File: libgcc.S

package info (click to toggle)
gccxml 0.9.0%2Bcvs20100501-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 79,132 kB
  • ctags: 73,371
  • sloc: ansic: 751,436; cpp: 34,175; asm: 26,833; sh: 5,077; makefile: 4,696; lex: 589; awk: 566; perl: 334; yacc: 271; pascal: 86; python: 29
file content (778 lines) | stat: -rw-r--r-- 24,919 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/*  -*- Mode: Asm -*-  */
/* Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
   Contributed by Denis Chertykov <denisc@overta.ru>

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

#define __zero_reg__ r1
#define __tmp_reg__ r0
#define __SREG__ 0x3f
#define __SP_H__ 0x3e
#define __SP_L__ 0x3d

/* Most of the functions here are called directly from avr.md
   patterns, instead of using the standard libcall mechanisms.
   This can make better code because GCC knows exactly which
   of the call-used registers (not all of them) are clobbered.  */

        .section .text.libgcc, "ax", @progbits

        .macro        mov_l  r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
        movw        \r_dest, \r_src
#else
        mov        \r_dest, \r_src
#endif
        .endm

        .macro        mov_h  r_dest, r_src
#if defined (__AVR_HAVE_MOVW__)
        ; empty
#else
        mov        \r_dest, \r_src
#endif
        .endm

/* Note: mulqi3, mulhi3 are open-coded on the enhanced core.  */
#if !defined (__AVR_ENHANCED__)
/*******************************************************
               Multiplication  8 x 8
*******************************************************/
#if defined (L_mulqi3)

#define        r_arg2        r22                /* multiplicand */
#define        r_arg1         r24                /* multiplier */
#define r_res        __tmp_reg__        /* result */

        .global        __mulqi3
        .func        __mulqi3
__mulqi3:
        clr        r_res                ; clear result
__mulqi3_loop:
        sbrc        r_arg1,0
        add        r_res,r_arg2
        add        r_arg2,r_arg2        ; shift multiplicand
        breq        __mulqi3_exit        ; while multiplicand != 0
        lsr        r_arg1                ; 
        brne        __mulqi3_loop        ; exit if multiplier = 0
__mulqi3_exit:        
        mov        r_arg1,r_res        ; result to return register
        ret

#undef r_arg2  
#undef r_arg1  
#undef r_res   
        
.endfunc
#endif         /* defined (L_mulqi3) */

#if defined (L_mulqihi3)
        .global        __mulqihi3
        .func        __mulqihi3
__mulqihi3:
        clr        r25
        sbrc        r24, 7
        dec        r25
        clr        r23
        sbrc        r22, 7
        dec        r22
        rjmp        __mulhi3
        .endfunc
#endif /* defined (L_mulqihi3) */

#if defined (L_umulqihi3)
        .global        __umulqihi3
        .func        __umulqihi3
__umulqihi3:
        clr        r25
        clr        r23
        rjmp        __mulhi3
        .endfunc
#endif /* defined (L_umulqihi3) */

/*******************************************************
               Multiplication  16 x 16
*******************************************************/
#if defined (L_mulhi3)
#define        r_arg1L        r24                /* multiplier Low */
#define        r_arg1H        r25                /* multiplier High */
#define        r_arg2L        r22                /* multiplicand Low */
#define        r_arg2H        r23                /* multiplicand High */
#define r_resL        __tmp_reg__        /* result Low */
#define r_resH  r21                /* result High */

        .global        __mulhi3
        .func        __mulhi3
__mulhi3:
        clr        r_resH                ; clear result
        clr        r_resL                ; clear result
__mulhi3_loop:
        sbrs        r_arg1L,0
        rjmp        __mulhi3_skip1
        add        r_resL,r_arg2L        ; result + multiplicand
        adc        r_resH,r_arg2H
__mulhi3_skip1:        
        add        r_arg2L,r_arg2L        ; shift multiplicand
        adc        r_arg2H,r_arg2H

        cp        r_arg2L,__zero_reg__
        cpc        r_arg2H,__zero_reg__
        breq        __mulhi3_exit        ; while multiplicand != 0

        lsr        r_arg1H                ; gets LSB of multiplier
        ror        r_arg1L
        sbiw        r_arg1L,0
        brne        __mulhi3_loop        ; exit if multiplier = 0
__mulhi3_exit:
        mov        r_arg1H,r_resH        ; result to return register
        mov        r_arg1L,r_resL
        ret

