1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
|
/* Definitions of target machine for GNU compiler. TMS320C[34]x
Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* RUN-TIME TARGET SPECIFICATION. */
#define C4x 1
#define TARGET_CPU_CPP_BUILTINS() \
do \
{ \
extern int flag_inline_trees; \
if (!TARGET_SMALL) \
builtin_define ("_BIGMODEL"); \
if (!TARGET_MEMPARM) \
builtin_define ("_REGPARM"); \
if (flag_inline_functions) \
builtin_define ("_INLINE"); \
if (TARGET_C3X) \
{ \
builtin_define ("_TMS320C3x"); \
builtin_define ("_C3x"); \
if (TARGET_C30) \
{ \
builtin_define ("_TMS320C30"); \
builtin_define ("_C30"); \
} \
else if (TARGET_C31) \
{ \
builtin_define ("_TMS320C31"); \
builtin_define ("_C31"); \
} \
else if (TARGET_C32) \
{ \
builtin_define ("_TMS320C32"); \
builtin_define ("_C32"); \
} \
else if (TARGET_C33) \
{ \
builtin_define ("_TMS320C33"); \
builtin_define ("_C33"); \
} \
} \
else \
{ \
builtin_define ("_TMS320C4x"); \
builtin_define ("_C4x"); \
if (TARGET_C40) \
{ \
builtin_define ("_TMS320C40"); \
builtin_define ("_C40"); \
} \
else if (TARGET_C44) \
{ \
builtin_define ("_TMS320C44"); \
builtin_define ("_C44"); \
} \
} \
} \
while (0)
/* Define assembler options. */
#define ASM_SPEC "\
%{!mcpu=30:%{!mcpu=31:%{!mcpu=32:%{!mcpu=33:%{!mcpu=40:%{!mcpu=44:\
%{!m30:%{!m31:%{!m32:%{!m33:%{!m40:%{!m44:-m40}}}}}}}}}}}} \
%{mcpu=30} \
%{mcpu=31} \
%{mcpu=32} \
%{mcpu=33} \
%{mcpu=40} \
%{mcpu=44} \
%{m30} \
%{m31} \
%{m32} \
%{m33} \
%{m40} \
%{m44} \
%{mmemparm} %{mregparm} %{!mmemparm:%{!mregparm:-mregparm}} \
%{mbig} %{msmall} %{!msmall:%{!mbig:-mbig}}"
/* Define linker options. */
#define LINK_SPEC "\
%{m30:--architecture c3x} \
%{m31:--architecture c3x} \
%{m32:--architecture c3x} \
%{m33:--architecture c3x} \
%{mcpu=30:--architecture c3x} \
%{mcpu=31:--architecture c3x} \
%{mcpu=32:--architecture c3x} \
%{mcpu=33:--architecture c3x}"
/* Specify the end file to link with. */
#define ENDFILE_SPEC ""
/* Caveats:
Max iteration count for RPTB/RPTS is 2^31 + 1.
Max iteration count for DB is 2^31 + 1 for C40, but 2^23 + 1 for C30.
RPTS blocks interrupts. */
extern int c4x_cpu_version; /* Cpu version C30/31/32/33/40/44. */
#define TARGET_INLINE (! optimize_size) /* Inline MPYI. */
#define TARGET_SMALL_REG_CLASS 0
#define TARGET_C3X (c4x_cpu_version >= 30 \
&& c4x_cpu_version <= 39)
#define TARGET_C30 (c4x_cpu_version == 30)
#define TARGET_C31 (c4x_cpu_version == 31)
#define TARGET_C32 (c4x_cpu_version == 32)
#define TARGET_C33 (c4x_cpu_version == 33)
#define TARGET_C40 (c4x_cpu_version == 40)
#define TARGET_C44 (c4x_cpu_version == 44)
/* Nonzero to use load_immed_addr pattern rather than forcing memory
addresses into memory. */
#define TARGET_LOAD_ADDRESS (1 || (! TARGET_C3X && ! TARGET_SMALL))
/* Nonzero to convert direct memory references into HIGH/LO_SUM pairs
during RTL generation. */
#define TARGET_EXPOSE_LDP 0
/* Nonzero to force loading of direct memory references into a register. */
#define TARGET_LOAD_DIRECT_MEMS 0
/* -mrpts allows the use of the RPTS instruction irregardless.
-mrpts=max-cycles will use RPTS if the number of cycles is constant
and less than max-cycles. */
#define TARGET_RPTS_CYCLES(CYCLES) (TARGET_RPTS || (CYCLES) < c4x_rpts_cycles)
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed. */
#define OVERRIDE_OPTIONS c4x_override_options ()
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) c4x_optimization_options(LEVEL, SIZE)
/* Run Time Target Specification. */
#define TARGET_VERSION fprintf (stderr, " (TMS320C[34]x, TI syntax)");
/* Storage Layout. */
#define BITS_BIG_ENDIAN 0
#define BYTES_BIG_ENDIAN 0
#define WORDS_BIG_ENDIAN 0
/* Technically, we are little endian, but we put the floats out as
whole longs and this makes GCC put them out in the right order. */
#define FLOAT_WORDS_BIG_ENDIAN 1
/* Note the ANSI C standard requires sizeof(char) = 1. On the C[34]x
all integral and floating point data types are stored in memory as
32-bits (floating point types can be stored as 40-bits in the
extended precision registers), so sizeof(char) = sizeof(short) =
sizeof(int) = sizeof(long) = sizeof(float) = sizeof(double) = 1. */
#define BITS_PER_UNIT 32
#define UNITS_PER_WORD 1
#define PARM_BOUNDARY 32
#define STACK_BOUNDARY 32
#define FUNCTION_BOUNDARY 32
#define BIGGEST_ALIGNMENT 32
#define EMPTY_FIELD_BOUNDARY 32
#define STRICT_ALIGNMENT 0
#define TARGET_FLOAT_FORMAT C4X_FLOAT_FORMAT
#define MAX_FIXED_MODE_SIZE 64 /* HImode. */
/* If a structure has a floating point field then force structure
to have BLKMODE, unless it is the only field. */
#define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
(TREE_CODE (TREE_TYPE (FIELD)) == REAL_TYPE && (MODE) == VOIDmode)
/* Number of bits in the high and low parts of a two stage
load of an immediate constant. */
#define BITS_PER_HIGH 16
#define BITS_PER_LO_SUM 16
/* Define register numbers. */
/* Extended-precision registers. */
#define R0_REGNO 0
#define R1_REGNO 1
#define R2_REGNO 2
#define R3_REGNO 3
#define R4_REGNO 4
#define R5_REGNO 5
#define R6_REGNO 6
#define R7_REGNO 7
/* Auxiliary (address) registers. */
#define AR0_REGNO 8
#define AR1_REGNO 9
