1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839
|
/* Definitions of target machine for GNU compiler.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
Contributed by James E. Wilson <wilson@cygnus.com> and
David Mosberger <davidm@hpl.hp.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "ggc.h"
#include "basic-block.h"
#include "toplev.h"
#include "sched-int.h"
#include "timevar.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "hashtab.h"
#include "langhooks.h"
#include "cfglayout.h"
#include "tree-gimple.h"
#include "intl.h"
#include "debug.h"
#include "params.h"
/* This is used for communication between ASM_OUTPUT_LABEL and
ASM_OUTPUT_LABELREF. */
int ia64_asm_output_label = 0;
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. */
struct rtx_def * ia64_compare_op0;
struct rtx_def * ia64_compare_op1;
/* Register names for ia64_expand_prologue. */
static const char * const ia64_reg_numbers[96] =
{ "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
"r96", "r97", "r98", "r99", "r100","r101","r102","r103",
"r104","r105","r106","r107","r108","r109","r110","r111",
"r112","r113","r114","r115","r116","r117","r118","r119",
"r120","r121","r122","r123","r124","r125","r126","r127"};
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_input_reg_names[8] =
{ "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7" };
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_local_reg_names[80] =
{ "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7",
"loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15",
"loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23",
"loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31",
"loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39",
"loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47",
"loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55",
"loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63",
"loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71",
"loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79" };
/* ??? These strings could be shared with REGISTER_NAMES. */
static const char * const ia64_output_reg_names[8] =
{ "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7" };
/* Which cpu are we scheduling for. */
enum processor_type ia64_tune = PROCESSOR_ITANIUM2;
/* Determines whether we run our final scheduling pass or not. We always
avoid the normal second scheduling pass. */
static int ia64_flag_schedule_insns2;
/* Determines whether we run variable tracking in machine dependent
reorganization. */
static int ia64_flag_var_tracking;
/* Variables which are this size or smaller are put in the sdata/sbss
sections. */
unsigned int ia64_section_threshold;
/* The following variable is used by the DFA insn scheduler. The value is
TRUE if we do insn bundling instead of insn scheduling. */
int bundling_p = 0;
/* Structure to be filled in by ia64_compute_frame_size with register
save masks and offsets for the current function. */
struct ia64_frame_info
{
HOST_WIDE_INT total_size; /* size of the stack frame, not including
the caller's scratch area. */
HOST_WIDE_INT spill_cfa_off; /* top of the reg spill area from the cfa. */
HOST_WIDE_INT spill_size; /* size of the gr/br/fr spill area. */
HOST_WIDE_INT extra_spill_size; /* size of spill area for others. */
HARD_REG_SET mask; /* mask of saved registers. */
unsigned int gr_used_mask; /* mask of registers in use as gr spill
registers or long-term scratches. */
int n_spilled; /* number of spilled registers. */
int reg_fp; /* register for fp. */
int reg_save_b0; /* save register for b0. */
int reg_save_pr; /* save register for prs. */
int reg_save_ar_pfs; /* save register for ar.pfs. */
int reg_save_ar_unat; /* save register for ar.unat. */
int reg_save_ar_lc; /* save register for ar.lc. */
int reg_save_gp; /* save register for gp. */
int n_input_regs; /* number of input registers used. */
int n_local_regs; /* number of local registers used. */
int n_output_regs; /* number of output registers used. */
int n_rotate_regs; /* number of rotating registers used. */
char need_regstk; /* true if a .regstk directive needed. */
char initialized; /* true if the data is finalized. */
};
/* Current frame information calculated by ia64_compute_frame_size. */
static struct ia64_frame_info current_frame_info;
static int ia64_first_cycle_multipass_dfa_lookahead (void);
static void ia64_dependencies_evaluation_hook (rtx, rtx);
static void ia64_init_dfa_pre_cycle_insn (void);
static rtx ia64_dfa_pre_cycle_insn (void);
static int ia64_first_cycle_multipass_dfa_lookahead_guard (rtx);
static bool ia64_first_cycle_multipass_dfa_lookahead_guard_spec (rtx);
static int ia64_dfa_new_cycle (FILE *, int, rtx, int, int, int *);
static void ia64_h_i_d_extended (void);
static int ia64_mode_to_int (enum machine_mode);
static void ia64_set_sched_flags (spec_info_t);
static int ia64_speculate_insn (rtx, ds_t, rtx *);
static rtx ia64_gen_spec_insn (rtx, ds_t, int, bool, bool);
static bool ia64_needs_block_p (rtx);
static rtx ia64_gen_check (rtx, rtx, bool);
static int ia64_spec_check_p (rtx);
static int ia64_spec_check_src_p (rtx);
static rtx gen_tls_get_addr (void);
static rtx gen_thread_pointer (void);
static int find_gr_spill (int);
static int next_scratch_gr_reg (void);
static void mark_reg_gr_used_mask (rtx, void *);
static void ia64_compute_frame_size (HOST_WIDE_INT);
static void setup_spill_pointers (int, rtx, HOST_WIDE_INT);
static void finish_spill_pointers (void);
static rtx spill_restore_mem (rtx, HOST_WIDE_INT);
static void do_spill (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT, rtx);
static void do_restore (rtx (*)(rtx, rtx, rtx), rtx, HOST_WIDE_INT);
static rtx gen_movdi_x (rtx, rtx, rtx);
static rtx gen_fr_spill_x (rtx, rtx, rtx);
static rtx gen_fr_restore_x (rtx, rtx, rtx);
static enum machine_mode hfa_element_mode (tree, bool);
static void ia64_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
tree, int *, int);
static int ia64_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static bool ia64_function_ok_for_sibcall (tree, tree);
static bool ia64_return_in_memory (tree, tree);
static bool ia64_rtx_costs (rtx, int, int, int *);
static void fix_range (const char *);
static bool ia64_handle_option (size_t, const char *, int);
static struct machine_function * ia64_init_machine_status (void);
static void emit_insn_group_barriers (FILE *);
static void emit_all_insn_group_barriers (FILE *);
static void final_emit_insn_group_barriers (FILE *);
static void emit_predicate_relation_info (void);
static void ia64_reorg (void);
static bool ia64_in_small_data_p (tree);
static void process_epilogue (FILE *, rtx, bool, bool);
static int process_set (FILE *, rtx, rtx, bool, bool);
static bool ia64_assemble_integer (rtx, unsigned int, int);
static void ia64_output_function_prologue (FILE *, HOST_WIDE_INT);
static void ia64_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void ia64_output_function_end_prologue (FILE *);
static int ia64_issue_rate (void);
static int ia64_adjust_cost_2 (rtx, int, rtx, int);
static void ia64_sched_init (FILE *, int, int);
static void ia64_sched_init_global (FILE *, int, int);
static void ia64_sched_finish_global (FILE *, int);
static void ia64_sched_finish (FILE *, int);
static int ia64_dfa_sched_reorder (FILE *, int, rtx *, int *, int, int);
static int ia64_sched_reorder (FILE *, int, rtx *, int *, int);
static int ia64_sched_reorder2 (FILE *, int, rtx *, int *, int);
static int ia64_variable_issue (FILE *, int, rtx, int);
static struct bundle_state *get_free_bundle_state (void);
static void free_bundle_state (struct bundle_state *);
static void initiate_bundle_states (void);
static void finish_bundle_states (void);
static unsigned bundle_state_hash (const void *);
static int bundle_state_eq_p (const void *, const void *);
static int insert_bundle_state (struct bundle_state *);
static void initiate_bundle_state_table (void);
static void finish_bundle_state_table (void);
static int try_issue_nops (struct bundle_state *, int);
static int try_issue_insn (struct bundle_state *, rtx);
static void issue_nops_and_insn (struct bundle_state *, int, rtx, int, int);
static int get_max_pos (state_t);
static int get_template (state_t, int);
static rtx get_next_important_insn (rtx, rtx);
static void bundling (FILE *, int, rtx, rtx);
static void ia64_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static void ia64_file_start (void);
static int ia64_hpux_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
static int ia64_reloc_rw_mask (void) ATTRIBUTE_UNUSED;
static section *ia64_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT);
static void ia64_output_dwarf_dtprel (FILE *, int, rtx)
ATTRIBUTE_UNUSED;
static unsigned int ia64_section_type_flags (tree, const char *, int);
static void ia64_hpux_add_extern_decl (tree decl)
ATTRIBUTE_UNUSED;
static void ia64_hpux_file_end (void)
ATTRIBUTE_UNUSED;
static void ia64_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_hpux_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_sysv4_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static void ia64_vms_init_libfuncs (void)
ATTRIBUTE_UNUSED;
static tree ia64_handle_model_attribute (tree *, tree, tree, int, bool *);
static void ia64_encode_section_info (tree, rtx, int);
static rtx ia64_struct_value_rtx (tree, int);
static tree ia64_gimplify_va_arg (tree, tree, tree *, tree *);
static bool ia64_scalar_mode_supported_p (enum machine_mode mode);
static bool ia64_vector_mode_supported_p (enum machine_mode mode);
static bool ia64_cannot_force_const_mem (rtx);
static const char *ia64_mangle_fundamental_type (tree);
static const char *ia64_invalid_conversion (tree, tree);
static const char *ia64_invalid_unary_op (int, tree);
static const char *ia64_invalid_binary_op (int, tree, tree);
/* Table of valid machine attributes. */
static const struct attribute_spec ia64_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "syscall_linkage", 0, 0, false, true, true, NULL },
{ "model", 1, 1, true, false, false, ia64_handle_model_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Initialize the GCC target structure. */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE ia64_attribute_table
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS ia64_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN ia64_expand_builtin
#undef TARGET_ASM_BYTE_OP
#define TARGET_ASM_BYTE_OP "\tdata1\t"
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\tdata2\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\tdata4\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\tdata8\t"
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\tdata2.ua\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\tdata4.ua\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\tdata8.ua\t"
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER ia64_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE ia64_output_function_prologue
#undef TARGET_ASM_FUNCTION_END_PROLOGUE
#define TARGET_ASM_FUNCTION_END_PROLOGUE ia64_output_function_end_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE ia64_output_function_epilogue
#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P ia64_in_small_data_p
#undef TARGET_SCHED_ADJUST_COST_2
#define TARGET_SCHED_ADJUST_COST_2 ia64_adjust_cost_2
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE ia64_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE ia64_variable_issue
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT ia64_sched_init
#undef TARGET_SCHED_FINISH
#define TARGET_SCHED_FINISH ia64_sched_finish
#undef TARGET_SCHED_INIT_GLOBAL
#define TARGET_SCHED_INIT_GLOBAL ia64_sched_init_global
#undef TARGET_SCHED_FINISH_GLOBAL
#define TARGET_SCHED_FINISH_GLOBAL ia64_sched_finish_global
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER ia64_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 ia64_sched_reorder2
#undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK
#define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK ia64_dependencies_evaluation_hook
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ia64_first_cycle_multipass_dfa_lookahead
#undef TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN
#define TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN ia64_init_dfa_pre_cycle_insn
#undef TARGET_SCHED_DFA_PRE_CYCLE_INSN
#define TARGET_SCHED_DFA_PRE_CYCLE_INSN ia64_dfa_pre_cycle_insn
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD\
ia64_first_cycle_multipass_dfa_lookahead_guard
#undef TARGET_SCHED_DFA_NEW_CYCLE
#define TARGET_SCHED_DFA_NEW_CYCLE ia64_dfa_new_cycle
#undef TARGET_SCHED_H_I_D_EXTENDED
#define TARGET_SCHED_H_I_D_EXTENDED ia64_h_i_d_extended
#undef TARGET_SCHED_SET_SCHED_FLAGS
#define TARGET_SCHED_SET_SCHED_FLAGS ia64_set_sched_flags
#undef TARGET_SCHED_SPECULATE_INSN
#define TARGET_SCHED_SPECULATE_INSN ia64_speculate_insn
#undef TARGET_SCHED_NEEDS_BLOCK_P
#define TARGET_SCHED_NEEDS_BLOCK_P ia64_needs_block_p
#undef TARGET_SCHED_GEN_CHECK
#define TARGET_SCHED_GEN_CHECK ia64_gen_check
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC\
ia64_first_cycle_multipass_dfa_lookahead_guard_spec
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL ia64_function_ok_for_sibcall
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES ia64_arg_partial_bytes
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK ia64_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START ia64_file_start
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS ia64_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_0
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG ia64_reorg
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO ia64_encode_section_info
#undef TARGET_SECTION_TYPE_FLAGS
#define TARGET_SECTION_TYPE_FLAGS ia64_section_type_flags
#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL ia64_output_dwarf_dtprel
#endif
/* ??? ABI doesn't allow us to define this. */
#if 0
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#endif
/* ??? ABI doesn't allow us to define this. */
#if 0
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#endif
/* ??? Investigate. */
#if 0
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#endif
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX ia64_struct_value_rtx
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY ia64_return_in_memory
#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS ia64_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR ia64_gimplify_va_arg
#undef TARGET_UNWIND_EMIT
#define TARGET_UNWIND_EMIT process_for_unwind_directive
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P ia64_scalar_mode_supported_p
#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P ia64_vector_mode_supported_p
/* ia64 architecture manual 4.4.7: ... reads, writes, and flushes may occur
in an order different from the specified program order. */
#undef TARGET_RELAXED_ORDERING
#define TARGET_RELAXED_ORDERING true
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION ia64_handle_option
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM ia64_cannot_force_const_mem
#undef TARGET_MANGLE_FUNDAMENTAL_TYPE
#define TARGET_MANGLE_FUNDAMENTAL_TYPE ia64_mangle_fundamental_type
#undef TARGET_INVALID_CONVERSION
#define TARGET_INVALID_CONVERSION ia64_invalid_conversion
#undef TARGET_INVALID_UNARY_OP
#define TARGET_INVALID_UNARY_OP ia64_invalid_unary_op
#undef TARGET_INVALID_BINARY_OP
#define TARGET_INVALID_BINARY_OP ia64_invalid_binary_op
struct gcc_target targetm = TARGET_INITIALIZER;
typedef enum
{
ADDR_AREA_NORMAL, /* normal address area */
ADDR_AREA_SMALL /* addressable by "addl" (-2MB < addr < 2MB) */
}
ia64_addr_area;
static GTY(()) tree small_ident1;
static GTY(()) tree small_ident2;
static void
init_idents (void)
{
if (small_ident1 == 0)
{
small_ident1 = get_identifier ("small");
small_ident2 = get_identifier ("__small__");
}
}
/* Retrieve the address area that has been chosen for the given decl. */
static ia64_addr_area
ia64_get_addr_area (tree decl)
{
tree model_attr;
model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
if (model_attr)
{
tree id;
init_idents ();
id = TREE_VALUE (TREE_VALUE (model_attr));
if (id == small_ident1 || id == small_ident2)
return ADDR_AREA_SMALL;
}
return ADDR_AREA_NORMAL;
}
static tree
ia64_handle_model_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
ia64_addr_area addr_area = ADDR_AREA_NORMAL;
ia64_addr_area area;
tree arg, decl = *node;
init_idents ();
arg = TREE_VALUE (args);
if (arg == small_ident1 || arg == small_ident2)
{
addr_area = ADDR_AREA_SMALL;
}
else
{
warning (OPT_Wattributes, "invalid argument of %qs attribute",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
switch (TREE_CODE (decl))
{
case VAR_DECL:
if ((DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl))
== FUNCTION_DECL)
&& !TREE_STATIC (decl))
{
error ("%Jan address area attribute cannot be specified for "
"local variables", decl);
*no_add_attrs = true;
}
area = ia64_get_addr_area (decl);
if (area != ADDR_AREA_NORMAL && addr_area != area)
{
error ("address area of %q+D conflicts with previous "
"declaration", decl);
*no_add_attrs = true;
}
break;
case FUNCTION_DECL:
error ("%Jaddress area attribute cannot be specified for functions",
decl);
*no_add_attrs = true;
break;
default:
warning (OPT_Wattributes, "%qs attribute ignored",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
break;
}
return NULL_TREE;
}
static void
ia64_encode_addr_area (tree decl, rtx symbol)
{
int flags;
flags = SYMBOL_REF_FLAGS (symbol);
switch (ia64_get_addr_area (decl))
{
case ADDR_AREA_NORMAL: break;
case ADDR_AREA_SMALL: flags |= SYMBOL_FLAG_SMALL_ADDR; break;
default: gcc_unreachable ();
}
SYMBOL_REF_FLAGS (symbol) = flags;
}
static void
ia64_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
/* Careful not to prod global register variables. */
if (TREE_CODE (decl) == VAR_DECL
&& GET_CODE (DECL_RTL (decl)) == MEM
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == SYMBOL_REF
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
ia64_encode_addr_area (decl, XEXP (rtl, 0));
}
/* Implement CONST_OK_FOR_LETTER_P. */
bool
ia64_const_ok_for_letter_p (HOST_WIDE_INT value, char c)
{
switch (c)
{
case 'I':
return CONST_OK_FOR_I (value);
case 'J':
return CONST_OK_FOR_J (value);
case 'K':
return CONST_OK_FOR_K (value);
case 'L':
return CONST_OK_FOR_L (value);
case 'M':
return CONST_OK_FOR_M (value);
case 'N':
return CONST_OK_FOR_N (value);
case 'O':
return CONST_OK_FOR_O (value);
case 'P':
return CONST_OK_FOR_P (value);
default:
return false;
}
}
/* Implement CONST_DOUBLE_OK_FOR_LETTER_P. */
bool
ia64_const_double_ok_for_letter_p (rtx value, char c)
{
switch (c)
{
case 'G':
return CONST_DOUBLE_OK_FOR_G (value);
default:
return false;
}
}
/* Implement EXTRA_CONSTRAINT. */
bool
ia64_extra_constraint (rtx value, char c)
{
switch (c)
{
case 'Q':
/* Non-volatile memory for FP_REG loads/stores. */
return memory_operand(value, VOIDmode) && !MEM_VOLATILE_P (value);
case 'R':
/* 1..4 for shladd arguments. */
return (GET_CODE (value) == CONST_INT
&& INTVAL (value) >= 1 && INTVAL (value) <= 4);
case 'S':
/* Non-post-inc memory for asms and other unsavory creatures. */
return (GET_CODE (value) == MEM
&& GET_RTX_CLASS (GET_CODE (XEXP (value, 0))) != RTX_AUTOINC
&& (reload_in_progress || memory_operand (value, VOIDmode)));
case 'T':
/* Symbol ref to small-address-area. */
return small_addr_symbolic_operand (value, VOIDmode);
case 'U':
/* Vector zero. */
return value == CONST0_RTX (GET_MODE (value));
case 'W':
/* An integer vector, such that conversion to an integer yields a
value appropriate for an integer 'J' constraint. */
if (GET_CODE (value) == CONST_VECTOR
&& GET_MODE_CLASS (GET_MODE (value)) == MODE_VECTOR_INT)
{
value = simplify_subreg (DImode, value, GET_MODE (value), 0);
return ia64_const_ok_for_letter_p (INTVAL (value), 'J');
}
return false;
case 'Y':
/* A V2SF vector containing elements that satisfy 'G'. */
return
(GET_CODE (value) == CONST_VECTOR
&& GET_MODE (value) == V2SFmode
&& ia64_const_double_ok_for_letter_p (XVECEXP (value, 0, 0), 'G')
&& ia64_const_double_ok_for_letter_p (XVECEXP (value, 0, 1), 'G'));
default:
return false;
}
}
/* Return 1 if the operands of a move are ok. */
int
ia64_move_ok (rtx dst, rtx src)
{
/* If we're under init_recog_no_volatile, we'll not be able to use
memory_operand. So check the code directly and don't worry about
the validity of the underlying address, which should have been
checked elsewhere anyway. */
if (GET_CODE (dst) != MEM)
return 1;
if (GET_CODE (src) == MEM)
return 0;
if (register_operand (src, VOIDmode))
return 1;
/* Otherwise, this must be a constant, and that either 0 or 0.0 or 1.0. */
if (INTEGRAL_MODE_P (GET_MODE (dst)))
return src == const0_rtx;
else
return GET_CODE (src) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_G (src);
}
/* Return 1 if the operands are ok for a floating point load pair. */
int
ia64_load_pair_ok (rtx dst, rtx src)
{
if (GET_CODE (dst) != REG || !FP_REGNO_P (REGNO (dst)))
return 0;
if (GET_CODE (src) != MEM || MEM_VOLATILE_P (src))
return 0;
switch (GET_CODE (XEXP (src, 0)))
{
case REG:
case POST_INC:
break;
case POST_DEC:
return 0;
case POST_MODIFY:
{
rtx adjust = XEXP (XEXP (XEXP (src, 0), 1), 1);
if (GET_CODE (adjust) != CONST_INT
|| INTVAL (adjust) != GET_MODE_SIZE (GET_MODE (src)))
return 0;
}
break;
default:
abort ();
}
return 1;
}
int
addp4_optimize_ok (rtx op1, rtx op2)
{
return (basereg_operand (op1, GET_MODE(op1)) !=
basereg_operand (op2, GET_MODE(op2)));
}
/* Check if OP is a mask suitable for use with SHIFT in a dep.z instruction.
Return the length of the field, or <= 0 on failure. */
int
ia64_depz_field_mask (rtx rop, rtx rshift)
{
unsigned HOST_WIDE_INT op = INTVAL (rop);
unsigned HOST_WIDE_INT shift = INTVAL (rshift);
/* Get rid of the zero bits we're shifting in. */
op >>= shift;
/* We must now have a solid block of 1's at bit 0. */
return exact_log2 (op + 1);
}
/* Return the TLS model to use for ADDR. */
static enum tls_model
tls_symbolic_operand_type (rtx addr)
{
enum tls_model tls_kind = 0;
if (GET_CODE (addr) == CONST)
{
if (GET_CODE (XEXP (addr, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF)
tls_kind = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (addr, 0), 0));
}
else if (GET_CODE (addr) == SYMBOL_REF)
tls_kind = SYMBOL_REF_TLS_MODEL (addr);
return tls_kind;
}
/* Return true if X is a constant that is valid for some immediate
field in an instruction. */
bool
ia64_legitimate_constant_p (rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case LABEL_REF:
return true;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
return true;
return CONST_DOUBLE_OK_FOR_G (x);
case CONST:
case SYMBOL_REF:
/* ??? Short term workaround for PR 28490. We must make the code here
match the code in ia64_expand_move and move_operand, even though they
are both technically wrong. */
if (tls_symbolic_operand_type (x) == 0)
{
HOST_WIDE_INT addend = 0;
rtx op = x;
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
{
addend = INTVAL (XEXP (XEXP (op, 0), 1));
op = XEXP (XEXP (op, 0), 0);
}
if (any_offset_symbol_operand (op, GET_MODE (op))
|| function_operand (op, GET_MODE (op)))
return true;
if (aligned_offset_symbol_operand (op, GET_MODE (op)))
return (addend & 0x3fff) == 0;
return false;
}
return false;
case CONST_VECTOR:
{
enum machine_mode mode = GET_MODE (x);
if (mode == V2SFmode)
return ia64_extra_constraint (x, 'Y');
return (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
&& GET_MODE_SIZE (mode) <= 8);
}
default:
return false;
}
}
/* Don't allow TLS addresses to get spilled to memory. */
static bool
ia64_cannot_force_const_mem (rtx x)
{
return tls_symbolic_operand_type (x) != 0;
}
/* Expand a symbolic constant load. */
bool
ia64_expand_load_address (rtx dest, rtx src)
{
gcc_assert (GET_CODE (dest) == REG);
/* ILP32 mode still loads 64-bits of data from the GOT. This avoids
having to pointer-extend the value afterward. Other forms of address
computation below are also more natural to compute as 64-bit quantities.
If we've been given an SImode destination register, change it. */
if (GET_MODE (dest) != Pmode)
dest = gen_rtx_REG_offset (dest, Pmode, REGNO (dest), 0);
if (TARGET_NO_PIC)
return false;
if (small_addr_symbolic_operand (src, VOIDmode))
return false;
if (TARGET_AUTO_PIC)
emit_insn (gen_load_gprel64 (dest, src));
else if (GET_CODE (src) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (src))
emit_insn (gen_load_fptr (dest, src));
else if (sdata_symbolic_operand (src, VOIDmode))
emit_insn (gen_load_gprel (dest, src));
else
{
HOST_WIDE_INT addend = 0;
rtx tmp;
/* We did split constant offsets in ia64_expand_move, and we did try
to keep them split in move_operand, but we also allowed reload to
rematerialize arbitrary constants rather than spill the value to
the stack and reload it. So we have to be prepared here to split
them apart again. */
if (GET_CODE (src) == CONST)
{
HOST_WIDE_INT hi, lo;
hi = INTVAL (XEXP (XEXP (src, 0), 1));
lo = ((hi & 0x3fff) ^ 0x2000) - 0x2000;
hi = hi - lo;
if (lo != 0)
{
addend = lo;
src = plus_constant (XEXP (XEXP (src, 0), 0), hi);
}
}
tmp = gen_rtx_HIGH (Pmode, src);
tmp = gen_rtx_PLUS (Pmode, tmp, pic_offset_table_rtx);
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
tmp = gen_rtx_LO_SUM (Pmode, dest, src);
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
if (addend)
{
tmp = gen_rtx_PLUS (Pmode, dest, GEN_INT (addend));
emit_insn (gen_rtx_SET (VOIDmode, dest, tmp));
}
}
return true;
}
static GTY(()) rtx gen_tls_tga;
static rtx
gen_tls_get_addr (void)
{
if (!gen_tls_tga)
gen_tls_tga = init_one_libfunc ("__tls_get_addr");
return gen_tls_tga;
}
static GTY(()) rtx thread_pointer_rtx;
static rtx
gen_thread_pointer (void)
{
if (!thread_pointer_rtx)
thread_pointer_rtx = gen_rtx_REG (Pmode, 13);
return thread_pointer_rtx;
}
static rtx
ia64_expand_tls_address (enum tls_model tls_kind, rtx op0, rtx op1,
rtx orig_op1, HOST_WIDE_INT addend)
{
rtx tga_op1, tga_op2, tga_ret, tga_eqv, tmp, insns;
rtx orig_op0 = op0;
HOST_WIDE_INT addend_lo, addend_hi;
switch (tls_kind)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
start_sequence ();
tga_op1 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtpmod (tga_op1, op1));
tga_op2 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtprel (tga_op2, op1));
tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
LCT_CONST, Pmode, 2, tga_op1,
Pmode, tga_op2, Pmode);
insns = get_insns ();
end_sequence ();
if (GET_MODE (op0) != Pmode)
op0 = tga_ret;
emit_libcall_block (insns, op0, tga_ret, op1);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
/* ??? This isn't the completely proper way to do local-dynamic
If the call to __tls_get_addr is used only by a single symbol,
then we should (somehow) move the dtprel to the second arg
to avoid the extra add. */
start_sequence ();
tga_op1 = gen_reg_rtx (Pmode);
emit_insn (gen_load_dtpmod (tga_op1, op1));
tga_op2 = const0_rtx;
tga_ret = emit_library_call_value (gen_tls_get_addr (), NULL_RTX,
LCT_CONST, Pmode, 2, tga_op1,
Pmode, tga_op2, Pmode);
insns = get_insns ();
end_sequence ();
tga_eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_LD_BASE);
tmp = gen_reg_rtx (Pmode);
emit_libcall_block (insns, tmp, tga_ret, tga_eqv);
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
if (TARGET_TLS64)
{
emit_insn (gen_load_dtprel (op0, op1));
emit_insn (gen_adddi3 (op0, tmp, op0));
}
else
emit_insn (gen_add_dtprel (op0, op1, tmp));
break;
case TLS_MODEL_INITIAL_EXEC:
addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
addend_hi = addend - addend_lo;
op1 = plus_constant (op1, addend_hi);
addend = addend_lo;
tmp = gen_reg_rtx (Pmode);
emit_insn (gen_load_tprel (tmp, op1));
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
emit_insn (gen_adddi3 (op0, tmp, gen_thread_pointer ()));
break;
case TLS_MODEL_LOCAL_EXEC:
if (!register_operand (op0, Pmode))
op0 = gen_reg_rtx (Pmode);
op1 = orig_op1;
addend = 0;
if (TARGET_TLS64)
{
emit_insn (gen_load_tprel (op0, op1));
emit_insn (gen_adddi3 (op0, op0, gen_thread_pointer ()));
}
else
emit_insn (gen_add_tprel (op0, op1, gen_thread_pointer ()));
break;
default:
gcc_unreachable ();
}
if (addend)
op0 = expand_simple_binop (Pmode, PLUS, op0, GEN_INT (addend),
orig_op0, 1, OPTAB_DIRECT);
if (orig_op0 == op0)
return NULL_RTX;
if (GET_MODE (orig_op0) == Pmode)
return op0;
return gen_lowpart (GET_MODE (orig_op0), op0);
}
rtx
ia64_expand_move (rtx op0, rtx op1)
{
enum machine_mode mode = GET_MODE (op0);
if (!reload_in_progress && !reload_completed && !ia64_move_ok (op0, op1))
op1 = force_reg (mode, op1);
if ((mode == Pmode || mode == ptr_mode) && symbolic_operand (op1, VOIDmode))
{
HOST_WIDE_INT addend = 0;
enum tls_model tls_kind;
rtx sym = op1;
if (GET_CODE (op1) == CONST
&& GET_CODE (XEXP (op1, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT)
{
addend = INTVAL (XEXP (XEXP (op1, 0), 1));
sym = XEXP (XEXP (op1, 0), 0);
}
tls_kind = tls_symbolic_operand_type (sym);
if (tls_kind)
return ia64_expand_tls_address (tls_kind, op0, sym, op1, addend);
if (any_offset_symbol_operand (sym, mode))
addend = 0;
else if (aligned_offset_symbol_operand (sym, mode))
{
HOST_WIDE_INT addend_lo, addend_hi;
addend_lo = ((addend & 0x3fff) ^ 0x2000) - 0x2000;
addend_hi = addend - addend_lo;
if (addend_lo != 0)
{
op1 = plus_constant (sym, addend_hi);
addend = addend_lo;
}
else
addend = 0;
}
else
op1 = sym;
if (reload_completed)
{
/* We really should have taken care of this offset earlier. */
gcc_assert (addend == 0);
if (ia64_expand_load_address (op0, op1))
return NULL_RTX;
}
if (addend)
{
rtx subtarget = no_new_pseudos ? op0 : gen_reg_rtx (mode);
emit_insn (gen_rtx_SET (VOIDmode, subtarget, op1));
op1 = expand_simple_binop (mode, PLUS, subtarget,
GEN_INT (addend), op0, 1, OPTAB_DIRECT);
if (op0 == op1)
return NULL_RTX;
}
}
return op1;
}
/* Split a move from OP1 to OP0 conditional on COND. */
void
ia64_emit_cond_move (rtx op0, rtx op1, rtx cond)
{
rtx insn, first = get_last_insn ();
emit_move_insn (op0, op1);
for (insn = get_last_insn (); insn != first; insn = PREV_INSN (insn))
if (INSN_P (insn))
PATTERN (insn) = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (cond),
PATTERN (insn));
}
/* Split a post-reload TImode or TFmode reference into two DImode
components. This is made extra difficult by the fact that we do
not get any scratch registers to work with, because reload cannot
be prevented from giving us a scratch that overlaps the register
pair involved. So instead, when addressing memory, we tweak the
pointer register up and back down with POST_INCs. Or up and not
back down when we can get away with it.
REVERSED is true when the loads must be done in reversed order
(high word first) for correctness. DEAD is true when the pointer
dies with the second insn we generate and therefore the second
address must not carry a postmodify.
May return an insn which is to be emitted after the moves. */
static rtx
ia64_split_tmode (rtx out[2], rtx in, bool reversed, bool dead)
{
rtx fixup = 0;
switch (GET_CODE (in))
{
case REG:
out[reversed] = gen_rtx_REG (DImode, REGNO (in));
out[!reversed] = gen_rtx_REG (DImode, REGNO (in) + 1);
break;
case CONST_INT:
case CONST_DOUBLE:
/* Cannot occur reversed. */
gcc_assert (!reversed);
if (GET_MODE (in) != TFmode)
split_double (in, &out[0], &out[1]);
else
/* split_double does not understand how to split a TFmode
quantity into a pair of DImode constants. */
{
REAL_VALUE_TYPE r;
unsigned HOST_WIDE_INT p[2];
long l[4]; /* TFmode is 128 bits */
REAL_VALUE_FROM_CONST_DOUBLE (r, in);
real_to_target (l, &r, TFmode);
if (FLOAT_WORDS_BIG_ENDIAN)
{
p[0] = (((unsigned HOST_WIDE_INT) l[0]) << 32) + l[1];
p[1] = (((unsigned HOST_WIDE_INT) l[2]) << 32) + l[3];
}
else
{
p[0] = (((unsigned HOST_WIDE_INT) l[3]) << 32) + l[2];
p[1] = (((unsigned HOST_WIDE_INT) l[1]) << 32) + l[0];
}
out[0] = GEN_INT (p[0]);
out[1] = GEN_INT (p[1]);
}
break;
case MEM:
{
rtx base = XEXP (in, 0);
rtx offset;
switch (GET_CODE (base))
{
case REG:
if (!reversed)
{
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
out[1] = adjust_automodify_address
(in, DImode, dead ? 0 : gen_rtx_POST_DEC (Pmode, base), 8);
}
else
{
/* Reversal requires a pre-increment, which can only
be done as a separate insn. */
emit_insn (gen_adddi3 (base, base, GEN_INT (8)));
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_DEC (Pmode, base), 8);
out[1] = adjust_address (in, DImode, 0);
}
break;
case POST_INC:
gcc_assert (!reversed && !dead);
/* Just do the increment in two steps. */
out[0] = adjust_automodify_address (in, DImode, 0, 0);
out[1] = adjust_automodify_address (in, DImode, 0, 8);
break;
case POST_DEC:
gcc_assert (!reversed && !dead);
/* Add 8, subtract 24. */
base = XEXP (base, 0);
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
out[1] = adjust_automodify_address
(in, DImode,
gen_rtx_POST_MODIFY (Pmode, base, plus_constant (base, -24)),
8);
break;
case POST_MODIFY:
gcc_assert (!reversed && !dead);
/* Extract and adjust the modification. This case is
trickier than the others, because we might have an
index register, or we might have a combined offset that
doesn't fit a signed 9-bit displacement field. We can
assume the incoming expression is already legitimate. */
offset = XEXP (base, 1);
base = XEXP (base, 0);
out[0] = adjust_automodify_address
(in, DImode, gen_rtx_POST_INC (Pmode, base), 0);
if (GET_CODE (XEXP (offset, 1)) == REG)
{
/* Can't adjust the postmodify to match. Emit the
original, then a separate addition insn. */
out[1] = adjust_automodify_address (in, DImode, 0, 8);
fixup = gen_adddi3 (base, base, GEN_INT (-8));
}
else
{
gcc_assert (GET_CODE (XEXP (offset, 1)) == CONST_INT);
if (INTVAL (XEXP (offset, 1)) < -256 + 8)
{
/* Again the postmodify cannot be made to match,
but in this case it's more efficient to get rid
of the postmodify entirely and fix up with an
add insn. */
out[1] = adjust_automodify_address (in, DImode, base, 8);
fixup = gen_adddi3
(base, base, GEN_INT (INTVAL (XEXP (offset, 1)) - 8));
}
else
{
/* Combined offset still fits in the displacement field.
