1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
;; Predicate definitions for Renesas H8/300.
;; Copyright (C) 2005 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING. If not, write to
;; the Free Software Foundation, 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;; Return true if OP is a valid source operand for an integer move
;; instruction.
(define_predicate "general_operand_src"
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem")
{
if (GET_MODE (op) == mode
&& GET_CODE (op) == MEM
&& GET_CODE (XEXP (op, 0)) == POST_INC)
return 1;
return general_operand (op, mode);
})
;; Return true if OP is a valid destination operand for an integer
;; move instruction.
(define_predicate "general_operand_dst"
(match_code "subreg,reg,mem")
{
if (GET_MODE (op) == mode
&& GET_CODE (op) == MEM
&& GET_CODE (XEXP (op, 0)) == PRE_DEC)
return 1;
return general_operand (op, mode);
})
;; Likewise the second operand.
(define_predicate "h8300_src_operand"
(match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem")
{
if (TARGET_H8300SX)
return general_operand (op, mode);
return nonmemory_operand (op, mode);
})
;; Return true if OP is a suitable first operand for a general
;; arithmetic insn such as "add".
(define_predicate "h8300_dst_operand"
(match_code "subreg,reg,mem")
{
if (TARGET_H8300SX)
return nonimmediate_operand (op, mode);
return register_operand (op, mode);
})
;; Check that an operand is either a register or an unsigned 4-bit
;; constant.
(define_predicate "nibble_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT && TARGET_H8300SX
&& INTVAL (op) >= 0 && INTVAL (op) <= 15);
})
;; Check that an operand is either a register or an unsigned 4-bit
;; constant.
(define_predicate "reg_or_nibble_operand"
(match_code "const_int,subreg,reg")
{
return (nibble_operand (op, mode) || register_operand (op, mode));
})
;; Return true if X is a shift operation of type H8SX_SHIFT_UNARY.
(define_predicate "h8sx_unary_shift_operator"
(match_code "ashiftrt,lshiftrt,ashift,rotate")
{
return (BINARY_P (op) && NON_COMMUTATIVE_P (op)
&& (h8sx_classify_shift (GET_MODE (op), GET_CODE (op), XEXP (op, 1))
== H8SX_SHIFT_UNARY));
})
;; Likewise H8SX_SHIFT_BINARY.
(define_predicate "h8sx_binary_shift_operator"
(match_code "ashiftrt,lshiftrt,ashift")
{
return (BINARY_P (op) && NON_COMMUTATIVE_P (op)
&& (h8sx_classify_shift (GET_MODE (op), GET_CODE (op), XEXP (op, 1))
== H8SX_SHIFT_BINARY));
})
;; Return true if OP is a binary operator in which it would be safe to
;; replace register operands with memory operands.
(define_predicate "h8sx_binary_memory_operator"
(match_code "plus,minus,and,ior,xor,ashift,ashiftrt,lshiftrt,rotate")
{
if (!TARGET_H8300SX)
return false;
if (GET_MODE (op) != QImode
&& GET_MODE (op) != HImode
&& GET_MODE (op) != SImode)
return false;
switch (GET_CODE (op))
{
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
return true;
default:
return h8sx_unary_shift_operator (op, mode);
}
})
;; Like h8sx_binary_memory_operator, but applies to unary operators.
(define_predicate "h8sx_unary_memory_operator"
(match_code "neg,not")
{
if (!TARGET_H8300SX)
return false;
if (GET_MODE (op) != QImode
&& GET_MODE (op) != HImode
&& GET_MODE (op) != SImode)
return false;
switch (GET_CODE (op))
{
case NEG:
case NOT:
return true;
default:
return false;
}
})
;; Return true if X is an ldm.l pattern. X is known to be parallel.
(define_predicate "h8300_ldm_parallel"
(match_code "parallel")
{
return h8300_ldm_stm_parallel (XVEC (op, 0), 1, 0);
})
;; Likewise stm.l.
(define_predicate "h8300_stm_parallel"
(match_code "parallel")
{
return h8300_ldm_stm_parallel (XVEC (op, 0), 0, 0);
})
;; Likewise rts/l and rte/l. Note that the .md pattern will check for
;; the return so there's no need to do that here.
(define_predicate "h8300_return_parallel"
(match_code "parallel")
{
return h8300_ldm_stm_parallel (XVEC (op, 0), 1, 1);
})
;; Return true if OP is a constant that contains only one 1 in its
;; binary representation.
(define_predicate "single_one_operand"
(match_code "const_int")
{
if (GET_CODE (op) == CONST_INT)
{
/* We really need to do this masking because 0x80 in QImode is
represented as -128 for example. */
if (exact_log2 (INTVAL (op) & GET_MODE_MASK (mode)) >= 0)
return 1;
}
return 0;
})
;; Return true if OP is a constant that contains only one 0 in its
;; binary representation.
(define_predicate "single_zero_operand"
(match_code "const_int")
{
if (GET_CODE (op) == CONST_INT)
{
/* We really need to do this masking because 0x80 in QImode is
represented as -128 for example. */
if (exact_log2 (~INTVAL (op) & GET_MODE_MASK (mode)) >= 0)
return 1;
}
return 0;
})
;; Return true if OP is a valid call operand.
(define_predicate "call_insn_operand"
(match_code "mem")
{
if (GET_CODE (op) == MEM)
{
rtx inside = XEXP (op, 0);
if (register_operand (inside, Pmode))
return 1;
if (CONSTANT_ADDRESS_P (inside))
return 1;
}
return 0;
})
;; Return true if OP is a valid call operand, and OP represents an
;; operand for a small call (4 bytes instead of 6 bytes).
