1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
|
/* This is a software floating point library which can be used
for targets without hardware floating point.
Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003,
2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This implements IEEE 754 format arithmetic, but does not provide a
mechanism for setting the rounding mode, or for generating or handling
exceptions.
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
Wilson, all of Cygnus Support. */
/* The intended way to use this file is to make two copies, add `#define FLOAT'
to one copy, then compile both copies and add them to libgcc.a. */
#include "tconfig.h"
#include "coretypes.h"
#include "tm.h"
#include "config/fp-bit.h"
/* The following macros can be defined to change the behavior of this file:
FLOAT: Implement a `float', aka SFmode, fp library. If this is not
defined, then this file implements a `double', aka DFmode, fp library.
FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
don't include float->double conversion which requires the double library.
This is useful only for machines which can't support doubles, e.g. some
8-bit processors.
CMPtype: Specify the type that floating point compares should return.
This defaults to SItype, aka int.
US_SOFTWARE_GOFAST: This makes all entry points use the same names as the
US Software goFast library.
_DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
two integers to the FLO_union_type.
NO_DENORMALS: Disable handling of denormals.
NO_NANS: Disable nan and infinity handling
SMALL_MACHINE: Useful when operations on QIs and HIs are faster
than on an SI */
/* We don't currently support extended floats (long doubles) on machines
without hardware to deal with them.
These stubs are just to keep the linker from complaining about unresolved
references which can be pulled in from libio & libstdc++, even if the
user isn't using long doubles. However, they may generate an unresolved
external to abort if abort is not used by the function, and the stubs
are referenced from within libc, since libgcc goes before and after the
system library. */
#ifdef DECLARE_LIBRARY_RENAMES
DECLARE_LIBRARY_RENAMES
#endif
#ifdef EXTENDED_FLOAT_STUBS
extern void abort (void);
void __extendsfxf2 (void) { abort(); }
void __extenddfxf2 (void) { abort(); }
void __truncxfdf2 (void) { abort(); }
void __truncxfsf2 (void) { abort(); }
void __fixxfsi (void) { abort(); }
void __floatsixf (void) { abort(); }
void __addxf3 (void) { abort(); }
void __subxf3 (void) { abort(); }
void __mulxf3 (void) { abort(); }
void __divxf3 (void) { abort(); }
void __negxf2 (void) { abort(); }
void __eqxf2 (void) { abort(); }
void __nexf2 (void) { abort(); }
void __gtxf2 (void) { abort(); }
void __gexf2 (void) { abort(); }
void __lexf2 (void) { abort(); }
void __ltxf2 (void) { abort(); }
void __extendsftf2 (void) { abort(); }
void __extenddftf2 (void) { abort(); }
void __trunctfdf2 (void) { abort(); }
void __trunctfsf2 (void) { abort(); }
void __fixtfsi (void) { abort(); }
void __floatsitf (void) { abort(); }
void __addtf3 (void) { abort(); }
void __subtf3 (void) { abort(); }
void __multf3 (void) { abort(); }
void __divtf3 (void) { abort(); }
void __negtf2 (void) { abort(); }
void __eqtf2 (void) { abort(); }
void __netf2 (void) { abort(); }
void __gttf2 (void) { abort(); }
void __getf2 (void) { abort(); }
void __letf2 (void) { abort(); }
void __lttf2 (void) { abort(); }
#else /* !EXTENDED_FLOAT_STUBS, rest of file */
/* IEEE "special" number predicates */
#ifdef NO_NANS
#define nan() 0
#define isnan(x) 0
#define isinf(x) 0
#else
#if defined L_thenan_sf
const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined L_thenan_df
const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined L_thenan_tf
const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined TFLOAT
extern const fp_number_type __thenan_tf;
#elif defined FLOAT
extern const fp_number_type __thenan_sf;
#else
extern const fp_number_type __thenan_df;
#endif
INLINE
static fp_number_type *
nan (void)
{
/* Discard the const qualifier... */
#ifdef TFLOAT
return (fp_number_type *) (& __thenan_tf);
