1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
|
/* Target Code for R8C/M16C/M32C
Copyright (C) 2005
Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "reload.h"
#include "toplev.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "langhooks.h"
#include "tree-gimple.h"
/* Prototypes */
/* Used by m32c_pushm_popm. */
typedef enum
{
PP_pushm,
PP_popm,
PP_justcount
} Push_Pop_Type;
static tree interrupt_handler (tree *, tree, tree, int, bool *);
static int interrupt_p (tree node);
static bool m32c_asm_integer (rtx, unsigned int, int);
static int m32c_comp_type_attributes (tree, tree);
static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
static struct machine_function *m32c_init_machine_status (void);
static void m32c_insert_attributes (tree, tree *);
static bool m32c_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static bool m32c_promote_prototypes (tree);
static int m32c_pushm_popm (Push_Pop_Type);
static bool m32c_strict_argument_naming (CUMULATIVE_ARGS *);
static rtx m32c_struct_value_rtx (tree, int);
static rtx m32c_subreg (enum machine_mode, rtx, enum machine_mode, int);
static int need_to_save (int);
#define streq(a,b) (strcmp ((a), (b)) == 0)
/* Internal support routines */
/* Debugging statements are tagged with DEBUG0 only so that they can
be easily enabled individually, by replacing the '0' with '1' as
needed. */
#define DEBUG0 0
#define DEBUG1 1
#if DEBUG0
/* This is needed by some of the commented-out debug statements
below. */
static char const *class_names[LIM_REG_CLASSES] = REG_CLASS_NAMES;
#endif
static int class_contents[LIM_REG_CLASSES][1] = REG_CLASS_CONTENTS;
/* These are all to support encode_pattern(). */
static char pattern[30], *patternp;
static GTY(()) rtx patternr[30];
#define RTX_IS(x) (streq (pattern, x))
/* Some macros to simplify the logic throughout this file. */
#define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
#define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
#define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
#define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
/* We do most RTX matching by converting the RTX into a string, and
using string compares. This vastly simplifies the logic in many of
the functions in this file.
On exit, pattern[] has the encoded string (use RTX_IS("...") to
compare it) and patternr[] has pointers to the nodes in the RTX
corresponding to each character in the encoded string. The latter
is mostly used by print_operand().
Unrecognized patterns have '?' in them; this shows up when the
assembler complains about syntax errors.
*/
static void
encode_pattern_1 (rtx x)
{
int i;
if (patternp == pattern + sizeof (pattern) - 2)
{
patternp[-1] = '?';
return;
}
patternr[patternp - pattern] = x;
switch (GET_CODE (x))
{
case REG:
*patternp++ = 'r';
break;
case SUBREG:
if (GET_MODE_SIZE (GET_MODE (x)) !=
GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
*patternp++ = 'S';
encode_pattern_1 (XEXP (x, 0));
break;
case MEM:
*patternp++ = 'm';
case CONST:
encode_pattern_1 (XEXP (x, 0));
break;
case PLUS:
*patternp++ = '+';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case PRE_DEC:
*patternp++ = '>';
encode_pattern_1 (XEXP (x, 0));
break;
case POST_INC:
*patternp++ = '<';
encode_pattern_1 (XEXP (x, 0));
break;
case LO_SUM:
*patternp++ = 'L';
encode_pattern_1 (XEXP (x, 0));
encode_pattern_1 (XEXP (x, 1));
break;
case HIGH:
*patternp++ = 'H';
encode_pattern_1 (XEXP (x, 0));
break;
case SYMBOL_REF:
*patternp++ = 's';
break;
case LABEL_REF:
*patternp++ = 'l';
break;
case CODE_LABEL:
*patternp++ = 'c';
break;
case CONST_INT:
case CONST_DOUBLE:
*patternp++ = 'i';
break;
case UNSPEC:
*patternp++ = 'u';
*patternp++ = '0' + XCINT (x, 1, UNSPEC);
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case USE:
*patternp++ = 'U';
break;
case PARALLEL:
*patternp++ = '|';
for (i = 0; i < XVECLEN (x, 0); i++)
encode_pattern_1 (XVECEXP (x, 0, i));