#define AR2_REGNO 10
#define AR3_REGNO 11
#define AR4_REGNO 12
#define AR5_REGNO 13
#define AR6_REGNO 14
#define AR7_REGNO 15
/* Data page register. */
#define DP_REGNO 16
/* Index registers. */
#define IR0_REGNO 17
#define IR1_REGNO 18
/* Block size register. */
#define BK_REGNO 19
/* Stack pointer. */
#define SP_REGNO 20
/* Status register. */
#define ST_REGNO 21
/* Misc. interrupt registers. */
#define DIE_REGNO 22 /* C4x only. */
#define IE_REGNO 22 /* C3x only. */
#define IIE_REGNO 23 /* C4x only. */
#define IF_REGNO 23 /* C3x only. */
#define IIF_REGNO 24 /* C4x only. */
#define IOF_REGNO 24 /* C3x only. */
/* Repeat block registers. */
#define RS_REGNO 25
#define RE_REGNO 26
#define RC_REGNO 27
/* Additional extended-precision registers. */
#define R8_REGNO 28 /* C4x only. */
#define R9_REGNO 29 /* C4x only. */
#define R10_REGNO 30 /* C4x only. */
#define R11_REGNO 31 /* C4x only. */
#define FIRST_PSEUDO_REGISTER 32
/* Extended precision registers (low set). */
#define IS_R0R1_REGNO(r) \
((unsigned int)((r) - R0_REGNO) <= (R1_REGNO - R0_REGNO))
#define IS_R2R3_REGNO(r) \
((unsigned int)((r) - R2_REGNO) <= (R3_REGNO - R2_REGNO))
#define IS_EXT_LOW_REGNO(r) \
((unsigned int)((r) - R0_REGNO) <= (R7_REGNO - R0_REGNO))
/* Extended precision registers (high set). */
#define IS_EXT_HIGH_REGNO(r) \
(! TARGET_C3X \
&& ((unsigned int) ((r) - R8_REGNO) <= (R11_REGNO - R8_REGNO)))
/* Address registers. */
#define IS_AUX_REGNO(r) \
((unsigned int)((r) - AR0_REGNO) <= (AR7_REGNO - AR0_REGNO))
#define IS_ADDR_REGNO(r) IS_AUX_REGNO(r)
#define IS_DP_REGNO(r) ((r) == DP_REGNO)
#define IS_INDEX_REGNO(r) (((r) == IR0_REGNO) || ((r) == IR1_REGNO))
#define IS_SP_REGNO(r) ((r) == SP_REGNO)
#define IS_BK_REGNO(r) (TARGET_BK && (r) == BK_REGNO)
/* Misc registers. */
#define IS_ST_REGNO(r) ((r) == ST_REGNO)
#define IS_RC_REGNO(r) ((r) == RC_REGNO)
#define IS_REPEAT_REGNO(r) (((r) >= RS_REGNO) && ((r) <= RC_REGNO))
/* Composite register sets. */
#define IS_ADDR_OR_INDEX_REGNO(r) (IS_ADDR_REGNO(r) || IS_INDEX_REGNO(r))
#define IS_EXT_REGNO(r) (IS_EXT_LOW_REGNO(r) || IS_EXT_HIGH_REGNO(r))
#define IS_STD_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) \
|| IS_REPEAT_REGNO(r) \
|| IS_SP_REGNO(r) \
|| IS_BK_REGNO(r))
#define IS_INT_REGNO(r) (IS_EXT_REGNO(r) || IS_STD_REGNO(r))
#define IS_GROUP1_REGNO(r) (IS_ADDR_OR_INDEX_REGNO(r) || IS_BK_REGNO(r))
#define IS_INT_CALL_SAVED_REGNO(r) (((r) == R4_REGNO) || ((r) == R5_REGNO) \
|| ((r) == R8_REGNO))
#define IS_FLOAT_CALL_SAVED_REGNO(r) (((r) == R6_REGNO) || ((r) == R7_REGNO))
#define IS_PSEUDO_REGNO(r) ((r) >= FIRST_PSEUDO_REGISTER)
#define IS_R0R1_OR_PSEUDO_REGNO(r) (IS_R0R1_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_R2R3_OR_PSEUDO_REGNO(r) (IS_R2R3_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_EXT_OR_PSEUDO_REGNO(r) (IS_EXT_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_STD_OR_PSEUDO_REGNO(r) (IS_STD_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_INT_OR_PSEUDO_REGNO(r) (IS_INT_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_ADDR_OR_PSEUDO_REGNO(r) (IS_ADDR_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_INDEX_OR_PSEUDO_REGNO(r) (IS_INDEX_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_EXT_LOW_OR_PSEUDO_REGNO(r) (IS_EXT_LOW_REGNO(r) \
|| IS_PSEUDO_REGNO(r))
#define IS_DP_OR_PSEUDO_REGNO(r) (IS_DP_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_SP_OR_PSEUDO_REGNO(r) (IS_SP_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_ST_OR_PSEUDO_REGNO(r) (IS_ST_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_RC_OR_PSEUDO_REGNO(r) (IS_RC_REGNO(r) || IS_PSEUDO_REGNO(r))
#define IS_PSEUDO_REG(op) (IS_PSEUDO_REGNO(REGNO(op)))
#define IS_ADDR_REG(op) (IS_ADDR_REGNO(REGNO(op)))
#define IS_INDEX_REG(op) (IS_INDEX_REGNO(REGNO(op)))
#define IS_GROUP1_REG(r) (IS_GROUP1_REGNO(REGNO(op)))
#define IS_SP_REG(op) (IS_SP_REGNO(REGNO(op)))
#define IS_STD_REG(op) (IS_STD_REGNO(REGNO(op)))
#define IS_EXT_REG(op) (IS_EXT_REGNO(REGNO(op)))
#define IS_R0R1_OR_PSEUDO_REG(op) (IS_R0R1_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_R2R3_OR_PSEUDO_REG(op) (IS_R2R3_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_EXT_OR_PSEUDO_REG(op) (IS_EXT_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_STD_OR_PSEUDO_REG(op) (IS_STD_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_EXT_LOW_OR_PSEUDO_REG(op) (IS_EXT_LOW_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_INT_OR_PSEUDO_REG(op) (IS_INT_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_ADDR_OR_PSEUDO_REG(op) (IS_ADDR_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_INDEX_OR_PSEUDO_REG(op) (IS_INDEX_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_DP_OR_PSEUDO_REG(op) (IS_DP_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_SP_OR_PSEUDO_REG(op) (IS_SP_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_ST_OR_PSEUDO_REG(op) (IS_ST_OR_PSEUDO_REGNO(REGNO(op)))
#define IS_RC_OR_PSEUDO_REG(op) (IS_RC_OR_PSEUDO_REGNO(REGNO(op)))
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ \
/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 \
}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like.