#undef r_arg1L
#undef r_arg1H
#undef r_arg2L
#undef r_arg2H
#undef r_resL         
#undef r_resH 

.endfunc
#endif /* defined (L_mulhi3) */
#endif /* !defined (__AVR_ENHANCED__) */

#if defined (L_mulhisi3)
        .global        __mulhisi3
        .func        __mulhisi3
__mulhisi3:
        mov_l        r18, r24
        mov_h        r19, r25
        clr        r24
        sbrc        r23, 7
        dec        r24
        mov        r25, r24
        clr        r20
        sbrc        r19, 7
        dec        r20
        mov        r21, r20
        rjmp        __mulsi3
        .endfunc
#endif /* defined (L_mulhisi3) */

#if defined (L_umulhisi3)
        .global        __umulhisi3
        .func        __umulhisi3
__umulhisi3:
        mov_l        r18, r24
        mov_h        r19, r25
        clr        r24
        clr        r25
        clr        r20
        clr        r21
        rjmp        __mulsi3
        .endfunc
#endif /* defined (L_umulhisi3) */

#if defined (L_mulsi3)
/*******************************************************
               Multiplication  32 x 32
*******************************************************/
#define r_arg1L  r22                /* multiplier Low */
#define r_arg1H  r23
#define        r_arg1HL r24
#define        r_arg1HH r25                /* multiplier High */


#define        r_arg2L  r18                /* multiplicand Low */
#define        r_arg2H  r19        
#define        r_arg2HL r20
#define        r_arg2HH r21                /* multiplicand High */
        
#define r_resL         r26                /* result Low */
#define r_resH   r27
#define r_resHL         r30
#define r_resHH  r31                /* result High */

        
        .global        __mulsi3
        .func        __mulsi3
__mulsi3:
#if defined (__AVR_ENHANCED__)
        mul        r_arg1L, r_arg2L
        movw        r_resL, r0
        mul        r_arg1H, r_arg2H
        movw        r_resHL, r0
        mul        r_arg1HL, r_arg2L
        add        r_resHL, r0
        adc        r_resHH, r1
        mul        r_arg1L, r_arg2HL
        add        r_resHL, r0
        adc        r_resHH, r1
        mul        r_arg1HH, r_arg2L
        add        r_resHH, r0
        mul        r_arg1HL, r_arg2H
        add        r_resHH, r0
        mul        r_arg1H, r_arg2HL
        add        r_resHH, r0
        mul        r_arg1L, r_arg2HH
        add        r_resHH, r0
        clr        r_arg1HH        ; use instead of __zero_reg__ to add carry
        mul        r_arg1H, r_arg2L
        add        r_resH, r0
        adc        r_resHL, r1
        adc        r_resHH, r_arg1HH ; add carry
        mul        r_arg1L, r_arg2H
        add        r_resH, r0
        adc        r_resHL, r1
        adc        r_resHH, r_arg1HH ; add carry
        movw        r_arg1L, r_resL
        movw        r_arg1HL, r_resHL
        clr        r1                ; __zero_reg__ clobbered by "mul"
        ret
#else
        clr        r_resHH                ; clear result
        clr        r_resHL                ; clear result
        clr        r_resH                ; clear result
        clr        r_resL                ; clear result
__mulsi3_loop:
        sbrs        r_arg1L,0
        rjmp        __mulsi3_skip1
        add        r_resL,r_arg2L                ; result + multiplicand
        adc        r_resH,r_arg2H
        adc        r_resHL,r_arg2HL
        adc        r_resHH,r_arg2HH
__mulsi3_skip1:
        add        r_arg2L,r_arg2L                ; shift multiplicand
        adc        r_arg2H,r_arg2H
        adc        r_arg2HL,r_arg2HL
        adc        r_arg2HH,r_arg2HH
        
