        subhs        \dividend, \dividend, \divisor
        mov        \divisor,  \divisor,  lsr #1
3:        cmp        \dividend, \divisor
        subhs        \dividend, \dividend, \divisor
        mov        \divisor,  \divisor,  lsr #1
4:        cmp        \dividend, \divisor
        subhs        \dividend, \dividend, \divisor
5:

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */
.macro THUMB_DIV_MOD_BODY modulo
        @ Load the constant 0x10000000 into our work register.
        mov        work, #1
        lsl        work, #28
LSYM(Loop1):
        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
        cmp        divisor, work
        bhs        LSYM(Lbignum)
        cmp        divisor, dividend
        bhs        LSYM(Lbignum)
        lsl        divisor, #4
        lsl        curbit,  #4
        b        LSYM(Loop1)
LSYM(Lbignum):
        @ Set work to 0x80000000
        lsl        work, #3
LSYM(Loop2):
        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
        cmp        divisor, work
        bhs        LSYM(Loop3)
        cmp        divisor, dividend
        bhs        LSYM(Loop3)
        lsl        divisor, #1
        lsl        curbit,  #1
        b        LSYM(Loop2)
LSYM(Loop3):
        @ Test for possible subtractions ...
  .if \modulo
        @ ... On the final pass, this may subtract too much from the dividend, 
        @ so keep track of which subtractions are done, we can fix them up 
        @ afterwards.
        mov        overdone, #0
        cmp        dividend, divisor
        blo        LSYM(Lover1)
        sub        dividend, dividend, divisor
LSYM(Lover1):
        lsr        work, divisor, #1
        cmp        dividend, work
        blo        LSYM(Lover2)
        sub        dividend, dividend, work
        mov        ip, curbit
        mov        work, #1
        ror        curbit, work
        orr        overdone, curbit
        mov        curbit, ip
LSYM(Lover2):
        lsr        work, divisor, #2
        cmp        dividend, work
        blo        LSYM(Lover3)
        sub        dividend, dividend, work
        mov        ip, curbit
        mov        work, #2
        ror        curbit, work
        orr        overdone, curbit
        mov        curbit, ip
LSYM(Lover3):
        lsr        work, divisor, #3
        cmp        dividend, work
        blo        LSYM(Lover4)
        sub        dividend, dividend, work
        mov        ip, curbit
        mov        work, #3
        ror        curbit, work
        orr        overdone, curbit
        mov        curbit, ip
LSYM(Lover4):
        mov        ip, curbit
  .else
        @ ... and note which bits are done in the result.  On the final pass,
        @ this may subtract too much from the dividend, but the result will be ok,
        @ since the "bit" will have been shifted out at the bottom.
        cmp        dividend, divisor
        blo        LSYM(Lover1)
        sub        dividend, dividend, divisor
        orr        result, result, curbit
LSYM(Lover1):
        lsr        work, divisor, #1
        cmp        dividend, work
        blo        LSYM(Lover2)
        sub        dividend, dividend, work
        lsr        work, curbit, #1
        orr        result, work
LSYM(Lover2):
        lsr        work, divisor, #2
        cmp        dividend, work
        blo        LSYM(Lover3)
        sub        dividend, dividend, work
        lsr        work, curbit, #2
        orr        result, work
LSYM(Lover3):
        lsr        work, divisor, #3
        cmp        dividend, work
        blo        LSYM(Lover4)
        sub        dividend, dividend, work
        lsr        work, curbit, #3
        orr        result, work
LSYM(Lover4):
  .endif
        
        cmp        dividend, #0                        @ Early termination?
        beq        LSYM(Lover5)
        lsr        curbit,  #4                        @ No, any more bits to do?
        beq        LSYM(Lover5)
        lsr        divisor, #4
        b        LSYM(Loop3)
LSYM(Lover5):
  .if \modulo
        @ Any subtractions that we should not have done will be recorded in
        @ the top three bits of "overdone".  Exactly which were not needed
        @ are governed by the position of the bit, stored in ip.
        mov        work, #0xe
        lsl        work, #28
        and        overdone, work
        beq        LSYM(Lgot_result)
        