#elif defined FLOAT
return (fp_number_type *) (& __thenan_sf);
#else
return (fp_number_type *) (& __thenan_df);
#endif
}
INLINE
static int
isnan ( fp_number_type * x)
{
return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN,
0);
}
INLINE
static int
isinf ( fp_number_type * x)
{
return __builtin_expect (x->class == CLASS_INFINITY, 0);
}
#endif /* NO_NANS */
INLINE
static int
iszero ( fp_number_type * x)
{
return x->class == CLASS_ZERO;
}
INLINE
static void
flip_sign ( fp_number_type * x)
{
x->sign = !x->sign;
}
/* Count leading zeroes in N. */
INLINE
static int
clzusi (USItype n)
{
extern int __clzsi2 (USItype);
if (sizeof (USItype) == sizeof (unsigned int))
return __builtin_clz (n);
else if (sizeof (USItype) == sizeof (unsigned long))
return __builtin_clzl (n);
else if (sizeof (USItype) == sizeof (unsigned long long))
return __builtin_clzll (n);
else
return __clzsi2 (n);
}
extern FLO_type pack_d ( fp_number_type * );
#if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
FLO_type
pack_d ( fp_number_type * src)
{
FLO_union_type dst;
fractype fraction = src->fraction.ll; /* wasn't unsigned before? */
int sign = src->sign;
int exp = 0;
if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && (isnan (src) || isinf (src)))
{
/* We can't represent these values accurately. By using the
largest possible magnitude, we guarantee that the conversion
of infinity is at least as big as any finite number. */
exp = EXPMAX;
fraction = ((fractype) 1 << FRACBITS) - 1;
}
else if (isnan (src))
{
exp = EXPMAX;
if (src->class == CLASS_QNAN || 1)
{
#ifdef QUIET_NAN_NEGATED
fraction |= QUIET_NAN - 1;
#else
fraction |= QUIET_NAN;
#endif
}
}
else if (isinf (src))
{
exp = EXPMAX;
fraction = 0;
}
else if (iszero (src))
{
exp = 0;
fraction = 0;
}
else if (fraction == 0)
{
exp = 0;
}
else
{
if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0))
{
#ifdef NO_DENORMALS
/* Go straight to a zero representation if denormals are not
supported. The denormal handling would be harmless but
isn't unnecessary. */
exp = 0;
fraction = 0;
#else /* NO_DENORMALS */
/* This number's exponent is too low to fit into the bits
available in the number, so we'll store 0 in the exponent and
shift the fraction to the right to make up for it. */
int shift = NORMAL_EXPMIN - src->normal_exp;
exp = 0;
if (shift > FRAC_NBITS - NGARDS)
{
/* No point shifting, since it's more that 64 out. */
fraction = 0;
}
else
{
int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
fraction = (fraction >> shift) | lowbit;
}
if ((fraction & GARDMASK) == GARDMSB)
{
if ((fraction & (1 << NGARDS)))
fraction += GARDROUND + 1;
}
else
{
/* Add to the guards to round up. */
fraction += GARDROUND;
}
/* Perhaps the rounding means we now need to change the
exponent, because the fraction is no longer denormal. */
if (fraction >= IMPLICIT_1)
{
exp += 1;
}
fraction >>= NGARDS;
#endif /* NO_DENORMALS */
}
else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS)
&& __builtin_expect (src->normal_exp > EXPBIAS, 0))
{
exp = EXPMAX;
fraction = 0;
}
else
{
exp = src->normal_exp + EXPBIAS;
if (!ROUND_TOWARDS_ZERO)
{
/* IF the gard bits are the all zero, but the first, then we're
half way between two numbers, choose the one which makes the
lsb of the answer 0. */
if ((fraction & GARDMASK) == GARDMSB)
{
if (fraction & (1 << NGARDS))
fraction += GARDROUND + 1;
}
else
{
/* Add a one to the guards to round up */
fraction += GARDROUND;
}
if (fraction >= IMPLICIT_2)
{
fraction >>= 1;
exp += 1;
}
}
fraction >>= NGARDS;
if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp > EXPMAX)
{
/* Saturate on overflow. */
exp = EXPMAX;
fraction = ((fractype) 1 << FRACBITS) - 1;
}
}
}
/* We previously used bitfields to store the number, but this doesn't
handle little/big endian systems conveniently, so use shifts and
masks */
#ifdef FLOAT_BIT_ORDER_MISMATCH
dst.bits.fraction = fraction;
dst.bits.exp = exp;
dst.bits.sign = sign;
#else
# if defined TFLOAT && defined HALFFRACBITS
{
halffractype high, low, unity;
int lowsign, lowexp;
unity = (halffractype) 1 << HALFFRACBITS;
/* Set HIGH to the high double's significand, masking out the implicit 1.