        lsr        r_arg1HH        ; gets LSB of multiplier
        ror        r_arg1HL
        ror        r_arg1H
        ror        r_arg1L
        brne        __mulsi3_loop
        sbiw        r_arg1HL,0
        cpc        r_arg1H,r_arg1L
        brne        __mulsi3_loop                ; exit if multiplier = 0
__mulsi3_exit:
        mov_h        r_arg1HH,r_resHH        ; result to return register
        mov_l        r_arg1HL,r_resHL
        mov_h        r_arg1H,r_resH
        mov_l        r_arg1L,r_resL
        ret
#endif /* !defined (__AVR_ENHANCED__) */
#undef r_arg1L 
#undef r_arg1H 
#undef r_arg1HL
#undef r_arg1HH
             
             
#undef r_arg2L 
#undef r_arg2H 
#undef r_arg2HL
#undef r_arg2HH
             
#undef r_resL  
#undef r_resH  
#undef r_resHL 
#undef r_resHH 

.endfunc
#endif /* defined (L_mulsi3) */
        
/*******************************************************
       Division 8 / 8 => (result + remainder)
*******************************************************/
#define        r_rem        r25        /* remainder */
#define        r_arg1        r24        /* dividend, quotient */
#define        r_arg2        r22        /* divisor */
#define        r_cnt        r23        /* loop count */

#if defined (L_udivmodqi4)
        .global        __udivmodqi4
        .func        __udivmodqi4
__udivmodqi4:
        sub        r_rem,r_rem        ; clear remainder and carry
        ldi        r_cnt,9                ; init loop counter
        rjmp        __udivmodqi4_ep        ; jump to entry point
__udivmodqi4_loop:
        rol        r_rem                ; shift dividend into remainder
        cp        r_rem,r_arg2        ; compare remainder & divisor
        brcs        __udivmodqi4_ep        ; remainder <= divisor
        sub        r_rem,r_arg2        ; restore remainder
__udivmodqi4_ep:
        rol        r_arg1                ; shift dividend (with CARRY)
        dec        r_cnt                ; decrement loop counter
        brne        __udivmodqi4_loop
        com        r_arg1                ; complement result 
                                ; because C flag was complemented in loop
        ret
        .endfunc
#endif /* defined (L_udivmodqi4) */

#if defined (L_divmodqi4)
        .global        __divmodqi4
        .func        __divmodqi4
__divmodqi4:
        bst     r_arg1,7        ; store sign of dividend
        mov     __tmp_reg__,r_arg1
        eor     __tmp_reg__,r_arg2; r0.7 is sign of result
        sbrc        r_arg1,7
        neg     r_arg1                ; dividend negative : negate
        sbrc        r_arg2,7
        neg     r_arg2                ; divisor negative : negate
        rcall        __udivmodqi4        ; do the unsigned div/mod
        brtc        __divmodqi4_1
        neg        r_rem                ; correct remainder sign
__divmodqi4_1:
        sbrc        __tmp_reg__,7
        neg        r_arg1                ; correct result sign
__divmodqi4_exit:
        ret
        .endfunc
#endif /* defined (L_divmodqi4) */

#undef r_rem
#undef r_arg1
#undef r_arg2
#undef r_cnt
        
                
/*******************************************************
       Division 16 / 16 => (result + remainder)
*******************************************************/
#define        r_remL        r26        /* remainder Low */
#define        r_remH        r27        /* remainder High */

/* return: remainder */
#define        r_arg1L        r24        /* dividend Low */
#define        r_arg1H        r25        /* dividend High */

/* return: quotient */
#define        r_arg2L        r22        /* divisor Low */
#define        r_arg2H        r23        /* divisor High */
        