        @ If we terminated early, because dividend became zero, then the 
        @ bit in ip will not be in the bottom nibble, and we should not
        @ perform the additions below.  We must test for this though
        @ (rather relying upon the TSTs to prevent the additions) since
        @ the bit in ip could be in the top two bits which might then match
        @ with one of the smaller RORs.
        mov        curbit, ip
        mov        work, #0x7
        tst        curbit, work
        beq        LSYM(Lgot_result)
        
        mov        curbit, ip
        mov        work, #3
        ror        curbit, work
        tst        overdone, curbit
        beq        LSYM(Lover6)
        lsr        work, divisor, #3
        add        dividend, work
LSYM(Lover6):
        mov        curbit, ip
        mov        work, #2
        ror        curbit, work
        tst        overdone, curbit
        beq        LSYM(Lover7)
        lsr        work, divisor, #2
        add        dividend, work
LSYM(Lover7):
        mov        curbit, ip
        mov        work, #1
        ror        curbit, work
        tst        overdone, curbit
        beq        LSYM(Lgot_result)
        lsr        work, divisor, #1
        add        dividend, work
  .endif
LSYM(Lgot_result):
.endm        
/* ------------------------------------------------------------------------ */
/*                Start of the Real Functions                                    */
/* ------------------------------------------------------------------------ */
#ifdef L_udivsi3

        FUNC_START udivsi3
        FUNC_ALIAS aeabi_uidiv udivsi3

#ifdef __thumb__

        cmp        divisor, #0
        beq        LSYM(Ldiv0)
        mov        curbit, #1
        mov        result, #0
        
        push        { work }
        cmp        dividend, divisor
        blo        LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 0
        
        mov        r0, result
        pop        { work }
        RET

#else /* ARM version.  */

        subs        r2, r1, #1
        RETc(eq)
        bcc        LSYM(Ldiv0)
        cmp        r0, r1
        bls        11f
        tst        r1, r2
        beq        12f
        
        ARM_DIV_BODY r0, r1, r2, r3
        
        mov        r0, r2
        RET        

11:        moveq        r0, #1
        movne        r0, #0
        RET

12:        ARM_DIV2_ORDER r1, r2

        mov        r0, r0, lsr r2
        RET

#endif /* ARM version */

        DIV_FUNC_END udivsi3

FUNC_START aeabi_uidivmod
#ifdef __thumb__
        push        {r0, r1, lr}
        bl        SYM(__udivsi3)
        POP        {r1, r2, r3}
        mul        r2, r0
        sub        r1, r1, r2
        bx        r3
#else
        stmfd        sp!, { r0, r1, lr }
        bl        SYM(__udivsi3)
        ldmfd        sp!, { r1, r2, lr }
        mul        r3, r2, r0
        sub        r1, r1, r3
        RET
#endif
        FUNC_END aeabi_uidivmod
        
#endif /* L_udivsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_umodsi3

        FUNC_START umodsi3

#ifdef __thumb__

        cmp        divisor, #0
        beq        LSYM(Ldiv0)
        mov        curbit, #1
        cmp        dividend, divisor
        bhs        LSYM(Lover10)
        RET        

LSYM(Lover10):
        push        { work }

        THUMB_DIV_MOD_BODY 1
        
        pop        { work }
        RET
        
#else  /* ARM version.  */
        
        subs        r2, r1, #1                        @ compare divisor with 1
        bcc        LSYM(Ldiv0)
        cmpne        r0, r1                                @ compare dividend with divisor
        moveq   r0, #0
        tsthi        r1, r2                                @ see if divisor is power of 2
        andeq        r0, r0, r2
        RETc(ls)

        ARM_MOD_BODY r0, r1, r2, r3
        
        RET        

#endif /* ARM version.  */
        
        DIV_FUNC_END umodsi3

#endif /* L_umodsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_divsi3

        FUNC_START divsi3        
        FUNC_ALIAS aeabi_idiv divsi3

#ifdef __thumb__
        cmp        divisor, #0
        beq        LSYM(Ldiv0)
        
        push        { work }
        mov        work, dividend
        eor        work, divisor                @ Save the sign of the result.
        mov        ip, work
        mov        curbit, #1
        mov        result, #0
        cmp        divisor, #0
        bpl        LSYM(Lover10)
        neg        divisor, divisor        @ Loops below use unsigned.
LSYM(Lover10):
        cmp        dividend, #0
        bpl        LSYM(Lover11)
        neg        dividend, dividend
LSYM(Lover11):
        cmp        dividend, divisor
        blo        LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 0
        
        mov        r0, result
        mov        work, ip
        cmp        work, #0
        bpl        LSYM(Lover12)
        neg        r0, r0
LSYM(Lover12):
        pop        { work }
        RET