(We cannot overflow it at the high end.) */
out[1] = adjust_automodify_address
(in, DImode, gen_rtx_POST_MODIFY
(Pmode, base, gen_rtx_PLUS
(Pmode, base,
GEN_INT (INTVAL (XEXP (offset, 1)) - 8))),
8);
}
}
break;
default:
gcc_unreachable ();
}
break;
}
default:
gcc_unreachable ();
}
return fixup;
}
/* Split a TImode or TFmode move instruction after reload.
This is used by *movtf_internal and *movti_internal. */
void
ia64_split_tmode_move (rtx operands[])
{
rtx in[2], out[2], insn;
rtx fixup[2];
bool dead = false;
bool reversed = false;
/* It is possible for reload to decide to overwrite a pointer with
the value it points to. In that case we have to do the loads in
the appropriate order so that the pointer is not destroyed too
early. Also we must not generate a postmodify for that second
load, or rws_access_regno will die. */
if (GET_CODE (operands[1]) == MEM
&& reg_overlap_mentioned_p (operands[0], operands[1]))
{
rtx base = XEXP (operands[1], 0);
while (GET_CODE (base) != REG)
base = XEXP (base, 0);
if (REGNO (base) == REGNO (operands[0]))
reversed = true;
dead = true;
}
/* Another reason to do the moves in reversed order is if the first
element of the target register pair is also the second element of
the source register pair. */
if (GET_CODE (operands[0]) == REG && GET_CODE (operands[1]) == REG
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
reversed = true;
fixup[0] = ia64_split_tmode (in, operands[1], reversed, dead);
fixup[1] = ia64_split_tmode (out, operands[0], reversed, dead);
#define MAYBE_ADD_REG_INC_NOTE(INSN, EXP) \
if (GET_CODE (EXP) == MEM \
&& (GET_CODE (XEXP (EXP, 0)) == POST_MODIFY \
|| GET_CODE (XEXP (EXP, 0)) == POST_INC \
|| GET_CODE (XEXP (EXP, 0)) == POST_DEC)) \
REG_NOTES (INSN) = gen_rtx_EXPR_LIST (REG_INC, \
XEXP (XEXP (EXP, 0), 0), \
REG_NOTES (INSN))
insn = emit_insn (gen_rtx_SET (VOIDmode, out[0], in[0]));
MAYBE_ADD_REG_INC_NOTE (insn, in[0]);
MAYBE_ADD_REG_INC_NOTE (insn, out[0]);
insn = emit_insn (gen_rtx_SET (VOIDmode, out[1], in[1]));
MAYBE_ADD_REG_INC_NOTE (insn, in[1]);
MAYBE_ADD_REG_INC_NOTE (insn, out[1]);
if (fixup[0])
emit_insn (fixup[0]);
if (fixup[1])
emit_insn (fixup[1]);
#undef MAYBE_ADD_REG_INC_NOTE
}
/* ??? Fixing GR->FR XFmode moves during reload is hard. You need to go
through memory plus an extra GR scratch register. Except that you can
either get the first from SECONDARY_MEMORY_NEEDED or the second from
SECONDARY_RELOAD_CLASS, but not both.
We got into problems in the first place by allowing a construct like
(subreg:XF (reg:TI)), which we got from a union containing a long double.
This solution attempts to prevent this situation from occurring. When
we see something like the above, we spill the inner register to memory. */
static rtx
spill_xfmode_rfmode_operand (rtx in, int force, enum machine_mode mode)
{
if (GET_CODE (in) == SUBREG
&& GET_MODE (SUBREG_REG (in)) == TImode
&& GET_CODE (SUBREG_REG (in)) == REG)
{
rtx memt = assign_stack_temp (TImode, 16, 0);
emit_move_insn (memt, SUBREG_REG (in));
return adjust_address (memt, mode, 0);
}
else if (force && GET_CODE (in) == REG)
{
rtx memx = assign_stack_temp (mode, 16, 0);
emit_move_insn (memx, in);
return memx;
}
else
return in;
}
/* Expand the movxf or movrf pattern (MODE says which) with the given
OPERANDS, returning true if the pattern should then invoke
DONE. */
bool
ia64_expand_movxf_movrf (enum machine_mode mode, rtx operands[])
{
rtx op0 = operands[0];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
/* We must support XFmode loads into general registers for stdarg/vararg,
unprototyped calls, and a rare case where a long double is passed as
an argument after a float HFA fills the FP registers. We split them into
DImode loads for convenience. We also need to support XFmode stores
for the last case. This case does not happen for stdarg/vararg routines,
because we do a block store to memory of unnamed arguments. */
if (GET_CODE (op0) == REG && GR_REGNO_P (REGNO (op0)))
{
rtx out[2];
/* We're hoping to transform everything that deals with XFmode
quantities and GR registers early in the compiler. */
gcc_assert (!no_new_pseudos);
/* Struct to register can just use TImode instead. */
if ((GET_CODE (operands[1]) == SUBREG
&& GET_MODE (SUBREG_REG (operands[1])) == TImode)
|| (GET_CODE (operands[1]) == REG
&& GR_REGNO_P (REGNO (operands[1]))))
{
rtx op1 = operands[1];
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
else
op1 = gen_rtx_REG (TImode, REGNO (op1));
emit_move_insn (gen_rtx_REG (TImode, REGNO (op0)), op1);
return true;
}
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
/* Don't word-swap when reading in the constant. */
emit_move_insn (gen_rtx_REG (DImode, REGNO (op0)),
operand_subword (operands[1], WORDS_BIG_ENDIAN,
0, mode));
emit_move_insn (gen_rtx_REG (DImode, REGNO (op0) + 1),
operand_subword (operands[1], !WORDS_BIG_ENDIAN,
0, mode));
return true;
}
/* If the quantity is in a register not known to be GR, spill it. */
if (register_operand (operands[1], mode))
operands[1] = spill_xfmode_rfmode_operand (operands[1], 1, mode);
gcc_assert (GET_CODE (operands[1]) == MEM);
/* Don't word-swap when reading in the value. */
out[0] = gen_rtx_REG (DImode, REGNO (op0));
out[1] = gen_rtx_REG (DImode, REGNO (op0) + 1);
emit_move_insn (out[0], adjust_address (operands[1], DImode, 0));
emit_move_insn (out[1], adjust_address (operands[1], DImode, 8));
return true;
}
if (GET_CODE (operands[1]) == REG && GR_REGNO_P (REGNO (operands[1])))
{
/* We're hoping to transform everything that deals with XFmode
quantities and GR registers early in the compiler. */
gcc_assert (!no_new_pseudos);
/* Op0 can't be a GR_REG here, as that case is handled above.
If op0 is a register, then we spill op1, so that we now have a
MEM operand. This requires creating an XFmode subreg of a TImode reg
to force the spill. */
if (register_operand (operands[0], mode))
{
rtx op1 = gen_rtx_REG (TImode, REGNO (operands[1]));
op1 = gen_rtx_SUBREG (mode, op1, 0);
operands[1] = spill_xfmode_rfmode_operand (op1, 0, mode);
}
else
{
rtx in[2];
gcc_assert (GET_CODE (operands[0]) == MEM);
/* Don't word-swap when writing out the value. */
in[0] = gen_rtx_REG (DImode, REGNO (operands[1]));
in[1] = gen_rtx_REG (DImode, REGNO (operands[1]) + 1);
emit_move_insn (adjust_address (operands[0], DImode, 0), in[0]);
emit_move_insn (adjust_address (operands[0], DImode, 8), in[1]);
return true;
}
}
if (!reload_in_progress && !reload_completed)
{
operands[1] = spill_xfmode_rfmode_operand (operands[1], 0, mode);
if (GET_MODE (op0) == TImode && GET_CODE (op0) == REG)
{
rtx memt, memx, in = operands[1];
if (CONSTANT_P (in))
in = validize_mem (force_const_mem (mode, in));
if (GET_CODE (in) == MEM)
memt = adjust_address (in, TImode, 0);
else
{
memt = assign_stack_temp (TImode, 16, 0);
memx = adjust_address (memt, mode, 0);
emit_move_insn (memx, in);
}
emit_move_insn (op0, memt);
return true;
}
if (!ia64_move_ok (operands[0], operands[1]))
operands[1] = force_reg (mode, operands[1]);
}
return false;
}
/* Emit comparison instruction if necessary, returning the expression
that holds the compare result in the proper mode. */
static GTY(()) rtx cmptf_libfunc;
rtx
ia64_expand_compare (enum rtx_code code, enum machine_mode mode)
{
rtx op0 = ia64_compare_op0, op1 = ia64_compare_op1;
rtx cmp;
/* If we have a BImode input, then we already have a compare result, and
do not need to emit another comparison. */
if (GET_MODE (op0) == BImode)
{
gcc_assert ((code == NE || code == EQ) && op1 == const0_rtx);
cmp = op0;
}
/* HPUX TFmode compare requires a library call to _U_Qfcmp, which takes a
magic number as its third argument, that indicates what to do.
The return value is an integer to be compared against zero. */
else if (GET_MODE (op0) == TFmode)
{
enum qfcmp_magic {
QCMP_INV = 1, /* Raise FP_INVALID on SNaN as a side effect. */
QCMP_UNORD = 2,
QCMP_EQ = 4,
QCMP_LT = 8,
QCMP_GT = 16
} magic;
enum rtx_code ncode;
rtx ret, insns;
gcc_assert (cmptf_libfunc && GET_MODE (op1) == TFmode);
switch (code)
{
/* 1 = equal, 0 = not equal. Equality operators do
not raise FP_INVALID when given an SNaN operand. */
case EQ: magic = QCMP_EQ; ncode = NE; break;
case NE: magic = QCMP_EQ; ncode = EQ; break;
/* isunordered() from C99. */
case UNORDERED: magic = QCMP_UNORD; ncode = NE; break;
case ORDERED: magic = QCMP_UNORD; ncode = EQ; break;
/* Relational operators raise FP_INVALID when given
an SNaN operand. */
case LT: magic = QCMP_LT |QCMP_INV; ncode = NE; break;
case LE: magic = QCMP_LT|QCMP_EQ|QCMP_INV; ncode = NE; break;
case GT: magic = QCMP_GT |QCMP_INV; ncode = NE; break;
case GE: magic = QCMP_GT|QCMP_EQ|QCMP_INV; ncode = NE; break;
/* FUTURE: Implement UNEQ, UNLT, UNLE, UNGT, UNGE, LTGT.
Expanders for buneq etc. weuld have to be added to ia64.md
for this to be useful. */
default: gcc_unreachable ();
}
start_sequence ();
ret = emit_library_call_value (cmptf_libfunc, 0, LCT_CONST, DImode, 3,
op0, TFmode, op1, TFmode,
GEN_INT (magic), DImode);
cmp = gen_reg_rtx (BImode);
emit_insn (gen_rtx_SET (VOIDmode, cmp,
gen_rtx_fmt_ee (ncode, BImode,
ret, const0_rtx)));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, cmp, cmp,
gen_rtx_fmt_ee (code, BImode, op0, op1));
code = NE;
}
else
{
cmp = gen_reg_rtx (BImode);
emit_insn (gen_rtx_SET (VOIDmode, cmp,
gen_rtx_fmt_ee (code, BImode, op0, op1)));
code = NE;
}
return gen_rtx_fmt_ee (code, mode, cmp, const0_rtx);
}
/* Generate an integral vector comparison. Return true if the condition has
been reversed, and so the sense of the comparison should be inverted. */
static bool
ia64_expand_vecint_compare (enum rtx_code code, enum machine_mode mode,
rtx dest, rtx op0, rtx op1)
{
bool negate = false;
rtx x;
/* Canonicalize the comparison to EQ, GT, GTU. */
switch (code)
{
case EQ:
case GT:
case GTU:
break;
case NE:
case LE:
case LEU:
code = reverse_condition (code);
negate = true;
break;
case GE:
case GEU:
code = reverse_condition (code);
negate = true;
/* FALLTHRU */
case LT:
case LTU:
code = swap_condition (code);
x = op0, op0 = op1, op1 = x;
break;
default:
gcc_unreachable ();
}
/* Unsigned parallel compare is not supported by the hardware. Play some
tricks to turn this into a signed comparison against 0. */
if (code == GTU)
{
switch (mode)
{
case V2SImode:
{
rtx t1, t2, mask;
/* Perform a parallel modulo subtraction. */
t1 = gen_reg_rtx (V2SImode);
emit_insn (gen_subv2si3 (t1, op0, op1));
/* Extract the original sign bit of op0. */
mask = GEN_INT (-0x80000000);
mask = gen_rtx_CONST_VECTOR (V2SImode, gen_rtvec (2, mask, mask));
mask = force_reg (V2SImode, mask);
t2 = gen_reg_rtx (V2SImode);
emit_insn (gen_andv2si3 (t2, op0, mask));
/* XOR it back into the result of the subtraction. This results
in the sign bit set iff we saw unsigned underflow. */
x = gen_reg_rtx (V2SImode);
emit_insn (gen_xorv2si3 (x, t1, t2));
code = GT;
op0 = x;
op1 = CONST0_RTX (mode);
}
break;
case V8QImode:
case V4HImode:
/* Perform a parallel unsigned saturating subtraction. */
x = gen_reg_rtx (mode);
emit_insn (gen_rtx_SET (VOIDmode, x,
gen_rtx_US_MINUS (mode, op0, op1)));
code = EQ;
op0 = x;
op1 = CONST0_RTX (mode);
negate = !negate;
break;
default:
gcc_unreachable ();
}
}
x = gen_rtx_fmt_ee (code, mode, op0, op1);
emit_insn (gen_rtx_SET (VOIDmode, dest, x));
return negate;
}
/* Emit an integral vector conditional move. */
void
ia64_expand_vecint_cmov (rtx operands[])
{
enum machine_mode mode = GET_MODE (operands[0]);
enum rtx_code code = GET_CODE (operands[3]);
bool negate;
rtx cmp, x, ot, of;
cmp = gen_reg_rtx (mode);
negate = ia64_expand_vecint_compare (code, mode, cmp,
operands[4], operands[5]);
ot = operands[1+negate];
of = operands[2-negate];
if (ot == CONST0_RTX (mode))
{
if (of == CONST0_RTX (mode))
{
emit_move_insn (operands[0], ot);
return;
}
x = gen_rtx_NOT (mode, cmp);
x = gen_rtx_AND (mode, x, of);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
else if (of == CONST0_RTX (mode))
{
x = gen_rtx_AND (mode, cmp, ot);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
else
{
rtx t, f;
t = gen_reg_rtx (mode);
x = gen_rtx_AND (mode, cmp, operands[1+negate]);
emit_insn (gen_rtx_SET (VOIDmode, t, x));
f = gen_reg_rtx (mode);
x = gen_rtx_NOT (mode, cmp);
x = gen_rtx_AND (mode, x, operands[2-negate]);
emit_insn (gen_rtx_SET (VOIDmode, f, x));
x = gen_rtx_IOR (mode, t, f);
emit_insn (gen_rtx_SET (VOIDmode, operands[0], x));
}
}
/* Emit an integral vector min or max operation. Return true if all done. */
bool
ia64_expand_vecint_minmax (enum rtx_code code, enum machine_mode mode,
rtx operands[])
{
rtx xops[6];
/* These four combinations are supported directly. */
if (mode == V8QImode && (code == UMIN || code == UMAX))
return false;
if (mode == V4HImode && (code == SMIN || code == SMAX))
return false;
/* This combination can be implemented with only saturating subtraction. */
if (mode == V4HImode && code == UMAX)
{
rtx x, tmp = gen_reg_rtx (mode);
x = gen_rtx_US_MINUS (mode, operands[1], operands[2]);
emit_insn (gen_rtx_SET (VOIDmode, tmp, x));
emit_insn (gen_addv4hi3 (operands[0], tmp, operands[2]));
return true;
}
/* Everything else implemented via vector comparisons. */
xops[0] = operands[0];
xops[4] = xops[1] = operands[1];
xops[5] = xops[2] = operands[2];
switch (code)
{
case UMIN:
code = LTU;
break;
case UMAX:
code = GTU;
break;
case SMIN:
code = LT;
break;
case SMAX:
code = GT;
break;
default:
gcc_unreachable ();
}
xops[3] = gen_rtx_fmt_ee (code, VOIDmode, operands[1], operands[2]);
ia64_expand_vecint_cmov (xops);
return true;
}
/* Emit an integral vector widening sum operations. */
void
ia64_expand_widen_sum (rtx operands[3], bool unsignedp)
{
rtx l, h, x, s;
enum machine_mode wmode, mode;
rtx (*unpack_l) (rtx, rtx, rtx);
rtx (*unpack_h) (rtx, rtx, rtx);
rtx (*plus) (rtx, rtx, rtx);
wmode = GET_MODE (operands[0]);
mode = GET_MODE (operands[1]);
switch (mode)
{
case V8QImode:
unpack_l = gen_unpack1_l;
unpack_h = gen_unpack1_h;
plus = gen_addv4hi3;
break;
case V4HImode:
unpack_l = gen_unpack2_l;
unpack_h = gen_unpack2_h;
plus = gen_addv2si3;
break;
default:
gcc_unreachable ();
}
/* Fill in x with the sign extension of each element in op1. */
if (unsignedp)
x = CONST0_RTX (mode);
else
{
bool neg;
x = gen_reg_rtx (mode);
neg = ia64_expand_vecint_compare (LT, mode, x, operands[1],
CONST0_RTX (mode));
gcc_assert (!neg);
}
l = gen_reg_rtx (wmode);
h = gen_reg_rtx (wmode);
s = gen_reg_rtx (wmode);
emit_insn (unpack_l (gen_lowpart (mode, l), operands[1], x));
emit_insn (unpack_h (gen_lowpart (mode, h), operands[1], x));
emit_insn (plus (s, l, operands[2]));
emit_insn (plus (operands[0], h, s));
}
/* Emit a signed or unsigned V8QI dot product operation. */
void
ia64_expand_dot_prod_v8qi (rtx operands[4], bool unsignedp)
{
rtx l1, l2, h1, h2, x1, x2, p1, p2, p3, p4, s1, s2, s3;
/* Fill in x1 and x2 with the sign extension of each element. */
if (unsignedp)
x1 = x2 = CONST0_RTX (V8QImode);
else
{
bool neg;
x1 = gen_reg_rtx (V8QImode);
x2 = gen_reg_rtx (V8QImode);
neg = ia64_expand_vecint_compare (LT, V8QImode, x1, operands[1],
CONST0_RTX (V8QImode));
gcc_assert (!neg);
neg = ia64_expand_vecint_compare (LT, V8QImode, x2, operands[2],
CONST0_RTX (V8QImode));
gcc_assert (!neg);
}
l1 = gen_reg_rtx (V4HImode);
l2 = gen_reg_rtx (V4HImode);
h1 = gen_reg_rtx (V4HImode);
h2 = gen_reg_rtx (V4HImode);
emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l1), operands[1], x1));
emit_insn (gen_unpack1_l (gen_lowpart (V8QImode, l2), operands[2], x2));
emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h1), operands[1], x1));
emit_insn (gen_unpack1_h (gen_lowpart (V8QImode, h2), operands[2], x2));
p1 = gen_reg_rtx (V2SImode);
p2 = gen_reg_rtx (V2SImode);
p3 = gen_reg_rtx (V2SImode);
p4 = gen_reg_rtx (V2SImode);
emit_insn (gen_pmpy2_r (p1, l1, l2));
emit_insn (gen_pmpy2_l (p2, l1, l2));
emit_insn (gen_pmpy2_r (p3, h1, h2));
emit_insn (gen_pmpy2_l (p4, h1, h2));
s1 = gen_reg_rtx (V2SImode);
s2 = gen_reg_rtx (V2SImode);
s3 = gen_reg_rtx (V2SImode);
emit_insn (gen_addv2si3 (s1, p1, p2));
emit_insn (gen_addv2si3 (s2, p3, p4));
emit_insn (gen_addv2si3 (s3, s1, operands[3]));
emit_insn (gen_addv2si3 (operands[0], s2, s3));
}
/* Emit the appropriate sequence for a call. */
void
ia64_expand_call (rtx retval, rtx addr, rtx nextarg ATTRIBUTE_UNUSED,
int sibcall_p)
{
rtx insn, b0;
addr = XEXP (addr, 0);
addr = convert_memory_address (DImode, addr);
b0 = gen_rtx_REG (DImode, R_BR (0));
/* ??? Should do this for functions known to bind local too. */
if (TARGET_NO_PIC || TARGET_AUTO_PIC)
{
if (sibcall_p)
insn = gen_sibcall_nogp (addr);
else if (! retval)
insn = gen_call_nogp (addr, b0);
else
insn = gen_call_value_nogp (retval, addr, b0);
insn = emit_call_insn (insn);
}
else
{
if (sibcall_p)
insn = gen_sibcall_gp (addr);
else if (! retval)
insn = gen_call_gp (addr, b0);
else
insn = gen_call_value_gp (retval, addr, b0);
insn = emit_call_insn (insn);
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
}
if (sibcall_p)
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), b0);
}
void
ia64_reload_gp (void)
{
rtx tmp;
if (current_frame_info.reg_save_gp)
tmp = gen_rtx_REG (DImode, current_frame_info.reg_save_gp);
else
{
HOST_WIDE_INT offset;
offset = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size);
if (frame_pointer_needed)
{
tmp = hard_frame_pointer_rtx;
offset = -offset;
}
else
{
tmp = stack_pointer_rtx;
offset = current_frame_info.total_size - offset;
}
if (CONST_OK_FOR_I (offset))
emit_insn (gen_adddi3 (pic_offset_table_rtx,
tmp, GEN_INT (offset)));
else
{
emit_move_insn (pic_offset_table_rtx, GEN_INT (offset));
emit_insn (gen_adddi3 (pic_offset_table_rtx,
pic_offset_table_rtx, tmp));
}
tmp = gen_rtx_MEM (DImode, pic_offset_table_rtx);
}
emit_move_insn (pic_offset_table_rtx, tmp);
}
void
ia64_split_call (rtx retval, rtx addr, rtx retaddr, rtx scratch_r,
rtx scratch_b, int noreturn_p, int sibcall_p)
{
rtx insn;
bool is_desc = false;
/* If we find we're calling through a register, then we're actually
calling through a descriptor, so load up the values. */
if (REG_P (addr) && GR_REGNO_P (REGNO (addr)))
{
rtx tmp;
bool addr_dead_p;
/* ??? We are currently constrained to *not* use peep2, because
we can legitimately change the global lifetime of the GP
(in the form of killing where previously live). This is
because a call through a descriptor doesn't use the previous
value of the GP, while a direct call does, and we do not
commit to either form until the split here.
That said, this means that we lack precise life info for
whether ADDR is dead after this call. This is not terribly
important, since we can fix things up essentially for free
with the POST_DEC below, but it's nice to not use it when we
can immediately tell it's not necessary. */
addr_dead_p = ((noreturn_p || sibcall_p
|| TEST_HARD_REG_BIT (regs_invalidated_by_call,
REGNO (addr)))
&& !FUNCTION_ARG_REGNO_P (REGNO (addr)));
/* Load the code address into scratch_b. */
tmp = gen_rtx_POST_INC (Pmode, addr);
tmp = gen_rtx_MEM (Pmode, tmp);
emit_move_insn (scratch_r, tmp);
emit_move_insn (scratch_b, scratch_r);
/* Load the GP address. If ADDR is not dead here, then we must
revert the change made above via the POST_INCREMENT. */
if (!addr_dead_p)
tmp = gen_rtx_POST_DEC (Pmode, addr);
else
tmp = addr;
tmp = gen_rtx_MEM (Pmode, tmp);
emit_move_insn (pic_offset_table_rtx, tmp);
is_desc = true;
addr = scratch_b;
}
if (sibcall_p)
insn = gen_sibcall_nogp (addr);
else if (retval)
insn = gen_call_value_nogp (retval, addr, retaddr);
else
insn = gen_call_nogp (addr, retaddr);
emit_call_insn (insn);
if ((!TARGET_CONST_GP || is_desc) && !noreturn_p && !sibcall_p)
ia64_reload_gp ();
}
/* Expand an atomic operation. We want to perform MEM <CODE>= VAL atomically.
This differs from the generic code in that we know about the zero-extending
properties of cmpxchg, and the zero-extending requirements of ar.ccv. We
also know that ld.acq+cmpxchg.rel equals a full barrier.
The loop we want to generate looks like
cmp_reg = mem;
label:
old_reg = cmp_reg;
new_reg = cmp_reg op val;
cmp_reg = compare-and-swap(mem, old_reg, new_reg)
if (cmp_reg != old_reg)
goto label;
Note that we only do the plain load from memory once. Subsequent
iterations use the value loaded by the compare-and-swap pattern. */
void
ia64_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
rtx old_dst, rtx new_dst)
{
enum machine_mode mode = GET_MODE (mem);
rtx old_reg, new_reg, cmp_reg, ar_ccv, label;
enum insn_code icode;
/* Special case for using fetchadd. */
if ((mode == SImode || mode == DImode)
&& (code == PLUS || code == MINUS)
&& fetchadd_operand (val, mode))
{
if (code == MINUS)
val = GEN_INT (-INTVAL (val));
if (!old_dst)
old_dst = gen_reg_rtx (mode);
emit_insn (gen_memory_barrier ());
if (mode == SImode)
icode = CODE_FOR_fetchadd_acq_si;
else
icode = CODE_FOR_fetchadd_acq_di;
emit_insn (GEN_FCN (icode) (old_dst, mem, val));
if (new_dst)
{
new_reg = expand_simple_binop (mode, PLUS, old_dst, val, new_dst,
true, OPTAB_WIDEN);
if (new_reg != new_dst)
emit_move_insn (new_dst, new_reg);
}
return;
}
/* Because of the volatile mem read, we get an ld.acq, which is the
front half of the full barrier. The end half is the cmpxchg.rel. */
gcc_assert (MEM_VOLATILE_P (mem));
old_reg = gen_reg_rtx (DImode);
cmp_reg = gen_reg_rtx (DImode);
label = gen_label_rtx ();
if (mode != DImode)
{
val = simplify_gen_subreg (DImode, val, mode, 0);
emit_insn (gen_extend_insn (cmp_reg, mem, DImode, mode, 1));
}
else
emit_move_insn (cmp_reg, mem);
emit_label (label);
ar_ccv = gen_rtx_REG (DImode, AR_CCV_REGNUM);
emit_move_insn (old_reg, cmp_reg);
emit_move_insn (ar_ccv, cmp_reg);
if (old_dst)
emit_move_insn (old_dst, gen_lowpart (mode, cmp_reg));
new_reg = cmp_reg;
if (code == NOT)
{
new_reg = expand_simple_unop (DImode, NOT, new_reg, NULL_RTX, true);
code = AND;
}
new_reg = expand_simple_binop (DImode, code, new_reg, val, NULL_RTX,
true, OPTAB_DIRECT);
if (mode != DImode)
new_reg = gen_lowpart (mode, new_reg);
if (new_dst)
emit_move_insn (new_dst, new_reg);
switch (mode)
{
case QImode: icode = CODE_FOR_cmpxchg_rel_qi; break;
case HImode: icode = CODE_FOR_cmpxchg_rel_hi; break;
case SImode: icode = CODE_FOR_cmpxchg_rel_si; break;
case DImode: icode = CODE_FOR_cmpxchg_rel_di; break;
default:
gcc_unreachable ();
}
emit_insn (GEN_FCN (icode) (cmp_reg, mem, ar_ccv, new_reg));
emit_cmp_and_jump_insns (cmp_reg, old_reg, NE, NULL, DImode, true, label);
}
/* Begin the assembly file. */
static void
ia64_file_start (void)
{
/* Variable tracking should be run after all optimizations which change order
of insns. It also needs a valid CFG. This can't be done in
ia64_override_options, because flag_var_tracking is finalized after
that. */
ia64_flag_var_tracking = flag_var_tracking;
flag_var_tracking = 0;
default_file_start ();
emit_safe_across_calls ();
}
void
emit_safe_across_calls (void)
{
unsigned int rs, re;
int out_state;
rs = 1;
out_state = 0;
while (1)
{
while (rs < 64 && call_used_regs[PR_REG (rs)])
rs++;
if (rs >= 64)
break;
for (re = rs + 1; re < 64 && ! call_used_regs[PR_REG (re)]; re++)
continue;
if (out_state == 0)
{
fputs ("\t.pred.safe_across_calls ", asm_out_file);
out_state = 1;
}
else
fputc (',', asm_out_file);
if (re == rs + 1)
fprintf (asm_out_file, "p%u", rs);
else
fprintf (asm_out_file, "p%u-p%u", rs, re - 1);
rs = re + 1;
}
if (out_state)
fputc ('\n', asm_out_file);
}
/* Helper function for ia64_compute_frame_size: find an appropriate general
register to spill some special register to. SPECIAL_SPILL_MASK contains
bits in GR0 to GR31 that have already been allocated by this routine.
TRY_LOCALS is true if we should attempt to locate a local regnum. */
static int
find_gr_spill (int try_locals)
{
int regno;
/* If this is a leaf function, first try an otherwise unused
call-clobbered register. */
if (current_function_is_leaf)
{
for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
if (! regs_ever_live[regno]
&& call_used_regs[regno]
&& ! fixed_regs[regno]
&& ! global_regs[regno]
&& ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
{
current_frame_info.gr_used_mask |= 1 << regno;
return regno;
}
}
if (try_locals)
{
regno = current_frame_info.n_local_regs;
/* If there is a frame pointer, then we can't use loc79, because
that is HARD_FRAME_POINTER_REGNUM. In particular, see the
reg_name switching code in ia64_expand_prologue. */
if (regno < (80 - frame_pointer_needed))
{
current_frame_info.n_local_regs = regno + 1;
return LOC_REG (0) + regno;
}
}
/* Failed to find a general register to spill to. Must use stack. */
return 0;
}
/* In order to make for nice schedules, we try to allocate every temporary
to a different register. We must of course stay away from call-saved,
fixed, and global registers. We must also stay away from registers
allocated in current_frame_info.gr_used_mask, since those include regs
used all through the prologue.
Any register allocated here must be used immediately. The idea is to
aid scheduling, not to solve data flow problems. */
static int last_scratch_gr_reg;
static int
next_scratch_gr_reg (void)
{
int i, regno;
for (i = 0; i < 32; ++i)
{
regno = (last_scratch_gr_reg + i + 1) & 31;
if (call_used_regs[regno]
&& ! fixed_regs[regno]
&& ! global_regs[regno]
&& ((current_frame_info.gr_used_mask >> regno) & 1) == 0)
{
last_scratch_gr_reg = regno;
return regno;
}
}
/* There must be _something_ available. */
gcc_unreachable ();
}
/* Helper function for ia64_compute_frame_size, called through
diddle_return_value. Mark REG in current_frame_info.gr_used_mask. */
static void
mark_reg_gr_used_mask (rtx reg, void *data ATTRIBUTE_UNUSED)
{
unsigned int regno = REGNO (reg);
if (regno < 32)
{
unsigned int i, n = hard_regno_nregs[regno][GET_MODE (reg)];
for (i = 0; i < n; ++i)
current_frame_info.gr_used_mask |= 1 << (regno + i);
}
}
/* Returns the number of bytes offset between the frame pointer and the stack
pointer for the current function. SIZE is the number of bytes of space
needed for local variables. */
static void
ia64_compute_frame_size (HOST_WIDE_INT size)
{
HOST_WIDE_INT total_size;
HOST_WIDE_INT spill_size = 0;
HOST_WIDE_INT extra_spill_size = 0;
HOST_WIDE_INT pretend_args_size;
HARD_REG_SET mask;
int n_spilled = 0;
int spilled_gr_p = 0;
int spilled_fr_p = 0;
unsigned int regno;
int i;
if (current_frame_info.initialized)
return;
memset (¤t_frame_info, 0, sizeof current_frame_info);
CLEAR_HARD_REG_SET (mask);
/* Don't allocate scratches to the return register. */
diddle_return_value (mark_reg_gr_used_mask, NULL);
/* Don't allocate scratches to the EH scratch registers. */
if (cfun->machine->ia64_eh_epilogue_sp)
mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_sp, NULL);
if (cfun->machine->ia64_eh_epilogue_bsp)
mark_reg_gr_used_mask (cfun->machine->ia64_eh_epilogue_bsp, NULL);
/* Find the size of the register stack frame. We have only 80 local
registers, because we reserve 8 for the inputs and 8 for the
outputs. */
/* Skip HARD_FRAME_POINTER_REGNUM (loc79) when frame_pointer_needed,
since we'll be adjusting that down later. */
regno = LOC_REG (78) + ! frame_pointer_needed;
for (; regno >= LOC_REG (0); regno--)
if (regs_ever_live[regno])
break;
current_frame_info.n_local_regs = regno - LOC_REG (0) + 1;
/* For functions marked with the syscall_linkage attribute, we must mark
all eight input registers as in use, so that locals aren't visible to
the caller. */
if (cfun->machine->n_varargs > 0
|| lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
current_frame_info.n_input_regs = 8;
else
{
for (regno = IN_REG (7); regno >= IN_REG (0); regno--)
if (regs_ever_live[regno])
break;
current_frame_info.n_input_regs = regno - IN_REG (0) + 1;
}
for (regno = OUT_REG (7); regno >= OUT_REG (0); regno--)
if (regs_ever_live[regno])
break;
i = regno - OUT_REG (0) + 1;
#ifndef PROFILE_HOOK
/* When -p profiling, we need one output register for the mcount argument.