(define_predicate "small_call_insn_operand"
(match_code "mem")
{
if (GET_CODE (op) == MEM)
{
rtx inside = XEXP (op, 0);
/* Register indirect is a small call. */
if (register_operand (inside, Pmode))
return 1;
/* A call through the function vector is a small call too. */
if (GET_CODE (inside) == SYMBOL_REF
&& (SYMBOL_REF_FLAGS (inside) & SYMBOL_FLAG_FUNCVEC_FUNCTION))
return 1;
}
/* Otherwise it's a large call. */
return 0;
})
;; Return true if OP is a valid jump operand.
(define_predicate "jump_address_operand"
(match_code "reg,mem")
{
if (GET_CODE (op) == REG)
return mode == Pmode;
if (GET_CODE (op) == MEM)
{
rtx inside = XEXP (op, 0);
if (register_operand (inside, Pmode))
return 1;
if (CONSTANT_ADDRESS_P (inside))
return 1;
}
return 0;
})
;; Return 1 if an addition/subtraction of a constant integer can be
;; transformed into two consecutive adds/subs that are faster than the
;; straightforward way. Otherwise, return 0.
(define_predicate "two_insn_adds_subs_operand"
(match_code "const_int")
{
if (TARGET_H8300SX)
return 0;
if (GET_CODE (op) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (op);
/* Force VALUE to be positive so that we do not have to consider
the negative case. */
if (value < 0)
value = -value;
if (TARGET_H8300H || TARGET_H8300S)
{
/* A constant addition/subtraction takes 2 states in QImode,
4 states in HImode, and 6 states in SImode. Thus, the
only case we can win is when SImode is used, in which
case, two adds/subs are used, taking 4 states. */
if (mode == SImode
&& (value == 2 + 1
|| value == 4 + 1
|| value == 4 + 2
|| value == 4 + 4))
return 1;
}
else
{
/* We do not profit directly by splitting addition or
subtraction of 3 and 4. However, since these are
implemented as a sequence of adds or subs, they do not
clobber (cc0) unlike a sequence of add.b and add.x. */
if (mode == HImode
&& (value == 2 + 1
|| value == 2 + 2))
return 1;
}
}
return 0;
})
;; Recognize valid operands for bit-field instructions.
(define_predicate "bit_operand"
(match_code "reg,subreg,mem")
{
/* We can accept any nonimmediate operand, except that MEM operands must
be limited to those that use addresses valid for the 'U' constraint. */
if (!nonimmediate_operand (op, mode))
return 0;
/* H8SX accepts pretty much anything here. */
if (TARGET_H8300SX)
return 1;
/* Accept any mem during RTL generation. Otherwise, the code that does
insv and extzv will think that we cannot handle memory. However,
to avoid reload problems, we only accept 'U' MEM operands after RTL
generation. This means that any named pattern which uses this predicate
must force its operands to match 'U' before emitting RTL. */
if (GET_CODE (op) == REG)
return 1;
if (GET_CODE (op) == SUBREG)
return 1;
return (GET_CODE (op) == MEM
&& OK_FOR_U (op));
})
;; Return nonzero if OP is a MEM suitable for bit manipulation insns.
(define_predicate "bit_memory_operand"
(match_code "mem")
{
return (GET_CODE (op) == MEM
&& OK_FOR_U (op));
})
;; Return nonzero if X is a stack pointer.
(define_predicate "stack_pointer_operand"
(match_code "reg")
{
return op == stack_pointer_rtx;
})
;; Return nonzero if X is a constant whose absolute value is greater
;; than 2.
(define_predicate "const_int_gt_2_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT
&& abs (INTVAL (op)) > 2);
})
;; Return nonzero if X is a constant whose absolute value is no
;; smaller than 8.
(define_predicate "const_int_ge_8_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT
&& abs (INTVAL (op)) >= 8);
})
;; Return nonzero if X is a constant expressible in QImode.
(define_predicate "const_int_qi_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) & 0xff) == INTVAL (op));
})
;; Return nonzero if X is a constant expressible in HImode.
(define_predicate "const_int_hi_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) & 0xffff) == INTVAL (op));
})
;; Return nonzero if X is a constant suitable for inc/dec.
(define_predicate "incdec_operand"
(match_code "const_int")
{
return (GET_CODE (op) == CONST_INT
&& (CONST_OK_FOR_M (INTVAL (op))
|| CONST_OK_FOR_O (INTVAL (op))));
})
;; Recognize valid operators for bit instructions.
(define_predicate "bit_operator"
(match_code "xor,and,ior")
{
enum rtx_code code = GET_CODE (op);
return (code == XOR
|| code == AND
|| code == IOR);
})
;; Return nonzero if OP is a shift operator.
(define_predicate "nshift_operator"
(match_code "ashiftrt,lshiftrt,ashift")
{
switch (GET_CODE (op))
{
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
return 1;
default:
return 0;
}
})
;; Return nonzero if X is either EQ or NE.
(define_predicate "eqne_operator"
(match_code "eq,ne")
{
enum rtx_code code = GET_CODE (op);
return (code == EQ || code == NE);
})
;; Return nonzero if X is either GT or LE.
(define_predicate "gtle_operator"
(match_code "gt,le,gtu,leu")
{
enum rtx_code code = GET_CODE (op);
return (code == GT || code == LE);
})
;; Return nonzero if X is either GTU or LEU.
(define_predicate "gtuleu_operator"
(match_code "gtu,leu")
{
enum rtx_code code = GET_CODE (op);
return (code == GTU || code == LEU);
})
;; Return nonzero if X is either IOR or XOR.
(define_predicate "iorxor_operator"
(match_code "ior,xor")
{
enum rtx_code code = GET_CODE (op);
return (code == IOR || code == XOR);
})
|