#define        r_cnt        r21        /* loop count */

#if defined (L_udivmodhi4)
        .global        __udivmodhi4
        .func        __udivmodhi4
__udivmodhi4:
        sub        r_remL,r_remL
        sub        r_remH,r_remH        ; clear remainder and carry
        ldi        r_cnt,17        ; init loop counter
        rjmp        __udivmodhi4_ep        ; jump to entry point
__udivmodhi4_loop:
        rol        r_remL                ; shift dividend into remainder
        rol        r_remH
        cp        r_remL,r_arg2L        ; compare remainder & divisor
        cpc        r_remH,r_arg2H
        brcs        __udivmodhi4_ep        ; remainder < divisor
        sub        r_remL,r_arg2L        ; restore remainder
        sbc        r_remH,r_arg2H
__udivmodhi4_ep:
        rol        r_arg1L                ; shift dividend (with CARRY)
        rol        r_arg1H
        dec        r_cnt                ; decrement loop counter
        brne        __udivmodhi4_loop
        com        r_arg1L
        com        r_arg1H
; div/mod results to return registers, as for the div() function
        mov_l        r_arg2L, r_arg1L        ; quotient
        mov_h        r_arg2H, r_arg1H
        mov_l        r_arg1L, r_remL                ; remainder
        mov_h        r_arg1H, r_remH
        ret
        .endfunc
#endif /* defined (L_udivmodhi4) */

#if defined (L_divmodhi4)
        .global        __divmodhi4
        .func        __divmodhi4
__divmodhi4:
        .global        _div
_div:
        bst     r_arg1H,7        ; store sign of dividend
        mov     __tmp_reg__,r_arg1H
        eor     __tmp_reg__,r_arg2H   ; r0.7 is sign of result
        rcall        __divmodhi4_neg1 ; dividend negative : negate
        sbrc        r_arg2H,7
        rcall        __divmodhi4_neg2 ; divisor negative : negate
        rcall        __udivmodhi4        ; do the unsigned div/mod
        rcall        __divmodhi4_neg1 ; correct remainder sign
        tst        __tmp_reg__
        brpl        __divmodhi4_exit
__divmodhi4_neg2:
        com        r_arg2H
        neg        r_arg2L                ; correct divisor/result sign
        sbci        r_arg2H,0xff
__divmodhi4_exit:
        ret
__divmodhi4_neg1:
        brtc        __divmodhi4_exit
        com        r_arg1H
        neg        r_arg1L                ; correct dividend/remainder sign
        sbci        r_arg1H,0xff
        ret
        .endfunc
#endif /* defined (L_divmodhi4) */

#undef r_remH  
#undef r_remL  
             
#undef r_arg1H 
#undef r_arg1L 
             
#undef r_arg2H 
#undef r_arg2L 
                     
#undef r_cnt           
        
/*******************************************************
       Division 32 / 32 => (result + remainder)
*******************************************************/
#define        r_remHH        r31        /* remainder High */
#define        r_remHL        r30
#define        r_remH        r27
#define        r_remL        r26        /* remainder Low */

/* return: remainder */
#define        r_arg1HH r25        /* dividend High */
#define        r_arg1HL r24
#define        r_arg1H  r23
#define        r_arg1L  r22        /* dividend Low */

/* return: quotient */
#define        r_arg2HH r21        /* divisor High */
#define        r_arg2HL r20
#define        r_arg2H  r19
#define        r_arg2L  r18        /* divisor Low */
        
#define        r_cnt __zero_reg__  /* loop count (0 after the loop!) */

#if defined (L_udivmodsi4)
        .global        __udivmodsi4
        .func        __udivmodsi4
__udivmodsi4:
        ldi        r_remL, 33        ; init loop counter
        mov        r_cnt, r_remL
        sub        r_remL,r_remL
        sub        r_remH,r_remH        ; clear remainder and carry
        mov_l        r_remHL, r_remL
        mov_h        r_remHH, r_remH
        rjmp        __udivmodsi4_ep        ; jump to entry point
__udivmodsi4_loop:
        rol        r_remL                ; shift dividend into remainder
        rol        r_remH
        rol        r_remHL
        rol        r_remHH
        cp        r_remL,r_arg2L        ; compare remainder & divisor
        cpc        r_remH,r_arg2H
        cpc        r_remHL,r_arg2HL
        cpc        r_remHH,r_arg2HH
        brcs        __udivmodsi4_ep        ; remainder <= divisor
        sub        r_remL,r_arg2L        ; restore remainder
        sbc        r_remH,r_arg2H
        sbc        r_remHL,r_arg2HL
        sbc        r_remHH,r_arg2HH
__udivmodsi4_ep:
        rol        r_arg1L                ; shift dividend (with CARRY)
        rol        r_arg1H
        rol        r_arg1HL
        rol        r_arg1HH
        dec        r_cnt                ; decrement loop counter
        brne        __udivmodsi4_loop
                                ; __zero_reg__ now restored (r_cnt == 0)
        com        r_arg1L
        com        r_arg1H
        com        r_arg1HL
        com        r_arg1HH
; div/mod results to return registers, as for the ldiv() function
        mov_l        r_arg2L,  r_arg1L        ; quotient
        mov_h        r_arg2H,  r_arg1H
        mov_l        r_arg2HL, r_arg1HL
        mov_h        r_arg2HH, r_arg1HH
        mov_l        r_arg1L,  r_remL        ; remainder
        mov_h        r_arg1H,  r_remH
        mov_l        r_arg1HL, r_remHL
        mov_h        r_arg1HH, r_remHH
        ret
        .endfunc
#endif /* defined (L_udivmodsi4) */