Note that the extended precision registers are only saved in some
modes. The macro HARD_REGNO_CALL_CLOBBERED specifies which modes
get clobbered for a given regno. */
#define CALL_USED_REGISTERS \
{ \
/* R0 R1 R2 R3 R4 R5 R6 R7 AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7. */ \
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, \
/* DP IR0 IR1 BK SP ST DIE IIE IIF RS RE RC R8 R9 R10 R11. */ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1 \
}
/* Macro to conditionally modify fixed_regs/call_used_regs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (! TARGET_BK) \
{ \
fixed_regs[BK_REGNO] = 1; \
call_used_regs[BK_REGNO] = 1; \
c4x_regclass_map[BK_REGNO] = NO_REGS; \
} \
if (TARGET_C3X) \
{ \
int i; \
\
reg_names[DIE_REGNO] = "ie"; /* Clobber die. */ \
reg_names[IF_REGNO] = "if"; /* Clobber iie. */ \
reg_names[IOF_REGNO] = "iof"; /* Clobber iif. */ \
\
for (i = R8_REGNO; i <= R11_REGNO; i++) \
{ \
fixed_regs[i] = call_used_regs[i] = 1; \
c4x_regclass_map[i] = NO_REGS; \
} \
} \
if (TARGET_PRESERVE_FLOAT) \
{ \
c4x_caller_save_map[R6_REGNO] = HFmode; \
c4x_caller_save_map[R7_REGNO] = HFmode; \
} \
}
/* Order of Allocation of Registers. */
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
First allocate registers that don't need preservation across calls,
except index and address registers. Then allocate data registers
that require preservation across calls (even though this invokes an
extra overhead of having to save/restore these registers). Next
allocate the address and index registers, since using these
registers for arithmetic can cause pipeline stalls. Finally
allocated the fixed registers which won't be allocated anyhow. */
#define REG_ALLOC_ORDER \
{R0_REGNO, R1_REGNO, R2_REGNO, R3_REGNO, \
R9_REGNO, R10_REGNO, R11_REGNO, \
RS_REGNO, RE_REGNO, RC_REGNO, BK_REGNO, \
R4_REGNO, R5_REGNO, R6_REGNO, R7_REGNO, R8_REGNO, \
AR0_REGNO, AR1_REGNO, AR2_REGNO, AR3_REGNO, \
AR4_REGNO, AR5_REGNO, AR6_REGNO, AR7_REGNO, \
IR0_REGNO, IR1_REGNO, \
SP_REGNO, DP_REGNO, ST_REGNO, IE_REGNO, IF_REGNO, IOF_REGNO}
/* A C expression that is nonzero if hard register number REGNO2 can be
considered for use as a rename register for REGNO1 */
#define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
c4x_hard_regno_rename_ok((REGNO1), (REGNO2))
/* Determine which register classes are very likely used by spill registers.
local-alloc.c won't allocate pseudos that have these classes as their
preferred class unless they are "preferred or nothing". */
#define CLASS_LIKELY_SPILLED_P(CLASS) ((CLASS) == INDEX_REGS)
/* CCmode is wrongly defined in machmode.def. It should have a size
of UNITS_PER_WORD. HFmode is 40-bits and thus fits within a single
extended precision register. Similarly, HCmode fits within two
extended precision registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : \
((MODE) == HFmode) ? 1 : \
((MODE) == HCmode) ? 2 : \
((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* A C expression that is nonzero if the hard register REGNO is preserved
across a call in mode MODE. This does not have to include the call used
registers. */
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
((IS_FLOAT_CALL_SAVED_REGNO (REGNO) && ! ((MODE) == QFmode)) \
|| (IS_INT_CALL_SAVED_REGNO (REGNO) \
&& ! ((MODE) == QImode || (MODE) == HImode || (MODE) == Pmode)))
/* Specify the modes required to caller save a given hard regno. */
#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) (c4x_caller_save_map[REGNO])
#define HARD_REGNO_MODE_OK(REGNO, MODE) c4x_hard_regno_mode_ok(REGNO, MODE)
/* A C expression that is nonzero if it is desirable to choose
register allocation so as to avoid move instructions between a
value of mode MODE1 and a value of mode MODE2.
Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS,
R0R1_REGS, /* 't'. */
R2R3_REGS, /* 'u'. */
EXT_LOW_REGS, /* 'q'. */
EXT_REGS, /* 'f'. */
ADDR_REGS, /* 'a'. */
INDEX_REGS, /* 'x'. */
BK_REG, /* 'k'. */
SP_REG, /* 'b'. */
RC_REG, /* 'v'. */
COUNTER_REGS, /* */
INT_REGS, /* 'c'. */
GENERAL_REGS, /* 'r'. */
DP_REG, /* 'z'. */
ST_REG, /* 'y'. */
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"R0R1_REGS", \
"R2R3_REGS", \
"EXT_LOW_REGS", \
"EXT_REGS", \
"ADDR_REGS", \
"INDEX_REGS", \
"BK_REG", \
"SP_REG", \
"RC_REG", \
"COUNTER_REGS", \
"INT_REGS", \
"GENERAL_REGS", \
"DP_REG", \
"ST_REG", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. RC is not included in GENERAL_REGS
since the register allocator will often choose a general register
in preference to RC for the decrement_and_branch_on_count pattern. */
#define REG_CLASS_CONTENTS \
{ \
{0x00000000}, /* No registers. */ \
{0x00000003}, /* 't' R0-R1 . */ \
{0x0000000c}, /* 'u' R2-R3 . */ \
{0x000000ff}, /* 'q' R0-R7 . */ \
{0xf00000ff}, /* 'f' R0-R11 */ \
{0x0000ff00}, /* 'a' AR0-AR7. */ \
{0x00060000}, /* 'x' IR0-IR1. */ \
{0x00080000}, /* 'k' BK. */ \
{0x00100000}, /* 'b' SP. */ \
{0x08000000}, /* 'v' RC. */ \
{0x0800ff00}, /* RC,AR0-AR7. */ \
{0x0e1eff00}, /* 'c' AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */ \
{0xfe1effff}, /* 'r' R0-R11, AR0-AR7, IR0-IR1, BK, SP, RS, RE, RC. */\
{0x00010000}, /* 'z' DP. */ \
{0x00200000}, /* 'y' ST. */ \
{0xffffffff}, /* All registers. */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) (c4x_regclass_map[REGNO])
/* When SMALL_REGISTER_CLASSES is defined, the lifetime of registers
explicitly used in the rtl is kept as short as possible.