Set LOW to the low double's full significand. */
high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
low = fraction & (unity * 2 - 1);
/* Get the initial sign and exponent of the low double. */
lowexp = exp - HALFFRACBITS - 1;
lowsign = sign;
/* HIGH should be rounded like a normal double, making |LOW| <=
0.5 ULP of HIGH. Assume round-to-nearest. */
if (exp < EXPMAX)
if (low > unity || (low == unity && (high & 1) == 1))
{
/* Round HIGH up and adjust LOW to match. */
high++;
if (high == unity)
{
/* May make it infinite, but that's OK. */
high = 0;
exp++;
}
low = unity * 2 - low;
lowsign ^= 1;
}
high |= (halffractype) exp << HALFFRACBITS;
high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);
if (exp == EXPMAX || exp == 0 || low == 0)
low = 0;
else
{
while (lowexp > 0 && low < unity)
{
low <<= 1;
lowexp--;
}
if (lowexp <= 0)
{
halffractype roundmsb, round;
int shift;
shift = 1 - lowexp;
roundmsb = (1 << (shift - 1));
round = low & ((roundmsb << 1) - 1);
low >>= shift;
lowexp = 0;
if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
{
low++;
if (low == unity)
/* LOW rounds up to the smallest normal number. */
lowexp++;
}
}
low &= unity - 1;
low |= (halffractype) lowexp << HALFFRACBITS;
low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
}
dst.value_raw = ((fractype) high << HALFSHIFT) | low;
}
# else
dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
# endif
#endif
#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
#ifdef TFLOAT
{
qrtrfractype tmp1 = dst.words[0];
qrtrfractype tmp2 = dst.words[1];
dst.words[0] = dst.words[3];
dst.words[1] = dst.words[2];
dst.words[2] = tmp2;
dst.words[3] = tmp1;
}
#else
{
halffractype tmp = dst.words[0];
dst.words[0] = dst.words[1];
dst.words[1] = tmp;
}
#endif
#endif
return dst.value;
}
#endif
#if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
void
unpack_d (FLO_union_type * src, fp_number_type * dst)
{
/* We previously used bitfields to store the number, but this doesn't
handle little/big endian systems conveniently, so use shifts and
masks */
fractype fraction;
int exp;
int sign;
#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
FLO_union_type swapped;
#ifdef TFLOAT
swapped.words[0] = src->words[3];
swapped.words[1] = src->words[2];
swapped.words[2] = src->words[1];
swapped.words[3] = src->words[0];
#else
swapped.words[0] = src->words[1];
swapped.words[1] = src->words[0];
#endif
src = &swapped;
#endif
#ifdef FLOAT_BIT_ORDER_MISMATCH
fraction = src->bits.fraction;
exp = src->bits.exp;
sign = src->bits.sign;
#else
# if defined TFLOAT && defined HALFFRACBITS
{
halffractype high, low;
high = src->value_raw >> HALFSHIFT;
low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);
fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
fraction <<= FRACBITS - HALFFRACBITS;
exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;
if (exp != EXPMAX && exp != 0 && low != 0)
{
int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
int shift;
fractype xlow;
xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
if (lowexp)
xlow |= (((halffractype)1) << HALFFRACBITS);
else
lowexp = 1;
shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
if (shift > 0)
xlow <<= shift;
else if (shift < 0)
xlow >>= -shift;
if (sign == lowsign)
fraction += xlow;
else if (fraction >= xlow)
fraction -= xlow;
else
{
/* The high part is a power of two but the full number is lower.