#if defined (L_divmodsi4)
        .global        __divmodsi4
        .func        __divmodsi4
__divmodsi4:
        bst     r_arg1HH,7        ; store sign of dividend
        mov     __tmp_reg__,r_arg1HH
        eor     __tmp_reg__,r_arg2HH   ; r0.7 is sign of result
        rcall        __divmodsi4_neg1 ; dividend negative : negate
        sbrc        r_arg2HH,7
        rcall        __divmodsi4_neg2 ; divisor negative : negate
        rcall        __udivmodsi4        ; do the unsigned div/mod
        rcall        __divmodsi4_neg1 ; correct remainder sign
        rol        __tmp_reg__
        brcc        __divmodsi4_exit
__divmodsi4_neg2:
        com        r_arg2HH
        com        r_arg2HL
        com        r_arg2H
        neg        r_arg2L                ; correct divisor/quotient sign
        sbci        r_arg2H,0xff
        sbci        r_arg2HL,0xff
        sbci        r_arg2HH,0xff
__divmodsi4_exit:
        ret
__divmodsi4_neg1:
        brtc        __divmodsi4_exit
        com        r_arg1HH
        com        r_arg1HL
        com        r_arg1H
        neg        r_arg1L                ; correct dividend/remainder sign
        sbci        r_arg1H, 0xff
        sbci        r_arg1HL,0xff
        sbci        r_arg1HH,0xff
        ret
        .endfunc
#endif /* defined (L_divmodsi4) */

/**********************************
 * This is a prologue subroutine
 **********************************/
#if defined (L_prologue)

        .global        __prologue_saves__
        .func        __prologue_saves__
__prologue_saves__:
        push r2
        push r3
        push r4
        push r5
        push r6
        push r7
        push r8
        push r9
        push r10
        push r11
        push r12
        push r13
        push r14
        push r15
        push r16
        push r17
        push r28
        push r29
        in        r28,__SP_L__
        in        r29,__SP_H__
        sub        r28,r26
        sbc        r29,r27
        in        __tmp_reg__,__SREG__
        cli
        out        __SP_H__,r29
        out        __SREG__,__tmp_reg__
        out        __SP_L__,r28
        ijmp
.endfunc
#endif /* defined (L_prologue) */

/*
 * This is an epilogue subroutine
 */
#if defined (L_epilogue)

        .global        __epilogue_restores__
        .func        __epilogue_restores__
__epilogue_restores__:
        ldd        r2,Y+18
        ldd        r3,Y+17
        ldd        r4,Y+16
        ldd        r5,Y+15
        ldd        r6,Y+14
        ldd        r7,Y+13
        ldd        r8,Y+12
        ldd        r9,Y+11
        ldd        r10,Y+10
        ldd        r11,Y+9
        ldd        r12,Y+8
        ldd        r13,Y+7
        ldd        r14,Y+6
        ldd        r15,Y+5
        ldd        r16,Y+4
        ldd        r17,Y+3
        ldd        r26,Y+2
        ldd        r27,Y+1
        add        r28,r30
        adc        r29,__zero_reg__
        in        __tmp_reg__,__SREG__
        cli
        out        __SP_H__,r29
        out        __SREG__,__tmp_reg__
        out        __SP_L__,r28
        mov_l        r28, r26
        mov_h        r29, r27
        ret
.endfunc
#endif /* defined (L_epilogue) */