We only need to define SMALL_REGISTER_CLASSES if TARGET_PARALLEL_MPY
is defined since the MPY|ADD insns require the classes R0R1_REGS and
R2R3_REGS which are used by the function return registers (R0,R1) and
the register arguments (R2,R3), respectively. I'm reluctant to define
this macro since it stomps on many potential optimizations. Ideally
it should have a register class argument so that not all the register
classes gets penalized for the sake of a naughty few... For long
double arithmetic we need two additional registers that we can use as
spill registers. */
#define SMALL_REGISTER_CLASSES (TARGET_SMALL_REG_CLASS && TARGET_PARALLEL_MPY)
#define BASE_REG_CLASS ADDR_REGS
#define INDEX_REG_CLASS INDEX_REGS
/*
Register constraints for the C4x
a - address reg (ar0-ar7)
b - stack reg (sp)
c - other gp int-only reg
d - data/int reg (equiv. to f)
f - data/float reg
h - data/long double reg (equiv. to f)
k - block count (bk)
q - r0-r7
t - r0-r1
u - r2-r3
v - repeat count (rc)
x - index register (ir0-ir1)
y - status register (st)
z - dp reg (dp)
Memory/constant constraints for the C4x
G - short float 16-bit
I - signed 16-bit constant (sign extended)
J - signed 8-bit constant (sign extended) (C4x only)
K - signed 5-bit constant (sign extended) (C4x only for stik)
L - unsigned 16-bit constant
M - unsigned 8-bit constant (C4x only)
N - ones complement of unsigned 16-bit constant
Q - indirect arx + 9-bit signed displacement
(a *-arx(n) or *+arx(n) is used to account for the sign bit)
R - indirect arx + 5-bit unsigned displacement (C4x only)
S - indirect arx + 0, 1, or irn displacement
T - direct symbol ref
> - indirect with autoincrement
< - indirect with autodecrement
} - indirect with post-modify
{ - indirect with pre-modify
*/
#define REG_CLASS_FROM_LETTER(CC) \
( ((CC) == 'a') ? ADDR_REGS \
: ((CC) == 'b') ? SP_REG \
: ((CC) == 'c') ? INT_REGS \
: ((CC) == 'd') ? EXT_REGS \
: ((CC) == 'f') ? EXT_REGS \
: ((CC) == 'h') ? EXT_REGS \
: ((CC) == 'k') ? BK_REG \
: ((CC) == 'q') ? EXT_LOW_REGS \
: ((CC) == 't') ? R0R1_REGS \
: ((CC) == 'u') ? R2R3_REGS \
: ((CC) == 'v') ? RC_REG \
: ((CC) == 'x') ? INDEX_REGS \
: ((CC) == 'y') ? ST_REG \
: ((CC) == 'z') ? DP_REG \
: NO_REGS )
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(REGNO) \
(IS_ADDR_REGNO(REGNO) || IS_ADDR_REGNO((unsigned)reg_renumber[REGNO]))
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(IS_INDEX_REGNO(REGNO) || IS_INDEX_REGNO((unsigned)reg_renumber[REGNO]))
/* If we have to generate framepointer + constant prefer an ADDR_REGS
register. This avoids using EXT_REGS in addqi3_noclobber_reload. */
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
(GET_CODE (X) == PLUS \
&& GET_MODE (X) == Pmode \
&& GET_CODE (XEXP ((X), 0)) == REG \
&& GET_MODE (XEXP ((X), 0)) == Pmode \
&& REGNO (XEXP ((X), 0)) == FRAME_POINTER_REGNUM \
&& GET_CODE (XEXP ((X), 1)) == CONST_INT \
? ADDR_REGS : (CLASS))
#define LIMIT_RELOAD_CLASS(X, CLASS) (CLASS)
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) 0
#define CLASS_MAX_NREGS(CLASS, MODE) \
(((MODE) == CCmode || (MODE) == CC_NOOVmode) ? 1 : ((MODE) == HFmode) ? 1 : \
((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
#define IS_INT5_CONST(VAL) (((VAL) <= 15) && ((VAL) >= -16)) /* 'K'. */
#define IS_UINT5_CONST(VAL) (((VAL) <= 31) && ((VAL) >= 0)) /* 'R'. */
#define IS_INT8_CONST(VAL) (((VAL) <= 127) && ((VAL) >= -128)) /* 'J'. */
#define IS_UINT8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= 0)) /* 'M'. */
#define IS_INT16_CONST(VAL) (((VAL) <= 32767) && ((VAL) >= -32768)) /* 'I'. */
#define IS_UINT16_CONST(VAL) (((VAL) <= 65535) && ((VAL) >= 0)) /* 'L'. */
#define IS_NOT_UINT16_CONST(VAL) IS_UINT16_CONST(~(VAL)) /* 'N'. */
#define IS_HIGH_CONST(VAL) \
(! TARGET_C3X && (((VAL) & 0xffff) == 0)) /* 'O'. */
#define IS_DISP1_CONST(VAL) (((VAL) <= 1) && ((VAL) >= -1)) /* 'S'. */
#define IS_DISP8_CONST(VAL) (((VAL) <= 255) && ((VAL) >= -255)) /* 'Q'. */
#define IS_DISP1_OFF_CONST(VAL) (IS_DISP1_CONST (VAL) \
&& IS_DISP1_CONST (VAL + 1))
#define IS_DISP8_OFF_CONST(VAL) (IS_DISP8_CONST (VAL) \
&& IS_DISP8_CONST (VAL + 1))
#define CONST_OK_FOR_LETTER_P(VAL, C) \
( ((C) == 'I') ? (IS_INT16_CONST (VAL)) \
: ((C) == 'J') ? (! TARGET_C3X && IS_INT8_CONST (VAL)) \
: ((C) == 'K') ? (! TARGET_C3X && IS_INT5_CONST (VAL)) \
: ((C) == 'L') ? (IS_UINT16_CONST (VAL)) \
: ((C) == 'M') ? (! TARGET_C3X && IS_UINT8_CONST (VAL)) \
: ((C) == 'N') ? (IS_NOT_UINT16_CONST (VAL)) \
: ((C) == 'O') ? (IS_HIGH_CONST (VAL)) \
: 0 )
#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \
( ((C) == 'G') ? (fp_zero_operand (OP, QFmode)) \
: ((C) == 'H') ? (c4x_H_constant (OP)) \
: 0 )
#define EXTRA_CONSTRAINT(OP, C) \
( ((C) == 'Q') ? (c4x_Q_constraint (OP)) \
: ((C) == 'R') ? (c4x_R_constraint (OP)) \
: ((C) == 'S') ? (c4x_S_constraint (OP)) \
: ((C) == 'T') ? (c4x_T_constraint (OP)) \
: ((C) == 'U') ? (c4x_U_constraint (OP)) \
: 0 )
#define SMALL_CONST(VAL, insn) \
( ((insn == NULL_RTX) || (get_attr_data (insn) == DATA_INT16)) \
? IS_INT16_CONST (VAL) \
: ( (get_attr_data (insn) == DATA_NOT_UINT16) \
? IS_NOT_UINT16_CONST (VAL) \
: ( (get_attr_data (insn) == DATA_HIGH_16) \
? IS_HIGH_CONST (VAL) \
: IS_UINT16_CONST (VAL) \
) \
) \
)
/*
I. Routine calling with arguments in registers
----------------------------------------------
The TI C3x compiler has a rather unusual register passing algorithm.