This code will leave the implicit 1 in FRACTION, but we'd
have added that below anyway. */
fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
exp--;
}
}
}
# else
fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
# endif
#endif
dst->sign = sign;
if (exp == 0)
{
/* Hmm. Looks like 0 */
if (fraction == 0
#ifdef NO_DENORMALS
|| 1
#endif
)
{
/* tastes like zero */
dst->class = CLASS_ZERO;
}
else
{
/* Zero exponent with nonzero fraction - it's denormalized,
so there isn't a leading implicit one - we'll shift it so
it gets one. */
dst->normal_exp = exp - EXPBIAS + 1;
fraction <<= NGARDS;
dst->class = CLASS_NUMBER;
#if 1
while (fraction < IMPLICIT_1)
{
fraction <<= 1;
dst->normal_exp--;
}
#endif
dst->fraction.ll = fraction;
}
}
else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS)
&& __builtin_expect (exp == EXPMAX, 0))
{
/* Huge exponent*/
if (fraction == 0)
{
/* Attached to a zero fraction - means infinity */
dst->class = CLASS_INFINITY;
}
else
{
/* Nonzero fraction, means nan */
#ifdef QUIET_NAN_NEGATED
if ((fraction & QUIET_NAN) == 0)
#else
if (fraction & QUIET_NAN)
#endif
{
dst->class = CLASS_QNAN;
}
else
{
dst->class = CLASS_SNAN;
}
/* Keep the fraction part as the nan number */
dst->fraction.ll = fraction;
}
}
else
{
/* Nothing strange about this number */
dst->normal_exp = exp - EXPBIAS;
dst->class = CLASS_NUMBER;
dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
}
}
#endif /* L_unpack_df || L_unpack_sf */
#if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
static fp_number_type *
_fpadd_parts (fp_number_type * a,
fp_number_type * b,
fp_number_type * tmp)
{
intfrac tfraction;
/* Put commonly used fields in local variables. */
int a_normal_exp;
int b_normal_exp;
fractype a_fraction;
fractype b_fraction;
if (isnan (a))
{
return a;
}
if (isnan (b))
{
return b;
}
if (isinf (a))
{
/* Adding infinities with opposite signs yields a NaN. */
if (isinf (b) && a->sign != b->sign)
return nan ();
return a;
}
if (isinf (b))
{
return b;
}
if (iszero (b))
{
if (iszero (a))
{
*tmp = *a;
tmp->sign = a->sign & b->sign;
return tmp;
}
return a;
}
if (iszero (a))
{
return b;
}
/* Got two numbers. shift the smaller and increment the exponent till
they're the same */
{
int diff;
int sdiff;
a_normal_exp = a->normal_exp;
b_normal_exp = b->normal_exp;
a_fraction = a->fraction.ll;
b_fraction = b->fraction.ll;
diff = a_normal_exp - b_normal_exp;
sdiff = diff;
if (diff < 0)
diff = -diff;
if (diff < FRAC_NBITS)
{
if (sdiff > 0)
{
b_normal_exp += diff;
LSHIFT (b_fraction, diff);
}
else if (sdiff < 0)
{
a_normal_exp += diff;
LSHIFT (a_fraction, diff);
}
}
else
{
/* Somethings's up.. choose the biggest */
if (a_normal_exp > b_normal_exp)
{
b_normal_exp = a_normal_exp;
b_fraction = 0;
}
else
{
a_normal_exp = b_normal_exp;
a_fraction = 0;
}
}
}
if (a->sign != b->sign)
{
if (a->sign)
{
tfraction = -a_fraction + b_fraction;
}
else
{
tfraction = a_fraction - b_fraction;
}
if (tfraction >= 0)
{
tmp->sign = 0;
tmp->normal_exp = a_normal_exp;
tmp->fraction.ll = tfraction;
}
else
{
tmp->sign = 1;
tmp->normal_exp = a_normal_exp;
tmp->fraction.ll = -tfraction;
}
/* and renormalize it */
while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
{
tmp->fraction.ll <<= 1;
tmp->normal_exp--;
}
}
else
{
tmp->sign = a->sign;
tmp->normal_exp = a_normal_exp;
tmp->fraction.ll = a_fraction + b_fraction;
}
tmp->class = CLASS_NUMBER;
/* Now the fraction is added, we have to shift down to renormalize the