break;
case EXPR_LIST:
*patternp++ = 'E';
encode_pattern_1 (XEXP (x, 0));
if (XEXP (x, 1))
encode_pattern_1 (XEXP (x, 1));
break;
default:
*patternp++ = '?';
#if DEBUG0
fprintf (stderr, "can't encode pattern %s\n",
GET_RTX_NAME (GET_CODE (x)));
debug_rtx (x);
gcc_unreachable ();
#endif
break;
}
}
static void
encode_pattern (rtx x)
{
patternp = pattern;
encode_pattern_1 (x);
*patternp = 0;
}
/* Since register names indicate the mode they're used in, we need a
way to determine which name to refer to the register with. Called
by print_operand(). */
static const char *
reg_name_with_mode (int regno, enum machine_mode mode)
{
int mlen = GET_MODE_SIZE (mode);
if (regno == R0_REGNO && mlen == 1)
return "r0l";
if (regno == R0_REGNO && (mlen == 3 || mlen == 4))
return "r2r0";
if (regno == R0_REGNO && mlen == 6)
return "r2r1r0";
if (regno == R0_REGNO && mlen == 8)
return "r3r1r2r0";
if (regno == R1_REGNO && mlen == 1)
return "r1l";
if (regno == R1_REGNO && (mlen == 3 || mlen == 4))
return "r3r1";
if (regno == A0_REGNO && TARGET_A16 && (mlen == 3 || mlen == 4))
return "a1a0";
return reg_names[regno];
}
/* How many bytes a register uses on stack when it's pushed. We need
to know this because the push opcode needs to explicitly indicate
the size of the register, even though the name of the register
already tells it that. Used by m32c_output_reg_{push,pop}, which
is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
static int
reg_push_size (int regno)
{
switch (regno)
{
case R0_REGNO:
case R1_REGNO:
return 2;
case R2_REGNO:
case R3_REGNO:
case FLG_REGNO:
return 2;
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
if (TARGET_A16)
return 2;
else
return 3;
default:
gcc_unreachable ();
}
}
static int *class_sizes = 0;
/* Given two register classes, find the largest intersection between
them. If there is no intersection, return RETURNED_IF_EMPTY
instead. */
static int
reduce_class (int original_class, int limiting_class, int returned_if_empty)
{
int cc = class_contents[original_class][0];
int i, best = NO_REGS;
int best_size = 0;
if (original_class == limiting_class)
return original_class;
if (!class_sizes)
{
int r;
class_sizes = (int *) xmalloc (LIM_REG_CLASSES * sizeof (int));
for (i = 0; i < LIM_REG_CLASSES; i++)
{
class_sizes[i] = 0;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[i][0] & (1 << r))
class_sizes[i]++;
}
}
cc &= class_contents[limiting_class][0];
for (i = 0; i < LIM_REG_CLASSES; i++)
{
int ic = class_contents[i][0];
if ((~cc & ic) == 0)
if (best_size < class_sizes[i])
{
best = i;
best_size = class_sizes[i];
}
}
if (best == NO_REGS)
return returned_if_empty;
return best;
}
/* Returns TRUE If there are any registers that exist in both register
classes. */
static int
classes_intersect (int class1, int class2)
{
return class_contents[class1][0] & class_contents[class2][0];
}
/* Used by m32c_register_move_cost to determine if a move is
impossibly expensive. */
static int
class_can_hold_mode (int class, enum machine_mode mode)
{
/* Cache the results: 0=untested 1=no 2=yes */
static char results[LIM_REG_CLASSES][MAX_MACHINE_MODE];
if (results[class][mode] == 0)
{
int r, n, i;
results[class][mode] = 1;
for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
if (class_contents[class][0] & (1 << r)
&& HARD_REGNO_MODE_OK (r, mode))
{
int ok = 1;
n = HARD_REGNO_NREGS (r, mode);
for (i = 1; i < n; i++)
if (!(class_contents[class][0] & (1 << (r + i))))
ok = 0;
if (ok)
{
results[class][mode] = 2;
break;
}
}
}
#if DEBUG0
fprintf (stderr, "class %s can hold %s? %s\n",
class_names[class], mode_name[mode],
(results[class][mode] == 2) ? "yes" : "no");
#endif
return results[class][mode] == 2;
}
/* Run-time Target Specification. */
/* Memregs are memory locations that gcc treats like general
registers, as there are a limited number of true registers and the
m32c families can use memory in most places that registers can be
used.