Data is passed in the following registers (in order):
AR2, R2, R3, RC, RS, RE
However, the first and second floating point values are always in R2
and R3 (and all other floats are on the stack). Structs are always
passed on the stack. If the last argument is an ellipsis, the
previous argument is passed on the stack so that its address can be
taken for the stdargs macros.
Because of this, we have to pre-scan the list of arguments to figure
out what goes where in the list.
II. Routine calling with arguments on stack
-------------------------------------------
Let the subroutine declared as "foo(arg0, arg1, arg2);" have local
variables loc0, loc1, and loc2. After the function prologue has
been executed, the stack frame will look like:
[stack grows towards increasing addresses]
I-------------I
5 I saved reg1 I <= SP points here
I-------------I
4 I saved reg0 I
I-------------I
3 I loc2 I
I-------------I
2 I loc1 I
I-------------I
1 I loc0 I
I-------------I
0 I old FP I <= FP (AR3) points here
I-------------I
-1 I return PC I
I-------------I
-2 I arg0 I
I-------------I
-3 I arg1 I
I-------------I
-4 I arg2 I
I-------------I
All local variables (locn) are accessible by means of +FP(n+1)
addressing, where n is the local variable number.
All stack arguments (argn) are accessible by means of -FP(n-2).
The stack pointer (SP) points to the last register saved in the
prologue (regn).
Note that a push instruction performs a preincrement of the stack
pointer. (STACK_PUSH_CODE == PRE_INC)
III. Registers used in function calling convention
--------------------------------------------------
Preserved across calls: R4...R5 (only by PUSH, i.e. lower 32 bits)
R6...R7 (only by PUSHF, i.e. upper 32 bits)
AR3...AR7
(Because of this model, we only assign FP values in R6, R7 and
only assign integer values in R4, R5.)
These registers are saved at each function entry and restored at
the exit. Also it is expected any of these not affected by any
call to user-defined (not service) functions.
Not preserved across calls: R0...R3
R4...R5 (upper 8 bits)
R6...R7 (lower 8 bits)
AR0...AR2, IR0, IR1, BK, ST, RS, RE, RC
These registers are used arbitrary in a function without being preserved.
It is also expected that any of these can be clobbered by any call.
Not used by GCC (except for in user "asm" statements):
IE (DIE), IF (IIE), IOF (IIF)
These registers are never used by GCC for any data, but can be used
with "asm" statements. */
#define C4X_ARG0 -2
#define C4X_LOC0 1
/* Basic Stack Layout. */
/* The stack grows upward, stack frame grows upward, and args grow
downward. */
#define STARTING_FRAME_OFFSET C4X_LOC0
#define FIRST_PARM_OFFSET(FNDECL) (C4X_ARG0 + 1)
#define ARGS_GROW_DOWNWARD
#define STACK_POINTER_OFFSET 1
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
/* #define STACK_GROWS_DOWNWARD. */
/* Like the dsp16xx, i370, i960, and we32k ports. */
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 0
/* Registers That Address the Stack Frame. */
#define STACK_POINTER_REGNUM SP_REGNO /* SP. */
#define FRAME_POINTER_REGNUM AR3_REGNO /* AR3. */
#define ARG_POINTER_REGNUM AR3_REGNO /* AR3. */
#define STATIC_CHAIN_REGNUM AR0_REGNO /* AR0. */
/* Eliminating Frame Pointer and Arg Pointer. */
#define FRAME_POINTER_REQUIRED 0
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
{ \
int regno; \
int offset = 0; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += TARGET_PRESERVE_FLOAT \
&& IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
(DEPTH) = -(offset + get_frame_size ()); \
}
/* This is a hack... We need to specify a register. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, FRAME_POINTER_REGNUM }}
#define CAN_ELIMINATE(FROM, TO) \
(! (((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
|| ((FROM) == FRAME_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)))
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
int regno; \
int offset = 0; \
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
offset += TARGET_PRESERVE_FLOAT \
&& IS_FLOAT_CALL_SAVED_REGNO (regno) ? 2 : 1; \
(OFFSET) = -(offset + get_frame_size ()); \
}
/* Passing Function Arguments on the Stack. */
#define PUSH_ARGS 1
#define PUSH_ROUNDING(BYTES) (BYTES)
#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
/* The following structure is used by calls.c, function.c, c4x.c. */
typedef struct c4x_args
{
int floats;
int ints;
int maxfloats;
int maxints;
int init;
int var;
int prototype;
int args;
}
CUMULATIVE_ARGS;
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
(c4x_init_cumulative_args (&CUM, FNTYPE, LIBNAME))
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
(c4x_function_arg_advance (&CUM, MODE, TYPE, NAMED))
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(c4x_function_arg(&CUM, MODE, TYPE, NAMED))
/* Define the profitability of saving registers around calls.
We disable caller save to avoid a bug in flow.c (this also affects
other targets such as m68k). Since we must use stf/sti,
the profitability is marginal anyway. */
#define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
( ( ((REGNO) == AR2_REGNO) /* AR2. */ \
|| ((REGNO) == R2_REGNO) /* R2. */ \
|| ((REGNO) == R3_REGNO) /* R3. */ \
|| ((REGNO) == RC_REGNO) /* RC. */ \
|| ((REGNO) == RS_REGNO) /* RS. */ \
|| ((REGNO) == RE_REGNO)) /* RE. */ \
? 1 \
: 0)
/* How Scalar Function Values Are Returned. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE(VALTYPE), R0_REGNO) /* Return in R0. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, R0_REGNO) /* Return in R0. */
#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == R0_REGNO)
/* How Large Values Are Returned. */
#define DEFAULT_PCC_STRUCT_RETURN 0
/* Generating Code for Profiling. */
/* Note that the generated assembly uses the ^ operator to load the 16
MSBs of the address. This is not supported by the TI assembler.