Likewise for -a profiling for the bb_init_func argument. For -ax
profiling, we need two output registers for the two bb_init_trace_func
arguments. */
if (current_function_profile)
i = MAX (i, 1);
#endif
current_frame_info.n_output_regs = i;
/* ??? No rotating register support yet. */
current_frame_info.n_rotate_regs = 0;
/* Discover which registers need spilling, and how much room that
will take. Begin with floating point and general registers,
which will always wind up on the stack. */
for (regno = FR_REG (2); regno <= FR_REG (127); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 16;
n_spilled += 1;
spilled_fr_p = 1;
}
for (regno = GR_REG (1); regno <= GR_REG (31); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 8;
n_spilled += 1;
spilled_gr_p = 1;
}
for (regno = BR_REG (1); regno <= BR_REG (7); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
SET_HARD_REG_BIT (mask, regno);
spill_size += 8;
n_spilled += 1;
}
/* Now come all special registers that might get saved in other
general registers. */
if (frame_pointer_needed)
{
current_frame_info.reg_fp = find_gr_spill (1);
/* If we did not get a register, then we take LOC79. This is guaranteed
to be free, even if regs_ever_live is already set, because this is
HARD_FRAME_POINTER_REGNUM. This requires incrementing n_local_regs,
as we don't count loc79 above. */
if (current_frame_info.reg_fp == 0)
{
current_frame_info.reg_fp = LOC_REG (79);
current_frame_info.n_local_regs++;
}
}
if (! current_function_is_leaf)
{
/* Emit a save of BR0 if we call other functions. Do this even
if this function doesn't return, as EH depends on this to be
able to unwind the stack. */
SET_HARD_REG_BIT (mask, BR_REG (0));
current_frame_info.reg_save_b0 = find_gr_spill (1);
if (current_frame_info.reg_save_b0 == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
/* Similarly for ar.pfs. */
SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
current_frame_info.reg_save_ar_pfs = find_gr_spill (1);
if (current_frame_info.reg_save_ar_pfs == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
/* Similarly for gp. Note that if we're calling setjmp, the stacked
registers are clobbered, so we fall back to the stack. */
current_frame_info.reg_save_gp
= (current_function_calls_setjmp ? 0 : find_gr_spill (1));
if (current_frame_info.reg_save_gp == 0)
{
SET_HARD_REG_BIT (mask, GR_REG (1));
spill_size += 8;
n_spilled += 1;
}
}
else
{
if (regs_ever_live[BR_REG (0)] && ! call_used_regs[BR_REG (0)])
{
SET_HARD_REG_BIT (mask, BR_REG (0));
extra_spill_size += 8;
n_spilled += 1;
}
if (regs_ever_live[AR_PFS_REGNUM])
{
SET_HARD_REG_BIT (mask, AR_PFS_REGNUM);
current_frame_info.reg_save_ar_pfs = find_gr_spill (1);
if (current_frame_info.reg_save_ar_pfs == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
}
/* Unwind descriptor hackery: things are most efficient if we allocate
consecutive GR save registers for RP, PFS, FP in that order. However,
it is absolutely critical that FP get the only hard register that's
guaranteed to be free, so we allocated it first. If all three did
happen to be allocated hard regs, and are consecutive, rearrange them
into the preferred order now. */
if (current_frame_info.reg_fp != 0
&& current_frame_info.reg_save_b0 == current_frame_info.reg_fp + 1
&& current_frame_info.reg_save_ar_pfs == current_frame_info.reg_fp + 2)
{
current_frame_info.reg_save_b0 = current_frame_info.reg_fp;
current_frame_info.reg_save_ar_pfs = current_frame_info.reg_fp + 1;
current_frame_info.reg_fp = current_frame_info.reg_fp + 2;
}
/* See if we need to store the predicate register block. */
for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
if (regs_ever_live[regno] && ! call_used_regs[regno])
break;
if (regno <= PR_REG (63))
{
SET_HARD_REG_BIT (mask, PR_REG (0));
current_frame_info.reg_save_pr = find_gr_spill (1);
if (current_frame_info.reg_save_pr == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
/* ??? Mark them all as used so that register renaming and such
are free to use them. */
for (regno = PR_REG (0); regno <= PR_REG (63); regno++)
regs_ever_live[regno] = 1;
}
/* If we're forced to use st8.spill, we're forced to save and restore
ar.unat as well. The check for existing liveness allows inline asm
to touch ar.unat. */
if (spilled_gr_p || cfun->machine->n_varargs
|| regs_ever_live[AR_UNAT_REGNUM])
{
regs_ever_live[AR_UNAT_REGNUM] = 1;
SET_HARD_REG_BIT (mask, AR_UNAT_REGNUM);
current_frame_info.reg_save_ar_unat = find_gr_spill (spill_size == 0);
if (current_frame_info.reg_save_ar_unat == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
if (regs_ever_live[AR_LC_REGNUM])
{
SET_HARD_REG_BIT (mask, AR_LC_REGNUM);
current_frame_info.reg_save_ar_lc = find_gr_spill (spill_size == 0);
if (current_frame_info.reg_save_ar_lc == 0)
{
extra_spill_size += 8;
n_spilled += 1;
}
}
/* If we have an odd number of words of pretend arguments written to
the stack, then the FR save area will be unaligned. We round the
size of this area up to keep things 16 byte aligned. */
if (spilled_fr_p)
pretend_args_size = IA64_STACK_ALIGN (current_function_pretend_args_size);
else
pretend_args_size = current_function_pretend_args_size;
total_size = (spill_size + extra_spill_size + size + pretend_args_size
+ current_function_outgoing_args_size);
total_size = IA64_STACK_ALIGN (total_size);
/* We always use the 16-byte scratch area provided by the caller, but
if we are a leaf function, there's no one to which we need to provide
a scratch area. */
if (current_function_is_leaf)
total_size = MAX (0, total_size - 16);
current_frame_info.total_size = total_size;
current_frame_info.spill_cfa_off = pretend_args_size - 16;
current_frame_info.spill_size = spill_size;
current_frame_info.extra_spill_size = extra_spill_size;
COPY_HARD_REG_SET (current_frame_info.mask, mask);
current_frame_info.n_spilled = n_spilled;
current_frame_info.initialized = reload_completed;
}
/* Compute the initial difference between the specified pair of registers. */
HOST_WIDE_INT
ia64_initial_elimination_offset (int from, int to)
{
HOST_WIDE_INT offset;
ia64_compute_frame_size (get_frame_size ());
switch (from)
{
case FRAME_POINTER_REGNUM:
switch (to)
{
case HARD_FRAME_POINTER_REGNUM:
if (current_function_is_leaf)
offset = -current_frame_info.total_size;
else
offset = -(current_frame_info.total_size
- current_function_outgoing_args_size - 16);
break;
case STACK_POINTER_REGNUM:
if (current_function_is_leaf)
offset = 0;
else
offset = 16 + current_function_outgoing_args_size;
break;
default:
gcc_unreachable ();
}
break;
case ARG_POINTER_REGNUM:
/* Arguments start above the 16 byte save area, unless stdarg
in which case we store through the 16 byte save area. */
switch (to)
{
case HARD_FRAME_POINTER_REGNUM:
offset = 16 - current_function_pretend_args_size;
break;
case STACK_POINTER_REGNUM:
offset = (current_frame_info.total_size
+ 16 - current_function_pretend_args_size);
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
}
return offset;
}
/* If there are more than a trivial number of register spills, we use
two interleaved iterators so that we can get two memory references
per insn group.
In order to simplify things in the prologue and epilogue expanders,
we use helper functions to fix up the memory references after the
fact with the appropriate offsets to a POST_MODIFY memory mode.
The following data structure tracks the state of the two iterators
while insns are being emitted. */
struct spill_fill_data
{
rtx init_after; /* point at which to emit initializations */
rtx init_reg[2]; /* initial base register */
rtx iter_reg[2]; /* the iterator registers */
rtx *prev_addr[2]; /* address of last memory use */
rtx prev_insn[2]; /* the insn corresponding to prev_addr */
HOST_WIDE_INT prev_off[2]; /* last offset */
int n_iter; /* number of iterators in use */
int next_iter; /* next iterator to use */
unsigned int save_gr_used_mask;
};
static struct spill_fill_data spill_fill_data;
static void
setup_spill_pointers (int n_spills, rtx init_reg, HOST_WIDE_INT cfa_off)
{
int i;
spill_fill_data.init_after = get_last_insn ();
spill_fill_data.init_reg[0] = init_reg;
spill_fill_data.init_reg[1] = init_reg;
spill_fill_data.prev_addr[0] = NULL;
spill_fill_data.prev_addr[1] = NULL;
spill_fill_data.prev_insn[0] = NULL;
spill_fill_data.prev_insn[1] = NULL;
spill_fill_data.prev_off[0] = cfa_off;
spill_fill_data.prev_off[1] = cfa_off;
spill_fill_data.next_iter = 0;
spill_fill_data.save_gr_used_mask = current_frame_info.gr_used_mask;
spill_fill_data.n_iter = 1 + (n_spills > 2);
for (i = 0; i < spill_fill_data.n_iter; ++i)
{
int regno = next_scratch_gr_reg ();
spill_fill_data.iter_reg[i] = gen_rtx_REG (DImode, regno);
current_frame_info.gr_used_mask |= 1 << regno;
}
}
static void
finish_spill_pointers (void)
{
current_frame_info.gr_used_mask = spill_fill_data.save_gr_used_mask;
}
static rtx
spill_restore_mem (rtx reg, HOST_WIDE_INT cfa_off)
{
int iter = spill_fill_data.next_iter;
HOST_WIDE_INT disp = spill_fill_data.prev_off[iter] - cfa_off;
rtx disp_rtx = GEN_INT (disp);
rtx mem;
if (spill_fill_data.prev_addr[iter])
{
if (CONST_OK_FOR_N (disp))
{
*spill_fill_data.prev_addr[iter]
= gen_rtx_POST_MODIFY (DImode, spill_fill_data.iter_reg[iter],
gen_rtx_PLUS (DImode,
spill_fill_data.iter_reg[iter],
disp_rtx));
REG_NOTES (spill_fill_data.prev_insn[iter])
= gen_rtx_EXPR_LIST (REG_INC, spill_fill_data.iter_reg[iter],
REG_NOTES (spill_fill_data.prev_insn[iter]));
}
else
{
/* ??? Could use register post_modify for loads. */
if (! CONST_OK_FOR_I (disp))
{
rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
emit_move_insn (tmp, disp_rtx);
disp_rtx = tmp;
}
emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
spill_fill_data.iter_reg[iter], disp_rtx));
}
}
/* Micro-optimization: if we've created a frame pointer, it's at
CFA 0, which may allow the real iterator to be initialized lower,
slightly increasing parallelism. Also, if there are few saves
it may eliminate the iterator entirely. */
else if (disp == 0
&& spill_fill_data.init_reg[iter] == stack_pointer_rtx
&& frame_pointer_needed)
{
mem = gen_rtx_MEM (GET_MODE (reg), hard_frame_pointer_rtx);
set_mem_alias_set (mem, get_varargs_alias_set ());
return mem;
}
else
{
rtx seq, insn;
if (disp == 0)
seq = gen_movdi (spill_fill_data.iter_reg[iter],
spill_fill_data.init_reg[iter]);
else
{
start_sequence ();
if (! CONST_OK_FOR_I (disp))
{
rtx tmp = gen_rtx_REG (DImode, next_scratch_gr_reg ());
emit_move_insn (tmp, disp_rtx);
disp_rtx = tmp;
}
emit_insn (gen_adddi3 (spill_fill_data.iter_reg[iter],
spill_fill_data.init_reg[iter],
disp_rtx));
seq = get_insns ();
end_sequence ();
}
/* Careful for being the first insn in a sequence. */
if (spill_fill_data.init_after)
insn = emit_insn_after (seq, spill_fill_data.init_after);
else
{
rtx first = get_insns ();
if (first)
insn = emit_insn_before (seq, first);
else
insn = emit_insn (seq);
}
spill_fill_data.init_after = insn;
/* If DISP is 0, we may or may not have a further adjustment
afterward. If we do, then the load/store insn may be modified
to be a post-modify. If we don't, then this copy may be
eliminated by copyprop_hardreg_forward, which makes this
insn garbage, which runs afoul of the sanity check in
propagate_one_insn. So mark this insn as legal to delete. */
if (disp == 0)
REG_NOTES(insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx,
REG_NOTES (insn));
}
mem = gen_rtx_MEM (GET_MODE (reg), spill_fill_data.iter_reg[iter]);
/* ??? Not all of the spills are for varargs, but some of them are.
The rest of the spills belong in an alias set of their own. But
it doesn't actually hurt to include them here. */
set_mem_alias_set (mem, get_varargs_alias_set ());
spill_fill_data.prev_addr[iter] = &XEXP (mem, 0);
spill_fill_data.prev_off[iter] = cfa_off;
if (++iter >= spill_fill_data.n_iter)
iter = 0;
spill_fill_data.next_iter = iter;
return mem;
}
static void
do_spill (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off,
rtx frame_reg)
{
int iter = spill_fill_data.next_iter;
rtx mem, insn;
mem = spill_restore_mem (reg, cfa_off);
insn = emit_insn ((*move_fn) (mem, reg, GEN_INT (cfa_off)));
spill_fill_data.prev_insn[iter] = insn;
if (frame_reg)
{
rtx base;
HOST_WIDE_INT off;
RTX_FRAME_RELATED_P (insn) = 1;
/* Don't even pretend that the unwind code can intuit its way
through a pair of interleaved post_modify iterators. Just
provide the correct answer. */
if (frame_pointer_needed)
{
base = hard_frame_pointer_rtx;
off = - cfa_off;
}
else
{
base = stack_pointer_rtx;
off = current_frame_info.total_size - cfa_off;
}
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (GET_MODE (reg),
plus_constant (base, off)),
frame_reg),
REG_NOTES (insn));
}
}
static void
do_restore (rtx (*move_fn) (rtx, rtx, rtx), rtx reg, HOST_WIDE_INT cfa_off)
{
int iter = spill_fill_data.next_iter;
rtx insn;
insn = emit_insn ((*move_fn) (reg, spill_restore_mem (reg, cfa_off),
GEN_INT (cfa_off)));
spill_fill_data.prev_insn[iter] = insn;
}
/* Wrapper functions that discards the CONST_INT spill offset. These
exist so that we can give gr_spill/gr_fill the offset they need and
use a consistent function interface. */
static rtx
gen_movdi_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_movdi (dest, src);
}
static rtx
gen_fr_spill_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_fr_spill (dest, src);
}
static rtx
gen_fr_restore_x (rtx dest, rtx src, rtx offset ATTRIBUTE_UNUSED)
{
return gen_fr_restore (dest, src);
}
/* Called after register allocation to add any instructions needed for the
prologue. Using a prologue insn is favored compared to putting all of the
instructions in output_function_prologue(), since it allows the scheduler
to intermix instructions with the saves of the caller saved registers. In
some cases, it might be necessary to emit a barrier instruction as the last
insn to prevent such scheduling.
Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
so that the debug info generation code can handle them properly.
The register save area is layed out like so:
cfa+16
[ varargs spill area ]
[ fr register spill area ]
[ br register spill area ]
[ ar register spill area ]
[ pr register spill area ]
[ gr register spill area ] */
/* ??? Get inefficient code when the frame size is larger than can fit in an
adds instruction. */
void
ia64_expand_prologue (void)
{
rtx insn, ar_pfs_save_reg, ar_unat_save_reg;
int i, epilogue_p, regno, alt_regno, cfa_off, n_varargs;
rtx reg, alt_reg;
ia64_compute_frame_size (get_frame_size ());
last_scratch_gr_reg = 15;
/* If there is no epilogue, then we don't need some prologue insns.
We need to avoid emitting the dead prologue insns, because flow
will complain about them. */
if (optimize)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if ((e->flags & EDGE_FAKE) == 0
&& (e->flags & EDGE_FALLTHRU) != 0)
break;
epilogue_p = (e != NULL);
}
else
epilogue_p = 1;
/* Set the local, input, and output register names. We need to do this
for GNU libc, which creates crti.S/crtn.S by splitting initfini.c in
half. If we use in/loc/out register names, then we get assembler errors
in crtn.S because there is no alloc insn or regstk directive in there. */
if (! TARGET_REG_NAMES)
{
int inputs = current_frame_info.n_input_regs;
int locals = current_frame_info.n_local_regs;
int outputs = current_frame_info.n_output_regs;
for (i = 0; i < inputs; i++)
reg_names[IN_REG (i)] = ia64_reg_numbers[i];
for (i = 0; i < locals; i++)
reg_names[LOC_REG (i)] = ia64_reg_numbers[inputs + i];
for (i = 0; i < outputs; i++)
reg_names[OUT_REG (i)] = ia64_reg_numbers[inputs + locals + i];
}
/* Set the frame pointer register name. The regnum is logically loc79,
but of course we'll not have allocated that many locals. Rather than
worrying about renumbering the existing rtxs, we adjust the name. */
/* ??? This code means that we can never use one local register when
there is a frame pointer. loc79 gets wasted in this case, as it is
renamed to a register that will never be used. See also the try_locals
code in find_gr_spill. */
if (current_frame_info.reg_fp)
{
const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
reg_names[HARD_FRAME_POINTER_REGNUM]
= reg_names[current_frame_info.reg_fp];
reg_names[current_frame_info.reg_fp] = tmp;
}
/* We don't need an alloc instruction if we've used no outputs or locals. */
if (current_frame_info.n_local_regs == 0
&& current_frame_info.n_output_regs == 0
&& current_frame_info.n_input_regs <= current_function_args_info.int_regs
&& !TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
{
/* If there is no alloc, but there are input registers used, then we
need a .regstk directive. */
current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
ar_pfs_save_reg = NULL_RTX;
}
else
{
current_frame_info.need_regstk = 0;
if (current_frame_info.reg_save_ar_pfs)
regno = current_frame_info.reg_save_ar_pfs;
else
regno = next_scratch_gr_reg ();
ar_pfs_save_reg = gen_rtx_REG (DImode, regno);
insn = emit_insn (gen_alloc (ar_pfs_save_reg,
GEN_INT (current_frame_info.n_input_regs),
GEN_INT (current_frame_info.n_local_regs),
GEN_INT (current_frame_info.n_output_regs),
GEN_INT (current_frame_info.n_rotate_regs)));
RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_pfs != 0);
}
/* Set up frame pointer, stack pointer, and spill iterators. */
n_varargs = cfun->machine->n_varargs;
setup_spill_pointers (current_frame_info.n_spilled + n_varargs,
stack_pointer_rtx, 0);
if (frame_pointer_needed)
{
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
if (current_frame_info.total_size != 0)
{
rtx frame_size_rtx = GEN_INT (- current_frame_info.total_size);
rtx offset;
if (CONST_OK_FOR_I (- current_frame_info.total_size))
offset = frame_size_rtx;
else
{
regno = next_scratch_gr_reg ();
offset = gen_rtx_REG (DImode, regno);
emit_move_insn (offset, frame_size_rtx);
}
insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
stack_pointer_rtx, offset));
if (! frame_pointer_needed)
{
RTX_FRAME_RELATED_P (insn) = 1;
if (GET_CODE (offset) != CONST_INT)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (DImode,
stack_pointer_rtx,
frame_size_rtx)),
REG_NOTES (insn));
}
}
/* ??? At this point we must generate a magic insn that appears to
modify the stack pointer, the frame pointer, and all spill
iterators. This would allow the most scheduling freedom. For
now, just hard stop. */
emit_insn (gen_blockage ());
}
/* Must copy out ar.unat before doing any integer spills. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
if (current_frame_info.reg_save_ar_unat)
ar_unat_save_reg
= gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat);
else
{
alt_regno = next_scratch_gr_reg ();
ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
current_frame_info.gr_used_mask |= 1 << alt_regno;
}
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
insn = emit_move_insn (ar_unat_save_reg, reg);
RTX_FRAME_RELATED_P (insn) = (current_frame_info.reg_save_ar_unat != 0);
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p && current_frame_info.reg_save_ar_unat)
emit_insn (gen_prologue_use (ar_unat_save_reg));
}
else
ar_unat_save_reg = NULL_RTX;
/* Spill all varargs registers. Do this before spilling any GR registers,
since we want the UNAT bits for the GR registers to override the UNAT
bits from varargs, which we don't care about. */
cfa_off = -16;
for (regno = GR_ARG_FIRST + 7; n_varargs > 0; --n_varargs, --regno)
{
reg = gen_rtx_REG (DImode, regno);
do_spill (gen_gr_spill, reg, cfa_off += 8, NULL_RTX);
}
/* Locate the bottom of the register save area. */
cfa_off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size
+ current_frame_info.extra_spill_size);
/* Save the predicate register block either in a register or in memory. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
{
reg = gen_rtx_REG (DImode, PR_REG (0));
if (current_frame_info.reg_save_pr != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr);
insn = emit_move_insn (alt_reg, reg);
/* ??? Denote pr spill/fill by a DImode move that modifies all
64 hard registers. */
RTX_FRAME_RELATED_P (insn) = 1;
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, alt_reg, reg),
REG_NOTES (insn));
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
insn = emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
/* Handle AR regs in numerical order. All of them get special handling. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM)
&& current_frame_info.reg_save_ar_unat == 0)
{
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
do_spill (gen_movdi_x, ar_unat_save_reg, cfa_off, reg);
cfa_off -= 8;
}
/* The alloc insn already copied ar.pfs into a general register. The
only thing we have to do now is copy that register to a stack slot
if we'd not allocated a local register for the job. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM)
&& current_frame_info.reg_save_ar_pfs == 0)
{
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
do_spill (gen_movdi_x, ar_pfs_save_reg, cfa_off, reg);
cfa_off -= 8;
}
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
{
reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
if (current_frame_info.reg_save_ar_lc != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc);
insn = emit_move_insn (alt_reg, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
/* Save the return pointer. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
reg = gen_rtx_REG (DImode, BR_REG (0));
if (current_frame_info.reg_save_b0 != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
insn = emit_move_insn (alt_reg, reg);
RTX_FRAME_RELATED_P (insn) = 1;
/* Even if we're not going to generate an epilogue, we still
need to save the register so that EH works. */
if (! epilogue_p)
emit_insn (gen_prologue_use (alt_reg));
}
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
}
if (current_frame_info.reg_save_gp)
{
insn = emit_move_insn (gen_rtx_REG (DImode,
current_frame_info.reg_save_gp),
pic_offset_table_rtx);
/* We don't know for sure yet if this is actually needed, since
we've not split the PIC call patterns. If all of the calls
are indirect, and not followed by any uses of the gp, then
this save is dead. Allow it to go away. */
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_MAYBE_DEAD, const0_rtx, REG_NOTES (insn));
}
/* We should now be at the base of the gr/br/fr spill area. */
gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size));
/* Spill all general registers. */
for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
reg = gen_rtx_REG (DImode, regno);
do_spill (gen_gr_spill, reg, cfa_off, reg);
cfa_off -= 8;
}
/* Spill the rest of the BR registers. */
for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
reg = gen_rtx_REG (DImode, regno);
emit_move_insn (alt_reg, reg);
do_spill (gen_movdi_x, alt_reg, cfa_off, reg);
cfa_off -= 8;
}
/* Align the frame and spill all FR registers. */
for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
gcc_assert (!(cfa_off & 15));
reg = gen_rtx_REG (XFmode, regno);
do_spill (gen_fr_spill_x, reg, cfa_off, reg);
cfa_off -= 16;
}
gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
finish_spill_pointers ();
}
/* Called after register allocation to add any instructions needed for the
epilogue. Using an epilogue insn is favored compared to putting all of the
instructions in output_function_prologue(), since it allows the scheduler
to intermix instructions with the saves of the caller saved registers. In
some cases, it might be necessary to emit a barrier instruction as the last
insn to prevent such scheduling. */
void
ia64_expand_epilogue (int sibcall_p)
{
rtx insn, reg, alt_reg, ar_unat_save_reg;
int regno, alt_regno, cfa_off;
ia64_compute_frame_size (get_frame_size ());
/* If there is a frame pointer, then we use it instead of the stack
pointer, so that the stack pointer does not need to be valid when
the epilogue starts. See EXIT_IGNORE_STACK. */
if (frame_pointer_needed)
setup_spill_pointers (current_frame_info.n_spilled,
hard_frame_pointer_rtx, 0);
else
setup_spill_pointers (current_frame_info.n_spilled, stack_pointer_rtx,
current_frame_info.total_size);
if (current_frame_info.total_size != 0)
{
/* ??? At this point we must generate a magic insn that appears to
modify the spill iterators and the frame pointer. This would
allow the most scheduling freedom. For now, just hard stop. */
emit_insn (gen_blockage ());
}
/* Locate the bottom of the register save area. */
cfa_off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size
+ current_frame_info.extra_spill_size);
/* Restore the predicate registers. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, PR_REG (0)))
{
if (current_frame_info.reg_save_pr != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_pr);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, PR_REG (0));
emit_move_insn (reg, alt_reg);
}
/* Restore the application registers. */
/* Load the saved unat from the stack, but do not restore it until
after the GRs have been restored. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
if (current_frame_info.reg_save_ar_unat != 0)
ar_unat_save_reg
= gen_rtx_REG (DImode, current_frame_info.reg_save_ar_unat);
else
{
alt_regno = next_scratch_gr_reg ();
ar_unat_save_reg = gen_rtx_REG (DImode, alt_regno);
current_frame_info.gr_used_mask |= 1 << alt_regno;
do_restore (gen_movdi_x, ar_unat_save_reg, cfa_off);
cfa_off -= 8;
}
}
else
ar_unat_save_reg = NULL_RTX;
if (current_frame_info.reg_save_ar_pfs != 0)
{
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_pfs);
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
emit_move_insn (reg, alt_reg);
}
else if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_PFS_REGNUM))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
reg = gen_rtx_REG (DImode, AR_PFS_REGNUM);
emit_move_insn (reg, alt_reg);
}
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_LC_REGNUM))
{
if (current_frame_info.reg_save_ar_lc != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_ar_lc);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, AR_LC_REGNUM);
emit_move_insn (reg, alt_reg);
}
/* Restore the return pointer. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
if (current_frame_info.reg_save_b0 != 0)
alt_reg = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
else
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
}
reg = gen_rtx_REG (DImode, BR_REG (0));
emit_move_insn (reg, alt_reg);
}
/* We should now be at the base of the gr/br/fr spill area. */
gcc_assert (cfa_off == (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size));
/* The GP may be stored on the stack in the prologue, but it's
never restored in the epilogue. Skip the stack slot. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, GR_REG (1)))
cfa_off -= 8;
/* Restore all general registers. */
for (regno = GR_REG (2); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
reg = gen_rtx_REG (DImode, regno);
do_restore (gen_gr_restore, reg, cfa_off);
cfa_off -= 8;
}
/* Restore the branch registers. */
for (regno = BR_REG (1); regno <= BR_REG (7); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
alt_regno = next_scratch_gr_reg ();
alt_reg = gen_rtx_REG (DImode, alt_regno);
do_restore (gen_movdi_x, alt_reg, cfa_off);
cfa_off -= 8;
reg = gen_rtx_REG (DImode, regno);
emit_move_insn (reg, alt_reg);
}
/* Restore floating point registers. */
for (regno = FR_REG (2); regno <= FR_REG (127); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
{
gcc_assert (!(cfa_off & 15));
reg = gen_rtx_REG (XFmode, regno);
do_restore (gen_fr_restore_x, reg, cfa_off);
cfa_off -= 16;
}
/* Restore ar.unat for real. */
if (TEST_HARD_REG_BIT (current_frame_info.mask, AR_UNAT_REGNUM))
{
reg = gen_rtx_REG (DImode, AR_UNAT_REGNUM);
emit_move_insn (reg, ar_unat_save_reg);
}
gcc_assert (cfa_off == current_frame_info.spill_cfa_off);
finish_spill_pointers ();
if (current_frame_info.total_size || cfun->machine->ia64_eh_epilogue_sp)
{
/* ??? At this point we must generate a magic insn that appears to
modify the spill iterators, the stack pointer, and the frame
pointer. This would allow the most scheduling freedom. For now,
just hard stop. */
emit_insn (gen_blockage ());
}
if (cfun->machine->ia64_eh_epilogue_sp)
emit_move_insn (stack_pointer_rtx, cfun->machine->ia64_eh_epilogue_sp);
else if (frame_pointer_needed)
{
insn = emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
else if (current_frame_info.total_size)
{
rtx offset, frame_size_rtx;
frame_size_rtx = GEN_INT (current_frame_info.total_size);
if (CONST_OK_FOR_I (current_frame_info.total_size))
offset = frame_size_rtx;
else
{
regno = next_scratch_gr_reg ();
offset = gen_rtx_REG (DImode, regno);
emit_move_insn (offset, frame_size_rtx);
}
insn = emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
offset));
RTX_FRAME_RELATED_P (insn) = 1;
if (GET_CODE (offset) != CONST_INT)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (DImode,
stack_pointer_rtx,
frame_size_rtx)),
REG_NOTES (insn));
}
}
if (cfun->machine->ia64_eh_epilogue_bsp)
emit_insn (gen_set_bsp (cfun->machine->ia64_eh_epilogue_bsp));
if (! sibcall_p)
emit_jump_insn (gen_return_internal (gen_rtx_REG (DImode, BR_REG (0))));
else
{
int fp = GR_REG (2);
/* We need a throw away register here, r0 and r1 are reserved, so r2 is the
first available call clobbered register. If there was a frame_pointer
register, we may have swapped the names of r2 and HARD_FRAME_POINTER_REGNUM,
so we have to make sure we're using the string "r2" when emitting
the register name for the assembler. */
if (current_frame_info.reg_fp && current_frame_info.reg_fp == GR_REG (2))
fp = HARD_FRAME_POINTER_REGNUM;
/* We must emit an alloc to force the input registers to become output
registers. Otherwise, if the callee tries to pass its parameters
through to another call without an intervening alloc, then these
values get lost. */
/* ??? We don't need to preserve all input registers. We only need to
preserve those input registers used as arguments to the sibling call.
It is unclear how to compute that number here. */
if (current_frame_info.n_input_regs != 0)
{
rtx n_inputs = GEN_INT (current_frame_info.n_input_regs);
insn = emit_insn (gen_alloc (gen_rtx_REG (DImode, fp),
const0_rtx, const0_rtx,
n_inputs, const0_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
/* Return 1 if br.ret can do all the work required to return from a
function. */
int
ia64_direct_return (void)
{
if (reload_completed && ! frame_pointer_needed)
{
ia64_compute_frame_size (get_frame_size ());
return (current_frame_info.total_size == 0
&& current_frame_info.n_spilled == 0
&& current_frame_info.reg_save_b0 == 0
&& current_frame_info.reg_save_pr == 0
&& current_frame_info.reg_save_ar_pfs == 0
&& current_frame_info.reg_save_ar_unat == 0
&& current_frame_info.reg_save_ar_lc == 0);
}
return 0;
}
/* Return the magic cookie that we use to hold the return address
during early compilation. */
rtx
ia64_return_addr_rtx (HOST_WIDE_INT count, rtx frame ATTRIBUTE_UNUSED)
{
if (count != 0)
return NULL;
return gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_RET_ADDR);
}
/* Split this value after reload, now that we know where the return
address is saved. */
void
ia64_split_return_addr_rtx (rtx dest)
{
rtx src;
if (TEST_HARD_REG_BIT (current_frame_info.mask, BR_REG (0)))
{
if (current_frame_info.reg_save_b0 != 0)
src = gen_rtx_REG (DImode, current_frame_info.reg_save_b0);
else
{
HOST_WIDE_INT off;
unsigned int regno;
/* Compute offset from CFA for BR0. */
/* ??? Must be kept in sync with ia64_expand_prologue. */
off = (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size);
for (regno = GR_REG (1); regno <= GR_REG (31); ++regno)
if (TEST_HARD_REG_BIT (current_frame_info.mask, regno))
off -= 8;
/* Convert CFA offset to a register based offset. */
if (frame_pointer_needed)
src = hard_frame_pointer_rtx;
else
{
src = stack_pointer_rtx;
off += current_frame_info.total_size;
}
/* Load address into scratch register. */
if (CONST_OK_FOR_I (off))
emit_insn (gen_adddi3 (dest, src, GEN_INT (off)));
else
{
emit_move_insn (dest, GEN_INT (off));
emit_insn (gen_adddi3 (dest, src, dest));
}
src = gen_rtx_MEM (Pmode, dest);
}
}
else
src = gen_rtx_REG (DImode, BR_REG (0));
emit_move_insn (dest, src);
}
int
ia64_hard_regno_rename_ok (int from, int to)
{
/* Don't clobber any of the registers we reserved for the prologue. */
if (to == current_frame_info.reg_fp
|| to == current_frame_info.reg_save_b0
|| to == current_frame_info.reg_save_pr
|| to == current_frame_info.reg_save_ar_pfs
|| to == current_frame_info.reg_save_ar_unat
|| to == current_frame_info.reg_save_ar_lc)
return 0;
if (from == current_frame_info.reg_fp
|| from == current_frame_info.reg_save_b0
|| from == current_frame_info.reg_save_pr
|| from == current_frame_info.reg_save_ar_pfs
|| from == current_frame_info.reg_save_ar_unat
|| from == current_frame_info.reg_save_ar_lc)
return 0;
/* Don't use output registers outside the register frame. */
if (OUT_REGNO_P (to) && to >= OUT_REG (current_frame_info.n_output_regs))
return 0;
/* Retain even/oddness on predicate register pairs. */
if (PR_REGNO_P (from) && PR_REGNO_P (to))
return (from & 1) == (to & 1);
return 1;
}
/* Target hook for assembling integer objects. Handle word-sized
aligned objects and detect the cases when @fptr is needed. */
static bool
ia64_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
if (size == POINTER_SIZE / BITS_PER_UNIT
&& !(TARGET_NO_PIC || TARGET_AUTO_PIC)
&& GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_FUNCTION_P (x))
{
static const char * const directive[2][2] = {
/* 64-bit pointer */ /* 32-bit pointer */
{ "\tdata8.ua\t@fptr(", "\tdata4.ua\t@fptr("}, /* unaligned */
{ "\tdata8\t@fptr(", "\tdata4\t@fptr("} /* aligned */
};
fputs (directive[(aligned_p != 0)][POINTER_SIZE == 32], asm_out_file);
output_addr_const (asm_out_file, x);
fputs (")\n", asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Emit the function prologue. */
static void
ia64_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
int mask, grsave, grsave_prev;
if (current_frame_info.need_regstk)
fprintf (file, "\t.regstk %d, %d, %d, %d\n",
current_frame_info.n_input_regs,
current_frame_info.n_local_regs,
current_frame_info.n_output_regs,
current_frame_info.n_rotate_regs);
if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
return;
/* Emit the .prologue directive. */
mask = 0;
grsave = grsave_prev = 0;
if (current_frame_info.reg_save_b0 != 0)
{
mask |= 8;
grsave = grsave_prev = current_frame_info.reg_save_b0;
}
if (current_frame_info.reg_save_ar_pfs != 0
&& (grsave_prev == 0
|| current_frame_info.reg_save_ar_pfs == grsave_prev + 1))
{
mask |= 4;
if (grsave_prev == 0)
grsave = current_frame_info.reg_save_ar_pfs;
grsave_prev = current_frame_info.reg_save_ar_pfs;
}
if (current_frame_info.reg_fp != 0
&& (grsave_prev == 0
|| current_frame_info.reg_fp == grsave_prev + 1))
{
mask |= 2;
if (grsave_prev == 0)
grsave = HARD_FRAME_POINTER_REGNUM;
grsave_prev = current_frame_info.reg_fp;
}
if (current_frame_info.reg_save_pr != 0
&& (grsave_prev == 0
|| current_frame_info.reg_save_pr == grsave_prev + 1))
{
mask |= 1;
if (grsave_prev == 0)
grsave = current_frame_info.reg_save_pr;
}
if (mask && TARGET_GNU_AS)
fprintf (file, "\t.prologue %d, %d\n", mask,
ia64_dbx_register_number (grsave));
else
fputs ("\t.prologue\n", file);
/* Emit a .spill directive, if necessary, to relocate the base of
the register spill area. */
if (current_frame_info.spill_cfa_off != -16)
fprintf (file, "\t.spill %ld\n",
(long) (current_frame_info.spill_cfa_off
+ current_frame_info.spill_size));
}
/* Emit the .body directive at the scheduled end of the prologue. */
static void
ia64_output_function_end_prologue (FILE *file)
{
if (!flag_unwind_tables && (!flag_exceptions || USING_SJLJ_EXCEPTIONS))
return;
fputs ("\t.body\n", file);
}
/* Emit the function epilogue. */
static void
ia64_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
int i;
if (current_frame_info.reg_fp)
{
const char *tmp = reg_names[HARD_FRAME_POINTER_REGNUM];
reg_names[HARD_FRAME_POINTER_REGNUM]
= reg_names[current_frame_info.reg_fp];
reg_names[current_frame_info.reg_fp] = tmp;
}
if (! TARGET_REG_NAMES)
{
for (i = 0; i < current_frame_info.n_input_regs; i++)
reg_names[IN_REG (i)] = ia64_input_reg_names[i];
for (i = 0; i < current_frame_info.n_local_regs; i++)
reg_names[LOC_REG (i)] = ia64_local_reg_names[i];
for (i = 0; i < current_frame_info.n_output_regs; i++)
reg_names[OUT_REG (i)] = ia64_output_reg_names[i];
}
current_frame_info.initialized = 0;
}
int
ia64_dbx_register_number (int regno)
{
/* In ia64_expand_prologue we quite literally renamed the frame pointer
from its home at loc79 to something inside the register frame. We
must perform the same renumbering here for the debug info. */
if (current_frame_info.reg_fp)
{
if (regno == HARD_FRAME_POINTER_REGNUM)
regno = current_frame_info.reg_fp;
else if (regno == current_frame_info.reg_fp)
regno = HARD_FRAME_POINTER_REGNUM;
}
if (IN_REGNO_P (regno))
return 32 + regno - IN_REG (0);
else if (LOC_REGNO_P (regno))
return 32 + current_frame_info.n_input_regs + regno - LOC_REG (0);
else if (OUT_REGNO_P (regno))
return (32 + current_frame_info.n_input_regs
+ current_frame_info.n_local_regs + regno - OUT_REG (0));
else
return regno;
}
void
ia64_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
{
rtx addr_reg, eight = GEN_INT (8);
/* The Intel assembler requires that the global __ia64_trampoline symbol
be declared explicitly */
if (!TARGET_GNU_AS)
{
static bool declared_ia64_trampoline = false;
if (!declared_ia64_trampoline)
{
declared_ia64_trampoline = true;
(*targetm.asm_out.globalize_label) (asm_out_file,
"__ia64_trampoline");
}
}
/* Make sure addresses are Pmode even if we are in ILP32 mode. */
addr = convert_memory_address (Pmode, addr);
fnaddr = convert_memory_address (Pmode, fnaddr);
static_chain = convert_memory_address (Pmode, static_chain);
/* Load up our iterator. */
addr_reg = gen_reg_rtx (Pmode);
emit_move_insn (addr_reg, addr);
/* The first two words are the fake descriptor:
__ia64_trampoline, ADDR+16. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
gen_rtx_SYMBOL_REF (Pmode, "__ia64_trampoline"));
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg),
copy_to_reg (plus_constant (addr, 16)));
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
/* The third word is the target descriptor. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), fnaddr);
emit_insn (gen_adddi3 (addr_reg, addr_reg, eight));
/* The fourth word is the static chain. */
emit_move_insn (gen_rtx_MEM (Pmode, addr_reg), static_chain);
}
/* Do any needed setup for a variadic function. CUM has not been updated
for the last named argument which has type TYPE and mode MODE.