#else /* ARM version.  */
        
        cmp        r1, #0
        eor        ip, r0, r1                        @ save the sign of the result.
        beq        LSYM(Ldiv0)
        rsbmi        r1, r1, #0                        @ loops below use unsigned.
        subs        r2, r1, #1                        @ division by 1 or -1 ?
        beq        10f
        movs        r3, r0
        rsbmi        r3, r0, #0                        @ positive dividend value
        cmp        r3, r1
        bls        11f
        tst        r1, r2                                @ divisor is power of 2 ?
        beq        12f

        ARM_DIV_BODY r3, r1, r0, r2
        
        cmp        ip, #0
        rsbmi        r0, r0, #0
        RET        

10:        teq        ip, r0                                @ same sign ?
        rsbmi        r0, r0, #0
        RET        

11:        movlo        r0, #0
        moveq        r0, ip, asr #31
        orreq        r0, r0, #1
        RET

12:        ARM_DIV2_ORDER r1, r2

        cmp        ip, #0
        mov        r0, r3, lsr r2
        rsbmi        r0, r0, #0
        RET

#endif /* ARM version */
        
        DIV_FUNC_END divsi3

FUNC_START aeabi_idivmod
#ifdef __thumb__
        push        {r0, r1, lr}
        bl        SYM(__divsi3)
        POP        {r1, r2, r3}
        mul        r2, r0
        sub        r1, r1, r2
        bx        r3
#else
        stmfd        sp!, { r0, r1, lr }
        bl        SYM(__divsi3)
        ldmfd        sp!, { r1, r2, lr }
        mul        r3, r2, r0
        sub        r1, r1, r3
        RET
#endif
        FUNC_END aeabi_idivmod
        
#endif /* L_divsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_modsi3

        FUNC_START modsi3

#ifdef __thumb__

        mov        curbit, #1
        cmp        divisor, #0
        beq        LSYM(Ldiv0)
        bpl        LSYM(Lover10)
        neg        divisor, divisor                @ Loops below use unsigned.
LSYM(Lover10):
        push        { work }
        @ Need to save the sign of the dividend, unfortunately, we need
        @ work later on.  Must do this after saving the original value of
        @ the work register, because we will pop this value off first.
        push        { dividend }
        cmp        dividend, #0
        bpl        LSYM(Lover11)
        neg        dividend, dividend
LSYM(Lover11):
        cmp        dividend, divisor
        blo        LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 1
                
        pop        { work }
        cmp        work, #0
        bpl        LSYM(Lover12)
        neg        dividend, dividend
LSYM(Lover12):
        pop        { work }
        RET        

#else /* ARM version.  */
        
        cmp        r1, #0
        beq        LSYM(Ldiv0)
        rsbmi        r1, r1, #0                        @ loops below use unsigned.
        movs        ip, r0                                @ preserve sign of dividend
        rsbmi        r0, r0, #0                        @ if negative make positive
        subs        r2, r1, #1                        @ compare divisor with 1
        cmpne        r0, r1                                @ compare dividend with divisor
        moveq        r0, #0
        tsthi        r1, r2                                @ see if divisor is power of 2
        andeq        r0, r0, r2
        bls        10f

        ARM_MOD_BODY r0, r1, r2, r3

10:        cmp        ip, #0
        rsbmi        r0, r0, #0
        RET        

#endif /* ARM version */
        
        DIV_FUNC_END modsi3

#endif /* L_modsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_tls

        FUNC_START div0
        FUNC_ALIAS aeabi_idiv0 div0
        FUNC_ALIAS aeabi_ldiv0 div0