The FUNCTION profiler needs a function mcount which gets passed
a pointer to the LABELNO. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
if (! TARGET_C3X) \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tldhi\t^LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tcall\tmcount\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
} \
else \
{ \
fprintf (FILE, "\tpush\tar2\n"); \
fprintf (FILE, "\tldiu\t^LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tlsh\t16,ar2\n"); \
fprintf (FILE, "\tor\t#LP%d,ar2\n", (LABELNO)); \
fprintf (FILE, "\tcall\tmcount\n"); \
fprintf (FILE, "\tpop\tar2\n"); \
}
/* CC_NOOVmode should be used when the first operand is a PLUS, MINUS, NEG
or MULT.
CCmode should be used when no special processing is needed. */
#define SELECT_CC_MODE(OP,X,Y) \
((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
|| GET_CODE (X) == NEG || GET_CODE (X) == MULT \
|| GET_MODE (X) == ABS \
|| GET_CODE (Y) == PLUS || GET_CODE (Y) == MINUS \
|| GET_CODE (Y) == NEG || GET_CODE (Y) == MULT \
|| GET_MODE (Y) == ABS) \
? CC_NOOVmode : CCmode)
/* Addressing Modes. */
#define HAVE_POST_INCREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_DECREMENT 1
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_MODIFY_REG 1
#define HAVE_POST_MODIFY_REG 1
#define HAVE_PRE_MODIFY_DISP 1
#define HAVE_POST_MODIFY_DISP 1
/* The number of insns that can be packed into a single opcode. */
#define PACK_INSNS 2
/* Recognize any constant value that is a valid address.
We could allow arbitrary constant addresses in the large memory
model but for the small memory model we can only accept addresses
within the data page. I suppose we could also allow
CONST PLUS SYMBOL_REF. */
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == SYMBOL_REF)
/* Maximum number of registers that can appear in a valid memory
address. */
#define MAX_REGS_PER_ADDRESS 2
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard or pseudo reg that can be used as a base. */
#define REG_OK_FOR_BASE_P(X) IS_ADDR_OR_PSEUDO_REG(X)
/* Nonzero if X is a hard or pseudo reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) IS_INDEX_OR_PSEUDO_REG(X)
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (c4x_legitimate_address_p (MODE, X, 0)) \
goto ADDR; \
}
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ \
if (c4x_legitimate_address_p (MODE, X, 1)) \
goto ADDR; \
}
#endif
#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
{ \
rtx new; \
\
new = c4x_legitimize_address (X, MODE); \
if (new != NULL_RTX) \
{ \
(X) = new; \
goto WIN; \
} \
}
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
{ \
if (MODE != HImode \
&& MODE != HFmode \
&& GET_MODE (X) != HImode \
&& GET_MODE (X) != HFmode \
&& (GET_CODE (X) == CONST \
|| GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF)) \
{ \
if (! TARGET_SMALL) \
{ \
int i; \
(X) = gen_rtx_LO_SUM (GET_MODE (X), \
gen_rtx_HIGH (GET_MODE (X), X), X); \
i = push_reload (XEXP (X, 0), NULL_RTX, \
&XEXP (X, 0), NULL, \
DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
/* The only valid reg is DP. This is a fixed reg and will \
normally not be used so force it. */ \
rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
rld[i].nocombine = 1; \
} \
else \
{ \
/* make_memloc in reload will substitute invalid memory \
references. We need to fix them up. */ \
(X) = gen_rtx_LO_SUM (Pmode, gen_rtx_REG (Pmode, DP_REGNO), (X)); \
} \
goto WIN; \
} \
else if (MODE != HImode \
&& MODE != HFmode \
&& GET_MODE (X) != HImode \
&& GET_MODE (X) != HFmode \
&& GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X,0)) == HIGH \
&& (GET_CODE (XEXP (XEXP (X,0),0)) == CONST \
|| GET_CODE (XEXP (XEXP (X,0),0)) == SYMBOL_REF \
|| GET_CODE (XEXP (XEXP (X,0),0)) == LABEL_REF)) \
{ \
if (! TARGET_SMALL) \
{ \
int i = push_reload (XEXP (X, 0), NULL_RTX, \
&XEXP (X, 0), NULL, \
DP_REG, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
/* The only valid reg is DP. This is a fixed reg and will \
normally not be used so force it. */ \
rld[i].reg_rtx = gen_rtx_REG (Pmode, DP_REGNO); \
rld[i].nocombine = 1; \
} \
goto WIN; \
} \
}
/* No mode-dependent addresses on the C4x are autoincrements. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
if (GET_CODE (ADDR) == PRE_DEC \
|| GET_CODE (ADDR) == POST_DEC \
|| GET_CODE (ADDR) == PRE_INC \
|| GET_CODE (ADDR) == POST_INC \
|| GET_CODE (ADDR) == POST_MODIFY \
|| GET_CODE (ADDR) == PRE_MODIFY) \
goto LABEL
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
The C4x can only load 16-bit immediate values, so we only allow a
restricted subset of CONST_INT and CONST_DOUBLE. Disallow
LABEL_REF and SYMBOL_REF (except on the C40 with the big memory
model) so that the symbols will be forced into the constant pool.
On second thoughts, let's do this with the move expanders since
the alias analysis has trouble if we force constant addresses
into memory.