We generate the actual spill instructions during prologue generation. */
static void
ia64_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int * pretend_size,
int second_time ATTRIBUTE_UNUSED)
{
CUMULATIVE_ARGS next_cum = *cum;
/* Skip the current argument. */
ia64_function_arg_advance (&next_cum, mode, type, 1);
if (next_cum.words < MAX_ARGUMENT_SLOTS)
{
int n = MAX_ARGUMENT_SLOTS - next_cum.words;
*pretend_size = n * UNITS_PER_WORD;
cfun->machine->n_varargs = n;
}
}
/* Check whether TYPE is a homogeneous floating point aggregate. If
it is, return the mode of the floating point type that appears
in all leafs. If it is not, return VOIDmode.
An aggregate is a homogeneous floating point aggregate is if all
fields/elements in it have the same floating point type (e.g,
SFmode). 128-bit quad-precision floats are excluded.
Variable sized aggregates should never arrive here, since we should
have already decided to pass them by reference. Top-level zero-sized
aggregates are excluded because our parallels crash the middle-end. */
static enum machine_mode
hfa_element_mode (tree type, bool nested)
{
enum machine_mode element_mode = VOIDmode;
enum machine_mode mode;
enum tree_code code = TREE_CODE (type);
int know_element_mode = 0;
tree t;
if (!nested && (!TYPE_SIZE (type) || integer_zerop (TYPE_SIZE (type))))
return VOIDmode;
switch (code)
{
case VOID_TYPE: case INTEGER_TYPE: case ENUMERAL_TYPE:
case BOOLEAN_TYPE: case POINTER_TYPE:
case OFFSET_TYPE: case REFERENCE_TYPE: case METHOD_TYPE:
case LANG_TYPE: case FUNCTION_TYPE:
return VOIDmode;
/* Fortran complex types are supposed to be HFAs, so we need to handle
gcc's COMPLEX_TYPEs as HFAs. We need to exclude the integral complex
types though. */
case COMPLEX_TYPE:
if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_COMPLEX_FLOAT
&& TYPE_MODE (type) != TCmode)
return GET_MODE_INNER (TYPE_MODE (type));
else
return VOIDmode;
case REAL_TYPE:
/* We want to return VOIDmode for raw REAL_TYPEs, but the actual
mode if this is contained within an aggregate. */
if (nested && TYPE_MODE (type) != TFmode)
return TYPE_MODE (type);
else
return VOIDmode;
case ARRAY_TYPE:
return hfa_element_mode (TREE_TYPE (type), 1);
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
{
if (TREE_CODE (t) != FIELD_DECL)
continue;
mode = hfa_element_mode (TREE_TYPE (t), 1);
if (know_element_mode)
{
if (mode != element_mode)
return VOIDmode;
}
else if (GET_MODE_CLASS (mode) != MODE_FLOAT)
return VOIDmode;
else
{
know_element_mode = 1;
element_mode = mode;
}
}
return element_mode;
default:
/* If we reach here, we probably have some front-end specific type
that the backend doesn't know about. This can happen via the
aggregate_value_p call in init_function_start. All we can do is
ignore unknown tree types. */
return VOIDmode;
}
return VOIDmode;
}
/* Return the number of words required to hold a quantity of TYPE and MODE
when passed as an argument. */
static int
ia64_function_arg_words (tree type, enum machine_mode mode)
{
int words;
if (mode == BLKmode)
words = int_size_in_bytes (type);
else
words = GET_MODE_SIZE (mode);
return (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* round up */
}
/* Return the number of registers that should be skipped so the current
argument (described by TYPE and WORDS) will be properly aligned.
Integer and float arguments larger than 8 bytes start at the next
even boundary. Aggregates larger than 8 bytes start at the next
even boundary if the aggregate has 16 byte alignment. Note that
in the 32-bit ABI, TImode and TFmode have only 8-byte alignment
but are still to be aligned in registers.
??? The ABI does not specify how to handle aggregates with
alignment from 9 to 15 bytes, or greater than 16. We handle them
all as if they had 16 byte alignment. Such aggregates can occur
only if gcc extensions are used. */
static int
ia64_function_arg_offset (CUMULATIVE_ARGS *cum, tree type, int words)
{
if ((cum->words & 1) == 0)
return 0;
if (type
&& TREE_CODE (type) != INTEGER_TYPE
&& TREE_CODE (type) != REAL_TYPE)
return TYPE_ALIGN (type) > 8 * BITS_PER_UNIT;
else
return words > 1;
}
/* Return rtx for register where argument is passed, or zero if it is passed
on the stack. */
/* ??? 128-bit quad-precision floats are always passed in general
registers. */
rtx
ia64_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int named, int incoming)
{
int basereg = (incoming ? GR_ARG_FIRST : AR_ARG_FIRST);
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
enum machine_mode hfa_mode = VOIDmode;
/* If all argument slots are used, then it must go on the stack. */
if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
return 0;
/* Check for and handle homogeneous FP aggregates. */
if (type)
hfa_mode = hfa_element_mode (type, 0);
/* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
and unprototyped hfas are passed specially. */
if (hfa_mode != VOIDmode && (! cum->prototype || named))
{
rtx loc[16];
int i = 0;
int fp_regs = cum->fp_regs;
int int_regs = cum->words + offset;
int hfa_size = GET_MODE_SIZE (hfa_mode);
int byte_size;
int args_byte_size;
/* If prototyped, pass it in FR regs then GR regs.
If not prototyped, pass it in both FR and GR regs.
If this is an SFmode aggregate, then it is possible to run out of
FR regs while GR regs are still left. In that case, we pass the
remaining part in the GR regs. */
/* Fill the FP regs. We do this always. We stop if we reach the end
of the argument, the last FP register, or the last argument slot. */
byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
args_byte_size = int_regs * UNITS_PER_WORD;
offset = 0;
for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
&& args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD)); i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (hfa_mode, (FR_ARG_FIRST
+ fp_regs)),
GEN_INT (offset));
offset += hfa_size;
args_byte_size += hfa_size;
fp_regs++;
}
/* If no prototype, then the whole thing must go in GR regs. */
if (! cum->prototype)
offset = 0;
/* If this is an SFmode aggregate, then we might have some left over
that needs to go in GR regs. */
else if (byte_size != offset)
int_regs += offset / UNITS_PER_WORD;
/* Fill in the GR regs. We must use DImode here, not the hfa mode. */
for (; offset < byte_size && int_regs < MAX_ARGUMENT_SLOTS; i++)
{
enum machine_mode gr_mode = DImode;
unsigned int gr_size;
/* If we have an odd 4 byte hunk because we ran out of FR regs,
then this goes in a GR reg left adjusted/little endian, right
adjusted/big endian. */
/* ??? Currently this is handled wrong, because 4-byte hunks are
always right adjusted/little endian. */
if (offset & 0x4)
gr_mode = SImode;
/* If we have an even 4 byte hunk because the aggregate is a
multiple of 4 bytes in size, then this goes in a GR reg right
adjusted/little endian. */
else if (byte_size - offset == 4)
gr_mode = SImode;
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (gr_mode, (basereg
+ int_regs)),
GEN_INT (offset));
gr_size = GET_MODE_SIZE (gr_mode);
offset += gr_size;
if (gr_size == UNITS_PER_WORD
|| (gr_size < UNITS_PER_WORD && offset % UNITS_PER_WORD == 0))
int_regs++;
else if (gr_size > UNITS_PER_WORD)
int_regs += gr_size / UNITS_PER_WORD;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
/* Integral and aggregates go in general registers. If we have run out of
FR registers, then FP values must also go in general registers. This can
happen when we have a SFmode HFA. */
else if (mode == TFmode || mode == TCmode
|| (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
{
int byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
if (BYTES_BIG_ENDIAN
&& (mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
&& byte_size < UNITS_PER_WORD
&& byte_size > 0)
{
rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode,
(basereg + cum->words
+ offset)),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
}
else
return gen_rtx_REG (mode, basereg + cum->words + offset);
}
/* If there is a prototype, then FP values go in a FR register when
named, and in a GR register when unnamed. */
else if (cum->prototype)
{
if (named)
return gen_rtx_REG (mode, FR_ARG_FIRST + cum->fp_regs);
/* In big-endian mode, an anonymous SFmode value must be represented
as (parallel:SF [(expr_list (reg:DI n) (const_int 0))]) to force
the value into the high half of the general register. */
else if (BYTES_BIG_ENDIAN && mode == SFmode)
return gen_rtx_PARALLEL (mode,
gen_rtvec (1,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, basereg + cum->words + offset),
const0_rtx)));
else
return gen_rtx_REG (mode, basereg + cum->words + offset);
}
/* If there is no prototype, then FP values go in both FR and GR
registers. */
else
{
/* See comment above. */
enum machine_mode inner_mode =
(BYTES_BIG_ENDIAN && mode == SFmode) ? DImode : mode;
rtx fp_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, (FR_ARG_FIRST
+ cum->fp_regs)),
const0_rtx);
rtx gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (inner_mode,
(basereg + cum->words
+ offset)),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, fp_reg, gr_reg));
}
}
/* Return number of bytes, at the beginning of the argument, that must be
put in registers. 0 is the argument is entirely in registers or entirely
in memory. */
static int
ia64_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
/* If all argument slots are used, then it must go on the stack. */
if (cum->words + offset >= MAX_ARGUMENT_SLOTS)
return 0;
/* It doesn't matter whether the argument goes in FR or GR regs. If
it fits within the 8 argument slots, then it goes entirely in
registers. If it extends past the last argument slot, then the rest
goes on the stack. */
if (words + cum->words + offset <= MAX_ARGUMENT_SLOTS)
return 0;
return (MAX_ARGUMENT_SLOTS - cum->words - offset) * UNITS_PER_WORD;
}
/* Update CUM to point after this argument. This is patterned after
ia64_function_arg. */
void
ia64_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named)
{
int words = ia64_function_arg_words (type, mode);
int offset = ia64_function_arg_offset (cum, type, words);
enum machine_mode hfa_mode = VOIDmode;
/* If all arg slots are already full, then there is nothing to do. */
if (cum->words >= MAX_ARGUMENT_SLOTS)
return;
cum->words += words + offset;
/* Check for and handle homogeneous FP aggregates. */
if (type)
hfa_mode = hfa_element_mode (type, 0);
/* Unnamed prototyped hfas are passed as usual. Named prototyped hfas
and unprototyped hfas are passed specially. */
if (hfa_mode != VOIDmode && (! cum->prototype || named))
{
int fp_regs = cum->fp_regs;
/* This is the original value of cum->words + offset. */
int int_regs = cum->words - words;
int hfa_size = GET_MODE_SIZE (hfa_mode);
int byte_size;
int args_byte_size;
/* If prototyped, pass it in FR regs then GR regs.
If not prototyped, pass it in both FR and GR regs.
If this is an SFmode aggregate, then it is possible to run out of
FR regs while GR regs are still left. In that case, we pass the
remaining part in the GR regs. */
/* Fill the FP regs. We do this always. We stop if we reach the end
of the argument, the last FP register, or the last argument slot. */
byte_size = ((mode == BLKmode)
? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
args_byte_size = int_regs * UNITS_PER_WORD;
offset = 0;
for (; (offset < byte_size && fp_regs < MAX_ARGUMENT_SLOTS
&& args_byte_size < (MAX_ARGUMENT_SLOTS * UNITS_PER_WORD));)
{
offset += hfa_size;
args_byte_size += hfa_size;
fp_regs++;
}
cum->fp_regs = fp_regs;
}
/* Integral and aggregates go in general registers. So do TFmode FP values.
If we have run out of FR registers, then other FP values must also go in
general registers. This can happen when we have a SFmode HFA. */
else if (mode == TFmode || mode == TCmode
|| (! FLOAT_MODE_P (mode) || cum->fp_regs == MAX_ARGUMENT_SLOTS))
cum->int_regs = cum->words;
/* If there is a prototype, then FP values go in a FR register when
named, and in a GR register when unnamed. */
else if (cum->prototype)
{
if (! named)
cum->int_regs = cum->words;
else
/* ??? Complex types should not reach here. */
cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
}
/* If there is no prototype, then FP values go in both FR and GR
registers. */
else
{
/* ??? Complex types should not reach here. */
cum->fp_regs += (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT ? 2 : 1);
cum->int_regs = cum->words;
}
}
/* Arguments with alignment larger than 8 bytes start at the next even
boundary. On ILP32 HPUX, TFmode arguments start on next even boundary
even though their normal alignment is 8 bytes. See ia64_function_arg. */
int
ia64_function_arg_boundary (enum machine_mode mode, tree type)
{
if (mode == TFmode && TARGET_HPUX && TARGET_ILP32)
return PARM_BOUNDARY * 2;
if (type)
{
if (TYPE_ALIGN (type) > PARM_BOUNDARY)
return PARM_BOUNDARY * 2;
else
return PARM_BOUNDARY;
}
if (GET_MODE_BITSIZE (mode) > PARM_BOUNDARY)
return PARM_BOUNDARY * 2;
else
return PARM_BOUNDARY;
}
/* True if it is OK to do sibling call optimization for the specified
call expression EXP. DECL will be the called function, or NULL if
this is an indirect call. */
static bool
ia64_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
/* We can't perform a sibcall if the current function has the syscall_linkage
attribute. */
if (lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return false;
/* We must always return with our current GP. This means we can
only sibcall to functions defined in the current module. */
return decl && (*targetm.binds_local_p) (decl);
}
/* Implement va_arg. */
static tree
ia64_gimplify_va_arg (tree valist, tree type, tree *pre_p, tree *post_p)
{
/* Variable sized types are passed by reference. */
if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
{
tree ptrtype = build_pointer_type (type);
tree addr = std_gimplify_va_arg_expr (valist, ptrtype, pre_p, post_p);
return build_va_arg_indirect_ref (addr);
}
/* Aggregate arguments with alignment larger than 8 bytes start at
the next even boundary. Integer and floating point arguments
do so if they are larger than 8 bytes, whether or not they are
also aligned larger than 8 bytes. */
if ((TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == INTEGER_TYPE)
? int_size_in_bytes (type) > 8 : TYPE_ALIGN (type) > 8 * BITS_PER_UNIT)
{
tree t = build2 (PLUS_EXPR, TREE_TYPE (valist), valist,
build_int_cst (NULL_TREE, 2 * UNITS_PER_WORD - 1));
t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
build_int_cst (NULL_TREE, -2 * UNITS_PER_WORD));
t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
gimplify_and_add (t, pre_p);
}
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
}
/* Return 1 if function return value returned in memory. Return 0 if it is
in a register. */
static bool
ia64_return_in_memory (tree valtype, tree fntype ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
enum machine_mode hfa_mode;
HOST_WIDE_INT byte_size;
mode = TYPE_MODE (valtype);
byte_size = GET_MODE_SIZE (mode);
if (mode == BLKmode)
{
byte_size = int_size_in_bytes (valtype);
if (byte_size < 0)
return true;
}
/* Hfa's with up to 8 elements are returned in the FP argument registers. */
hfa_mode = hfa_element_mode (valtype, 0);
if (hfa_mode != VOIDmode)
{
int hfa_size = GET_MODE_SIZE (hfa_mode);
if (byte_size / hfa_size > MAX_ARGUMENT_SLOTS)
return true;
else
return false;
}
else if (byte_size > UNITS_PER_WORD * MAX_INT_RETURN_SLOTS)
return true;
else
return false;
}
/* Return rtx for register that holds the function return value. */
rtx
ia64_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
enum machine_mode hfa_mode;
mode = TYPE_MODE (valtype);
hfa_mode = hfa_element_mode (valtype, 0);
if (hfa_mode != VOIDmode)
{
rtx loc[8];
int i;
int hfa_size;
int byte_size;
int offset;
hfa_size = GET_MODE_SIZE (hfa_mode);
byte_size = ((mode == BLKmode)
? int_size_in_bytes (valtype) : GET_MODE_SIZE (mode));
offset = 0;
for (i = 0; offset < byte_size; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (hfa_mode, FR_ARG_FIRST + i),
GEN_INT (offset));
offset += hfa_size;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
else if (FLOAT_TYPE_P (valtype) && mode != TFmode && mode != TCmode)
return gen_rtx_REG (mode, FR_ARG_FIRST);
else
{
bool need_parallel = false;
/* In big-endian mode, we need to manage the layout of aggregates
in the registers so that we get the bits properly aligned in
the highpart of the registers. */
if (BYTES_BIG_ENDIAN
&& (mode == BLKmode || (valtype && AGGREGATE_TYPE_P (valtype))))
need_parallel = true;
/* Something like struct S { long double x; char a[0] } is not an
HFA structure, and therefore doesn't go in fp registers. But
the middle-end will give it XFmode anyway, and XFmode values
don't normally fit in integer registers. So we need to smuggle
the value inside a parallel. */
else if (mode == XFmode || mode == XCmode || mode == RFmode)
need_parallel = true;
if (need_parallel)
{
rtx loc[8];
int offset;
int bytesize;
int i;
offset = 0;
bytesize = int_size_in_bytes (valtype);
/* An empty PARALLEL is invalid here, but the return value
doesn't matter for empty structs. */
if (bytesize == 0)
return gen_rtx_REG (mode, GR_RET_FIRST);
for (i = 0; offset < bytesize; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode,
GR_RET_FIRST + i),
GEN_INT (offset));
offset += UNITS_PER_WORD;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (i, loc));
}
return gen_rtx_REG (mode, GR_RET_FIRST);
}
}
/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
static void
ia64_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
gcc_assert (size == 4 || size == 8);
if (size == 4)
fputs ("\tdata4.ua\t@dtprel(", file);
else
fputs ("\tdata8.ua\t@dtprel(", file);
output_addr_const (file, x);
fputs (")", file);
}
/* Print a memory address as an operand to reference that memory location. */
/* ??? Do we need this? It gets used only for 'a' operands. We could perhaps
also call this from ia64_print_operand for memory addresses. */
void
ia64_print_operand_address (FILE * stream ATTRIBUTE_UNUSED,
rtx address ATTRIBUTE_UNUSED)
{
}
/* Print an operand to an assembler instruction.
C Swap and print a comparison operator.
D Print an FP comparison operator.
E Print 32 - constant, for SImode shifts as extract.
e Print 64 - constant, for DImode rotates.
F A floating point constant 0.0 emitted as f0, or 1.0 emitted as f1, or
a floating point register emitted normally.
I Invert a predicate register by adding 1.
J Select the proper predicate register for a condition.
j Select the inverse predicate register for a condition.
O Append .acq for volatile load.
P Postincrement of a MEM.
Q Append .rel for volatile store.
S Shift amount for shladd instruction.
T Print an 8-bit sign extended number (K) as a 32-bit unsigned number
for Intel assembler.
U Print an 8-bit sign extended number (K) as a 64-bit unsigned number
for Intel assembler.
X A pair of floating point registers.
r Print register name, or constant 0 as r0. HP compatibility for
Linux kernel.
v Print vector constant value as an 8-byte integer value. */
void
ia64_print_operand (FILE * file, rtx x, int code)
{
const char *str;
switch (code)
{
case 0:
/* Handled below. */
break;
case 'C':
{
enum rtx_code c = swap_condition (GET_CODE (x));
fputs (GET_RTX_NAME (c), file);
return;
}
case 'D':
switch (GET_CODE (x))
{
case NE:
str = "neq";
break;
case UNORDERED:
str = "unord";
break;
case ORDERED:
str = "ord";
break;
default:
str = GET_RTX_NAME (GET_CODE (x));
break;
}
fputs (str, file);
return;
case 'E':
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - INTVAL (x));
return;
case 'e':
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - INTVAL (x));
return;
case 'F':
if (x == CONST0_RTX (GET_MODE (x)))
str = reg_names [FR_REG (0)];
else if (x == CONST1_RTX (GET_MODE (x)))
str = reg_names [FR_REG (1)];
else
{
gcc_assert (GET_CODE (x) == REG);
str = reg_names [REGNO (x)];
}
fputs (str, file);
return;
case 'I':
fputs (reg_names [REGNO (x) + 1], file);
return;
case 'J':
case 'j':
{
unsigned int regno = REGNO (XEXP (x, 0));
if (GET_CODE (x) == EQ)
regno += 1;
if (code == 'j')
regno ^= 1;
fputs (reg_names [regno], file);
}
return;
case 'O':
if (MEM_VOLATILE_P (x))
fputs(".acq", file);
return;
case 'P':
{
HOST_WIDE_INT value;
switch (GET_CODE (XEXP (x, 0)))
{
default:
return;
case POST_MODIFY:
x = XEXP (XEXP (XEXP (x, 0), 1), 1);
if (GET_CODE (x) == CONST_INT)
value = INTVAL (x);
else
{
gcc_assert (GET_CODE (x) == REG);
fprintf (file, ", %s", reg_names[REGNO (x)]);
return;
}
break;
case POST_INC:
value = GET_MODE_SIZE (GET_MODE (x));
break;
case POST_DEC:
value = - (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (x));
break;
}
fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC, value);
return;
}
case 'Q':
if (MEM_VOLATILE_P (x))
fputs(".rel", file);
return;
case 'S':
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
case 'T':
if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
{
fprintf (file, "0x%x", (int) INTVAL (x) & 0xffffffff);
return;
}
break;
case 'U':
if (! TARGET_GNU_AS && GET_CODE (x) == CONST_INT)
{
const char *prefix = "0x";
if (INTVAL (x) & 0x80000000)
{
fprintf (file, "0xffffffff");
prefix = "";
}
fprintf (file, "%s%x", prefix, (int) INTVAL (x) & 0xffffffff);
return;
}
break;
case 'X':
{
unsigned int regno = REGNO (x);
fprintf (file, "%s, %s", reg_names [regno], reg_names [regno + 1]);
}
return;
case 'r':
/* If this operand is the constant zero, write it as register zero.
Any register, zero, or CONST_INT value is OK here. */
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (x == CONST0_RTX (GET_MODE (x)))
fputs ("r0", file);
else if (GET_CODE (x) == CONST_INT)
output_addr_const (file, x);
else
output_operand_lossage ("invalid %%r value");
return;
case 'v':
gcc_assert (GET_CODE (x) == CONST_VECTOR);
x = simplify_subreg (DImode, x, GET_MODE (x), 0);
break;
case '+':
{
const char *which;
/* For conditional branches, returns or calls, substitute
sptk, dptk, dpnt, or spnt for %s. */
x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = INTVAL (XEXP (x, 0));
/* Guess top and bottom 10% statically predicted. */
if (pred_val < REG_BR_PROB_BASE / 50
&& br_prob_note_reliable_p (x))
which = ".spnt";
else if (pred_val < REG_BR_PROB_BASE / 2)
which = ".dpnt";
else if (pred_val < REG_BR_PROB_BASE / 100 * 98
|| !br_prob_note_reliable_p (x))
which = ".dptk";
else
which = ".sptk";
}
else if (GET_CODE (current_output_insn) == CALL_INSN)
which = ".sptk";
else
which = ".dptk";
fputs (which, file);
return;
}
case ',':
x = current_insn_predicate;
if (x)
{
unsigned int regno = REGNO (XEXP (x, 0));
if (GET_CODE (x) == EQ)
regno += 1;
fprintf (file, "(%s) ", reg_names [regno]);
}
return;
default:
output_operand_lossage ("ia64_print_operand: unknown code");
return;
}
switch (GET_CODE (x))
{
/* This happens for the spill/restore instructions. */
case POST_INC:
case POST_DEC:
case POST_MODIFY:
x = XEXP (x, 0);
/* ... fall through ... */
case REG:
fputs (reg_names [REGNO (x)], file);
break;
case MEM:
{
rtx addr = XEXP (x, 0);
if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
addr = XEXP (addr, 0);
fprintf (file, "[%s]", reg_names [REGNO (addr)]);
break;
}
default:
output_addr_const (file, x);
break;
}
return;
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
/* ??? This is incomplete. */
static bool
ia64_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
switch (outer_code)
{
case SET:
*total = CONST_OK_FOR_J (INTVAL (x)) ? 0 : COSTS_N_INSNS (1);
return true;
case PLUS:
if (CONST_OK_FOR_I (INTVAL (x)))
*total = 0;
else if (CONST_OK_FOR_J (INTVAL (x)))
*total = 1;
else
*total = COSTS_N_INSNS (1);
return true;
default:
if (CONST_OK_FOR_K (INTVAL (x)) || CONST_OK_FOR_L (INTVAL (x)))
*total = 0;
else
*total = COSTS_N_INSNS (1);
return true;
}
case CONST_DOUBLE:
*total = COSTS_N_INSNS (1);
return true;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
*total = COSTS_N_INSNS (3);
return true;
case MULT:
/* For multiplies wider than HImode, we have to go to the FPU,
which normally involves copies. Plus there's the latency
of the multiply itself, and the latency of the instructions to
transfer integer regs to FP regs. */
/* ??? Check for FP mode. */
if (GET_MODE_SIZE (GET_MODE (x)) > 2)
*total = COSTS_N_INSNS (10);
else
*total = COSTS_N_INSNS (2);
return true;
case PLUS:
case MINUS:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
*total = COSTS_N_INSNS (1);
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
/* We make divide expensive, so that divide-by-constant will be
optimized to a multiply. */
*total = COSTS_N_INSNS (60);
return true;
default:
return false;
}
}
/* Calculate the cost of moving data from a register in class FROM to
one in class TO, using MODE. */
int
ia64_register_move_cost (enum machine_mode mode, enum reg_class from,
enum reg_class to)
{
/* ADDL_REGS is the same as GR_REGS for movement purposes. */
if (to == ADDL_REGS)
to = GR_REGS;
if (from == ADDL_REGS)
from = GR_REGS;
/* All costs are symmetric, so reduce cases by putting the
lower number class as the destination. */
if (from < to)
{
enum reg_class tmp = to;
to = from, from = tmp;
}
/* Moving from FR<->GR in XFmode must be more expensive than 2,
so that we get secondary memory reloads. Between FR_REGS,
we have to make this at least as expensive as MEMORY_MOVE_COST
to avoid spectacularly poor register class preferencing. */
if (mode == XFmode || mode == RFmode)
{
if (to != GR_REGS || from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
else
return 3;
}
switch (to)
{
case PR_REGS:
/* Moving between PR registers takes two insns. */
if (from == PR_REGS)
return 3;
/* Moving between PR and anything but GR is impossible. */
if (from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case BR_REGS:
/* Moving between BR and anything but GR is impossible. */
if (from != GR_REGS && from != GR_AND_BR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case AR_I_REGS:
case AR_M_REGS:
/* Moving between AR and anything but GR is impossible. */
if (from != GR_REGS)
return MEMORY_MOVE_COST (mode, to, 0);
break;
case GR_REGS:
case FR_REGS:
case FP_REGS:
case GR_AND_FR_REGS:
case GR_AND_BR_REGS:
case ALL_REGS:
break;
default:
gcc_unreachable ();
}
return 2;
}
/* Implement PREFERRED_RELOAD_CLASS. Place additional restrictions on CLASS
to use when copying X into that class. */
enum reg_class
ia64_preferred_reload_class (rtx x, enum reg_class class)
{
switch (class)
{
case FR_REGS:
case FP_REGS:
/* Don't allow volatile mem reloads into floating point registers.
This is defined to force reload to choose the r/m case instead
of the f/f case when reloading (set (reg fX) (mem/v)). */
if (MEM_P (x) && MEM_VOLATILE_P (x))
return NO_REGS;
/* Force all unrecognized constants into the constant pool. */
if (CONSTANT_P (x))
return NO_REGS;
break;
case AR_M_REGS:
case AR_I_REGS:
if (!OBJECT_P (x))
return NO_REGS;
break;
default:
break;
}
return class;
}
/* This function returns the register class required for a secondary
register when copying between one of the registers in CLASS, and X,
using MODE. A return value of NO_REGS means that no secondary register
is required. */
enum reg_class
ia64_secondary_reload_class (enum reg_class class,
enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
int regno = -1;
if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
regno = true_regnum (x);
switch (class)
{
case BR_REGS:
case AR_M_REGS:
case AR_I_REGS:
/* ??? BR<->BR register copies can happen due to a bad gcse/cse/global
interaction. We end up with two pseudos with overlapping lifetimes
both of which are equiv to the same constant, and both which need
to be in BR_REGS. This seems to be a cse bug. cse_basic_block_end
changes depending on the path length, which means the qty_first_reg
check in make_regs_eqv can give different answers at different times.
At some point I'll probably need a reload_indi pattern to handle
this.
We can also get GR_AND_FR_REGS to BR_REGS/AR_REGS copies, where we
wound up with a FP register from GR_AND_FR_REGS. Extend that to all
non-general registers for good measure. */
if (regno >= 0 && ! GENERAL_REGNO_P (regno))
return GR_REGS;
/* This is needed if a pseudo used as a call_operand gets spilled to a
stack slot. */
if (GET_CODE (x) == MEM)
return GR_REGS;
break;
case FR_REGS:
case FP_REGS:
/* Need to go through general registers to get to other class regs. */
if (regno >= 0 && ! (FR_REGNO_P (regno) || GENERAL_REGNO_P (regno)))
return GR_REGS;
/* This can happen when a paradoxical subreg is an operand to the
muldi3 pattern. */
/* ??? This shouldn't be necessary after instruction scheduling is
enabled, because paradoxical subregs are not accepted by
register_operand when INSN_SCHEDULING is defined. Or alternatively,
stop the paradoxical subreg stupidity in the *_operand functions
in recog.c. */
if (GET_CODE (x) == MEM
&& (GET_MODE (x) == SImode || GET_MODE (x) == HImode
|| GET_MODE (x) == QImode))
return GR_REGS;
/* This can happen because of the ior/and/etc patterns that accept FP
registers as operands. If the third operand is a constant, then it
needs to be reloaded into a FP register. */
if (GET_CODE (x) == CONST_INT)
return GR_REGS;
/* This can happen because of register elimination in a muldi3 insn.