number */
if (tmp->fraction.ll >= IMPLICIT_2)
{
LSHIFT (tmp->fraction.ll, 1);
tmp->normal_exp++;
}
return tmp;
}
FLO_type
add (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
fp_number_type tmp;
fp_number_type *res;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
res = _fpadd_parts (&a, &b, &tmp);
return pack_d (res);
}
FLO_type
sub (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
fp_number_type tmp;
fp_number_type *res;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
b.sign ^= 1;
res = _fpadd_parts (&a, &b, &tmp);
return pack_d (res);
}
#endif /* L_addsub_sf || L_addsub_df */
#if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
static inline __attribute__ ((__always_inline__)) fp_number_type *
_fpmul_parts ( fp_number_type * a,
fp_number_type * b,
fp_number_type * tmp)
{
fractype low = 0;
fractype high = 0;
if (isnan (a))
{
a->sign = a->sign != b->sign;
return a;
}
if (isnan (b))
{
b->sign = a->sign != b->sign;
return b;
}
if (isinf (a))
{
if (iszero (b))
return nan ();
a->sign = a->sign != b->sign;
return a;
}
if (isinf (b))
{
if (iszero (a))
{
return nan ();
}
b->sign = a->sign != b->sign;
return b;
}
if (iszero (a))
{
a->sign = a->sign != b->sign;
return a;
}
if (iszero (b))
{
b->sign = a->sign != b->sign;
return b;
}
/* Calculate the mantissa by multiplying both numbers to get a
twice-as-wide number. */
{
#if defined(NO_DI_MODE) || defined(TFLOAT)
{
fractype x = a->fraction.ll;
fractype ylow = b->fraction.ll;
fractype yhigh = 0;
int bit;
/* ??? This does multiplies one bit at a time. Optimize. */
for (bit = 0; bit < FRAC_NBITS; bit++)
{
int carry;
if (x & 1)
{
carry = (low += ylow) < ylow;
high += yhigh + carry;
}
yhigh <<= 1;
if (ylow & FRACHIGH)
{
yhigh |= 1;
}
ylow <<= 1;
x >>= 1;
}
}
#elif defined(FLOAT)
/* Multiplying two USIs to get a UDI, we're safe. */
{
UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
high = answer >> BITS_PER_SI;
low = answer;
}
#else
/* fractype is DImode, but we need the result to be twice as wide.
Assuming a widening multiply from DImode to TImode is not
available, build one by hand. */
{
USItype nl = a->fraction.ll;
USItype nh = a->fraction.ll >> BITS_PER_SI;
USItype ml = b->fraction.ll;
USItype mh = b->fraction.ll >> BITS_PER_SI;
UDItype pp_ll = (UDItype) ml * nl;
UDItype pp_hl = (UDItype) mh * nl;
UDItype pp_lh = (UDItype) ml * nh;
UDItype pp_hh = (UDItype) mh * nh;
UDItype res2 = 0;
UDItype res0 = 0;
UDItype ps_hh__ = pp_hl + pp_lh;
if (ps_hh__ < pp_hl)
res2 += (UDItype)1 << BITS_PER_SI;
pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
res0 = pp_ll + pp_hl;
if (res0 < pp_ll)
res2++;
res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
high = res2;
low = res0;
}
#endif
}
tmp->normal_exp = a->normal_exp + b->normal_exp
+ FRAC_NBITS - (FRACBITS + NGARDS);
tmp->sign = a->sign != b->sign;
while (high >= IMPLICIT_2)
{
tmp->normal_exp++;
if (high & 1)
{
low >>= 1;
low |= FRACHIGH;
}
high >>= 1;
}
while (high < IMPLICIT_1)
{
tmp->normal_exp--;
high <<= 1;
if (low & FRACHIGH)
high |= 1;
low <<= 1;
}
if (!ROUND_TOWARDS_ZERO && (high & GARDMASK) == GARDMSB)
{
if (high & (1 << NGARDS))
{
/* Because we're half way, we would round to even by adding
GARDROUND + 1, except that's also done in the packing
function, and rounding twice will lose precision and cause
the result to be too far off. Example: 32-bit floats with
bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
off), not 0x1000 (more than 0.5ulp off). */
}