#ifdef L_exit
        .section .fini9,"ax",@progbits
        .global _exit
        .func        _exit
_exit:
        .weak        exit
exit:

        /* Code from .fini8 ... .fini1 sections inserted by ld script.  */

        .section .fini0,"ax",@progbits
__stop_program:
        rjmp        __stop_program
        .endfunc
#endif /* defined (L_exit) */

#ifdef L_cleanup
        .weak        _cleanup
        .func        _cleanup
_cleanup:
        ret
.endfunc
#endif /* defined (L_cleanup) */

#ifdef L_tablejump
        .global __tablejump2__
        .func        __tablejump2__
__tablejump2__:
        lsl        r30
        rol        r31
        .global __tablejump__
__tablejump__:
#if defined (__AVR_ENHANCED__)
        lpm        __tmp_reg__, Z+
        lpm        r31, Z
        mov        r30, __tmp_reg__
        ijmp
#else
        lpm
        adiw        r30, 1
        push        r0
        lpm
        push        r0
        ret
#endif
        .endfunc
#endif /* defined (L_tablejump) */

/* __do_copy_data is only necessary if there is anything in .data section.
   Does not use RAMPZ - crt*.o provides a replacement for >64K devices.  */

#ifdef L_copy_data
        .section .init4,"ax",@progbits
        .global __do_copy_data
__do_copy_data:
        ldi        r17, hi8(__data_end)
        ldi        r26, lo8(__data_start)
        ldi        r27, hi8(__data_start)
        ldi        r30, lo8(__data_load_start)
        ldi        r31, hi8(__data_load_start)
        rjmp        .do_copy_data_start
.do_copy_data_loop:
#if defined (__AVR_HAVE_LPMX__)
        lpm        r0, Z+
#else
        lpm
        adiw        r30, 1
#endif
        st        X+, r0
.do_copy_data_start:
        cpi        r26, lo8(__data_end)
        cpc        r27, r17
        brne        .do_copy_data_loop
#endif /* L_copy_data */

/* __do_clear_bss is only necessary if there is anything in .bss section.  */

#ifdef L_clear_bss
        .section .init4,"ax",@progbits
        .global __do_clear_bss
__do_clear_bss:
        ldi        r17, hi8(__bss_end)
        ldi        r26, lo8(__bss_start)
        ldi        r27, hi8(__bss_start)
        rjmp        .do_clear_bss_start
.do_clear_bss_loop:
        st        X+, __zero_reg__
.do_clear_bss_start:
        cpi        r26, lo8(__bss_end)
        cpc        r27, r17
        brne        .do_clear_bss_loop
#endif /* L_clear_bss */

/* __do_global_ctors and __do_global_dtors are only necessary
   if there are any constructors/destructors.  */

#if defined (__AVR_MEGA__)
#define XCALL call
#else
#define XCALL rcall
#endif

#ifdef L_ctors
        .section .init6,"ax",@progbits
        .global        __do_global_ctors
__do_global_ctors:
        ldi        r17, hi8(__ctors_start)
        ldi        r28, lo8(__ctors_end)
        ldi        r29, hi8(__ctors_end)
        rjmp        .do_global_ctors_start
.do_global_ctors_loop:
        sbiw        r28, 2
        mov_h        r31, r29
        mov_l        r30, r28
        XCALL        __tablejump__
.do_global_ctors_start:
        cpi        r28, lo8(__ctors_start)
        cpc        r29, r17
        brne        .do_global_ctors_loop
#endif /* L_ctors */

#ifdef L_dtors
        .section .fini6,"ax",@progbits
        .global        __do_global_dtors
__do_global_dtors:
        ldi        r17, hi8(__dtors_end)
        ldi        r28, lo8(__dtors_start)
        ldi        r29, hi8(__dtors_start)
        rjmp        .do_global_dtors_start
.do_global_dtors_loop:
        mov_h        r31, r29
        mov_l        r30, r28
        XCALL        __tablejump__
        adiw        r28, 2
.do_global_dtors_start:
        cpi        r28, lo8(__dtors_end)
        cpc        r29, r17
        brne        .do_global_dtors_loop
#endif /* L_dtors */