E.g. `26107 * (unsigned long)&u'. */
if (GET_CODE (x) == PLUS)
return GR_REGS;
break;
case PR_REGS:
/* ??? This happens if we cse/gcse a BImode value across a call,
and the function has a nonlocal goto. This is because global
does not allocate call crossing pseudos to hard registers when
current_function_has_nonlocal_goto is true. This is relatively
common for C++ programs that use exceptions. To reproduce,
return NO_REGS and compile libstdc++. */
if (GET_CODE (x) == MEM)
return GR_REGS;
/* This can happen when we take a BImode subreg of a DImode value,
and that DImode value winds up in some non-GR register. */
if (regno >= 0 && ! GENERAL_REGNO_P (regno) && ! PR_REGNO_P (regno))
return GR_REGS;
break;
default:
break;
}
return NO_REGS;
}
/* Emit text to declare externally defined variables and functions, because
the Intel assembler does not support undefined externals. */
void
ia64_asm_output_external (FILE *file, tree decl, const char *name)
{
int save_referenced;
/* GNU as does not need anything here, but the HP linker does need
something for external functions. */
if (TARGET_GNU_AS
&& (!TARGET_HPUX_LD
|| TREE_CODE (decl) != FUNCTION_DECL
|| strstr (name, "__builtin_") == name))
return;
/* ??? The Intel assembler creates a reference that needs to be satisfied by
the linker when we do this, so we need to be careful not to do this for
builtin functions which have no library equivalent. Unfortunately, we
can't tell here whether or not a function will actually be called by
expand_expr, so we pull in library functions even if we may not need
them later. */
if (! strcmp (name, "__builtin_next_arg")
|| ! strcmp (name, "alloca")
|| ! strcmp (name, "__builtin_constant_p")
|| ! strcmp (name, "__builtin_args_info"))
return;
if (TARGET_HPUX_LD)
ia64_hpux_add_extern_decl (decl);
else
{
/* assemble_name will set TREE_SYMBOL_REFERENCED, so we must save and
restore it. */
save_referenced = TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl));
if (TREE_CODE (decl) == FUNCTION_DECL)
ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
(*targetm.asm_out.globalize_label) (file, name);
TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) = save_referenced;
}
}
/* Parse the -mfixed-range= option string. */
static void
fix_range (const char *const_str)
{
int i, first, last;
char *str, *dash, *comma;
/* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
REG2 are either register names or register numbers. The effect
of this option is to mark the registers in the range from REG1 to
REG2 as ``fixed'' so they won't be used by the compiler. This is
used, e.g., to ensure that kernel mode code doesn't use f32-f127. */
i = strlen (const_str);
str = (char *) alloca (i + 1);
memcpy (str, const_str, i + 1);
while (1)
{
dash = strchr (str, '-');
if (!dash)
{
warning (0, "value of -mfixed-range must have form REG1-REG2");
return;
}
*dash = '\0';
comma = strchr (dash + 1, ',');
if (comma)
*comma = '\0';
first = decode_reg_name (str);
if (first < 0)
{
warning (0, "unknown register name: %s", str);
return;
}
last = decode_reg_name (dash + 1);
if (last < 0)
{
warning (0, "unknown register name: %s", dash + 1);
return;
}
*dash = '-';
if (first > last)
{
warning (0, "%s-%s is an empty range", str, dash + 1);
return;
}
for (i = first; i <= last; ++i)
fixed_regs[i] = call_used_regs[i] = 1;
if (!comma)
break;
*comma = ',';
str = comma + 1;
}
}
/* Implement TARGET_HANDLE_OPTION. */
static bool
ia64_handle_option (size_t code, const char *arg, int value)
{
switch (code)
{
case OPT_mfixed_range_:
fix_range (arg);
return true;
case OPT_mtls_size_:
if (value != 14 && value != 22 && value != 64)
error ("bad value %<%s%> for -mtls-size= switch", arg);
return true;
case OPT_mtune_:
{
static struct pta
{
const char *name; /* processor name or nickname. */
enum processor_type processor;
}
const processor_alias_table[] =
{
{"itanium", PROCESSOR_ITANIUM},
{"itanium1", PROCESSOR_ITANIUM},
{"merced", PROCESSOR_ITANIUM},
{"itanium2", PROCESSOR_ITANIUM2},
{"mckinley", PROCESSOR_ITANIUM2},
};
int const pta_size = ARRAY_SIZE (processor_alias_table);
int i;
for (i = 0; i < pta_size; i++)
if (!strcmp (arg, processor_alias_table[i].name))
{
ia64_tune = processor_alias_table[i].processor;
break;
}
if (i == pta_size)
error ("bad value %<%s%> for -mtune= switch", arg);
return true;
}
default:
return true;
}
}
/* Implement OVERRIDE_OPTIONS. */
void
ia64_override_options (void)
{
if (TARGET_AUTO_PIC)
target_flags |= MASK_CONST_GP;
if (TARGET_INLINE_SQRT == INL_MIN_LAT)
{
warning (0, "not yet implemented: latency-optimized inline square root");
TARGET_INLINE_SQRT = INL_MAX_THR;
}
ia64_flag_schedule_insns2 = flag_schedule_insns_after_reload;
flag_schedule_insns_after_reload = 0;
ia64_section_threshold = g_switch_set ? g_switch_value : IA64_DEFAULT_GVALUE;
init_machine_status = ia64_init_machine_status;
}
static struct machine_function *
ia64_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (struct machine_function));
}
static enum attr_itanium_class ia64_safe_itanium_class (rtx);
static enum attr_type ia64_safe_type (rtx);
static enum attr_itanium_class
ia64_safe_itanium_class (rtx insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_itanium_class (insn);
else
return ITANIUM_CLASS_UNKNOWN;
}
static enum attr_type
ia64_safe_type (rtx insn)
{
if (recog_memoized (insn) >= 0)
return get_attr_type (insn);
else
return TYPE_UNKNOWN;
}
/* The following collection of routines emit instruction group stop bits as
necessary to avoid dependencies. */
/* Need to track some additional registers as far as serialization is
concerned so we can properly handle br.call and br.ret. We could
make these registers visible to gcc, but since these registers are
never explicitly used in gcc generated code, it seems wasteful to
do so (plus it would make the call and return patterns needlessly
complex). */
#define REG_RP (BR_REG (0))
#define REG_AR_CFM (FIRST_PSEUDO_REGISTER + 1)
/* This is used for volatile asms which may require a stop bit immediately
before and after them. */
#define REG_VOLATILE (FIRST_PSEUDO_REGISTER + 2)
#define AR_UNAT_BIT_0 (FIRST_PSEUDO_REGISTER + 3)
#define NUM_REGS (AR_UNAT_BIT_0 + 64)
/* For each register, we keep track of how it has been written in the
current instruction group.
If a register is written unconditionally (no qualifying predicate),
WRITE_COUNT is set to 2 and FIRST_PRED is ignored.
If a register is written if its qualifying predicate P is true, we
set WRITE_COUNT to 1 and FIRST_PRED to P. Later on, the same register
may be written again by the complement of P (P^1) and when this happens,
WRITE_COUNT gets set to 2.
The result of this is that whenever an insn attempts to write a register
whose WRITE_COUNT is two, we need to issue an insn group barrier first.
If a predicate register is written by a floating-point insn, we set
WRITTEN_BY_FP to true.
If a predicate register is written by an AND.ORCM we set WRITTEN_BY_AND
to true; if it was written by an OR.ANDCM we set WRITTEN_BY_OR to true. */
struct reg_write_state
{
unsigned int write_count : 2;
unsigned int first_pred : 16;
unsigned int written_by_fp : 1;
unsigned int written_by_and : 1;
unsigned int written_by_or : 1;
};
/* Cumulative info for the current instruction group. */
struct reg_write_state rws_sum[NUM_REGS];
/* Info for the current instruction. This gets copied to rws_sum after a
stop bit is emitted. */
struct reg_write_state rws_insn[NUM_REGS];
/* Indicates whether this is the first instruction after a stop bit,
in which case we don't need another stop bit. Without this,
ia64_variable_issue will die when scheduling an alloc. */
static int first_instruction;
/* Misc flags needed to compute RAW/WAW dependencies while we are traversing
RTL for one instruction. */
struct reg_flags
{
unsigned int is_write : 1; /* Is register being written? */
unsigned int is_fp : 1; /* Is register used as part of an fp op? */
unsigned int is_branch : 1; /* Is register used as part of a branch? */
unsigned int is_and : 1; /* Is register used as part of and.orcm? */
unsigned int is_or : 1; /* Is register used as part of or.andcm? */
unsigned int is_sibcall : 1; /* Is this a sibling or normal call? */
};
static void rws_update (struct reg_write_state *, int, struct reg_flags, int);
static int rws_access_regno (int, struct reg_flags, int);
static int rws_access_reg (rtx, struct reg_flags, int);
static void update_set_flags (rtx, struct reg_flags *);
static int set_src_needs_barrier (rtx, struct reg_flags, int);
static int rtx_needs_barrier (rtx, struct reg_flags, int);
static void init_insn_group_barriers (void);
static int group_barrier_needed (rtx);
static int safe_group_barrier_needed (rtx);
/* Update *RWS for REGNO, which is being written by the current instruction,
with predicate PRED, and associated register flags in FLAGS. */
static void
rws_update (struct reg_write_state *rws, int regno, struct reg_flags flags, int pred)
{
if (pred)
rws[regno].write_count++;
else
rws[regno].write_count = 2;
rws[regno].written_by_fp |= flags.is_fp;
/* ??? Not tracking and/or across differing predicates. */
rws[regno].written_by_and = flags.is_and;
rws[regno].written_by_or = flags.is_or;
rws[regno].first_pred = pred;
}
/* Handle an access to register REGNO of type FLAGS using predicate register
PRED. Update rws_insn and rws_sum arrays. Return 1 if this access creates
a dependency with an earlier instruction in the same group. */
static int
rws_access_regno (int regno, struct reg_flags flags, int pred)
{
int need_barrier = 0;
gcc_assert (regno < NUM_REGS);
if (! PR_REGNO_P (regno))
flags.is_and = flags.is_or = 0;
if (flags.is_write)
{
int write_count;
/* One insn writes same reg multiple times? */
gcc_assert (!rws_insn[regno].write_count);
/* Update info for current instruction. */
rws_update (rws_insn, regno, flags, pred);
write_count = rws_sum[regno].write_count;
switch (write_count)
{
case 0:
/* The register has not been written yet. */
rws_update (rws_sum, regno, flags, pred);
break;
case 1:
/* The register has been written via a predicate. If this is
not a complementary predicate, then we need a barrier. */
/* ??? This assumes that P and P+1 are always complementary
predicates for P even. */
if (flags.is_and && rws_sum[regno].written_by_and)
;
else if (flags.is_or && rws_sum[regno].written_by_or)
;
else if ((rws_sum[regno].first_pred ^ 1) != pred)
need_barrier = 1;
rws_update (rws_sum, regno, flags, pred);
break;
case 2:
/* The register has been unconditionally written already. We
need a barrier. */
if (flags.is_and && rws_sum[regno].written_by_and)
;
else if (flags.is_or && rws_sum[regno].written_by_or)
;
else
need_barrier = 1;
rws_sum[regno].written_by_and = flags.is_and;
rws_sum[regno].written_by_or = flags.is_or;
break;
default:
gcc_unreachable ();
}
}
else
{
if (flags.is_branch)
{
/* Branches have several RAW exceptions that allow to avoid
barriers. */
if (REGNO_REG_CLASS (regno) == BR_REGS || regno == AR_PFS_REGNUM)
/* RAW dependencies on branch regs are permissible as long
as the writer is a non-branch instruction. Since we
never generate code that uses a branch register written
by a branch instruction, handling this case is
easy. */
return 0;
if (REGNO_REG_CLASS (regno) == PR_REGS
&& ! rws_sum[regno].written_by_fp)
/* The predicates of a branch are available within the
same insn group as long as the predicate was written by
something other than a floating-point instruction. */
return 0;
}
if (flags.is_and && rws_sum[regno].written_by_and)
return 0;
if (flags.is_or && rws_sum[regno].written_by_or)
return 0;
switch (rws_sum[regno].write_count)
{
case 0:
/* The register has not been written yet. */
break;
case 1:
/* The register has been written via a predicate. If this is
not a complementary predicate, then we need a barrier. */
/* ??? This assumes that P and P+1 are always complementary
predicates for P even. */
if ((rws_sum[regno].first_pred ^ 1) != pred)
need_barrier = 1;
break;
case 2:
/* The register has been unconditionally written already. We
need a barrier. */
need_barrier = 1;
break;
default:
gcc_unreachable ();
}
}
return need_barrier;
}
static int
rws_access_reg (rtx reg, struct reg_flags flags, int pred)
{
int regno = REGNO (reg);
int n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
if (n == 1)
return rws_access_regno (regno, flags, pred);
else
{
int need_barrier = 0;
while (--n >= 0)
need_barrier |= rws_access_regno (regno + n, flags, pred);
return need_barrier;
}
}
/* Examine X, which is a SET rtx, and update the flags, the predicate, and
the condition, stored in *PFLAGS, *PPRED and *PCOND. */
static void
update_set_flags (rtx x, struct reg_flags *pflags)
{
rtx src = SET_SRC (x);
switch (GET_CODE (src))
{
case CALL:
return;
case IF_THEN_ELSE:
/* There are four cases here:
(1) The destination is (pc), in which case this is a branch,
nothing here applies.
(2) The destination is ar.lc, in which case this is a
doloop_end_internal,
(3) The destination is an fp register, in which case this is
an fselect instruction.
(4) The condition has (unspec [(reg)] UNSPEC_LDC), in which case
this is a check load.
In all cases, nothing we do in this function applies. */
return;
default:
if (COMPARISON_P (src)
&& SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (src, 0))))
/* Set pflags->is_fp to 1 so that we know we're dealing
with a floating point comparison when processing the
destination of the SET. */
pflags->is_fp = 1;
/* Discover if this is a parallel comparison. We only handle
and.orcm and or.andcm at present, since we must retain a
strict inverse on the predicate pair. */
else if (GET_CODE (src) == AND)
pflags->is_and = 1;
else if (GET_CODE (src) == IOR)
pflags->is_or = 1;
break;
}
}
/* Subroutine of rtx_needs_barrier; this function determines whether the
source of a given SET rtx found in X needs a barrier. FLAGS and PRED
are as in rtx_needs_barrier. COND is an rtx that holds the condition
for this insn. */
static int
set_src_needs_barrier (rtx x, struct reg_flags flags, int pred)
{
int need_barrier = 0;
rtx dst;
rtx src = SET_SRC (x);
if (GET_CODE (src) == CALL)
/* We don't need to worry about the result registers that
get written by subroutine call. */
return rtx_needs_barrier (src, flags, pred);
else if (SET_DEST (x) == pc_rtx)
{
/* X is a conditional branch. */
/* ??? This seems redundant, as the caller sets this bit for
all JUMP_INSNs. */
if (!ia64_spec_check_src_p (src))
flags.is_branch = 1;
return rtx_needs_barrier (src, flags, pred);
}
if (ia64_spec_check_src_p (src))
/* Avoid checking one register twice (in condition
and in 'then' section) for ldc pattern. */
{
gcc_assert (REG_P (XEXP (src, 2)));
need_barrier = rtx_needs_barrier (XEXP (src, 2), flags, pred);
/* We process MEM below. */
src = XEXP (src, 1);
}
need_barrier |= rtx_needs_barrier (src, flags, pred);
dst = SET_DEST (x);
if (GET_CODE (dst) == ZERO_EXTRACT)
{
need_barrier |= rtx_needs_barrier (XEXP (dst, 1), flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (dst, 2), flags, pred);
}
return need_barrier;
}
/* Handle an access to rtx X of type FLAGS using predicate register
PRED. Return 1 if this access creates a dependency with an earlier
instruction in the same group. */
static int
rtx_needs_barrier (rtx x, struct reg_flags flags, int pred)
{
int i, j;
int is_complemented = 0;
int need_barrier = 0;
const char *format_ptr;
struct reg_flags new_flags;
rtx cond;
if (! x)
return 0;
new_flags = flags;
switch (GET_CODE (x))
{
case SET:
update_set_flags (x, &new_flags);
need_barrier = set_src_needs_barrier (x, new_flags, pred);
if (GET_CODE (SET_SRC (x)) != CALL)
{
new_flags.is_write = 1;
need_barrier |= rtx_needs_barrier (SET_DEST (x), new_flags, pred);
}
break;
case CALL:
new_flags.is_write = 0;
need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
/* Avoid multiple register writes, in case this is a pattern with
multiple CALL rtx. This avoids a failure in rws_access_reg. */
if (! flags.is_sibcall && ! rws_insn[REG_AR_CFM].write_count)
{
new_flags.is_write = 1;
need_barrier |= rws_access_regno (REG_RP, new_flags, pred);
need_barrier |= rws_access_regno (AR_PFS_REGNUM, new_flags, pred);
need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
}
break;
case COND_EXEC:
/* X is a predicated instruction. */
cond = COND_EXEC_TEST (x);
gcc_assert (!pred);
need_barrier = rtx_needs_barrier (cond, flags, 0);
if (GET_CODE (cond) == EQ)
is_complemented = 1;
cond = XEXP (cond, 0);
gcc_assert (GET_CODE (cond) == REG
&& REGNO_REG_CLASS (REGNO (cond)) == PR_REGS);
pred = REGNO (cond);
if (is_complemented)
++pred;
need_barrier |= rtx_needs_barrier (COND_EXEC_CODE (x), flags, pred);
return need_barrier;
case CLOBBER:
case USE:
/* Clobber & use are for earlier compiler-phases only. */
break;
case ASM_OPERANDS:
case ASM_INPUT:
/* We always emit stop bits for traditional asms. We emit stop bits
for volatile extended asms if TARGET_VOL_ASM_STOP is true. */
if (GET_CODE (x) != ASM_OPERANDS
|| (MEM_VOLATILE_P (x) && TARGET_VOL_ASM_STOP))
{
/* Avoid writing the register multiple times if we have multiple
asm outputs. This avoids a failure in rws_access_reg. */
if (! rws_insn[REG_VOLATILE].write_count)
{
new_flags.is_write = 1;
rws_access_regno (REG_VOLATILE, new_flags, pred);
}
return 1;
}
/* For all ASM_OPERANDS, we must traverse the vector of input operands.
We cannot just fall through here since then we would be confused
by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
traditional asms unlike their normal usage. */
for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; --i)
if (rtx_needs_barrier (ASM_OPERANDS_INPUT (x, i), flags, pred))
need_barrier = 1;
break;
case PARALLEL:
for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
{
rtx pat = XVECEXP (x, 0, i);
switch (GET_CODE (pat))
{
case SET:
update_set_flags (pat, &new_flags);
need_barrier |= set_src_needs_barrier (pat, new_flags, pred);
break;
case USE:
case CALL:
case ASM_OPERANDS:
need_barrier |= rtx_needs_barrier (pat, flags, pred);
break;
case CLOBBER:
case RETURN:
break;
default:
gcc_unreachable ();
}
}
for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
{
rtx pat = XVECEXP (x, 0, i);
if (GET_CODE (pat) == SET)
{
if (GET_CODE (SET_SRC (pat)) != CALL)
{
new_flags.is_write = 1;
need_barrier |= rtx_needs_barrier (SET_DEST (pat), new_flags,
pred);
}
}
else if (GET_CODE (pat) == CLOBBER || GET_CODE (pat) == RETURN)
need_barrier |= rtx_needs_barrier (pat, flags, pred);
}
break;
case SUBREG:
need_barrier |= rtx_needs_barrier (SUBREG_REG (x), flags, pred);
break;
case REG:
if (REGNO (x) == AR_UNAT_REGNUM)
{
for (i = 0; i < 64; ++i)
need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + i, flags, pred);
}
else
need_barrier = rws_access_reg (x, flags, pred);
break;
case MEM:
/* Find the regs used in memory address computation. */
new_flags.is_write = 0;
need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
break;
case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR:
case SYMBOL_REF: case LABEL_REF: case CONST:
break;
/* Operators with side-effects. */
case POST_INC: case POST_DEC:
gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
new_flags.is_write = 0;
need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
break;
case POST_MODIFY:
gcc_assert (GET_CODE (XEXP (x, 0)) == REG);
new_flags.is_write = 0;
need_barrier = rws_access_reg (XEXP (x, 0), new_flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_reg (XEXP (x, 0), new_flags, pred);
break;
/* Handle common unary and binary ops for efficiency. */
case COMPARE: case PLUS: case MINUS: case MULT: case DIV:
case MOD: case UDIV: case UMOD: case AND: case IOR:
case XOR: case ASHIFT: case ROTATE: case ASHIFTRT: case LSHIFTRT:
case ROTATERT: case SMIN: case SMAX: case UMIN: case UMAX:
case NE: case EQ: case GE: case GT: case LE:
case LT: case GEU: case GTU: case LEU: case LTU:
need_barrier = rtx_needs_barrier (XEXP (x, 0), new_flags, pred);
need_barrier |= rtx_needs_barrier (XEXP (x, 1), new_flags, pred);
break;
case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND:
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT:
case FIX: case UNSIGNED_FLOAT: case UNSIGNED_FIX: case ABS:
case SQRT: case FFS: case POPCOUNT:
need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
break;
case VEC_SELECT:
/* VEC_SELECT's second argument is a PARALLEL with integers that
describe the elements selected. On ia64, those integers are
always constants. Avoid walking the PARALLEL so that we don't
get confused with "normal" parallels and then die. */
need_barrier = rtx_needs_barrier (XEXP (x, 0), flags, pred);
break;
case UNSPEC:
switch (XINT (x, 1))
{
case UNSPEC_LTOFF_DTPMOD:
case UNSPEC_LTOFF_DTPREL:
case UNSPEC_DTPREL:
case UNSPEC_LTOFF_TPREL:
case UNSPEC_TPREL:
case UNSPEC_PRED_REL_MUTEX:
case UNSPEC_PIC_CALL:
case UNSPEC_MF:
case UNSPEC_FETCHADD_ACQ:
case UNSPEC_BSP_VALUE:
case UNSPEC_FLUSHRS:
case UNSPEC_BUNDLE_SELECTOR:
break;
case UNSPEC_GR_SPILL:
case UNSPEC_GR_RESTORE:
{
HOST_WIDE_INT offset = INTVAL (XVECEXP (x, 0, 1));
HOST_WIDE_INT bit = (offset >> 3) & 63;
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
new_flags.is_write = (XINT (x, 1) == UNSPEC_GR_SPILL);
need_barrier |= rws_access_regno (AR_UNAT_BIT_0 + bit,
new_flags, pred);
break;
}
case UNSPEC_FR_SPILL:
case UNSPEC_FR_RESTORE:
case UNSPEC_GETF_EXP:
case UNSPEC_SETF_EXP:
case UNSPEC_ADDP4:
case UNSPEC_FR_SQRT_RECIP_APPROX:
case UNSPEC_LDA:
case UNSPEC_LDS:
case UNSPEC_LDSA:
case UNSPEC_CHKACLR:
case UNSPEC_CHKS:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
break;
case UNSPEC_FR_RECIP_APPROX:
case UNSPEC_SHRP:
case UNSPEC_COPYSIGN:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 0), flags, pred);
need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
break;
case UNSPEC_CMPXCHG_ACQ:
need_barrier = rtx_needs_barrier (XVECEXP (x, 0, 1), flags, pred);
need_barrier |= rtx_needs_barrier (XVECEXP (x, 0, 2), flags, pred);
break;
default:
gcc_unreachable ();
}
break;
case UNSPEC_VOLATILE:
switch (XINT (x, 1))
{
case UNSPECV_ALLOC:
/* Alloc must always be the first instruction of a group.
We force this by always returning true. */
/* ??? We might get better scheduling if we explicitly check for
input/local/output register dependencies, and modify the
scheduler so that alloc is always reordered to the start of
the current group. We could then eliminate all of the
first_instruction code. */
rws_access_regno (AR_PFS_REGNUM, flags, pred);
new_flags.is_write = 1;
rws_access_regno (REG_AR_CFM, new_flags, pred);
return 1;
case UNSPECV_SET_BSP:
need_barrier = 1;
break;
case UNSPECV_BLOCKAGE:
case UNSPECV_INSN_GROUP_BARRIER:
case UNSPECV_BREAK:
case UNSPECV_PSAC_ALL:
case UNSPECV_PSAC_NORMAL:
return 0;
default:
gcc_unreachable ();
}
break;
case RETURN:
new_flags.is_write = 0;
need_barrier = rws_access_regno (REG_RP, flags, pred);
need_barrier |= rws_access_regno (AR_PFS_REGNUM, flags, pred);
new_flags.is_write = 1;
need_barrier |= rws_access_regno (AR_EC_REGNUM, new_flags, pred);
need_barrier |= rws_access_regno (REG_AR_CFM, new_flags, pred);
break;
default:
format_ptr = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
switch (format_ptr[i])
{
case '0': /* unused field */
case 'i': /* integer */
case 'n': /* note */
case 'w': /* wide integer */
case 's': /* pointer to string */
case 'S': /* optional pointer to string */
break;
case 'e':
if (rtx_needs_barrier (XEXP (x, i), flags, pred))
need_barrier = 1;
break;
case 'E':
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
if (rtx_needs_barrier (XVECEXP (x, i, j), flags, pred))
need_barrier = 1;
break;
default:
gcc_unreachable ();
}
break;
}
return need_barrier;
}
/* Clear out the state for group_barrier_needed at the start of a
sequence of insns. */
static void
init_insn_group_barriers (void)
{
memset (rws_sum, 0, sizeof (rws_sum));
first_instruction = 1;
}
/* Given the current state, determine whether a group barrier (a stop bit) is
necessary before INSN. Return nonzero if so. This modifies the state to
include the effects of INSN as a side-effect. */
static int
group_barrier_needed (rtx insn)
{
rtx pat;
int need_barrier = 0;
struct reg_flags flags;
memset (&flags, 0, sizeof (flags));
switch (GET_CODE (insn))
{
case NOTE:
break;
case BARRIER:
/* A barrier doesn't imply an instruction group boundary. */
break;
case CODE_LABEL:
memset (rws_insn, 0, sizeof (rws_insn));
return 1;
case CALL_INSN:
flags.is_branch = 1;
flags.is_sibcall = SIBLING_CALL_P (insn);
memset (rws_insn, 0, sizeof (rws_insn));
/* Don't bundle a call following another call. */
if ((pat = prev_active_insn (insn))
&& GET_CODE (pat) == CALL_INSN)
{
need_barrier = 1;
break;
}
need_barrier = rtx_needs_barrier (PATTERN (insn), flags, 0);
break;
case JUMP_INSN:
if (!ia64_spec_check_p (insn))
flags.is_branch = 1;
/* Don't bundle a jump following a call. */
if ((pat = prev_active_insn (insn))
&& GET_CODE (pat) == CALL_INSN)
{
need_barrier = 1;
break;
}
/* FALLTHRU */
case INSN:
if (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
/* Don't care about USE and CLOBBER "insns"---those are used to
indicate to the optimizer that it shouldn't get rid of
certain operations. */
break;
pat = PATTERN (insn);
/* Ug. Hack hacks hacked elsewhere. */
switch (recog_memoized (insn))
{
/* We play dependency tricks with the epilogue in order
to get proper schedules. Undo this for dv analysis. */
case CODE_FOR_epilogue_deallocate_stack:
case CODE_FOR_prologue_allocate_stack:
pat = XVECEXP (pat, 0, 0);
break;
/* The pattern we use for br.cloop confuses the code above.
The second element of the vector is representative. */
case CODE_FOR_doloop_end_internal:
pat = XVECEXP (pat, 0, 1);
break;
/* Doesn't generate code. */
case CODE_FOR_pred_rel_mutex:
case CODE_FOR_prologue_use:
return 0;
default:
break;
}
memset (rws_insn, 0, sizeof (rws_insn));
need_barrier = rtx_needs_barrier (pat, flags, 0);
/* Check to see if the previous instruction was a volatile
asm. */
if (! need_barrier)
need_barrier = rws_access_regno (REG_VOLATILE, flags, 0);
break;
default:
gcc_unreachable ();
}
if (first_instruction && INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
{
need_barrier = 0;
first_instruction = 0;
}
return need_barrier;
}
/* Like group_barrier_needed, but do not clobber the current state. */
static int
safe_group_barrier_needed (rtx insn)
{
struct reg_write_state rws_saved[NUM_REGS];
int saved_first_instruction;
int t;
memcpy (rws_saved, rws_sum, NUM_REGS * sizeof *rws_saved);
saved_first_instruction = first_instruction;
t = group_barrier_needed (insn);
memcpy (rws_sum, rws_saved, NUM_REGS * sizeof *rws_saved);
first_instruction = saved_first_instruction;
return t;
}
/* Scan the current function and insert stop bits as necessary to
eliminate dependencies. This function assumes that a final
instruction scheduling pass has been run which has already
inserted most of the necessary stop bits. This function only
inserts new ones at basic block boundaries, since these are
invisible to the scheduler. */
static void
emit_insn_group_barriers (FILE *dump)
{
rtx insn;
rtx last_label = 0;
int insns_since_last_label = 0;
init_insn_group_barriers ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL)
{
if (insns_since_last_label)
last_label = insn;
insns_since_last_label = 0;
}
else if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
{
if (insns_since_last_label)
last_label = insn;
insns_since_last_label = 0;
}
else if (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
&& XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
{
init_insn_group_barriers ();
last_label = 0;
}
else if (INSN_P (insn))
{
insns_since_last_label = 1;
if (group_barrier_needed (insn))
{
if (last_label)
{
if (dump)
fprintf (dump, "Emitting stop before label %d\n",
INSN_UID (last_label));
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), last_label);
insn = last_label;
init_insn_group_barriers ();
last_label = 0;
}
}
}
}
}
/* Like emit_insn_group_barriers, but run if no final scheduling pass was run.
This function has to emit all necessary group barriers. */
static void
emit_all_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
{
rtx insn;
init_insn_group_barriers ();
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == BARRIER)
{
rtx last = prev_active_insn (insn);
if (! last)
continue;
if (GET_CODE (last) == JUMP_INSN
&& GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
last = prev_active_insn (last);
if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
init_insn_group_barriers ();
}
else if (INSN_P (insn))
{
if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
init_insn_group_barriers ();
else if (group_barrier_needed (insn))
{
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)), insn);
init_insn_group_barriers ();
group_barrier_needed (insn);
}
}
}
}
/* Instruction scheduling support. */
#define NR_BUNDLES 10
/* A list of names of all available bundles. */
static const char *bundle_name [NR_BUNDLES] =
{
".mii",
".mmi",
".mfi",
".mmf",
#if NR_BUNDLES == 10
".bbb",
".mbb",
#endif
".mib",
".mmb",
".mfb",
".mlx"
};
/* Nonzero if we should insert stop bits into the schedule. */
int ia64_final_schedule = 0;
/* Codes of the corresponding queried units: */
static int _0mii_, _0mmi_, _0mfi_, _0mmf_;
static int _0bbb_, _0mbb_, _0mib_, _0mmb_, _0mfb_, _0mlx_;
static int _1mii_, _1mmi_, _1mfi_, _1mmf_;
static int _1bbb_, _1mbb_, _1mib_, _1mmb_, _1mfb_, _1mlx_;
static int pos_1, pos_2, pos_3, pos_4, pos_5, pos_6;
/* The following variable value is an insn group barrier. */
static rtx dfa_stop_insn;
/* The following variable value is the last issued insn. */
static rtx last_scheduled_insn;
/* The following variable value is size of the DFA state. */
static size_t dfa_state_size;
/* The following variable value is pointer to a DFA state used as
temporary variable. */
static state_t temp_dfa_state = NULL;
/* The following variable value is DFA state after issuing the last
insn. */
static state_t prev_cycle_state = NULL;
/* The following array element values are TRUE if the corresponding
insn requires to add stop bits before it. */
static char *stops_p = NULL;
/* The following array element values are ZERO for non-speculative
instructions and hold corresponding speculation check number for
speculative instructions. */
static int *spec_check_no = NULL;
/* Size of spec_check_no array. */
static int max_uid = 0;
/* The following variable is used to set up the mentioned above array. */
static int stop_before_p = 0;
/* The following variable value is length of the arrays `clocks' and
`add_cycles'. */
static int clocks_length;
/* The following array element values are cycles on which the
corresponding insn will be issued. The array is used only for
Itanium1. */
static int *clocks;
/* The following array element values are numbers of cycles should be
added to improve insn scheduling for MM_insns for Itanium1. */
static int *add_cycles;
/* The following variable value is number of data speculations in progress. */
static int pending_data_specs = 0;
static rtx ia64_single_set (rtx);
static void ia64_emit_insn_before (rtx, rtx);
/* Map a bundle number to its pseudo-op. */
const char *
get_bundle_name (int b)
{
return bundle_name[b];
}
/* Return the maximum number of instructions a cpu can issue. */
static int
ia64_issue_rate (void)
{
return 6;
}
/* Helper function - like single_set, but look inside COND_EXEC. */
static rtx
ia64_single_set (rtx insn)
{
rtx x = PATTERN (insn), ret;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET)
return x;
/* Special case here prologue_allocate_stack and epilogue_deallocate_stack.
Although they are not classical single set, the second set is there just
to protect it from moving past FP-relative stack accesses. */
switch (recog_memoized (insn))
{
case CODE_FOR_prologue_allocate_stack:
case CODE_FOR_epilogue_deallocate_stack:
ret = XVECEXP (x, 0, 0);
break;
default:
ret = single_set_2 (insn, x);
break;
}
return ret;
}
/* Adjust the cost of a scheduling dependency.
Return the new cost of a dependency of type DEP_TYPE or INSN on DEP_INSN.
COST is the current cost. */
static int
ia64_adjust_cost_2 (rtx insn, int dep_type1, rtx dep_insn, int cost)
{
enum reg_note dep_type = (enum reg_note) dep_type1;
enum attr_itanium_class dep_class;
enum attr_itanium_class insn_class;
if (dep_type != REG_DEP_OUTPUT)
return cost;
insn_class = ia64_safe_itanium_class (insn);
dep_class = ia64_safe_itanium_class (dep_insn);
if (dep_class == ITANIUM_CLASS_ST || dep_class == ITANIUM_CLASS_STF
|| insn_class == ITANIUM_CLASS_ST || insn_class == ITANIUM_CLASS_STF)
return 0;
return cost;
}
/* Like emit_insn_before, but skip cycle_display notes.
??? When cycle display notes are implemented, update this. */
static void
ia64_emit_insn_before (rtx insn, rtx before)
{
emit_insn_before (insn, before);
}
/* The following function marks insns who produce addresses for load
and store insns. Such insns will be placed into M slots because it
decrease latency time for Itanium1 (see function
`ia64_produce_address_p' and the DFA descriptions). */
static void
ia64_dependencies_evaluation_hook (rtx head, rtx tail)
{
rtx insn, link, next, next_tail;
/* Before reload, which_alternative is not set, which means that
ia64_safe_itanium_class will produce wrong results for (at least)
move instructions. */
if (!reload_completed)
return;
next_tail = NEXT_INSN (tail);
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_P (insn))
insn->call = 0;
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IALU)
{
for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
{
enum attr_itanium_class c;
if (REG_NOTE_KIND (link) != REG_DEP_TRUE)
continue;
next = XEXP (link, 0);
c = ia64_safe_itanium_class (next);
if ((c == ITANIUM_CLASS_ST
|| c == ITANIUM_CLASS_STF)
&& ia64_st_address_bypass_p (insn, next))
break;
else if ((c == ITANIUM_CLASS_LD
|| c == ITANIUM_CLASS_FLD
|| c == ITANIUM_CLASS_FLDP)
&& ia64_ld_address_bypass_p (insn, next))
break;
}
insn->call = link != 0;
}
}
/* We're beginning a new block. Initialize data structures as necessary. */
static void
ia64_sched_init (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
#ifdef ENABLE_CHECKING
rtx insn;
if (reload_completed)
for (insn = NEXT_INSN (current_sched_info->prev_head);
insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
gcc_assert (!SCHED_GROUP_P (insn));
#endif
last_scheduled_insn = NULL_RTX;
init_insn_group_barriers ();
}
/* We're beginning a scheduling pass. Check assertion. */
static void
ia64_sched_init_global (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
gcc_assert (!pending_data_specs);
}
/* Scheduling pass is now finished. Free/reset static variable. */
static void
ia64_sched_finish_global (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED)
{
free (spec_check_no);
spec_check_no = 0;
max_uid = 0;
}
/* We are about to being issuing insns for this clock cycle.