else if (low)
{
/* We're a further than half way by a small amount corresponding
to the bits set in "low". Knowing that, we round here and
not in pack_d, because there we don't have "low" available
anymore. */
high += GARDROUND + 1;
/* Avoid further rounding in pack_d. */
high &= ~(fractype) GARDMASK;
}
}
tmp->fraction.ll = high;
tmp->class = CLASS_NUMBER;
return tmp;
}
FLO_type
multiply (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
fp_number_type tmp;
fp_number_type *res;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
res = _fpmul_parts (&a, &b, &tmp);
return pack_d (res);
}
#endif /* L_mul_sf || L_mul_df || L_mul_tf */
#if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
static inline __attribute__ ((__always_inline__)) fp_number_type *
_fpdiv_parts (fp_number_type * a,
fp_number_type * b)
{
fractype bit;
fractype numerator;
fractype denominator;
fractype quotient;
if (isnan (a))
{
return a;
}
if (isnan (b))
{
return b;
}
a->sign = a->sign ^ b->sign;
if (isinf (a) || iszero (a))
{
if (a->class == b->class)
return nan ();
return a;
}
if (isinf (b))
{
a->fraction.ll = 0;
a->normal_exp = 0;
return a;
}
if (iszero (b))
{
a->class = CLASS_INFINITY;
return a;
}
/* Calculate the mantissa by multiplying both 64bit numbers to get a
128 bit number */
{
/* quotient =
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
*/
a->normal_exp = a->normal_exp - b->normal_exp;
numerator = a->fraction.ll;
denominator = b->fraction.ll;
if (numerator < denominator)
{
/* Fraction will be less than 1.0 */
numerator *= 2;
a->normal_exp--;
}
bit = IMPLICIT_1;
quotient = 0;
/* ??? Does divide one bit at a time. Optimize. */
while (bit)
{
if (numerator >= denominator)
{
quotient |= bit;
numerator -= denominator;
}
bit >>= 1;
numerator *= 2;
}
if (!ROUND_TOWARDS_ZERO && (quotient & GARDMASK) == GARDMSB)
{
if (quotient & (1 << NGARDS))
{
/* Because we're half way, we would round to even by adding
GARDROUND + 1, except that's also done in the packing
function, and rounding twice will lose precision and cause
the result to be too far off. */
}
else if (numerator)
{
/* We're a further than half way by the small amount
corresponding to the bits set in "numerator". Knowing
that, we round here and not in pack_d, because there we
don't have "numerator" available anymore. */
quotient += GARDROUND + 1;
/* Avoid further rounding in pack_d. */
quotient &= ~(fractype) GARDMASK;
}
}
a->fraction.ll = quotient;
return (a);
}
}
FLO_type
divide (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
fp_number_type *res;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
res = _fpdiv_parts (&a, &b);
return pack_d (res);
}
#endif /* L_div_sf || L_div_df */
#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
|| defined(L_fpcmp_parts_tf)
/* according to the demo, fpcmp returns a comparison with 0... thus
a<b -> -1
a==b -> 0
a>b -> +1
*/
int
__fpcmp_parts (fp_number_type * a, fp_number_type * b)
{
#if 0
/* either nan -> unordered. Must be checked outside of this routine. */
if (isnan (a) && isnan (b))
{
return 1; /* still unordered! */
}
#endif
if (isnan (a) || isnan (b))
{
return 1; /* how to indicate unordered compare? */
}
if (isinf (a) && isinf (b))
{
/* +inf > -inf, but +inf != +inf */
/* b \a| +inf(0)| -inf(1)
______\+--------+--------
+inf(0)| a==b(0)| a<b(-1)
-------+--------+--------
-inf(1)| a>b(1) | a==b(0)
-------+--------+--------
So since unordered must be nonzero, just line up the columns...