        RET

        FUNC_END aeabi_ldiv0
        FUNC_END aeabi_idiv0
        FUNC_END div0
        
#endif /* L_divmodsi_tools */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_lnx
@ GNU/Linux division-by zero handler.  Used in place of L_dvmd_tls

/* Constant taken from <asm/signal.h>.  */
#define SIGFPE        8

        .code        32
        FUNC_START div0

        stmfd        sp!, {r1, lr}
        mov        r0, #SIGFPE
        bl        SYM(raise) __PLT__
        RETLDM        r1

        FUNC_END div0
        
#endif /* L_dvmd_lnx */
/* ------------------------------------------------------------------------ */
/* Dword shift operations.  */
/* All the following Dword shift variants rely on the fact that
        shft xxx, Reg
   is in fact done as
        shft xxx, (Reg & 255)
   so for Reg value in (32...63) and (-1...-31) we will get zero (in the
   case of logical shifts) or the sign (for asr).  */

#ifdef __ARMEB__
#define al        r1
#define ah        r0
#else
#define al        r0
#define ah        r1
#endif

/* Prevent __aeabi double-word shifts from being produced on SymbianOS.  */
#ifndef __symbian__

#ifdef L_lshrdi3

        FUNC_START lshrdi3
        FUNC_ALIAS aeabi_llsr lshrdi3
        
#ifdef __thumb__
        lsr        al, r2
        mov        r3, ah
        lsr        ah, r2
        mov        ip, r3
        sub        r2, #32
        lsr        r3, r2
        orr        al, r3
        neg        r2, r2
        mov        r3, ip
        lsl        r3, r2
        orr        al, r3
        RET
#else
        subs        r3, r2, #32
        rsb        ip, r2, #32
        movmi        al, al, lsr r2
        movpl        al, ah, lsr r3
        orrmi        al, al, ah, lsl ip
        mov        ah, ah, lsr r2
        RET
#endif
        FUNC_END aeabi_llsr
        FUNC_END lshrdi3

#endif
        
#ifdef L_ashrdi3
        
        FUNC_START ashrdi3
        FUNC_ALIAS aeabi_lasr ashrdi3
        
#ifdef __thumb__
        lsr        al, r2
        mov        r3, ah
        asr        ah, r2
        sub        r2, #32
        @ If r2 is negative at this point the following step would OR
        @ the sign bit into all of AL.  That's not what we want...
        bmi        1f
        mov        ip, r3
        asr        r3, r2
        orr        al, r3
        mov        r3, ip
1:
        neg        r2, r2
        lsl        r3, r2
        orr        al, r3
        RET
#else
        subs        r3, r2, #32
        rsb        ip, r2, #32
        movmi        al, al, lsr r2
        movpl        al, ah, asr r3
        orrmi        al, al, ah, lsl ip
        mov        ah, ah, asr r2
        RET
#endif

        FUNC_END aeabi_lasr
        FUNC_END ashrdi3

#endif

#ifdef L_ashldi3

        FUNC_START ashldi3
        FUNC_ALIAS aeabi_llsl ashldi3
        
#ifdef __thumb__
        lsl        ah, r2
        mov        r3, al
        lsl        al, r2
        mov        ip, r3
        sub        r2, #32
        lsl        r3, r2
        orr        ah, r3
        neg        r2, r2
        mov        r3, ip
        lsr        r3, r2
        orr        ah, r3
        RET
#else
        subs        r3, r2, #32
        rsb        ip, r2, #32
        movmi        ah, ah, lsl r2
        movpl        ah, al, lsl r3
        orrmi        ah, ah, al, lsr ip
        mov        al, al, lsl r2
        RET
#endif
        FUNC_END aeabi_llsl
        FUNC_END ashldi3

#endif

#endif /* __symbian__ */

/* ------------------------------------------------------------------------ */
/* These next two sections are here despite the fact that they contain Thumb 
   assembler because their presence allows interworked code to be linked even
   when the GCC library is this one.  */
                
/* Do not build the interworking functions when the target architecture does 
   not support Thumb instructions.  (This can be a multilib option).  */
#if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\
      || defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \
      || __ARM_ARCH__ >= 6

#if defined L_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code. 
   The address of function to be called is loaded into a register and then 
   one of these labels is called via a BL instruction.  This puts the 
   return address into the link register with the bottom bit set, and the 
   code here switches to the correct mode before executing the function.  */
        