*/
#define LEGITIMATE_CONSTANT_P(X) \
((GET_CODE (X) == CONST_DOUBLE && c4x_H_constant (X)) \
|| (GET_CODE (X) == CONST_INT) \
|| (GET_CODE (X) == SYMBOL_REF) \
|| (GET_CODE (X) == LABEL_REF) \
|| (GET_CODE (X) == CONST) \
|| (GET_CODE (X) == HIGH && ! TARGET_C3X) \
|| (GET_CODE (X) == LO_SUM && ! TARGET_C3X))
#define LEGITIMATE_DISPLACEMENT_P(X) IS_DISP8_CONST (INTVAL (X))
/* Describing Relative Cost of Operations. */
#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
if (REG_P (OP1) && ! REG_P (OP0)) \
{ \
rtx tmp = OP0; OP0 = OP1 ; OP1 = tmp; \
CODE = swap_condition (CODE); \
}
#define EXT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, EXT_REGS))
#define ADDR_CLASS_P(CLASS) (reg_class_subset_p (CLASS, ADDR_REGS))
#define INDEX_CLASS_P(CLASS) (reg_class_subset_p (CLASS, INDEX_REGS))
#define EXPENSIVE_CLASS_P(CLASS) (ADDR_CLASS_P(CLASS) \
|| INDEX_CLASS_P(CLASS) || (CLASS) == SP_REG)
/* Compute extra cost of moving data between one register class
and another. */
#define REGISTER_MOVE_COST(MODE, FROM, TO) 2
/* Memory move cost is same as fast register move. Maybe this should
be bumped up?. */
#define MEMORY_MOVE_COST(M,C,I) 4
/* Branches are kind of expensive (even with delayed branching) so
make their cost higher. */
#define BRANCH_COST 8
#define WORD_REGISTER_OPERATIONS
/* Dividing the Output into Sections. */
#define TEXT_SECTION_ASM_OP "\t.text"
#define DATA_SECTION_ASM_OP "\t.data"
#define READONLY_DATA_SECTION_ASM_OP "\t.sect\t\".const\""
/* Do not use .init section so __main will be called on startup. This will
call __do_global_ctors and prepare for __do_global_dtors on exit. */
#if 0
#define INIT_SECTION_ASM_OP "\t.sect\t\".init\""
#endif
#define FINI_SECTION_ASM_OP "\t.sect\t\".fini\""
/* Switch into a generic section. */
#define TARGET_ASM_NAMED_SECTION c4x_asm_named_section
/* Overall Framework of an Assembler File. */
#define ASM_COMMENT_START ";"
#define ASM_APP_ON ""
#define ASM_APP_OFF ""
#define ASM_OUTPUT_ASCII(FILE, PTR, LEN) c4x_output_ascii (FILE, PTR, LEN)
/* Output and Generation of Labels. */
#define NO_DOT_IN_LABEL /* Only required for TI format. */
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global\t"
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
c4x_external_ref (NAME)
/* The prefix to add to user-visible assembler symbols. */
#define USER_LABEL_PREFIX "_"
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(BUFFER, PREFIX, NUM) \
sprintf (BUFFER, "*%s%lu", PREFIX, (unsigned long)(NUM))
/* A C statement to output to the stdio stream STREAM assembler code which
defines (equates) the symbol NAME to have the value VALUE. */
#define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
do { \
assemble_name (STREAM, NAME); \
fprintf (STREAM, "\t.set\t%s\n", VALUE); \
} while (0)
/* Output of Dispatch Tables. */
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t.long\tL%d\n", VALUE);
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "\t.long\tL%d-L%d\n", VALUE, REL);
#undef SIZE_TYPE
#define SIZE_TYPE "unsigned int"
#undef PTRDIFF_TYPE
#define PTRDIFF_TYPE "int"
#undef WCHAR_TYPE
#define WCHAR_TYPE "long int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 32
#define INT_TYPE_SIZE 32
#define LONG_LONG_TYPE_SIZE 64
#define FLOAT_TYPE_SIZE 32
#define DOUBLE_TYPE_SIZE 32
#define LONG_DOUBLE_TYPE_SIZE 64 /* Actually only 40. */
/* Output #ident as a .ident. */
#define ASM_OUTPUT_IDENT(FILE, NAME) \
fprintf (FILE, "\t.ident \"%s\"\n", NAME);
/* Output of Uninitialized Variables. */
/* This says how to output an assembler line to define a local
uninitialized variable. */
#undef ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (int)(ROUNDED)))
/* This says how to output an assembler line to define a global
uninitialized variable. */
#undef ASM_OUTPUT_COMMON
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.globl\t", FILE), \
assemble_name (FILE, (NAME)), \
fputs ("\n\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (int)(ROUNDED)))
#undef ASM_OUTPUT_BSS
#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
( fputs ("\t.globl\t", FILE), \
assemble_name (FILE, (NAME)), \
fputs ("\n\t.bss\t", FILE), \
assemble_name (FILE, (NAME)), \
fprintf (FILE, ",%u\n", (int)(SIZE)))
/* Macros Controlling Initialization Routines. */
#define OBJECT_FORMAT_COFF
#define REAL_NM_FILE_NAME "c4x-nm"
/* Output of Assembler Instructions. */
/* Register names when used for integer modes. */
#define REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
"dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
"iif", "rs", "re", "rc", "r8", "r9", "r10", "r11" \
}
/* Alternate register names when used for floating point modes. */
#define FLOAT_REGISTER_NAMES \
{ \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"ar0", "ar1", "ar2", "ar3", "ar4", "ar5", "ar6", "ar7", \
"dp", "ir0", "ir1", "bk", "sp", "st", "die", "iie", \
"iif", "rs", "re", "rc", "f8", "f9", "f10", "f11" \
}
#define PRINT_OPERAND(FILE, X, CODE) c4x_print_operand(FILE, X, CODE)
/* Determine which codes are valid without a following integer. These must
not be alphabetic. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '#')
#define PRINT_OPERAND_ADDRESS(FILE, X) c4x_print_operand_address(FILE, X)
/* C4x specific pragmas. */
#define REGISTER_TARGET_PRAGMAS() do { \
c_register_pragma (0, "CODE_SECTION", c4x_pr_CODE_SECTION); \
c_register_pragma (0, "DATA_SECTION", c4x_pr_DATA_SECTION); \
c_register_pragma (0, "FUNC_CANNOT_INLINE", c4x_pr_ignored); \
c_register_pragma (0, "FUNC_EXT_CALLED", c4x_pr_ignored); \
c_register_pragma (0, "FUNC_IS_PURE", c4x_pr_FUNC_IS_PURE); \
c_register_pragma (0, "FUNC_IS_SYSTEM", c4x_pr_ignored); \
c_register_pragma (0, "FUNC_NEVER_RETURNS", c4x_pr_FUNC_NEVER_RETURNS); \
c_register_pragma (0, "FUNC_NO_GLOBAL_ASG", c4x_pr_ignored); \
c_register_pragma (0, "FUNC_NO_IND_ASG", c4x_pr_ignored); \
c_register_pragma (0, "INTERRUPT", c4x_pr_INTERRUPT); \
} while (0)
/* Assembler Commands for Alignment. */
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
{ int c = SIZE; \
for (; c > 0; --c) \
fprintf (FILE,"\t.word\t0\n"); \
}
#define ASM_NO_SKIP_IN_TEXT 1
/* I'm not sure about this one. FIXME. */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align\t%d\n", (1 << (LOG)))
/* Macros for SDB and DWARF Output (use .sdef instead of .def
to avoid conflict with TI's use of .def). */
#define SDB_DELIM "\n"
#define SDB_DEBUGGING_INFO 1
/* Don't use octal since this can confuse gas for the c4x. */
#define PUT_SDB_TYPE(a) fprintf(asm_out_file, "\t.type\t0x%x%s", a, SDB_DELIM)
#define PUT_SDB_DEF(A) \
do { fprintf (asm_out_file, "\t.sdef\t"); \
ASM_OUTPUT_LABELREF (asm_out_file, A); \
fprintf (asm_out_file, SDB_DELIM); } while (0)
#define PUT_SDB_PLAIN_DEF(A) \
fprintf (asm_out_file,"\t.sdef\t.%s%s", A, SDB_DELIM)
#define PUT_SDB_BLOCK_START(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.bb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
#define PUT_SDB_BLOCK_END(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.eb%s\t.val\t.%s\t.scl\t100%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
#define PUT_SDB_FUNCTION_START(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.bf%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, (LINE), SDB_DELIM)
/* Note we output relative line numbers for .ef which gas converts
to absolute line numbers. The TI compiler outputs absolute line numbers
in the .sym directive which gas does not support. */
#define PUT_SDB_FUNCTION_END(LINE) \
fprintf (asm_out_file, \
"\t.sdef\t.ef%s\t.val\t.%s\t.scl\t101%s\t.line\t%d%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM, \
(LINE), SDB_DELIM)
#define PUT_SDB_EPILOGUE_END(NAME) \
do { fprintf (asm_out_file, "\t.sdef\t"); \
ASM_OUTPUT_LABELREF (asm_out_file, NAME); \
fprintf (asm_out_file, \
"%s\t.val\t.%s\t.scl\t-1%s\t.endef\n", \
SDB_DELIM, SDB_DELIM, SDB_DELIM); } while (0)
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 1
/* A function address in a call instruction is a byte address (for
indexing purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
#define SLOW_BYTE_ACCESS 0
/* Specify the machine mode that pointers have. After generation of
RTL, the compiler makes no further distinction between pointers and
any other objects of this machine mode. */
#define Pmode QImode
/* On the C4x we can write the following code. We have to clear the cache
every time we execute it because the data in the stack could change.