*/
return b->sign - a->sign;
}
/* but not both... */
if (isinf (a))
{
return a->sign ? -1 : 1;
}
if (isinf (b))
{
return b->sign ? 1 : -1;
}
if (iszero (a) && iszero (b))
{
return 0;
}
if (iszero (a))
{
return b->sign ? 1 : -1;
}
if (iszero (b))
{
return a->sign ? -1 : 1;
}
/* now both are "normal". */
if (a->sign != b->sign)
{
/* opposite signs */
return a->sign ? -1 : 1;
}
/* same sign; exponents? */
if (a->normal_exp > b->normal_exp)
{
return a->sign ? -1 : 1;
}
if (a->normal_exp < b->normal_exp)
{
return a->sign ? 1 : -1;
}
/* same exponents; check size. */
if (a->fraction.ll > b->fraction.ll)
{
return a->sign ? -1 : 1;
}
if (a->fraction.ll < b->fraction.ll)
{
return a->sign ? 1 : -1;
}
/* after all that, they're equal. */
return 0;
}
#endif
#if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
CMPtype
compare (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
return __fpcmp_parts (&a, &b);
}
#endif /* L_compare_sf || L_compare_df */
#ifndef US_SOFTWARE_GOFAST
/* These should be optimized for their specific tasks someday. */
#if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
CMPtype
_eq_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return 1; /* false, truth == 0 */
return __fpcmp_parts (&a, &b) ;
}
#endif /* L_eq_sf || L_eq_df */
#if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
CMPtype
_ne_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return 1; /* true, truth != 0 */
return __fpcmp_parts (&a, &b) ;
}
#endif /* L_ne_sf || L_ne_df */
#if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
CMPtype
_gt_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return -1; /* false, truth > 0 */
return __fpcmp_parts (&a, &b);
}
#endif /* L_gt_sf || L_gt_df */
#if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
CMPtype
_ge_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return -1; /* false, truth >= 0 */
return __fpcmp_parts (&a, &b) ;
}
#endif /* L_ge_sf || L_ge_df */
#if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
CMPtype
_lt_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return 1; /* false, truth < 0 */
return __fpcmp_parts (&a, &b);
}
#endif /* L_lt_sf || L_lt_df */
#if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
CMPtype
_le_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
if (isnan (&a) || isnan (&b))
return 1; /* false, truth <= 0 */
return __fpcmp_parts (&a, &b) ;
}
#endif /* L_le_sf || L_le_df */
#endif /* ! US_SOFTWARE_GOFAST */
#if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
CMPtype
_unord_f2 (FLO_type arg_a, FLO_type arg_b)
{
fp_number_type a;
fp_number_type b;
FLO_union_type au, bu;
au.value = arg_a;
bu.value = arg_b;
unpack_d (&au, &a);
unpack_d (&bu, &b);
return (isnan (&a) || isnan (&b));
}
#endif /* L_unord_sf || L_unord_df */
#if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
FLO_type
si_to_float (SItype arg_a)
{
fp_number_type in;
in.class = CLASS_NUMBER;
in.sign = arg_a < 0;
if (!arg_a)
{
in.class = CLASS_ZERO;
}
else
{
USItype uarg;
int shift;
in.normal_exp = FRACBITS + NGARDS;
if (in.sign)
{
/* Special case for minint, since there is no +ve integer
representation for it */
if (arg_a == (- MAX_SI_INT - 1))
{
return (FLO_type)(- MAX_SI_INT - 1);
}
uarg = (-arg_a);
}
else
uarg = arg_a;
in.fraction.ll = uarg;
shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
if (shift > 0)
{
in.fraction.ll <<= shift;
in.normal_exp -= shift;
}
}
return pack_d (&in);
}
#endif /* L_si_to_sf || L_si_to_df */
#if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
FLO_type
usi_to_float (USItype arg_a)
{
fp_number_type in;
in.sign = 0;
if (!arg_a)
{
in.class = CLASS_ZERO;
}
else
{
int shift;
in.class = CLASS_NUMBER;
in.normal_exp = FRACBITS + NGARDS;
in.fraction.ll = arg_a;
shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
if (shift < 0)
{
fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1);
in.fraction.ll >>= -shift;
in.fraction.ll |= (guard != 0);
in.normal_exp -= shift;
}
else if (shift > 0)
{
in.fraction.ll <<= shift;
in.normal_exp -= shift;
}
}
return pack_d (&in);
}
#endif
#if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
SItype
float_to_si (FLO_type arg_a)
{
fp_number_type a;
SItype tmp;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &a);
if (iszero (&a))
return 0;
if (isnan (&a))
return 0;
/* get reasonable MAX_SI_INT... */
if (isinf (&a))
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > BITS_PER_SI - 2)
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
return a.sign ? (-tmp) : (tmp);
}
#endif /* L_sf_to_si || L_df_to_si */
#if defined(L_sf_to_usi) || defined(L_df_to_usi) || defined(L_tf_to_usi)
#if defined US_SOFTWARE_GOFAST || defined(L_tf_to_usi)
/* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines,
we also define them for GOFAST because the ones in libgcc2.c have the
wrong names and I'd rather define these here and keep GOFAST CYG-LOC's
out of libgcc2.c. We can't define these here if not GOFAST because then
there'd be duplicate copies. */
USItype
float_to_usi (FLO_type arg_a)
{
fp_number_type a;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &a);
if (iszero (&a))
return 0;
if (isnan (&a))
return 0;
/* it is a negative number */
if (a.sign)
return 0;
/* get reasonable MAX_USI_INT... */
if (isinf (&a))
return MAX_USI_INT;
/* it is a number, but a small one */
if (a.normal_exp < 0)
return 0;
if (a.normal_exp > BITS_PER_SI - 1)
return MAX_USI_INT;
else if (a.normal_exp > (FRACBITS + NGARDS))
return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
else
return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
}
#endif /* US_SOFTWARE_GOFAST */
#endif /* L_sf_to_usi || L_df_to_usi */
#if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
FLO_type
negate (FLO_type arg_a)
{
fp_number_type a;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &a);
flip_sign (&a);
return pack_d (&a);
}
#endif /* L_negate_sf || L_negate_df */
#ifdef FLOAT
#if defined(L_make_sf)
SFtype
__make_fp(fp_class_type class,
unsigned int sign,
int exp,
USItype frac)
{
fp_number_type in;
in.class = class;
in.sign = sign;
in.normal_exp = exp;
in.fraction.ll = frac;
return pack_d (&in);
}
#endif /* L_make_sf */
#ifndef FLOAT_ONLY
/* This enables one to build an fp library that supports float but not double.