        .text
        .align 0
        .force_thumb

.macro call_via register
        THUMB_FUNC_START _call_via_\register

        bx        \register
        nop

        SIZE        (_call_via_\register)
.endm

        call_via r0
        call_via r1
        call_via r2
        call_via r3
        call_via r4
        call_via r5
        call_via r6
        call_via r7
        call_via r8
        call_via r9
        call_via sl
        call_via fp
        call_via ip
        call_via sp
        call_via lr

#endif /* L_call_via_rX */

#if defined L_interwork_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code,
   when the target address is in an unknown instruction set.  The address 
   of function to be called is loaded into a register and then one of these
   labels is called via a BL instruction.  This puts the return address 
   into the link register with the bottom bit set, and the code here 
   switches to the correct mode before executing the function.  Unfortunately
   the target code cannot be relied upon to return via a BX instruction, so
   instead we have to store the resturn address on the stack and allow the
   called function to return here instead.  Upon return we recover the real
   return address and use a BX to get back to Thumb mode.

   There are three variations of this code.  The first,
   _interwork_call_via_rN(), will push the return address onto the
   stack and pop it in _arm_return().  It should only be used if all
   arguments are passed in registers.

   The second, _interwork_r7_call_via_rN(), instead stores the return
   address at [r7, #-4].  It is the caller's responsibility to ensure
   that this address is valid and contains no useful data.

   The third, _interwork_r11_call_via_rN(), works in the same way but
   uses r11 instead of r7.  It is useful if the caller does not really
   need a frame pointer.  */
        
        .text
        .align 0

        .code   32
        .globl _arm_return
LSYM(Lstart_arm_return):
        cfi_start        LSYM(Lstart_arm_return) LSYM(Lend_arm_return)
        cfi_push        0, 0xe, -0x8, 0x8
        nop        @ This nop is for the benefit of debuggers, so that
                @ backtraces will use the correct unwind information.
_arm_return:
        RETLDM        unwind=LSYM(Lstart_arm_return)
        cfi_end        LSYM(Lend_arm_return)

        .globl _arm_return_r7
_arm_return_r7:
        ldr        lr, [r7, #-4]
        bx        lr

        .globl _arm_return_r11
_arm_return_r11:
        ldr        lr, [r11, #-4]
        bx        lr

.macro interwork_with_frame frame, register, name, return
        .code        16

        THUMB_FUNC_START \name

        bx        pc
        nop

        .code        32
        tst        \register, #1
        streq        lr, [\frame, #-4]
        adreq        lr, _arm_return_\frame
        bx        \register

        SIZE        (\name)
.endm

.macro interwork register
        .code        16

        THUMB_FUNC_START _interwork_call_via_\register

        bx        pc
        nop

        .code        32
        .globl LSYM(Lchange_\register)
LSYM(Lchange_\register):
        tst        \register, #1
        streq        lr, [sp, #-8]!
        adreq        lr, _arm_return
        bx        \register

        SIZE        (_interwork_call_via_\register)

        interwork_with_frame r7,\register,_interwork_r7_call_via_\register
        interwork_with_frame r11,\register,_interwork_r11_call_via_\register
.endm
        
        interwork r0
        interwork r1
        interwork r2
        interwork r3
        interwork r4
        interwork r5
        interwork r6
        interwork r7
        interwork r8
        interwork r9
        interwork sl
        interwork fp
        interwork ip
        interwork sp
        
        /* The LR case has to be handled a little differently...  */
        .code 16

        THUMB_FUNC_START _interwork_call_via_lr

        bx         pc
        nop
        
        .code 32
        .globl .Lchange_lr
.Lchange_lr:
        tst        lr, #1
        stmeqdb        r13!, {lr, pc}
        mov        ip, lr
        adreq        lr, _arm_return
        bx        ip
        
        SIZE        (_interwork_call_via_lr)
        
#endif /* L_interwork_call_via_rX */
#endif /* Arch supports thumb.  */

#ifndef __symbian__
#include "ieee754-df.S"
#include "ieee754-sf.S"
#include "bpabi.S"
#endif /* __symbian__ */