Override the default sort algorithm to better slot instructions. */
static int
ia64_dfa_sched_reorder (FILE *dump, int sched_verbose, rtx *ready,
int *pn_ready, int clock_var ATTRIBUTE_UNUSED,
int reorder_type)
{
int n_asms;
int n_ready = *pn_ready;
rtx *e_ready = ready + n_ready;
rtx *insnp;
if (sched_verbose)
fprintf (dump, "// ia64_dfa_sched_reorder (type %d):\n", reorder_type);
if (reorder_type == 0)
{
/* First, move all USEs, CLOBBERs and other crud out of the way. */
n_asms = 0;
for (insnp = ready; insnp < e_ready; insnp++)
if (insnp < e_ready)
{
rtx insn = *insnp;
enum attr_type t = ia64_safe_type (insn);
if (t == TYPE_UNKNOWN)
{
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
{
rtx lowest = ready[n_asms];
ready[n_asms] = insn;
*insnp = lowest;
n_asms++;
}
else
{
rtx highest = ready[n_ready - 1];
ready[n_ready - 1] = insn;
*insnp = highest;
return 1;
}
}
}
if (n_asms < n_ready)
{
/* Some normal insns to process. Skip the asms. */
ready += n_asms;
n_ready -= n_asms;
}
else if (n_ready > 0)
return 1;
}
if (ia64_final_schedule)
{
int deleted = 0;
int nr_need_stop = 0;
for (insnp = ready; insnp < e_ready; insnp++)
if (safe_group_barrier_needed (*insnp))
nr_need_stop++;
if (reorder_type == 1 && n_ready == nr_need_stop)
return 0;
if (reorder_type == 0)
return 1;
insnp = e_ready;
/* Move down everything that needs a stop bit, preserving
relative order. */
while (insnp-- > ready + deleted)
while (insnp >= ready + deleted)
{
rtx insn = *insnp;
if (! safe_group_barrier_needed (insn))
break;
memmove (ready + 1, ready, (insnp - ready) * sizeof (rtx));
*ready = insn;
deleted++;
}
n_ready -= deleted;
ready += deleted;
}
return 1;
}
/* We are about to being issuing insns for this clock cycle. Override
the default sort algorithm to better slot instructions. */
static int
ia64_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready,
int clock_var)
{
return ia64_dfa_sched_reorder (dump, sched_verbose, ready,
pn_ready, clock_var, 0);
}
/* Like ia64_sched_reorder, but called after issuing each insn.
Override the default sort algorithm to better slot instructions. */
static int
ia64_sched_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED, rtx *ready,
int *pn_ready, int clock_var)
{
if (ia64_tune == PROCESSOR_ITANIUM && reload_completed && last_scheduled_insn)
clocks [INSN_UID (last_scheduled_insn)] = clock_var;
return ia64_dfa_sched_reorder (dump, sched_verbose, ready, pn_ready,
clock_var, 1);
}
/* We are about to issue INSN. Return the number of insns left on the
ready queue that can be issued this cycle. */
static int
ia64_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
rtx insn ATTRIBUTE_UNUSED,
int can_issue_more ATTRIBUTE_UNUSED)
{
if (current_sched_info->flags & DO_SPECULATION)
/* Modulo scheduling does not extend h_i_d when emitting
new instructions. Deal with it. */
{
if (DONE_SPEC (insn) & BEGIN_DATA)
pending_data_specs++;
if (CHECK_SPEC (insn) & BEGIN_DATA)
pending_data_specs--;
}
last_scheduled_insn = insn;
memcpy (prev_cycle_state, curr_state, dfa_state_size);
if (reload_completed)
{
int needed = group_barrier_needed (insn);
gcc_assert (!needed);
if (GET_CODE (insn) == CALL_INSN)
init_insn_group_barriers ();
stops_p [INSN_UID (insn)] = stop_before_p;
stop_before_p = 0;
}
return 1;
}
/* We are choosing insn from the ready queue. Return nonzero if INSN
can be chosen. */
static int
ia64_first_cycle_multipass_dfa_lookahead_guard (rtx insn)
{
gcc_assert (insn && INSN_P (insn));
return ((!reload_completed
|| !safe_group_barrier_needed (insn))
&& ia64_first_cycle_multipass_dfa_lookahead_guard_spec (insn));
}
/* We are choosing insn from the ready queue. Return nonzero if INSN
can be chosen. */
static bool
ia64_first_cycle_multipass_dfa_lookahead_guard_spec (rtx insn)
{
gcc_assert (insn && INSN_P (insn));
/* Size of ALAT is 32. As far as we perform conservative data speculation,
we keep ALAT half-empty. */
return (pending_data_specs < 16
|| !(TODO_SPEC (insn) & BEGIN_DATA));
}
/* The following variable value is pseudo-insn used by the DFA insn
scheduler to change the DFA state when the simulated clock is
increased. */
static rtx dfa_pre_cycle_insn;
/* We are about to being issuing INSN. Return nonzero if we cannot
issue it on given cycle CLOCK and return zero if we should not sort
the ready queue on the next clock start. */
static int
ia64_dfa_new_cycle (FILE *dump, int verbose, rtx insn, int last_clock,
int clock, int *sort_p)
{
int setup_clocks_p = FALSE;
gcc_assert (insn && INSN_P (insn));
if ((reload_completed && safe_group_barrier_needed (insn))
|| (last_scheduled_insn
&& (GET_CODE (last_scheduled_insn) == CALL_INSN
|| GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
|| asm_noperands (PATTERN (last_scheduled_insn)) >= 0)))
{
init_insn_group_barriers ();
if (verbose && dump)
fprintf (dump, "// Stop should be before %d%s\n", INSN_UID (insn),
last_clock == clock ? " + cycle advance" : "");
stop_before_p = 1;
if (last_clock == clock)
{
state_transition (curr_state, dfa_stop_insn);
if (TARGET_EARLY_STOP_BITS)
*sort_p = (last_scheduled_insn == NULL_RTX
|| GET_CODE (last_scheduled_insn) != CALL_INSN);
else
*sort_p = 0;
return 1;
}
else if (reload_completed)
setup_clocks_p = TRUE;
if (GET_CODE (PATTERN (last_scheduled_insn)) == ASM_INPUT
|| asm_noperands (PATTERN (last_scheduled_insn)) >= 0)
state_reset (curr_state);
else
{
memcpy (curr_state, prev_cycle_state, dfa_state_size);
state_transition (curr_state, dfa_stop_insn);
state_transition (curr_state, dfa_pre_cycle_insn);
state_transition (curr_state, NULL);
}
}
else if (reload_completed)
setup_clocks_p = TRUE;
if (setup_clocks_p && ia64_tune == PROCESSOR_ITANIUM
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
{
enum attr_itanium_class c = ia64_safe_itanium_class (insn);
if (c != ITANIUM_CLASS_MMMUL && c != ITANIUM_CLASS_MMSHF)
{
rtx link;
int d = -1;
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == 0)
{
enum attr_itanium_class dep_class;
rtx dep_insn = XEXP (link, 0);
dep_class = ia64_safe_itanium_class (dep_insn);
if ((dep_class == ITANIUM_CLASS_MMMUL
|| dep_class == ITANIUM_CLASS_MMSHF)
&& last_clock - clocks [INSN_UID (dep_insn)] < 4
&& (d < 0
|| last_clock - clocks [INSN_UID (dep_insn)] < d))
d = last_clock - clocks [INSN_UID (dep_insn)];
}
if (d >= 0)
add_cycles [INSN_UID (insn)] = 3 - d;
}
}
return 0;
}
/* Implement targetm.sched.h_i_d_extended hook.
Extend internal data structures. */
static void
ia64_h_i_d_extended (void)
{
if (current_sched_info->flags & DO_SPECULATION)
{
int new_max_uid = get_max_uid () + 1;
spec_check_no = xrecalloc (spec_check_no, new_max_uid,
max_uid, sizeof (*spec_check_no));
max_uid = new_max_uid;
}
if (stops_p != NULL)
{
int new_clocks_length = get_max_uid () + 1;
stops_p = xrecalloc (stops_p, new_clocks_length, clocks_length, 1);
if (ia64_tune == PROCESSOR_ITANIUM)
{
clocks = xrecalloc (clocks, new_clocks_length, clocks_length,
sizeof (int));
add_cycles = xrecalloc (add_cycles, new_clocks_length, clocks_length,
sizeof (int));
}
clocks_length = new_clocks_length;
}
}
/* Constants that help mapping 'enum machine_mode' to int. */
enum SPEC_MODES
{
SPEC_MODE_INVALID = -1,
SPEC_MODE_FIRST = 0,
SPEC_MODE_FOR_EXTEND_FIRST = 1,
SPEC_MODE_FOR_EXTEND_LAST = 3,
SPEC_MODE_LAST = 8
};
/* Return index of the MODE. */
static int
ia64_mode_to_int (enum machine_mode mode)
{
switch (mode)
{
case BImode: return 0; /* SPEC_MODE_FIRST */
case QImode: return 1; /* SPEC_MODE_FOR_EXTEND_FIRST */
case HImode: return 2;
case SImode: return 3; /* SPEC_MODE_FOR_EXTEND_LAST */
case DImode: return 4;
case SFmode: return 5;
case DFmode: return 6;
case XFmode: return 7;
case TImode:
/* ??? This mode needs testing. Bypasses for ldfp8 instruction are not
mentioned in itanium[12].md. Predicate fp_register_operand also
needs to be defined. Bottom line: better disable for now. */
return SPEC_MODE_INVALID;
default: return SPEC_MODE_INVALID;
}
}
/* Provide information about speculation capabilities. */
static void
ia64_set_sched_flags (spec_info_t spec_info)
{
unsigned int *flags = &(current_sched_info->flags);
if (*flags & SCHED_RGN
|| *flags & SCHED_EBB)
{
int mask = 0;
if ((mflag_sched_br_data_spec && !reload_completed && optimize > 0)
|| (mflag_sched_ar_data_spec && reload_completed))
{
mask |= BEGIN_DATA;
if ((mflag_sched_br_in_data_spec && !reload_completed)
|| (mflag_sched_ar_in_data_spec && reload_completed))
mask |= BE_IN_DATA;
}
if (mflag_sched_control_spec)
{
mask |= BEGIN_CONTROL;
if (mflag_sched_in_control_spec)
mask |= BE_IN_CONTROL;
}
gcc_assert (*flags & USE_GLAT);
if (mask)
{
*flags |= USE_DEPS_LIST | DETACH_LIFE_INFO | DO_SPECULATION;
spec_info->mask = mask;
spec_info->flags = 0;
if ((mask & DATA_SPEC) && mflag_sched_prefer_non_data_spec_insns)
spec_info->flags |= PREFER_NON_DATA_SPEC;
if ((mask & CONTROL_SPEC)
&& mflag_sched_prefer_non_control_spec_insns)
spec_info->flags |= PREFER_NON_CONTROL_SPEC;
if (mflag_sched_spec_verbose)
{
if (sched_verbose >= 1)
spec_info->dump = sched_dump;
else
spec_info->dump = stderr;
}
else
spec_info->dump = 0;
if (mflag_sched_count_spec_in_critical_path)
spec_info->flags |= COUNT_SPEC_IN_CRITICAL_PATH;
}
}
}
/* Implement targetm.sched.speculate_insn hook.
Check if the INSN can be TS speculative.
If 'no' - return -1.
If 'yes' - generate speculative pattern in the NEW_PAT and return 1.
If current pattern of the INSN already provides TS speculation, return 0. */
static int
ia64_speculate_insn (rtx insn, ds_t ts, rtx *new_pat)
{
rtx pat, reg, mem, mem_reg;
int mode_no, gen_p = 1;
bool extend_p;
gcc_assert (!(ts & ~BEGIN_SPEC) && ts);
pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
pat = COND_EXEC_CODE (pat);
/* This should be a SET ... */
if (GET_CODE (pat) != SET)
return -1;
reg = SET_DEST (pat);
/* ... to the general/fp register ... */
if (!REG_P (reg) || !(GR_REGNO_P (REGNO (reg)) || FP_REGNO_P (REGNO (reg))))
return -1;
/* ... from the mem ... */
mem = SET_SRC (pat);
/* ... that can, possibly, be a zero_extend ... */
if (GET_CODE (mem) == ZERO_EXTEND)
{
mem = XEXP (mem, 0);
extend_p = true;
}
else
extend_p = false;
/* ... or a speculative load. */
if (GET_CODE (mem) == UNSPEC)
{
int code;
code = XINT (mem, 1);
if (code != UNSPEC_LDA && code != UNSPEC_LDS && code != UNSPEC_LDSA)
return -1;
if ((code == UNSPEC_LDA && !(ts & BEGIN_CONTROL))
|| (code == UNSPEC_LDS && !(ts & BEGIN_DATA))
|| code == UNSPEC_LDSA)
gen_p = 0;
mem = XVECEXP (mem, 0, 0);
gcc_assert (MEM_P (mem));
}
/* Source should be a mem ... */
if (!MEM_P (mem))
return -1;
/* ... addressed by a register. */
mem_reg = XEXP (mem, 0);
if (!REG_P (mem_reg))
return -1;
/* We should use MEM's mode since REG's mode in presence of ZERO_EXTEND
will always be DImode. */
mode_no = ia64_mode_to_int (GET_MODE (mem));
if (mode_no == SPEC_MODE_INVALID
|| (extend_p
&& !(SPEC_MODE_FOR_EXTEND_FIRST <= mode_no
&& mode_no <= SPEC_MODE_FOR_EXTEND_LAST)))
return -1;
extract_insn_cached (insn);
gcc_assert (reg == recog_data.operand[0] && mem == recog_data.operand[1]);
*new_pat = ia64_gen_spec_insn (insn, ts, mode_no, gen_p != 0, extend_p);
return gen_p;
}
enum
{
/* Offset to reach ZERO_EXTEND patterns. */
SPEC_GEN_EXTEND_OFFSET = SPEC_MODE_LAST - SPEC_MODE_FOR_EXTEND_FIRST + 1,
/* Number of patterns for each speculation mode. */
SPEC_N = (SPEC_MODE_LAST
+ SPEC_MODE_FOR_EXTEND_LAST - SPEC_MODE_FOR_EXTEND_FIRST + 2)
};
enum SPEC_GEN_LD_MAP
{
/* Offset to ld.a patterns. */
SPEC_GEN_A = 0 * SPEC_N,
/* Offset to ld.s patterns. */
SPEC_GEN_S = 1 * SPEC_N,
/* Offset to ld.sa patterns. */
SPEC_GEN_SA = 2 * SPEC_N,
/* Offset to ld.sa patterns. For this patterns corresponding ld.c will
mutate to chk.s. */
SPEC_GEN_SA_FOR_S = 3 * SPEC_N
};
/* These offsets are used to get (4 * SPEC_N). */
enum SPEC_GEN_CHECK_OFFSET
{
SPEC_GEN_CHKA_FOR_A_OFFSET = 4 * SPEC_N - SPEC_GEN_A,
SPEC_GEN_CHKA_FOR_SA_OFFSET = 4 * SPEC_N - SPEC_GEN_SA
};
/* If GEN_P is true, calculate the index of needed speculation check and return
speculative pattern for INSN with speculative mode TS, machine mode
MODE_NO and with ZERO_EXTEND (if EXTEND_P is true).
If GEN_P is false, just calculate the index of needed speculation check. */
static rtx
ia64_gen_spec_insn (rtx insn, ds_t ts, int mode_no, bool gen_p, bool extend_p)
{
rtx pat, new_pat;
int load_no;
int shift = 0;
static rtx (* const gen_load[]) (rtx, rtx) = {
gen_movbi_advanced,
gen_movqi_advanced,
gen_movhi_advanced,
gen_movsi_advanced,
gen_movdi_advanced,
gen_movsf_advanced,
gen_movdf_advanced,
gen_movxf_advanced,
gen_movti_advanced,
gen_zero_extendqidi2_advanced,
gen_zero_extendhidi2_advanced,
gen_zero_extendsidi2_advanced,
gen_movbi_speculative,
gen_movqi_speculative,
gen_movhi_speculative,
gen_movsi_speculative,
gen_movdi_speculative,
gen_movsf_speculative,
gen_movdf_speculative,
gen_movxf_speculative,
gen_movti_speculative,
gen_zero_extendqidi2_speculative,
gen_zero_extendhidi2_speculative,
gen_zero_extendsidi2_speculative,
gen_movbi_speculative_advanced,
gen_movqi_speculative_advanced,
gen_movhi_speculative_advanced,
gen_movsi_speculative_advanced,
gen_movdi_speculative_advanced,
gen_movsf_speculative_advanced,
gen_movdf_speculative_advanced,
gen_movxf_speculative_advanced,
gen_movti_speculative_advanced,
gen_zero_extendqidi2_speculative_advanced,
gen_zero_extendhidi2_speculative_advanced,
gen_zero_extendsidi2_speculative_advanced,
gen_movbi_speculative_advanced,
gen_movqi_speculative_advanced,
gen_movhi_speculative_advanced,
gen_movsi_speculative_advanced,
gen_movdi_speculative_advanced,
gen_movsf_speculative_advanced,
gen_movdf_speculative_advanced,
gen_movxf_speculative_advanced,
gen_movti_speculative_advanced,
gen_zero_extendqidi2_speculative_advanced,
gen_zero_extendhidi2_speculative_advanced,
gen_zero_extendsidi2_speculative_advanced
};
load_no = extend_p ? mode_no + SPEC_GEN_EXTEND_OFFSET : mode_no;
if (ts & BEGIN_DATA)
{
/* We don't need recovery because even if this is ld.sa
ALAT entry will be allocated only if NAT bit is set to zero.
So it is enough to use ld.c here. */
if (ts & BEGIN_CONTROL)
{
load_no += SPEC_GEN_SA;
if (!mflag_sched_ldc)
shift = SPEC_GEN_CHKA_FOR_SA_OFFSET;
}
else
{
load_no += SPEC_GEN_A;
if (!mflag_sched_ldc)
shift = SPEC_GEN_CHKA_FOR_A_OFFSET;
}
}
else if (ts & BEGIN_CONTROL)
{
/* ld.sa can be used instead of ld.s to avoid basic block splitting. */
if (!mflag_control_ldc)
load_no += SPEC_GEN_S;
else
{
gcc_assert (mflag_sched_ldc);
load_no += SPEC_GEN_SA_FOR_S;
}
}
else
gcc_unreachable ();
/* Set the desired check index. We add '1', because zero element in this
array means, that instruction with such uid is non-speculative. */
spec_check_no[INSN_UID (insn)] = load_no + shift + 1;
if (!gen_p)
return 0;
new_pat = gen_load[load_no] (copy_rtx (recog_data.operand[0]),
copy_rtx (recog_data.operand[1]));
pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
new_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx
(COND_EXEC_TEST (pat)), new_pat);
return new_pat;
}
/* Offset to branchy checks. */
enum { SPEC_GEN_CHECK_MUTATION_OFFSET = 5 * SPEC_N };
/* Return nonzero, if INSN needs branchy recovery check. */
static bool
ia64_needs_block_p (rtx insn)
{
int check_no;
check_no = spec_check_no[INSN_UID(insn)] - 1;
gcc_assert (0 <= check_no && check_no < SPEC_GEN_CHECK_MUTATION_OFFSET);
return ((SPEC_GEN_S <= check_no && check_no < SPEC_GEN_S + SPEC_N)
|| (4 * SPEC_N <= check_no && check_no < 4 * SPEC_N + SPEC_N));
}
/* Generate (or regenerate, if (MUTATE_P)) recovery check for INSN.
If (LABEL != 0 || MUTATE_P), generate branchy recovery check.
Otherwise, generate a simple check. */
static rtx
ia64_gen_check (rtx insn, rtx label, bool mutate_p)
{
rtx op1, pat, check_pat;
static rtx (* const gen_check[]) (rtx, rtx) = {
gen_movbi_clr,
gen_movqi_clr,
gen_movhi_clr,
gen_movsi_clr,
gen_movdi_clr,
gen_movsf_clr,
gen_movdf_clr,
gen_movxf_clr,
gen_movti_clr,
gen_zero_extendqidi2_clr,
gen_zero_extendhidi2_clr,
gen_zero_extendsidi2_clr,
gen_speculation_check_bi,
gen_speculation_check_qi,
gen_speculation_check_hi,
gen_speculation_check_si,
gen_speculation_check_di,
gen_speculation_check_sf,
gen_speculation_check_df,
gen_speculation_check_xf,
gen_speculation_check_ti,
gen_speculation_check_di,
gen_speculation_check_di,
gen_speculation_check_di,
gen_movbi_clr,
gen_movqi_clr,
gen_movhi_clr,
gen_movsi_clr,
gen_movdi_clr,
gen_movsf_clr,
gen_movdf_clr,
gen_movxf_clr,
gen_movti_clr,
gen_zero_extendqidi2_clr,
gen_zero_extendhidi2_clr,
gen_zero_extendsidi2_clr,
gen_movbi_clr,
gen_movqi_clr,
gen_movhi_clr,
gen_movsi_clr,
gen_movdi_clr,
gen_movsf_clr,
gen_movdf_clr,
gen_movxf_clr,
gen_movti_clr,
gen_zero_extendqidi2_clr,
gen_zero_extendhidi2_clr,
gen_zero_extendsidi2_clr,
gen_advanced_load_check_clr_bi,
gen_advanced_load_check_clr_qi,
gen_advanced_load_check_clr_hi,
gen_advanced_load_check_clr_si,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_sf,
gen_advanced_load_check_clr_df,
gen_advanced_load_check_clr_xf,
gen_advanced_load_check_clr_ti,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
/* Following checks are generated during mutation. */
gen_advanced_load_check_clr_bi,
gen_advanced_load_check_clr_qi,
gen_advanced_load_check_clr_hi,
gen_advanced_load_check_clr_si,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_sf,
gen_advanced_load_check_clr_df,
gen_advanced_load_check_clr_xf,
gen_advanced_load_check_clr_ti,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
0,0,0,0,0,0,0,0,0,0,0,0,
gen_advanced_load_check_clr_bi,
gen_advanced_load_check_clr_qi,
gen_advanced_load_check_clr_hi,
gen_advanced_load_check_clr_si,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_sf,
gen_advanced_load_check_clr_df,
gen_advanced_load_check_clr_xf,
gen_advanced_load_check_clr_ti,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
gen_advanced_load_check_clr_di,
gen_speculation_check_bi,
gen_speculation_check_qi,
gen_speculation_check_hi,
gen_speculation_check_si,
gen_speculation_check_di,
gen_speculation_check_sf,
gen_speculation_check_df,
gen_speculation_check_xf,
gen_speculation_check_ti,
gen_speculation_check_di,
gen_speculation_check_di,
gen_speculation_check_di
};
extract_insn_cached (insn);
if (label)
{
gcc_assert (mutate_p || ia64_needs_block_p (insn));
op1 = label;
}
else
{
gcc_assert (!mutate_p && !ia64_needs_block_p (insn));
op1 = copy_rtx (recog_data.operand[1]);
}
if (mutate_p)
/* INSN is ld.c.
Find the speculation check number by searching for original
speculative load in the RESOLVED_DEPS list of INSN.
As long as patterns are unique for each instruction, this can be
accomplished by matching ORIG_PAT fields. */
{
rtx link;
int check_no = 0;
rtx orig_pat = ORIG_PAT (insn);
for (link = RESOLVED_DEPS (insn); link; link = XEXP (link, 1))
{
rtx x = XEXP (link, 0);
if (ORIG_PAT (x) == orig_pat)
check_no = spec_check_no[INSN_UID (x)];
}
gcc_assert (check_no);
spec_check_no[INSN_UID (insn)] = (check_no
+ SPEC_GEN_CHECK_MUTATION_OFFSET);
}
check_pat = (gen_check[spec_check_no[INSN_UID (insn)] - 1]
(copy_rtx (recog_data.operand[0]), op1));
pat = PATTERN (insn);
if (GET_CODE (pat) == COND_EXEC)
check_pat = gen_rtx_COND_EXEC (VOIDmode, copy_rtx (COND_EXEC_TEST (pat)),
check_pat);
return check_pat;
}
/* Return nonzero, if X is branchy recovery check. */
static int
ia64_spec_check_p (rtx x)
{
x = PATTERN (x);
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET)
return ia64_spec_check_src_p (SET_SRC (x));
return 0;
}
/* Return nonzero, if SRC belongs to recovery check. */
static int
ia64_spec_check_src_p (rtx src)
{
if (GET_CODE (src) == IF_THEN_ELSE)
{
rtx t;
t = XEXP (src, 0);
if (GET_CODE (t) == NE)
{
t = XEXP (t, 0);
if (GET_CODE (t) == UNSPEC)
{
int code;
code = XINT (t, 1);
if (code == UNSPEC_CHKACLR
|| code == UNSPEC_CHKS
|| code == UNSPEC_LDCCLR)
{
gcc_assert (code != 0);
return code;
}
}
}
}
return 0;
}
/* The following page contains abstract data `bundle states' which are
used for bundling insns (inserting nops and template generation). */
/* The following describes state of insn bundling. */
struct bundle_state
{
/* Unique bundle state number to identify them in the debugging
output */
int unique_num;
rtx insn; /* corresponding insn, NULL for the 1st and the last state */
/* number nops before and after the insn */
short before_nops_num, after_nops_num;
int insn_num; /* insn number (0 - for initial state, 1 - for the 1st
insn */
int cost; /* cost of the state in cycles */
int accumulated_insns_num; /* number of all previous insns including
nops. L is considered as 2 insns */
int branch_deviation; /* deviation of previous branches from 3rd slots */
struct bundle_state *next; /* next state with the same insn_num */
struct bundle_state *originator; /* originator (previous insn state) */
/* All bundle states are in the following chain. */
struct bundle_state *allocated_states_chain;
/* The DFA State after issuing the insn and the nops. */
state_t dfa_state;
};
/* The following is map insn number to the corresponding bundle state. */
static struct bundle_state **index_to_bundle_states;
/* The unique number of next bundle state. */
static int bundle_states_num;
/* All allocated bundle states are in the following chain. */
static struct bundle_state *allocated_bundle_states_chain;
/* All allocated but not used bundle states are in the following
chain. */
static struct bundle_state *free_bundle_state_chain;
/* The following function returns a free bundle state. */
static struct bundle_state *
get_free_bundle_state (void)
{
struct bundle_state *result;
if (free_bundle_state_chain != NULL)
{
result = free_bundle_state_chain;
free_bundle_state_chain = result->next;
}
else
{
result = xmalloc (sizeof (struct bundle_state));
result->dfa_state = xmalloc (dfa_state_size);
result->allocated_states_chain = allocated_bundle_states_chain;
allocated_bundle_states_chain = result;
}
result->unique_num = bundle_states_num++;
return result;
}
/* The following function frees given bundle state. */
static void
free_bundle_state (struct bundle_state *state)
{
state->next = free_bundle_state_chain;
free_bundle_state_chain = state;
}
/* Start work with abstract data `bundle states'. */
static void
initiate_bundle_states (void)
{
bundle_states_num = 0;
free_bundle_state_chain = NULL;
allocated_bundle_states_chain = NULL;
}
/* Finish work with abstract data `bundle states'. */
static void
finish_bundle_states (void)
{
struct bundle_state *curr_state, *next_state;
for (curr_state = allocated_bundle_states_chain;
curr_state != NULL;
curr_state = next_state)
{
next_state = curr_state->allocated_states_chain;
free (curr_state->dfa_state);
free (curr_state);
}
}
/* Hash table of the bundle states. The key is dfa_state and insn_num
of the bundle states. */
static htab_t bundle_state_table;
/* The function returns hash of BUNDLE_STATE. */
static unsigned
bundle_state_hash (const void *bundle_state)
{
const struct bundle_state *state = (struct bundle_state *) bundle_state;
unsigned result, i;
for (result = i = 0; i < dfa_state_size; i++)
result += (((unsigned char *) state->dfa_state) [i]
<< ((i % CHAR_BIT) * 3 + CHAR_BIT));
return result + state->insn_num;
}
/* The function returns nonzero if the bundle state keys are equal. */
static int
bundle_state_eq_p (const void *bundle_state_1, const void *bundle_state_2)
{
const struct bundle_state * state1 = (struct bundle_state *) bundle_state_1;
const struct bundle_state * state2 = (struct bundle_state *) bundle_state_2;
return (state1->insn_num == state2->insn_num
&& memcmp (state1->dfa_state, state2->dfa_state,
dfa_state_size) == 0);
}
/* The function inserts the BUNDLE_STATE into the hash table. The
function returns nonzero if the bundle has been inserted into the
table. The table contains the best bundle state with given key. */
static int
insert_bundle_state (struct bundle_state *bundle_state)
{
void **entry_ptr;
entry_ptr = htab_find_slot (bundle_state_table, bundle_state, 1);
if (*entry_ptr == NULL)
{
bundle_state->next = index_to_bundle_states [bundle_state->insn_num];
index_to_bundle_states [bundle_state->insn_num] = bundle_state;
*entry_ptr = (void *) bundle_state;
return TRUE;
}
else if (bundle_state->cost < ((struct bundle_state *) *entry_ptr)->cost
|| (bundle_state->cost == ((struct bundle_state *) *entry_ptr)->cost
&& (((struct bundle_state *)*entry_ptr)->accumulated_insns_num
> bundle_state->accumulated_insns_num
|| (((struct bundle_state *)
*entry_ptr)->accumulated_insns_num
== bundle_state->accumulated_insns_num
&& ((struct bundle_state *)
*entry_ptr)->branch_deviation
> bundle_state->branch_deviation))))
{
struct bundle_state temp;
temp = *(struct bundle_state *) *entry_ptr;
*(struct bundle_state *) *entry_ptr = *bundle_state;
((struct bundle_state *) *entry_ptr)->next = temp.next;
*bundle_state = temp;
}
return FALSE;
}
/* Start work with the hash table. */
static void
initiate_bundle_state_table (void)
{
bundle_state_table = htab_create (50, bundle_state_hash, bundle_state_eq_p,
(htab_del) 0);
}
/* Finish work with the hash table. */
static void
finish_bundle_state_table (void)
{
htab_delete (bundle_state_table);
}
/* The following variable is a insn `nop' used to check bundle states
with different number of inserted nops. */
static rtx ia64_nop;
/* The following function tries to issue NOPS_NUM nops for the current
state without advancing processor cycle. If it failed, the
function returns FALSE and frees the current state. */
static int
try_issue_nops (struct bundle_state *curr_state, int nops_num)
{
int i;
for (i = 0; i < nops_num; i++)
if (state_transition (curr_state->dfa_state, ia64_nop) >= 0)
{
free_bundle_state (curr_state);
return FALSE;
}
return TRUE;
}
/* The following function tries to issue INSN for the current
state without advancing processor cycle. If it failed, the
function returns FALSE and frees the current state. */
static int
try_issue_insn (struct bundle_state *curr_state, rtx insn)
{
if (insn && state_transition (curr_state->dfa_state, insn) >= 0)
{
free_bundle_state (curr_state);
return FALSE;
}
return TRUE;
}
/* The following function tries to issue BEFORE_NOPS_NUM nops and INSN
starting with ORIGINATOR without advancing processor cycle. If
TRY_BUNDLE_END_P is TRUE, the function also/only (if
ONLY_BUNDLE_END_P is TRUE) tries to issue nops to fill all bundle.