Otherwise, we would get an undefined reference to __make_dp.
This is needed for some 8-bit ports that can't handle well values that
are 8-bytes in size, so we just don't support double for them at all. */
#if defined(L_sf_to_df)
DFtype
sf_to_df (SFtype arg_a)
{
fp_number_type in;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
return __make_dp (in.class, in.sign, in.normal_exp,
((UDItype) in.fraction.ll) << F_D_BITOFF);
}
#endif /* L_sf_to_df */
#if defined(L_sf_to_tf) && defined(TMODES)
TFtype
sf_to_tf (SFtype arg_a)
{
fp_number_type in;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
return __make_tp (in.class, in.sign, in.normal_exp,
((UTItype) in.fraction.ll) << F_T_BITOFF);
}
#endif /* L_sf_to_df */
#endif /* ! FLOAT_ONLY */
#endif /* FLOAT */
#ifndef FLOAT
extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
#if defined(L_make_df)
DFtype
__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
{
fp_number_type in;
in.class = class;
in.sign = sign;
in.normal_exp = exp;
in.fraction.ll = frac;
return pack_d (&in);
}
#endif /* L_make_df */
#if defined(L_df_to_sf)
SFtype
df_to_sf (DFtype arg_a)
{
fp_number_type in;
USItype sffrac;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
sffrac = in.fraction.ll >> F_D_BITOFF;
/* We set the lowest guard bit in SFFRAC if we discarded any non
zero bits. */
if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
sffrac |= 1;
return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_df_to_sf */
#if defined(L_df_to_tf) && defined(TMODES) \
&& !defined(FLOAT) && !defined(TFLOAT)
TFtype
df_to_tf (DFtype arg_a)
{
fp_number_type in;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
return __make_tp (in.class, in.sign, in.normal_exp,
((UTItype) in.fraction.ll) << D_T_BITOFF);
}
#endif /* L_sf_to_df */
#ifdef TFLOAT
#if defined(L_make_tf)
TFtype
__make_tp(fp_class_type class,
unsigned int sign,
int exp,
UTItype frac)
{
fp_number_type in;
in.class = class;
in.sign = sign;
in.normal_exp = exp;
in.fraction.ll = frac;
return pack_d (&in);
}
#endif /* L_make_tf */
#if defined(L_tf_to_df)
DFtype
tf_to_df (TFtype arg_a)
{
fp_number_type in;
UDItype sffrac;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
sffrac = in.fraction.ll >> D_T_BITOFF;
/* We set the lowest guard bit in SFFRAC if we discarded any non
zero bits. */
if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
sffrac |= 1;
return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_tf_to_df */
#if defined(L_tf_to_sf)
SFtype
tf_to_sf (TFtype arg_a)
{
fp_number_type in;
USItype sffrac;
FLO_union_type au;
au.value = arg_a;
unpack_d (&au, &in);
sffrac = in.fraction.ll >> F_T_BITOFF;
/* We set the lowest guard bit in SFFRAC if we discarded any non
zero bits. */
if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
sffrac |= 1;
return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_tf_to_sf */
#endif /* TFLOAT */
#endif /* ! FLOAT */
#endif /* !EXTENDED_FLOAT_STUBS */
|