laj $+4
addi3 4,r11,ar0
lda *ar0,ar1
lda *+ar0(1),ar0
bud ar1
nop
nop
or 1000h,st
.word FNADDR
.word CXT
On the c3x this is a bit more difficult. We have to write self
modifying code here. So we have to clear the cache every time
we execute it because the data in the stack could change.
ldiu TOP_OF_FUNCTION,ar1
lsh 16,ar1
or BOTTOM_OF_FUNCTION,ar1
ldiu TOP_OF_STATIC,ar0
bud ar1
lsh 16,ar0
or BOTTOM_OF_STATIC,ar0
or 1000h,st
*/
#define TRAMPOLINE_SIZE (TARGET_C3X ? 8 : 10)
#define TRAMPOLINE_TEMPLATE(FILE) \
{ \
if (TARGET_C3X) \
{ \
fprintf (FILE, "\tldiu\t0,ar1\n"); \
fprintf (FILE, "\tlsh\t16,ar1\n"); \
fprintf (FILE, "\tor\t0,ar1\n"); \
fprintf (FILE, "\tldiu\t0,ar0\n"); \
fprintf (FILE, "\tbud\tar1\n"); \
fprintf (FILE, "\tlsh\t16,ar0\n"); \
fprintf (FILE, "\tor\t0,ar0\n"); \
fprintf (FILE, "\tor\t1000h,st\n"); \
} \
else \
{ \
fprintf (FILE, "\tlaj\t$+4\n"); \
fprintf (FILE, "\taddi3\t4,r11,ar0\n"); \
fprintf (FILE, "\tlda\t*ar0,ar1\n"); \
fprintf (FILE, "\tlda\t*+ar0(1),ar0\n"); \
fprintf (FILE, "\tbud\tar1\n"); \
fprintf (FILE, "\tnop\n"); \
fprintf (FILE, "\tnop\n"); \
fprintf (FILE, "\tor\t1000h,st\n"); \
fprintf (FILE, "\t.word\t0\n"); \
fprintf (FILE, "\t.word\t0\n"); \
} \
}
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
if (TARGET_C3X) \
{ \
rtx tmp1, tmp2; \
tmp1 = expand_shift (RSHIFT_EXPR, QImode, FNADDR, \
size_int (16), 0, 1); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
GEN_INT (0x5069), size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 0)), tmp1); \
tmp1 = expand_and (QImode, FNADDR, GEN_INT (0xffff), 0); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
GEN_INT (0x1069), size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 2)), tmp1); \
tmp1 = expand_shift (RSHIFT_EXPR, QImode, CXT, \
size_int (16), 0, 1); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
GEN_INT (0x5068), size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 3)), tmp1); \
tmp1 = expand_and (QImode, CXT, GEN_INT (0xffff), 0); \
tmp2 = expand_shift (LSHIFT_EXPR, QImode, \
GEN_INT (0x1068), size_int (16), 0, 1); \
emit_insn (gen_iorqi3 (tmp1, tmp1, tmp2)); \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 6)), tmp1); \
} \
else \
{ \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 8)), FNADDR); \
emit_move_insn (gen_rtx_MEM (QImode, \
plus_constant (TRAMP, 9)), CXT); \
} \
}
/* Specify the machine mode that this machine uses for the index in
the tablejump instruction. */
#define CASE_VECTOR_MODE Pmode
/* Max number of (32-bit) bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 1
/* MOVE_RATIO is the number of move instructions that is better than a
block move. */
#define MOVE_RATIO 3
#define BSS_SECTION_ASM_OP "\t.bss"
#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
fprintf (FILE, "\tpush\t%s\n", reg_names[REGNO])
/* This is how to output an insn to pop a register from the stack.
It need not be very fast code. */
#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
fprintf (FILE, "\tpop\t%s\n", reg_names[REGNO])
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
#define DBR_OUTPUT_SEQEND(FILE) \
if (final_sequence != NULL_RTX) \
{ \
int count; \
rtx insn = XVECEXP (final_sequence, 0, 0); \
int laj = GET_CODE (insn) == CALL_INSN \
|| (GET_CODE (insn) == INSN \
&& GET_CODE (PATTERN (insn)) == TRAP_IF);\
\
count = dbr_sequence_length(); \
while (count < (laj ? 2 : 3)) \
{ \
fputs("\tnop\n", FILE); \
count++; \
} \
if (laj) \
fputs("\tpush\tr11\n", FILE); \
}
#define NO_FUNCTION_CSE
/* We don't want a leading tab. */
#define ASM_OUTPUT_ASM(FILE, STRING) fprintf (FILE, "%s\n", STRING)
/* Define the intrinsic functions for the c3x/c4x. */
enum c4x_builtins
{
/* intrinsic name */
C4X_BUILTIN_FIX, /* fast_ftoi */
C4X_BUILTIN_FIX_ANSI, /* ansi_ftoi */
C4X_BUILTIN_MPYI, /* fast_imult (only C3x) */
C4X_BUILTIN_TOIEEE, /* toieee (only C4x) */
C4X_BUILTIN_FRIEEE, /* frieee (only C4x) */
C4X_BUILTIN_RCPF /* fast_invf (only C4x) */
};
/* Hack to overcome use of libgcc2.c using auto-host.h to determine
HAVE_GAS_HIDDEN. */
#undef HAVE_GAS_HIDDEN
|