If it was successful, the function creates new bundle state and
insert into the hash table and into `index_to_bundle_states'. */
static void
issue_nops_and_insn (struct bundle_state *originator, int before_nops_num,
rtx insn, int try_bundle_end_p, int only_bundle_end_p)
{
struct bundle_state *curr_state;
curr_state = get_free_bundle_state ();
memcpy (curr_state->dfa_state, originator->dfa_state, dfa_state_size);
curr_state->insn = insn;
curr_state->insn_num = originator->insn_num + 1;
curr_state->cost = originator->cost;
curr_state->originator = originator;
curr_state->before_nops_num = before_nops_num;
curr_state->after_nops_num = 0;
curr_state->accumulated_insns_num
= originator->accumulated_insns_num + before_nops_num;
curr_state->branch_deviation = originator->branch_deviation;
gcc_assert (insn);
if (INSN_CODE (insn) == CODE_FOR_insn_group_barrier)
{
gcc_assert (GET_MODE (insn) != TImode);
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
memcpy (temp_dfa_state, curr_state->dfa_state, dfa_state_size);
if (state_transition (temp_dfa_state, dfa_pre_cycle_insn) >= 0
&& curr_state->accumulated_insns_num % 3 != 0)
{
free_bundle_state (curr_state);
return;
}
}
else if (GET_MODE (insn) != TImode)
{
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
curr_state->accumulated_insns_num++;
gcc_assert (GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0);
if (ia64_safe_type (insn) == TYPE_L)
curr_state->accumulated_insns_num++;
}
else
{
/* If this is an insn that must be first in a group, then don't allow
nops to be emitted before it. Currently, alloc is the only such
supported instruction. */
/* ??? The bundling automatons should handle this for us, but they do
not yet have support for the first_insn attribute. */
if (before_nops_num > 0 && get_attr_first_insn (insn) == FIRST_INSN_YES)
{
free_bundle_state (curr_state);
return;
}
state_transition (curr_state->dfa_state, dfa_pre_cycle_insn);
state_transition (curr_state->dfa_state, NULL);
curr_state->cost++;
if (!try_issue_nops (curr_state, before_nops_num))
return;
if (!try_issue_insn (curr_state, insn))
return;
curr_state->accumulated_insns_num++;
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0)
{
/* Finish bundle containing asm insn. */
curr_state->after_nops_num
= 3 - curr_state->accumulated_insns_num % 3;
curr_state->accumulated_insns_num
+= 3 - curr_state->accumulated_insns_num % 3;
}
else if (ia64_safe_type (insn) == TYPE_L)
curr_state->accumulated_insns_num++;
}
if (ia64_safe_type (insn) == TYPE_B)
curr_state->branch_deviation
+= 2 - (curr_state->accumulated_insns_num - 1) % 3;
if (try_bundle_end_p && curr_state->accumulated_insns_num % 3 != 0)
{
if (!only_bundle_end_p && insert_bundle_state (curr_state))
{
state_t dfa_state;
struct bundle_state *curr_state1;
struct bundle_state *allocated_states_chain;
curr_state1 = get_free_bundle_state ();
dfa_state = curr_state1->dfa_state;
allocated_states_chain = curr_state1->allocated_states_chain;
*curr_state1 = *curr_state;
curr_state1->dfa_state = dfa_state;
curr_state1->allocated_states_chain = allocated_states_chain;
memcpy (curr_state1->dfa_state, curr_state->dfa_state,
dfa_state_size);
curr_state = curr_state1;
}
if (!try_issue_nops (curr_state,
3 - curr_state->accumulated_insns_num % 3))
return;
curr_state->after_nops_num
= 3 - curr_state->accumulated_insns_num % 3;
curr_state->accumulated_insns_num
+= 3 - curr_state->accumulated_insns_num % 3;
}
if (!insert_bundle_state (curr_state))
free_bundle_state (curr_state);
return;
}
/* The following function returns position in the two window bundle
for given STATE. */
static int
get_max_pos (state_t state)
{
if (cpu_unit_reservation_p (state, pos_6))
return 6;
else if (cpu_unit_reservation_p (state, pos_5))
return 5;
else if (cpu_unit_reservation_p (state, pos_4))
return 4;
else if (cpu_unit_reservation_p (state, pos_3))
return 3;
else if (cpu_unit_reservation_p (state, pos_2))
return 2;
else if (cpu_unit_reservation_p (state, pos_1))
return 1;
else
return 0;
}
/* The function returns code of a possible template for given position
and state. The function should be called only with 2 values of
position equal to 3 or 6. We avoid generating F NOPs by putting
templates containing F insns at the end of the template search
because undocumented anomaly in McKinley derived cores which can
cause stalls if an F-unit insn (including a NOP) is issued within a
six-cycle window after reading certain application registers (such
as ar.bsp). Furthermore, power-considerations also argue against
the use of F-unit instructions unless they're really needed. */
static int
get_template (state_t state, int pos)
{
switch (pos)
{
case 3:
if (cpu_unit_reservation_p (state, _0mmi_))
return 1;
else if (cpu_unit_reservation_p (state, _0mii_))
return 0;
else if (cpu_unit_reservation_p (state, _0mmb_))
return 7;
else if (cpu_unit_reservation_p (state, _0mib_))
return 6;
else if (cpu_unit_reservation_p (state, _0mbb_))
return 5;
else if (cpu_unit_reservation_p (state, _0bbb_))
return 4;
else if (cpu_unit_reservation_p (state, _0mmf_))
return 3;
else if (cpu_unit_reservation_p (state, _0mfi_))
return 2;
else if (cpu_unit_reservation_p (state, _0mfb_))
return 8;
else if (cpu_unit_reservation_p (state, _0mlx_))
return 9;
else
gcc_unreachable ();
case 6:
if (cpu_unit_reservation_p (state, _1mmi_))
return 1;
else if (cpu_unit_reservation_p (state, _1mii_))
return 0;
else if (cpu_unit_reservation_p (state, _1mmb_))
return 7;
else if (cpu_unit_reservation_p (state, _1mib_))
return 6;
else if (cpu_unit_reservation_p (state, _1mbb_))
return 5;
else if (cpu_unit_reservation_p (state, _1bbb_))
return 4;
else if (_1mmf_ >= 0 && cpu_unit_reservation_p (state, _1mmf_))
return 3;
else if (cpu_unit_reservation_p (state, _1mfi_))
return 2;
else if (cpu_unit_reservation_p (state, _1mfb_))
return 8;
else if (cpu_unit_reservation_p (state, _1mlx_))
return 9;
else
gcc_unreachable ();
default:
gcc_unreachable ();
}
}
/* The following function returns an insn important for insn bundling
followed by INSN and before TAIL. */
static rtx
get_next_important_insn (rtx insn, rtx tail)
{
for (; insn && insn != tail; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER)
return insn;
return NULL_RTX;
}
/* Add a bundle selector TEMPLATE0 before INSN. */
static void
ia64_add_bundle_selector_before (int template0, rtx insn)
{
rtx b = gen_bundle_selector (GEN_INT (template0));
ia64_emit_insn_before (b, insn);
#if NR_BUNDLES == 10
if ((template0 == 4 || template0 == 5)
&& (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS)))
{
int i;
rtx note = NULL_RTX;
/* In .mbb and .bbb bundles, check if CALL_INSN isn't in the
first or second slot. If it is and has REG_EH_NOTE set, copy it
to following nops, as br.call sets rp to the address of following
bundle and therefore an EH region end must be on a bundle
boundary. */
insn = PREV_INSN (insn);
for (i = 0; i < 3; i++)
{
do
insn = next_active_insn (insn);
while (GET_CODE (insn) == INSN
&& get_attr_empty (insn) == EMPTY_YES);
if (GET_CODE (insn) == CALL_INSN)
note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
else if (note)
{
int code;
gcc_assert ((code = recog_memoized (insn)) == CODE_FOR_nop
|| code == CODE_FOR_nop_b);
if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
note = NULL_RTX;
else
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0),
REG_NOTES (insn));
}
}
}
#endif
}
/* The following function does insn bundling. Bundling means
inserting templates and nop insns to fit insn groups into permitted
templates. Instruction scheduling uses NDFA (non-deterministic
finite automata) encoding informations about the templates and the
inserted nops. Nondeterminism of the automata permits follows
all possible insn sequences very fast.
Unfortunately it is not possible to get information about inserting
nop insns and used templates from the automata states. The
automata only says that we can issue an insn possibly inserting
some nops before it and using some template. Therefore insn
bundling in this function is implemented by using DFA
(deterministic finite automata). We follow all possible insn
sequences by inserting 0-2 nops (that is what the NDFA describe for
insn scheduling) before/after each insn being bundled. We know the
start of simulated processor cycle from insn scheduling (insn
starting a new cycle has TImode).
Simple implementation of insn bundling would create enormous
number of possible insn sequences satisfying information about new
cycle ticks taken from the insn scheduling. To make the algorithm
practical we use dynamic programming. Each decision (about
inserting nops and implicitly about previous decisions) is described
by structure bundle_state (see above). If we generate the same
bundle state (key is automaton state after issuing the insns and
nops for it), we reuse already generated one. As consequence we
reject some decisions which cannot improve the solution and
reduce memory for the algorithm.
When we reach the end of EBB (extended basic block), we choose the
best sequence and then, moving back in EBB, insert templates for
the best alternative. The templates are taken from querying
automaton state for each insn in chosen bundle states.
So the algorithm makes two (forward and backward) passes through
EBB. There is an additional forward pass through EBB for Itanium1
processor. This pass inserts more nops to make dependency between
a producer insn and MMMUL/MMSHF at least 4 cycles long. */
static void
bundling (FILE *dump, int verbose, rtx prev_head_insn, rtx tail)
{
struct bundle_state *curr_state, *next_state, *best_state;
rtx insn, next_insn;
int insn_num;
int i, bundle_end_p, only_bundle_end_p, asm_p;
int pos = 0, max_pos, template0, template1;
rtx b;
rtx nop;
enum attr_type type;
insn_num = 0;
/* Count insns in the EBB. */
for (insn = NEXT_INSN (prev_head_insn);
insn && insn != tail;
insn = NEXT_INSN (insn))
if (INSN_P (insn))
insn_num++;
if (insn_num == 0)
return;
bundling_p = 1;
dfa_clean_insn_cache ();
initiate_bundle_state_table ();
index_to_bundle_states = xmalloc ((insn_num + 2)
* sizeof (struct bundle_state *));
/* First (forward) pass -- generation of bundle states. */
curr_state = get_free_bundle_state ();
curr_state->insn = NULL;
curr_state->before_nops_num = 0;
curr_state->after_nops_num = 0;
curr_state->insn_num = 0;
curr_state->cost = 0;
curr_state->accumulated_insns_num = 0;
curr_state->branch_deviation = 0;
curr_state->next = NULL;
curr_state->originator = NULL;
state_reset (curr_state->dfa_state);
index_to_bundle_states [0] = curr_state;
insn_num = 0;
/* Shift cycle mark if it is put on insn which could be ignored. */
for (insn = NEXT_INSN (prev_head_insn);
insn != tail;
insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& (ia64_safe_itanium_class (insn) == ITANIUM_CLASS_IGNORE
|| GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)
&& GET_MODE (insn) == TImode)
{
PUT_MODE (insn, VOIDmode);
for (next_insn = NEXT_INSN (insn);
next_insn != tail;
next_insn = NEXT_INSN (next_insn))
if (INSN_P (next_insn)
&& ia64_safe_itanium_class (next_insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (next_insn)) != USE
&& GET_CODE (PATTERN (next_insn)) != CLOBBER)
{
PUT_MODE (next_insn, TImode);
break;
}
}
/* Forward pass: generation of bundle states. */
for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
insn != NULL_RTX;
insn = next_insn)
{
gcc_assert (INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER);
type = ia64_safe_type (insn);
next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
insn_num++;
index_to_bundle_states [insn_num] = NULL;
for (curr_state = index_to_bundle_states [insn_num - 1];
curr_state != NULL;
curr_state = next_state)
{
pos = curr_state->accumulated_insns_num % 3;
next_state = curr_state->next;
/* We must fill up the current bundle in order to start a
subsequent asm insn in a new bundle. Asm insn is always
placed in a separate bundle. */
only_bundle_end_p
= (next_insn != NULL_RTX
&& INSN_CODE (insn) == CODE_FOR_insn_group_barrier
&& ia64_safe_type (next_insn) == TYPE_UNKNOWN);
/* We may fill up the current bundle if it is the cycle end
without a group barrier. */
bundle_end_p
= (only_bundle_end_p || next_insn == NULL_RTX
|| (GET_MODE (next_insn) == TImode
&& INSN_CODE (insn) != CODE_FOR_insn_group_barrier));
if (type == TYPE_F || type == TYPE_B || type == TYPE_L
|| type == TYPE_S
/* We need to insert 2 nops for cases like M_MII. To
guarantee issuing all insns on the same cycle for
Itanium 1, we need to issue 2 nops after the first M
insn (MnnMII where n is a nop insn). */
|| ((type == TYPE_M || type == TYPE_A)
&& ia64_tune == PROCESSOR_ITANIUM
&& !bundle_end_p && pos == 1))
issue_nops_and_insn (curr_state, 2, insn, bundle_end_p,
only_bundle_end_p);
issue_nops_and_insn (curr_state, 1, insn, bundle_end_p,
only_bundle_end_p);
issue_nops_and_insn (curr_state, 0, insn, bundle_end_p,
only_bundle_end_p);
}
gcc_assert (index_to_bundle_states [insn_num]);
for (curr_state = index_to_bundle_states [insn_num];
curr_state != NULL;
curr_state = curr_state->next)
if (verbose >= 2 && dump)
{
/* This structure is taken from generated code of the
pipeline hazard recognizer (see file insn-attrtab.c).
Please don't forget to change the structure if a new
automaton is added to .md file. */
struct DFA_chip
{
unsigned short one_automaton_state;
unsigned short oneb_automaton_state;
unsigned short two_automaton_state;
unsigned short twob_automaton_state;
};
fprintf
(dump,
"// Bundle state %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
curr_state->unique_num,
(curr_state->originator == NULL
? -1 : curr_state->originator->unique_num),
curr_state->cost,
curr_state->before_nops_num, curr_state->after_nops_num,
curr_state->accumulated_insns_num, curr_state->branch_deviation,
(ia64_tune == PROCESSOR_ITANIUM
? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
: ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
INSN_UID (insn));
}
}
/* We should find a solution because the 2nd insn scheduling has
found one. */
gcc_assert (index_to_bundle_states [insn_num]);
/* Find a state corresponding to the best insn sequence. */
best_state = NULL;
for (curr_state = index_to_bundle_states [insn_num];
curr_state != NULL;
curr_state = curr_state->next)
/* We are just looking at the states with fully filled up last
bundle. The first we prefer insn sequences with minimal cost
then with minimal inserted nops and finally with branch insns
placed in the 3rd slots. */
if (curr_state->accumulated_insns_num % 3 == 0
&& (best_state == NULL || best_state->cost > curr_state->cost
|| (best_state->cost == curr_state->cost
&& (curr_state->accumulated_insns_num
< best_state->accumulated_insns_num
|| (curr_state->accumulated_insns_num
== best_state->accumulated_insns_num
&& curr_state->branch_deviation
< best_state->branch_deviation)))))
best_state = curr_state;
/* Second (backward) pass: adding nops and templates. */
insn_num = best_state->before_nops_num;
template0 = template1 = -1;
for (curr_state = best_state;
curr_state->originator != NULL;
curr_state = curr_state->originator)
{
insn = curr_state->insn;
asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0);
insn_num++;
if (verbose >= 2 && dump)
{
struct DFA_chip
{
unsigned short one_automaton_state;
unsigned short oneb_automaton_state;
unsigned short two_automaton_state;
unsigned short twob_automaton_state;
};
fprintf
(dump,
"// Best %d (orig %d, cost %d, nops %d/%d, insns %d, branch %d, state %d) for %d\n",
curr_state->unique_num,
(curr_state->originator == NULL
? -1 : curr_state->originator->unique_num),
curr_state->cost,
curr_state->before_nops_num, curr_state->after_nops_num,
curr_state->accumulated_insns_num, curr_state->branch_deviation,
(ia64_tune == PROCESSOR_ITANIUM
? ((struct DFA_chip *) curr_state->dfa_state)->oneb_automaton_state
: ((struct DFA_chip *) curr_state->dfa_state)->twob_automaton_state),
INSN_UID (insn));
}
/* Find the position in the current bundle window. The window can
contain at most two bundles. Two bundle window means that
the processor will make two bundle rotation. */
max_pos = get_max_pos (curr_state->dfa_state);
if (max_pos == 6
/* The following (negative template number) means that the
processor did one bundle rotation. */
|| (max_pos == 3 && template0 < 0))
{
/* We are at the end of the window -- find template(s) for
its bundle(s). */
pos = max_pos;
if (max_pos == 3)
template0 = get_template (curr_state->dfa_state, 3);
else
{
template1 = get_template (curr_state->dfa_state, 3);
template0 = get_template (curr_state->dfa_state, 6);
}
}
if (max_pos > 3 && template1 < 0)
/* It may happen when we have the stop inside a bundle. */
{
gcc_assert (pos <= 3);
template1 = get_template (curr_state->dfa_state, 3);
pos += 3;
}
if (!asm_p)
/* Emit nops after the current insn. */
for (i = 0; i < curr_state->after_nops_num; i++)
{
nop = gen_nop ();
emit_insn_after (nop, insn);
pos--;
gcc_assert (pos >= 0);
if (pos % 3 == 0)
{
/* We are at the start of a bundle: emit the template
(it should be defined). */
gcc_assert (template0 >= 0);
ia64_add_bundle_selector_before (template0, nop);
/* If we have two bundle window, we make one bundle
rotation. Otherwise template0 will be undefined
(negative value). */
template0 = template1;
template1 = -1;
}
}
/* Move the position backward in the window. Group barrier has
no slot. Asm insn takes all bundle. */
if (INSN_CODE (insn) != CODE_FOR_insn_group_barrier
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
pos--;
/* Long insn takes 2 slots. */
if (ia64_safe_type (insn) == TYPE_L)
pos--;
gcc_assert (pos >= 0);
if (pos % 3 == 0
&& INSN_CODE (insn) != CODE_FOR_insn_group_barrier
&& GET_CODE (PATTERN (insn)) != ASM_INPUT
&& asm_noperands (PATTERN (insn)) < 0)
{
/* The current insn is at the bundle start: emit the
template. */
gcc_assert (template0 >= 0);
ia64_add_bundle_selector_before (template0, insn);
b = PREV_INSN (insn);
insn = b;
/* See comment above in analogous place for emitting nops
after the insn. */
template0 = template1;
template1 = -1;
}
/* Emit nops after the current insn. */
for (i = 0; i < curr_state->before_nops_num; i++)
{
nop = gen_nop ();
ia64_emit_insn_before (nop, insn);
nop = PREV_INSN (insn);
insn = nop;
pos--;
gcc_assert (pos >= 0);
if (pos % 3 == 0)
{
/* See comment above in analogous place for emitting nops
after the insn. */
gcc_assert (template0 >= 0);
ia64_add_bundle_selector_before (template0, insn);
b = PREV_INSN (insn);
insn = b;
template0 = template1;
template1 = -1;
}
}
}
if (ia64_tune == PROCESSOR_ITANIUM)
/* Insert additional cycles for MM-insns (MMMUL and MMSHF).
Itanium1 has a strange design, if the distance between an insn
and dependent MM-insn is less 4 then we have a 6 additional
cycles stall. So we make the distance equal to 4 cycles if it
is less. */
for (insn = get_next_important_insn (NEXT_INSN (prev_head_insn), tail);
insn != NULL_RTX;
insn = next_insn)
{
gcc_assert (INSN_P (insn)
&& ia64_safe_itanium_class (insn) != ITANIUM_CLASS_IGNORE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER);
next_insn = get_next_important_insn (NEXT_INSN (insn), tail);
if (INSN_UID (insn) < clocks_length && add_cycles [INSN_UID (insn)])
/* We found a MM-insn which needs additional cycles. */
{
rtx last;
int i, j, n;
int pred_stop_p;
/* Now we are searching for a template of the bundle in
which the MM-insn is placed and the position of the
insn in the bundle (0, 1, 2). Also we are searching
for that there is a stop before the insn. */
last = prev_active_insn (insn);
pred_stop_p = recog_memoized (last) == CODE_FOR_insn_group_barrier;
if (pred_stop_p)
last = prev_active_insn (last);
n = 0;
for (;; last = prev_active_insn (last))
if (recog_memoized (last) == CODE_FOR_bundle_selector)
{
template0 = XINT (XVECEXP (PATTERN (last), 0, 0), 0);
if (template0 == 9)
/* The insn is in MLX bundle. Change the template
onto MFI because we will add nops before the
insn. It simplifies subsequent code a lot. */
PATTERN (last)
= gen_bundle_selector (const2_rtx); /* -> MFI */
break;
}
else if (recog_memoized (last) != CODE_FOR_insn_group_barrier
&& (ia64_safe_itanium_class (last)
!= ITANIUM_CLASS_IGNORE))
n++;
/* Some check of correctness: the stop is not at the
bundle start, there are no more 3 insns in the bundle,
and the MM-insn is not at the start of bundle with
template MLX. */
gcc_assert ((!pred_stop_p || n)
&& n <= 2
&& (template0 != 9 || !n));
/* Put nops after the insn in the bundle. */
for (j = 3 - n; j > 0; j --)
ia64_emit_insn_before (gen_nop (), insn);
/* It takes into account that we will add more N nops
before the insn lately -- please see code below. */
add_cycles [INSN_UID (insn)]--;
if (!pred_stop_p || add_cycles [INSN_UID (insn)])
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
if (pred_stop_p)
add_cycles [INSN_UID (insn)]--;
for (i = add_cycles [INSN_UID (insn)]; i > 0; i--)
{
/* Insert "MII;" template. */
ia64_emit_insn_before (gen_bundle_selector (const0_rtx),
insn);
ia64_emit_insn_before (gen_nop (), insn);
ia64_emit_insn_before (gen_nop (), insn);
if (i > 1)
{
/* To decrease code size, we use "MI;I;"
template. */
ia64_emit_insn_before
(gen_insn_group_barrier (GEN_INT (3)), insn);
i--;
}
ia64_emit_insn_before (gen_nop (), insn);
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
}
/* Put the MM-insn in the same slot of a bundle with the
same template as the original one. */
ia64_add_bundle_selector_before (template0, insn);
/* To put the insn in the same slot, add necessary number
of nops. */
for (j = n; j > 0; j --)
ia64_emit_insn_before (gen_nop (), insn);
/* Put the stop if the original bundle had it. */
if (pred_stop_p)
ia64_emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
}
}
free (index_to_bundle_states);
finish_bundle_state_table ();
bundling_p = 0;
dfa_clean_insn_cache ();
}
/* The following function is called at the end of scheduling BB or
EBB. After reload, it inserts stop bits and does insn bundling. */
static void
ia64_sched_finish (FILE *dump, int sched_verbose)
{
if (sched_verbose)
fprintf (dump, "// Finishing schedule.\n");
if (!reload_completed)
return;
if (reload_completed)
{
final_emit_insn_group_barriers (dump);
bundling (dump, sched_verbose, current_sched_info->prev_head,
current_sched_info->next_tail);
if (sched_verbose && dump)
fprintf (dump, "// finishing %d-%d\n",
INSN_UID (NEXT_INSN (current_sched_info->prev_head)),
INSN_UID (PREV_INSN (current_sched_info->next_tail)));
return;
}
}
/* The following function inserts stop bits in scheduled BB or EBB. */
static void
final_emit_insn_group_barriers (FILE *dump ATTRIBUTE_UNUSED)
{
rtx insn;
int need_barrier_p = 0;
rtx prev_insn = NULL_RTX;
init_insn_group_barriers ();
for (insn = NEXT_INSN (current_sched_info->prev_head);
insn != current_sched_info->next_tail;
insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == BARRIER)
{
rtx last = prev_active_insn (insn);
if (! last)
continue;
if (GET_CODE (last) == JUMP_INSN
&& GET_CODE (PATTERN (last)) == ADDR_DIFF_VEC)
last = prev_active_insn (last);
if (recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)), last);
init_insn_group_barriers ();
need_barrier_p = 0;
prev_insn = NULL_RTX;
}
else if (INSN_P (insn))
{
if (recog_memoized (insn) == CODE_FOR_insn_group_barrier)
{
init_insn_group_barriers ();
need_barrier_p = 0;
prev_insn = NULL_RTX;
}
else if (need_barrier_p || group_barrier_needed (insn))
{
if (TARGET_EARLY_STOP_BITS)
{
rtx last;
for (last = insn;
last != current_sched_info->prev_head;
last = PREV_INSN (last))
if (INSN_P (last) && GET_MODE (last) == TImode
&& stops_p [INSN_UID (last)])
break;
if (last == current_sched_info->prev_head)
last = insn;
last = prev_active_insn (last);
if (last
&& recog_memoized (last) != CODE_FOR_insn_group_barrier)
emit_insn_after (gen_insn_group_barrier (GEN_INT (3)),
last);
init_insn_group_barriers ();
for (last = NEXT_INSN (last);
last != insn;
last = NEXT_INSN (last))
if (INSN_P (last))
group_barrier_needed (last);
}
else
{
emit_insn_before (gen_insn_group_barrier (GEN_INT (3)),
insn);
init_insn_group_barriers ();
}
group_barrier_needed (insn);
prev_insn = NULL_RTX;
}
else if (recog_memoized (insn) >= 0)
prev_insn = insn;
need_barrier_p = (GET_CODE (insn) == CALL_INSN
|| GET_CODE (PATTERN (insn)) == ASM_INPUT
|| asm_noperands (PATTERN (insn)) >= 0);
}
}
}
/* If the following function returns TRUE, we will use the DFA
insn scheduler. */
static int
ia64_first_cycle_multipass_dfa_lookahead (void)
{
return (reload_completed ? 6 : 4);
}
/* The following function initiates variable `dfa_pre_cycle_insn'. */
static void
ia64_init_dfa_pre_cycle_insn (void)
{
if (temp_dfa_state == NULL)
{
dfa_state_size = state_size ();
temp_dfa_state = xmalloc (dfa_state_size);
prev_cycle_state = xmalloc (dfa_state_size);
}
dfa_pre_cycle_insn = make_insn_raw (gen_pre_cycle ());
PREV_INSN (dfa_pre_cycle_insn) = NEXT_INSN (dfa_pre_cycle_insn) = NULL_RTX;
recog_memoized (dfa_pre_cycle_insn);
dfa_stop_insn = make_insn_raw (gen_insn_group_barrier (GEN_INT (3)));
PREV_INSN (dfa_stop_insn) = NEXT_INSN (dfa_stop_insn) = NULL_RTX;
recog_memoized (dfa_stop_insn);
}
/* The following function returns the pseudo insn DFA_PRE_CYCLE_INSN
used by the DFA insn scheduler. */
static rtx
ia64_dfa_pre_cycle_insn (void)
{
return dfa_pre_cycle_insn;
}
/* The following function returns TRUE if PRODUCER (of type ilog or
ld) produces address for CONSUMER (of type st or stf). */
int
ia64_st_address_bypass_p (rtx producer, rtx consumer)
{
rtx dest, reg, mem;
gcc_assert (producer && consumer);
dest = ia64_single_set (producer);
gcc_assert (dest);
reg = SET_DEST (dest);
gcc_assert (reg);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
gcc_assert (GET_CODE (reg) == REG);
dest = ia64_single_set (consumer);
gcc_assert (dest);
mem = SET_DEST (dest);
gcc_assert (mem && GET_CODE (mem) == MEM);
return reg_mentioned_p (reg, mem);
}
/* The following function returns TRUE if PRODUCER (of type ilog or
ld) produces address for CONSUMER (of type ld or fld). */
int
ia64_ld_address_bypass_p (rtx producer, rtx consumer)
{
rtx dest, src, reg, mem;
gcc_assert (producer && consumer);
dest = ia64_single_set (producer);
gcc_assert (dest);
reg = SET_DEST (dest);
gcc_assert (reg);
if (GET_CODE (reg) == SUBREG)
reg = SUBREG_REG (reg);
gcc_assert (GET_CODE (reg) == REG);
src = ia64_single_set (consumer);
gcc_assert (src);
mem = SET_SRC (src);
gcc_assert (mem);
if (GET_CODE (mem) == UNSPEC && XVECLEN (mem, 0) > 0)
mem = XVECEXP (mem, 0, 0);
else if (GET_CODE (mem) == IF_THEN_ELSE)
/* ??? Is this bypass necessary for ld.c? */
{
gcc_assert (XINT (XEXP (XEXP (mem, 0), 0), 1) == UNSPEC_LDCCLR);
mem = XEXP (mem, 1);
}
while (GET_CODE (mem) == SUBREG || GET_CODE (mem) == ZERO_EXTEND)
mem = XEXP (mem, 0);
if (GET_CODE (mem) == UNSPEC)
{
int c = XINT (mem, 1);
gcc_assert (c == UNSPEC_LDA || c == UNSPEC_LDS || c == UNSPEC_LDSA);
mem = XVECEXP (mem, 0, 0);
}
/* Note that LO_SUM is used for GOT loads. */
gcc_assert (GET_CODE (mem) == LO_SUM || GET_CODE (mem) == MEM);
return reg_mentioned_p (reg, mem);
}
/* The following function returns TRUE if INSN produces address for a
load/store insn. We will place such insns into M slot because it
decreases its latency time. */
int
ia64_produce_address_p (rtx insn)
{
return insn->call;
}
/* Emit pseudo-ops for the assembler to describe predicate relations.
At present this assumes that we only consider predicate pairs to
be mutex, and that the assembler can deduce proper values from
straight-line code. */
static void
emit_predicate_relation_info (void)
{
basic_block bb;
FOR_EACH_BB_REVERSE (bb)
{
int r;
rtx head = BB_HEAD (bb);
/* We only need such notes at code labels. */
if (GET_CODE (head) != CODE_LABEL)
continue;
if (GET_CODE (NEXT_INSN (head)) == NOTE
&& NOTE_LINE_NUMBER (NEXT_INSN (head)) == NOTE_INSN_BASIC_BLOCK)
head = NEXT_INSN (head);
/* Skip p0, which may be thought to be live due to (reg:DI p0)
grabbing the entire block of predicate registers. */
for (r = PR_REG (2); r < PR_REG (64); r += 2)
if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, r))
{
rtx p = gen_rtx_REG (BImode, r);
rtx n = emit_insn_after (gen_pred_rel_mutex (p), head);
if (head == BB_END (bb))
BB_END (bb) = n;
head = n;
}
}
/* Look for conditional calls that do not return, and protect predicate
relations around them. Otherwise the assembler will assume the call
returns, and complain about uses of call-clobbered predicates after
the call. */
FOR_EACH_BB_REVERSE (bb)
{
rtx insn = BB_HEAD (bb);
while (1)
{
if (GET_CODE (insn) == CALL_INSN
&& GET_CODE (PATTERN (insn)) == COND_EXEC
&& find_reg_note (insn, REG_NORETURN, NULL_RTX))
{
rtx b = emit_insn_before (gen_safe_across_calls_all (), insn);
rtx a = emit_insn_after (gen_safe_across_calls_normal (), insn);
if (BB_HEAD (bb) == insn)
BB_HEAD (bb) = b;
if (BB_END (bb) == insn)
BB_END (bb) = a;
}
if (insn == BB_END (bb))
break;
insn = NEXT_INSN (insn);
}
}
}
/* Perform machine dependent operations on the rtl chain INSNS. */
static void
ia64_reorg (void)
{
/* We are freeing block_for_insn in the toplev to keep compatibility
with old MDEP_REORGS that are not CFG based. Recompute it now. */
compute_bb_for_insn ();
/* If optimizing, we'll have split before scheduling. */
if (optimize == 0)
split_all_insns (0);
/* ??? update_life_info_in_dirty_blocks fails to terminate during
non-optimizing bootstrap. */
update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
if (optimize && ia64_flag_schedule_insns2)
{
timevar_push (TV_SCHED2);
ia64_final_schedule = 1;
initiate_bundle_states ();
ia64_nop = make_insn_raw (gen_nop ());
PREV_INSN (ia64_nop) = NEXT_INSN (ia64_nop) = NULL_RTX;
recog_memoized (ia64_nop);
clocks_length = get_max_uid () + 1;
stops_p = xcalloc (1, clocks_length);
if (ia64_tune == PROCESSOR_ITANIUM)
{
clocks = xcalloc (clocks_length, sizeof (int));
add_cycles = xcalloc (clocks_length, sizeof (int));
}
if (ia64_tune == PROCESSOR_ITANIUM2)
{
pos_1 = get_cpu_unit_code ("2_1");
pos_2 = get_cpu_unit_code ("2_2");
pos_3 = get_cpu_unit_code ("2_3");
pos_4 = get_cpu_unit_code ("2_4");
pos_5 = get_cpu_unit_code ("2_5");
pos_6 = get_cpu_unit_code ("2_6");
_0mii_ = get_cpu_unit_code ("2b_0mii.");
_0mmi_ = get_cpu_unit_code ("2b_0mmi.");
_0mfi_ = get_cpu_unit_code ("2b_0mfi.");
_0mmf_ = get_cpu_unit_code ("2b_0mmf.");
_0bbb_ = get_cpu_unit_code ("2b_0bbb.");
_0mbb_ = get_cpu_unit_code ("2b_0mbb.");
_0mib_ = get_cpu_unit_code ("2b_0mib.");
_0mmb_ = get_cpu_unit_code ("2b_0mmb.");
_0mfb_ = get_cpu_unit_code ("2b_0mfb.");
_0mlx_ = get_cpu_unit_code ("2b_0mlx.");
_1mii_ = get_cpu_unit_code ("2b_1mii.");
_1mmi_ = get_cpu_unit_code ("2b_1mmi.");
_1mfi_ = get_cpu_unit_code ("2b_1mfi.");
_1mmf_ = get_cpu_unit_code ("2b_1mmf.");
_1bbb_ = get_cpu_unit_code ("2b_1bbb.");
_1mbb_ = get_cpu_unit_code ("2b_1mbb.");
_1mib_ = get_cpu_unit_code ("2b_1mib.");
_1mmb_ = get_cpu_unit_code ("2b_1mmb.");
_1mfb_ = get_cpu_unit_code ("2b_1mfb.");
_1mlx_ = get_cpu_unit_code ("2b_1mlx.");
}
else
{
pos_1 = get_cpu_unit_code ("1_1");
pos_2 = get_cpu_unit_code ("1_2");
pos_3 = get_cpu_unit_code ("1_3");
pos_4 = get_cpu_unit_code ("1_4");
pos_5 = get_cpu_unit_code ("1_5");
pos_6 = get_cpu_unit_code ("1_6");
_0mii_ = get_cpu_unit_code ("1b_0mii.");
_0mmi_ = get_cpu_unit_code ("1b_0mmi.");
_0mfi_ = get_cpu_unit_code ("1b_0mfi.");
_0mmf_ = get_cpu_unit_code ("1b_0mmf.");
_0bbb_ = get_cpu_unit_code ("1b_0bbb.");
_0mbb_ = get_cpu_unit_code ("1b_0mbb.");
_0mib_ = get_cpu_unit_code ("1b_0mib.");
_0mmb_ = get_cpu_unit_code ("1b_0mmb.");
_0mfb_ = get_cpu_unit_code ("1b_0mfb.");
_0mlx_ = get_cpu_unit_code ("1b_0mlx.");
_1mii_ = get_cpu_unit_code ("1b_1mii.");
_1mmi_ = get_cpu_unit_code ("1b_1mmi.");
_1mfi_ = get_cpu_unit_code ("1b_1mfi.");
_1mmf_ = get_cpu_unit_code ("1b_1mmf.");
_1bbb_ = get_cpu_unit_code ("1b_1bbb.");
_1mbb_ = get_cpu_unit_code ("1b_1mbb.");
_1mib_ = get_cpu_unit_code ("1b_1mib.");
_1mmb_ = get_cpu_unit_code ("1b_1mmb.");
_1mfb_ = get_cpu_unit_code ("1b_1mfb.");
_1mlx_ = get_cpu_unit_code ("1b_1mlx.");
}
schedule_ebbs ();
finish_bundle_states ();
if (ia64_tune == PROCESSOR_ITANIUM)
{
free (add_cycles);
free (clocks);
}
free (stops_p);
stops_p = NULL;
emit_insn_group_barriers (dump_file);
ia64_final_schedule = 0;
timevar_pop (TV_SCHED2);
}
else
emit_all_insn_group_barriers (dump_file);
/* A call must not be the last instruction in a function, so that the
return address is still within the function, so that unwinding works
properly. Note that IA-64 differs from dwarf2 on this point. */
if (flag_unwind_tables || (flag_exceptions && !USING_SJLJ_EXCEPTIONS))
{
rtx insn;
int saw_stop = 0;
insn = get_last_insn ();
if (! INSN_P (insn))
insn = prev_active_insn (insn);
/* Skip over insns that expand to nothing. */
while (GET_CODE (insn) == INSN && get_attr_empty (insn) == EMPTY_YES)
{
if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
&& XINT (PATTERN (insn), 1) == UNSPECV_INSN_GROUP_BARRIER)
saw_stop = 1;
insn = prev_active_insn (insn);
}
if (GET_CODE (insn) == CALL_INSN)
{
if (! saw_stop)
emit_insn (gen_insn_group_barrier (GEN_INT (3)));
emit_insn (gen_break_f ());
emit_insn (gen_insn_group_barrier (GEN_INT (3)));
}
}
emit_predicate_relation_info ();
if (ia64_flag_var_tracking)
{
timevar_push (TV_VAR_TRACKING);
variable_tracking_main ();
timevar_pop (TV_VAR_TRACKING);
}
}
/* Return true if REGNO is used by the epilogue. */
int
ia64_epilogue_uses (int regno)
{
switch (regno)
{
case R_GR (1):
/* With a call to a function in another module, we will write a new
value to "gp". After returning from such a call, we need to make
sure the function restores the original gp-value, even if the
function itself does not use the gp anymore. */
return !(TARGET_AUTO_PIC || TARGET_NO_PIC);
case IN_REG (0): case IN_REG (1): case IN_REG (2): case IN_REG (3):
case IN_REG (4): case IN_REG (5): case IN_REG (6): case IN_REG (7):
/* For functions defined with the syscall_linkage attribute, all
input registers are marked as live at all function exits. This
prevents the register allocator from using the input registers,
which in turn makes it possible to restart a system call after
an interrupt without having to save/restore the input registers.
This also prevents kernel data from leaking to application code. */
return lookup_attribute ("syscall_linkage",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))) != NULL;
case R_BR (0):
/* Conditional return patterns can't represent the use of `b0' as
the return address, so we force the value live this way. */
return 1;
case AR_PFS_REGNUM:
/* Likewise for ar.pfs, which is used by br.ret. */
return 1;
default:
return 0;
}
}
/* Return true if REGNO is used by the frame unwinder. */
int
ia64_eh_uses (int regno)
{
if (! reload_completed)
return 0;
if (current_frame_info.reg_save_b0
&& regno == current_frame_info.reg_save_b0)
return 1;
if (current_frame_info.reg_save_pr
&& regno == current_frame_info.reg_save_pr)
return 1;
if (current_frame_info.reg_save_ar_pfs
&& regno == current_frame_info.reg_save_ar_pfs)
return 1;
if (current_frame_info.reg_save_ar_unat
&& regno == current_frame_info.reg_save_ar_unat)
return 1;
if (current_frame_info.reg_save_ar_lc
&& regno == current_frame_info.reg_save_ar_lc)
return 1;
return 0;
}
/* Return true if this goes in small data/bss. */
/* ??? We could also support own long data here. Generating movl/add/ld8
instead of addl,ld8/ld8. This makes the code bigger, but should make the
code faster because there is one less load. This also includes incomplete
types which can't go in sdata/sbss. */
static bool
ia64_in_small_data_p (tree exp)
{
if (TARGET_NO_SDATA)
return false;
/* We want to merge strings, so we never consider them small data. */
if (TREE_CODE (exp) == STRING_CST)
return false;
/* Functions are never small data. */
if (TREE_CODE (exp) == FUNCTION_DECL)
return false;
if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp))
{
const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp));
if (strcmp (section, ".sdata") == 0
|| strncmp (section, ".sdata.", 7) == 0
|| strncmp (section, ".gnu.linkonce.s.", 16) == 0
|| strcmp (section, ".sbss") == 0
|| strncmp (section, ".sbss.", 6) == 0
|| strncmp (section, ".gnu.linkonce.sb.", 17) == 0)
return true;
}
else
{
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
/* If this is an incomplete type with size 0, then we can't put it
in sdata because it might be too big when completed. */
if (size > 0 && size <= ia64_section_threshold)
return true;
}
return false;
}
/* Output assembly directives for prologue regions. */
/* The current basic block number. */
static bool last_block;
/* True if we need a copy_state command at the start of the next block. */
static bool need_copy_state;
#ifndef MAX_ARTIFICIAL_LABEL_BYTES
# define MAX_ARTIFICIAL_LABEL_BYTES 30
#endif
/* Emit a debugging label after a call-frame-related insn. We'd
rather output the label right away, but we'd have to output it
after, not before, the instruction, and the instruction has not
been output yet. So we emit the label after the insn, delete it to
avoid introducing basic blocks, and mark it as preserved, such that
it is still output, given that it is referenced in debug info. */
static const char *
ia64_emit_deleted_label_after_insn (rtx insn)
{
char label[MAX_ARTIFICIAL_LABEL_BYTES];
rtx lb = gen_label_rtx ();
rtx label_insn = emit_label_after (lb, insn);
LABEL_PRESERVE_P (lb) = 1;
delete_insn (label_insn);
ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (label_insn));
return xstrdup (label);
}
/* Define the CFA after INSN with the steady-state definition. */
static void
ia64_dwarf2out_def_steady_cfa (rtx insn)
{
rtx fp = frame_pointer_needed
? hard_frame_pointer_rtx
: stack_pointer_rtx;
dwarf2out_def_cfa
(ia64_emit_deleted_label_after_insn (insn),
REGNO (fp),
ia64_initial_elimination_offset
(REGNO (arg_pointer_rtx), REGNO (fp))
+ ARG_POINTER_CFA_OFFSET (current_function_decl));
}
/* The generic dwarf2 frame debug info generator does not define a
separate region for the very end of the epilogue, so refrain from
doing so in the IA64-specific code as well. */
#define IA64_CHANGE_CFA_IN_EPILOGUE 0
/* The function emits unwind directives for the start of an epilogue. */
static void
process_epilogue (FILE *asm_out_file, rtx insn, bool unwind, bool frame)
{
/* If this isn't the last block of the function, then we need to label the
current state, and copy it back in at the start of the next block. */
if (!last_block)
{
if (unwind)
fprintf (asm_out_file, "\t.label_state %d\n",
++cfun->machine->state_num);
need_copy_state = true;
}
if (unwind)
fprintf (asm_out_file, "\t.restore sp\n");
if (IA64_CHANGE_CFA_IN_EPILOGUE && frame)
dwarf2out_def_cfa (ia64_emit_deleted_label_after_insn (insn),
STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
}
/* This function processes a SET pattern looking for specific patterns
which result in emitting an assembly directive required for unwinding. */
static int
process_set (FILE *asm_out_file, rtx pat, rtx insn, bool unwind, bool frame)
{
rtx src = SET_SRC (pat);
rtx dest = SET_DEST (pat);
int src_regno, dest_regno;
/* Look for the ALLOC insn. */
if (GET_CODE (src) == UNSPEC_VOLATILE
&& XINT (src, 1) == UNSPECV_ALLOC
&& GET_CODE (dest) == REG)
{
dest_regno = REGNO (dest);
/* If this is the final destination for ar.pfs, then this must
be the alloc in the prologue. */
if (dest_regno == current_frame_info.reg_save_ar_pfs)
{
if (unwind)
fprintf (asm_out_file, "\t.save ar.pfs, r%d\n",
ia64_dbx_register_number (dest_regno));
}
else
{
/* This must be an alloc before a sibcall. We must drop the
old frame info. The easiest way to drop the old frame
info is to ensure we had a ".restore sp" directive
followed by a new prologue. If the procedure doesn't
have a memory-stack frame, we'll issue a dummy ".restore
sp" now. */
if (current_frame_info.total_size == 0 && !frame_pointer_needed)
/* if haven't done process_epilogue() yet, do it now */
process_epilogue (asm_out_file, insn, unwind, frame);
if (unwind)
fprintf (asm_out_file, "\t.prologue\n");
}
return 1;
}
/* Look for SP = .... */
if (GET_CODE (dest) == REG && REGNO (dest) == STACK_POINTER_REGNUM)
{
if (GET_CODE (src) == PLUS)
{
rtx op0 = XEXP (src, 0);
rtx op1 = XEXP (src, 1);
gcc_assert (op0 == dest && GET_CODE (op1) == CONST_INT);
if (INTVAL (op1) < 0)
{
gcc_assert (!frame_pointer_needed);
if (unwind)
fprintf (asm_out_file, "\t.fframe "HOST_WIDE_INT_PRINT_DEC"\n",
-INTVAL (op1));
if (frame)
ia64_dwarf2out_def_steady_cfa (insn);
}
else
process_epilogue (asm_out_file, insn, unwind, frame);
}
else
{
gcc_assert (GET_CODE (src) == REG
&& REGNO (src) == HARD_FRAME_POINTER_REGNUM);
process_epilogue (asm_out_file, insn, unwind, frame);
}
return 1;
}
/* Register move we need to look at. */
if (GET_CODE (dest) == REG && GET_CODE (src) == REG)
{
src_regno = REGNO (src);
dest_regno = REGNO (dest);
switch (src_regno)
{
case BR_REG (0):
/* Saving return address pointer. */
gcc_assert (dest_regno == current_frame_info.reg_save_b0);
if (unwind)
fprintf (asm_out_file, "\t.save rp, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case PR_REG (0):
gcc_assert (dest_regno == current_frame_info.reg_save_pr);
if (unwind)
fprintf (asm_out_file, "\t.save pr, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case AR_UNAT_REGNUM:
gcc_assert (dest_regno == current_frame_info.reg_save_ar_unat);
if (unwind)
fprintf (asm_out_file, "\t.save ar.unat, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case AR_LC_REGNUM:
gcc_assert (dest_regno == current_frame_info.reg_save_ar_lc);
if (unwind)
fprintf (asm_out_file, "\t.save ar.lc, r%d\n",
ia64_dbx_register_number (dest_regno));
return 1;
case STACK_POINTER_REGNUM:
gcc_assert (dest_regno == HARD_FRAME_POINTER_REGNUM
&& frame_pointer_needed);
if (unwind)
fprintf (asm_out_file, "\t.vframe r%d\n",
ia64_dbx_register_number (dest_regno));
if (frame)
ia64_dwarf2out_def_steady_cfa (insn);
return 1;
default:
/* Everything else should indicate being stored to memory. */
gcc_unreachable ();
}
}
/* Memory store we need to look at. */
if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
{
long off;
rtx base;
const char *saveop;
if (GET_CODE (XEXP (dest, 0)) == REG)
{
base = XEXP (dest, 0);
off = 0;
}
else
{
gcc_assert (GET_CODE (XEXP (dest, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
base = XEXP (XEXP (dest, 0), 0);
off = INTVAL (XEXP (XEXP (dest, 0), 1));
}
if (base == hard_frame_pointer_rtx)
{
saveop = ".savepsp";
off = - off;
}
else
{
gcc_assert (base == stack_pointer_rtx);
saveop = ".savesp";
}
src_regno = REGNO (src);
switch (src_regno)
{
case BR_REG (0):
gcc_assert (!current_frame_info.reg_save_b0);
if (unwind)
fprintf (asm_out_file, "\t%s rp, %ld\n", saveop, off);
return 1;
case PR_REG (0):
gcc_assert (!current_frame_info.reg_save_pr);
if (unwind)
fprintf (asm_out_file, "\t%s pr, %ld\n", saveop, off);
return 1;
case AR_LC_REGNUM:
gcc_assert (!current_frame_info.reg_save_ar_lc);
if (unwind)
fprintf (asm_out_file, "\t%s ar.lc, %ld\n", saveop, off);
return 1;
case AR_PFS_REGNUM:
gcc_assert (!current_frame_info.reg_save_ar_pfs);
if (unwind)
fprintf (asm_out_file, "\t%s ar.pfs, %ld\n", saveop, off);
return 1;
case AR_UNAT_REGNUM:
gcc_assert (!current_frame_info.reg_save_ar_unat);
if (unwind)
fprintf (asm_out_file, "\t%s ar.unat, %ld\n", saveop, off);
return 1;
case GR_REG (4):
case GR_REG (5):
case GR_REG (6):
case GR_REG (7):
if (unwind)
fprintf (asm_out_file, "\t.save.g 0x%x\n",
1 << (src_regno - GR_REG (4)));
return 1;
case BR_REG (1):
case BR_REG (2):
case BR_REG (3):
case BR_REG (4):
case BR_REG (5):
if (unwind)
fprintf (asm_out_file, "\t.save.b 0x%x\n",
1 << (src_regno - BR_REG (1)));
return 1;
case FR_REG (2):
case FR_REG (3):
case FR_REG (4):
case FR_REG (5):
if (unwind)
fprintf (asm_out_file, "\t.save.f 0x%x\n",
1 << (src_regno - FR_REG (2)));
return 1;
case FR_REG (16): case FR_REG (17): case FR_REG (18): case FR_REG (19):
case FR_REG (20): case FR_REG (21): case FR_REG (22): case FR_REG (23):
case FR_REG (24): case FR_REG (25): case FR_REG (26): case FR_REG (27):
case FR_REG (28): case FR_REG (29): case FR_REG (30): case FR_REG (31):
if (unwind)
fprintf (asm_out_file, "\t.save.gf 0x0, 0x%x\n",
1 << (src_regno - FR_REG (12)));
return 1;
default:
return 0;
}
}
return 0;
}
/* This function looks at a single insn and emits any directives
required to unwind this insn. */
void
process_for_unwind_directive (FILE *asm_out_file, rtx insn)
{
bool unwind = (flag_unwind_tables
|| (flag_exceptions && !USING_SJLJ_EXCEPTIONS));
bool frame = dwarf2out_do_frame ();
if (unwind || frame)
{
rtx pat;
if (GET_CODE (insn) == NOTE
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK)
{
last_block = NOTE_BASIC_BLOCK (insn)->next_bb == EXIT_BLOCK_PTR;
/* Restore unwind state from immediately before the epilogue. */
if (need_copy_state)
{
if (unwind)
{
fprintf (asm_out_file, "\t.body\n");
fprintf (asm_out_file, "\t.copy_state %d\n",
cfun->machine->state_num);
}
if (IA64_CHANGE_CFA_IN_EPILOGUE && frame)
ia64_dwarf2out_def_steady_cfa (insn);
need_copy_state = false;
}
}
if (GET_CODE (insn) == NOTE || ! RTX_FRAME_RELATED_P (insn))
return;
pat = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
if (pat)
pat = XEXP (pat, 0);
else
pat = PATTERN (insn);
switch (GET_CODE (pat))
{
case SET:
process_set (asm_out_file, pat, insn, unwind, frame);
break;
case PARALLEL:
{
int par_index;
int limit = XVECLEN (pat, 0);
for (par_index = 0; par_index < limit; par_index++)
{
rtx x = XVECEXP (pat, 0, par_index);
if (GET_CODE (x) == SET)
process_set (asm_out_file, x, insn, unwind, frame);
}
break;
}
default:
gcc_unreachable ();
}
}
}
enum ia64_builtins
{
IA64_BUILTIN_BSP,
IA64_BUILTIN_FLUSHRS
};
void
ia64_init_builtins (void)
{
tree fpreg_type;
tree float80_type;
/* The __fpreg type. */
fpreg_type = make_node (REAL_TYPE);
TYPE_PRECISION (fpreg_type) = 82;
layout_type (fpreg_type);
(*lang_hooks.types.register_builtin_type) (fpreg_type, "__fpreg");
/* The __float80 type. */
float80_type = make_node (REAL_TYPE);
TYPE_PRECISION (float80_type) = 80;
layout_type (float80_type);
(*lang_hooks.types.register_builtin_type) (float80_type, "__float80");
/* The __float128 type. */
if (!TARGET_HPUX)
{
tree float128_type = make_node (REAL_TYPE);
TYPE_PRECISION (float128_type) = 128;
layout_type (float128_type);
(*lang_hooks.types.register_builtin_type) (float128_type, "__float128");
}
else
/* Under HPUX, this is a synonym for "long double". */
(*lang_hooks.types.register_builtin_type) (long_double_type_node,
"__float128");
#define def_builtin(name, type, code) \
lang_hooks.builtin_function ((name), (type), (code), BUILT_IN_MD, \
NULL, NULL_TREE)
def_builtin ("__builtin_ia64_bsp",
build_function_type (ptr_type_node, void_list_node),
IA64_BUILTIN_BSP);
def_builtin ("__builtin_ia64_flushrs",
build_function_type (void_type_node, void_list_node),
IA64_BUILTIN_FLUSHRS);
#undef def_builtin
}
rtx
ia64_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
switch (fcode)
{
case IA64_BUILTIN_BSP:
if (! target || ! register_operand (target, DImode))
target = gen_reg_rtx (DImode);
emit_insn (gen_bsp_value (target));
#ifdef POINTERS_EXTEND_UNSIGNED
target = convert_memory_address (ptr_mode, target);
#endif
return target;
case IA64_BUILTIN_FLUSHRS:
emit_insn (gen_flushrs ());
return const0_rtx;
default:
break;
}
return NULL_RTX;
}
/* For the HP-UX IA64 aggregate parameters are passed stored in the
most significant bits of the stack slot. */
enum direction
ia64_hpux_function_arg_padding (enum machine_mode mode, tree type)
{
/* Exception to normal case for structures/unions/etc. */
if (type && AGGREGATE_TYPE_P (type)
&& int_size_in_bytes (type) < UNITS_PER_WORD)
return upward;
/* Fall back to the default. */
return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
}
/* Linked list of all external functions that are to be emitted by GCC.
We output the name if and only if TREE_SYMBOL_REFERENCED is set in
order to avoid putting out names that are never really used. */
struct extern_func_list GTY(())
{
struct extern_func_list *next;
tree decl;
};
static GTY(()) struct extern_func_list *extern_func_head;
static void
ia64_hpux_add_extern_decl (tree decl)
{
struct extern_func_list *p = ggc_alloc (sizeof (struct extern_func_list));
p->decl = decl;
p->next = extern_func_head;
extern_func_head = p;
}
/* Print out the list of used global functions. */
static void
ia64_hpux_file_end (void)
{
struct extern_func_list *p;
for (p = extern_func_head; p; p = p->next)
{
tree decl = p->decl;
tree id = DECL_ASSEMBLER_NAME (decl);
gcc_assert (id);
if (!TREE_ASM_WRITTEN (decl) && TREE_SYMBOL_REFERENCED (id))
{
const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
TREE_ASM_WRITTEN (decl) = 1;
(*targetm.asm_out.globalize_label) (asm_out_file, name);
fputs (TYPE_ASM_OP, asm_out_file);
assemble_name (asm_out_file, name);
fprintf (asm_out_file, "," TYPE_OPERAND_FMT "\n", "function");
}
}
extern_func_head = 0;
}
/* Set SImode div/mod functions, init_integral_libfuncs only initializes
modes of word_mode and larger. Rename the TFmode libfuncs using the
HPUX conventions. __divtf3 is used for XFmode. We need to keep it for
backward compatibility. */
static void
ia64_init_libfuncs (void)
{
set_optab_libfunc (sdiv_optab, SImode, "__divsi3");
set_optab_libfunc (udiv_optab, SImode, "__udivsi3");
set_optab_libfunc (smod_optab, SImode, "__modsi3");
set_optab_libfunc (umod_optab, SImode, "__umodsi3");
set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
set_conv_libfunc (sext_optab, TFmode, XFmode, "_U_Qfcnvff_f80_to_quad");
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
set_conv_libfunc (trunc_optab, XFmode, TFmode, "_U_Qfcnvff_quad_to_f80");
set_conv_libfunc (sfix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_sgl");
set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
set_conv_libfunc (sfix_optab, TImode, TFmode, "_U_Qfcnvfxt_quad_to_quad");
set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxut_quad_to_sgl");
set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxut_quad_to_dbl");
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
set_conv_libfunc (sfloat_optab, TFmode, TImode, "_U_Qfcnvxf_quad_to_quad");
/* HP-UX 11.23 libc does not have a function for unsigned
SImode-to-TFmode conversion. */
set_conv_libfunc (ufloat_optab, TFmode, DImode, "_U_Qfcnvxuf_dbl_to_quad");
}
/* Rename all the TFmode libfuncs using the HPUX conventions. */
static void
ia64_hpux_init_libfuncs (void)
{
ia64_init_libfuncs ();
/* The HP SI millicode division and mod functions expect DI arguments.
By turning them off completely we avoid using both libgcc and the
non-standard millicode routines and use the HP DI millicode routines
instead. */
set_optab_libfunc (sdiv_optab, SImode, 0);
set_optab_libfunc (udiv_optab, SImode, 0);
set_optab_libfunc (smod_optab, SImode, 0);
set_optab_libfunc (umod_optab, SImode, 0);
set_optab_libfunc (sdiv_optab, DImode, "__milli_divI");
set_optab_libfunc (udiv_optab, DImode, "__milli_divU");
set_optab_libfunc (smod_optab, DImode, "__milli_remI");
set_optab_libfunc (umod_optab, DImode, "__milli_remU");
/* HP-UX libc has TF min/max/abs routines in it. */
set_optab_libfunc (smin_optab, TFmode, "_U_Qfmin");
set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
/* ia64_expand_compare uses this. */
cmptf_libfunc = init_one_libfunc ("_U_Qfcmp");
/* These should never be used. */
set_optab_libfunc (eq_optab, TFmode, 0);
set_optab_libfunc (ne_optab, TFmode, 0);
set_optab_libfunc (gt_optab, TFmode, 0);
set_optab_libfunc (ge_optab, TFmode, 0);
set_optab_libfunc (lt_optab, TFmode, 0);
set_optab_libfunc (le_optab, TFmode, 0);
}
/* Rename the division and modulus functions in VMS. */
static void
ia64_vms_init_libfuncs (void)
{
set_optab_libfunc (sdiv_optab, SImode, "OTS$DIV_I");
set_optab_libfunc (sdiv_optab, DImode, "OTS$DIV_L");
set_optab_libfunc (udiv_optab, SImode, "OTS$DIV_UI");
set_optab_libfunc (udiv_optab, DImode, "OTS$DIV_UL");
set_optab_libfunc (smod_optab, SImode, "OTS$REM_I");
set_optab_libfunc (smod_optab, DImode, "OTS$REM_L");
set_optab_libfunc (umod_optab, SImode, "OTS$REM_UI");
set_optab_libfunc (umod_optab, DImode, "OTS$REM_UL");
}
/* Rename the TFmode libfuncs available from soft-fp in glibc using
the HPUX conventions. */
static void
ia64_sysv4_init_libfuncs (void)
{
ia64_init_libfuncs ();
/* These functions are not part of the HPUX TFmode interface. We
use them instead of _U_Qfcmp, which doesn't work the way we
expect. */
set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
/* We leave out _U_Qfmin, _U_Qfmax and _U_Qfabs since soft-fp in
glibc doesn't have them. */
}
/* For HPUX, it is illegal to have relocations in shared segments. */
static int
ia64_hpux_reloc_rw_mask (void)
{
return 3;
}
/* For others, relax this so that relocations to local data goes in
read-only segments, but we still cannot allow global relocations
in read-only segments. */
static int
ia64_reloc_rw_mask (void)
{
return flag_pic ? 3 : 2;
}
/* Return the section to use for X. The only special thing we do here
is to honor small data. */
static section *
ia64_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (GET_MODE_SIZE (mode) > 0
&& GET_MODE_SIZE (mode) <= ia64_section_threshold
&& !TARGET_NO_SDATA)
return sdata_section;
else
return default_elf_select_rtx_section (mode, x, align);
}
static unsigned int
ia64_section_type_flags (tree decl, const char *name, int reloc)
{
unsigned int flags = 0;
if (strcmp (name, ".sdata") == 0
|| strncmp (name, ".sdata.", 7) == 0
|| strncmp (name, ".gnu.linkonce.s.", 16) == 0
|| strncmp (name, ".sdata2.", 8) == 0
|| strncmp (name, ".gnu.linkonce.s2.", 17) == 0
|| strcmp (name, ".sbss") == 0
|| strncmp (name, ".sbss.", 6) == 0
|| strncmp (name, ".gnu.linkonce.sb.", 17) == 0)
flags = SECTION_SMALL;
flags |= default_section_type_flags (decl, name, reloc);
return flags;
}
/* Returns true if FNTYPE (a FUNCTION_TYPE or a METHOD_TYPE) returns a
structure type and that the address of that type should be passed
in out0, rather than in r8. */
static bool
ia64_struct_retval_addr_is_first_parm_p (tree fntype)
{
tree ret_type = TREE_TYPE (fntype);
/* The Itanium C++ ABI requires that out0, rather than r8, be used
as the structure return address parameter, if the return value
type has a non-trivial copy constructor or destructor. It is not
clear if this same convention should be used for other
programming languages. Until G++ 3.4, we incorrectly used r8 for
these return values. */
return (abi_version_at_least (2)
&& ret_type
&& TYPE_MODE (ret_type) == BLKmode
&& TREE_ADDRESSABLE (ret_type)
&& strcmp (lang_hooks.name, "GNU C++") == 0);
}
/* Output the assembler code for a thunk function. THUNK_DECL is the
declaration for the thunk function itself, FUNCTION is the decl for
the target function. DELTA is an immediate constant offset to be
added to THIS. If VCALL_OFFSET is nonzero, the word at
*(*this + vcall_offset) should be added to THIS. */
static void
ia64_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
tree function)
{
rtx this, insn, funexp;
unsigned int this_parmno;
unsigned int this_regno;
reload_completed = 1;
epilogue_completed = 1;
no_new_pseudos = 1;
reset_block_changes ();
/* Set things up as ia64_expand_prologue might. */
last_scratch_gr_reg = 15;
memset (¤t_frame_info, 0, sizeof (current_frame_info));
current_frame_info.spill_cfa_off = -16;
current_frame_info.n_input_regs = 1;
current_frame_info.need_regstk = (TARGET_REG_NAMES != 0);
/* Mark the end of the (empty) prologue. */
emit_note (NOTE_INSN_PROLOGUE_END);
/* Figure out whether "this" will be the first parameter (the
typical case) or the second parameter (as happens when the
virtual function returns certain class objects). */
this_parmno
= (ia64_struct_retval_addr_is_first_parm_p (TREE_TYPE (thunk))
? 1 : 0);
this_regno = IN_REG (this_parmno);
if (!TARGET_REG_NAMES)
reg_names[this_regno] = ia64_reg_numbers[this_parmno];
this = gen_rtx_REG (Pmode, this_regno);
if (TARGET_ILP32)
{
rtx tmp = gen_rtx_REG (ptr_mode, this_regno);
REG_POINTER (tmp) = 1;
if (delta && CONST_OK_FOR_I (delta))
{
emit_insn (gen_ptr_extend_plus_imm (this, tmp, GEN_INT (delta)));
delta = 0;
}
else
emit_insn (gen_ptr_extend (this, tmp));
}
/* Apply the constant offset, if required. */
if (delta)
{
rtx delta_rtx = GEN_INT (delta);
if (!CONST_OK_FOR_I (delta))
{
rtx tmp = gen_rtx_REG (Pmode, 2);
emit_move_insn (tmp, delta_rtx);
delta_rtx = tmp;
}
emit_insn (gen_adddi3 (this, this, delta_rtx));
}
/* Apply the offset from the vtable, if required. */
if (vcall_offset)
{
rtx vcall_offset_rtx = GEN_INT (vcall_offset);
rtx tmp = gen_rtx_REG (Pmode, 2);
if (TARGET_ILP32)
{
rtx t = gen_rtx_REG (ptr_mode, 2);
REG_POINTER (t) = 1;
emit_move_insn (t, gen_rtx_MEM (ptr_mode, this));
if (CONST_OK_FOR_I (vcall_offset))
{
emit_insn (gen_ptr_extend_plus_imm (tmp, t,
vcall_offset_rtx));
vcall_offset = 0;
}
else
emit_insn (gen_ptr_extend (tmp, t));
}
else
emit_move_insn (tmp, gen_rtx_MEM (Pmode, this));
if (vcall_offset)
{
if (!CONST_OK_FOR_J (vcall_offset))
{
rtx tmp2 = gen_rtx_REG (Pmode, next_scratch_gr_reg ());
emit_move_insn (tmp2, vcall_offset_rtx);
vcall_offset_rtx = tmp2;
}
emit_insn (gen_adddi3 (tmp, tmp, vcall_offset_rtx));
}
if (TARGET_ILP32)
emit_move_insn (gen_rtx_REG (ptr_mode, 2),
gen_rtx_MEM (ptr_mode, tmp));
else
emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
emit_insn (gen_adddi3 (this, this, tmp));
}
/* Generate a tail call to the target function. */
if (! TREE_USED (function))
{
assemble_external (function);
TREE_USED (function) = 1;
}
funexp = XEXP (DECL_RTL (function), 0);
funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
ia64_expand_call (NULL_RTX, funexp, NULL_RTX, 1);
insn = get_last_insn ();
SIBLING_CALL_P (insn) = 1;
/* Code generation for calls relies on splitting. */
reload_completed = 1;
epilogue_completed = 1;
try_split (PATTERN (insn), insn, 0);
emit_barrier ();
/* Run just enough of rest_of_compilation to get the insns emitted.
There's not really enough bulk here to make other passes such as
instruction scheduling worth while. Note that use_thunk calls
assemble_start_function and assemble_end_function. */
insn_locators_initialize ();
emit_all_insn_group_barriers (NULL);
insn = get_insns ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1);
final_end_function ();
reload_completed = 0;
epilogue_completed = 0;
no_new_pseudos = 0;
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
ia64_struct_value_rtx (tree fntype,
int incoming ATTRIBUTE_UNUSED)
{
if (fntype && ia64_struct_retval_addr_is_first_parm_p (fntype))
return NULL_RTX;
return gen_rtx_REG (Pmode, GR_REG (8));
}
static bool
ia64_scalar_mode_supported_p (enum machine_mode mode)
{
switch (mode)
{
case QImode:
case HImode:
case SImode:
case DImode:
case TImode:
return true;
case SFmode:
case DFmode:
case XFmode:
case RFmode:
return true;
case TFmode:
return TARGET_HPUX;
default:
return false;
}
}
static bool
ia64_vector_mode_supported_p (enum machine_mode mode)
{
switch (mode)
{
case V8QImode:
case V4HImode:
case V2SImode:
return true;
case V2SFmode:
return true;
default:
return false;
}
}
/* Implement the FUNCTION_PROFILER macro. */
void
ia64_output_function_profiler (FILE *file, int labelno)
{
bool indirect_call;
/* If the function needs a static chain and the static chain
register is r15, we use an indirect call so as to bypass
the PLT stub in case the executable is dynamically linked,
because the stub clobbers r15 as per 5.3.6 of the psABI.
We don't need to do that in non canonical PIC mode. */
if (cfun->static_chain_decl && !TARGET_NO_PIC && !TARGET_AUTO_PIC)
{
gcc_assert (STATIC_CHAIN_REGNUM == 15);
indirect_call = true;
}
else
indirect_call = false;
if (TARGET_GNU_AS)
fputs ("\t.prologue 4, r40\n", file);
else
fputs ("\t.prologue\n\t.save ar.pfs, r40\n", file);
fputs ("\talloc out0 = ar.pfs, 8, 0, 4, 0\n", file);
if (NO_PROFILE_COUNTERS)
fputs ("\tmov out3 = r0\n", file);
else
{
char buf[20];
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
if (TARGET_AUTO_PIC)
fputs ("\tmovl out3 = @gprel(", file);
else
fputs ("\taddl out3 = @ltoff(", file);
assemble_name (file, buf);
if (TARGET_AUTO_PIC)
fputs (")\n", file);
else
fputs ("), r1\n", file);
}
if (indirect_call)
fputs ("\taddl r14 = @ltoff(@fptr(_mcount)), r1\n", file);
fputs ("\t;;\n", file);
fputs ("\t.save rp, r42\n", file);
fputs ("\tmov out2 = b0\n", file);
if (indirect_call)
fputs ("\tld8 r14 = [r14]\n\t;;\n", file);
fputs ("\t.body\n", file);
fputs ("\tmov out1 = r1\n", file);
if (indirect_call)
{
fputs ("\tld8 r16 = [r14], 8\n\t;;\n", file);
fputs ("\tmov b6 = r16\n", file);
fputs ("\tld8 r1 = [r14]\n", file);
fputs ("\tbr.call.sptk.many b0 = b6\n\t;;\n", file);
}
else
fputs ("\tbr.call.sptk.many b0 = _mcount\n\t;;\n", file);
}
static GTY(()) rtx mcount_func_rtx;
static rtx
gen_mcount_func_rtx (void)
{
if (!mcount_func_rtx)
mcount_func_rtx = init_one_libfunc ("_mcount");
return mcount_func_rtx;
}
void
ia64_profile_hook (int labelno)
{
rtx label, ip;
if (NO_PROFILE_COUNTERS)
label = const0_rtx;
else
{
char buf[30];
const char *label_name;
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
label = gen_rtx_SYMBOL_REF (Pmode, label_name);
SYMBOL_REF_FLAGS (label) = SYMBOL_FLAG_LOCAL;
}
ip = gen_reg_rtx (Pmode);
emit_insn (gen_ip_value (ip));
emit_library_call (gen_mcount_func_rtx (), LCT_NORMAL,
VOIDmode, 3,
gen_rtx_REG (Pmode, BR_REG (0)), Pmode,
ip, Pmode,
label, Pmode);
}
/* Return the mangling of TYPE if it is an extended fundamental type. */
static const char *
ia64_mangle_fundamental_type (tree type)
{
/* On HP-UX, "long double" is mangled as "e" so __float128 is
mangled as "e". */
if (!TARGET_HPUX && TYPE_MODE (type) == TFmode)
return "g";
/* On HP-UX, "e" is not available as a mangling of __float80 so use
an extended mangling. Elsewhere, "e" is available since long
double is 80 bits. */
if (TYPE_MODE (type) == XFmode)
return TARGET_HPUX ? "u9__float80" : "e";
if (TYPE_MODE (type) == RFmode)
return "u7__fpreg";
return NULL;
}
/* Return the diagnostic message string if conversion from FROMTYPE to
TOTYPE is not allowed, NULL otherwise. */
static const char *
ia64_invalid_conversion (tree fromtype, tree totype)
{
/* Reject nontrivial conversion to or from __fpreg. */
if (TYPE_MODE (fromtype) == RFmode
&& TYPE_MODE (totype) != RFmode
&& TYPE_MODE (totype) != VOIDmode)
return N_("invalid conversion from %<__fpreg%>");
if (TYPE_MODE (totype) == RFmode
&& TYPE_MODE (fromtype) != RFmode)
return N_("invalid conversion to %<__fpreg%>");
return NULL;
}
/* Return the diagnostic message string if the unary operation OP is
not permitted on TYPE, NULL otherwise. */
static const char *
ia64_invalid_unary_op (int op, tree type)
{
/* Reject operations on __fpreg other than unary + or &. */
if (TYPE_MODE (type) == RFmode
&& op != CONVERT_EXPR
&& op != ADDR_EXPR)
return N_("invalid operation on %<__fpreg%>");
return NULL;
}
/* Return the diagnostic message string if the binary operation OP is
not permitted on TYPE1 and TYPE2, NULL otherwise. */
static const char *
ia64_invalid_binary_op (int op ATTRIBUTE_UNUSED, tree type1, tree type2)
{
/* Reject operations on __fpreg. */
if (TYPE_MODE (type1) == RFmode || TYPE_MODE (type2) == RFmode)
return N_("invalid operation on %<__fpreg%>");
return NULL;
}
/* Implement overriding of the optimization options. */
void
ia64_optimization_options (int level ATTRIBUTE_UNUSED,
int size ATTRIBUTE_UNUSED)
{
/* Let the scheduler form additional regions. */
set_param_value ("max-sched-extend-regions-iters", 2);
}
#include "gt-ia64.h"
|