However, since memory accesses are more expensive than registers,
we allow the user to limit the number of memregs available, in
order to try to persuade gcc to try harder to use real registers.
Memregs are provided by m32c-lib1.S.
*/
int target_memregs = 16;
static bool target_memregs_set = FALSE;
int ok_to_change_target_memregs = TRUE;
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION m32c_handle_option
static bool
m32c_handle_option (size_t code,
const char *arg ATTRIBUTE_UNUSED,
int value ATTRIBUTE_UNUSED)
{
if (code == OPT_memregs_)
{
target_memregs_set = TRUE;
target_memregs = atoi (arg);
}
return TRUE;
}
/* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
provide a default. */
void
m32c_override_options (void)
{
if (target_memregs_set)
{
if (target_memregs < 0 || target_memregs > 16)
error ("invalid target memregs value '%d'", target_memregs);
}
else
target_memregs = 16;
}
/* Defining data structures for per-function information */
/* The usual; we set up our machine_function data. */
static struct machine_function *
m32c_init_machine_status (void)
{
struct machine_function *machine;
machine =
(machine_function *) ggc_alloc_cleared (sizeof (machine_function));
return machine;
}
/* Implements INIT_EXPANDERS. We just set up to call the above
function. */
void
m32c_init_expanders (void)
{
init_machine_status = m32c_init_machine_status;
}
/* Storage Layout */
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN m32c_promote_function_return
bool
m32c_promote_function_return (tree fntype ATTRIBUTE_UNUSED)
{
return false;
}
/* Register Basics */
/* Basic Characteristics of Registers */
/* Whether a mode fits in a register is complex enough to warrant a
table. */
static struct
{
char qi_regs;
char hi_regs;
char pi_regs;
char si_regs;
char di_regs;
} nregs_table[FIRST_PSEUDO_REGISTER] =
{
{ 1, 1, 2, 2, 4 }, /* r0 */
{ 0, 1, 0, 0, 0 }, /* r2 */
{ 1, 1, 2, 2, 0 }, /* r1 */
{ 0, 1, 0, 0, 0 }, /* r3 */
{ 0, 1, 1, 0, 0 }, /* a0 */
{ 0, 1, 1, 0, 0 }, /* a1 */
{ 0, 1, 1, 0, 0 }, /* sb */
{ 0, 1, 1, 0, 0 }, /* fb */
{ 0, 1, 1, 0, 0 }, /* sp */
{ 1, 1, 1, 0, 0 }, /* pc */
{ 0, 0, 0, 0, 0 }, /* fl */
{ 1, 1, 1, 0, 0 }, /* ap */
{ 1, 1, 2, 2, 4 }, /* mem0 */
{ 1, 1, 2, 2, 4 }, /* mem1 */
{ 1, 1, 2, 2, 4 }, /* mem2 */
{ 1, 1, 2, 2, 4 }, /* mem3 */
{ 1, 1, 2, 2, 4 }, /* mem4 */
{ 1, 1, 2, 2, 0 }, /* mem5 */
{ 1, 1, 2, 2, 0 }, /* mem6 */
{ 1, 1, 0, 0, 0 }, /* mem7 */
};
/* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
available memregs, and select which registers need to be preserved
across calls based on the chip family. */
void
m32c_conditional_register_usage (void)
{
int i;
if (0 <= target_memregs && target_memregs <= 16)
{
/* The command line option is bytes, but our "registers" are
16-bit words. */
for (i = target_memregs/2; i < 8; i++)
{
fixed_regs[MEM0_REGNO + i] = 1;
CLEAR_HARD_REG_BIT (reg_class_contents[MEM_REGS], MEM0_REGNO + i);
}
}
/* M32CM and M32C preserve more registers across function calls. */
if (TARGET_A24)
{
call_used_regs[R1_REGNO] = 0;
call_used_regs[R2_REGNO] = 0;
call_used_regs[R3_REGNO] = 0;
call_used_regs[A0_REGNO] = 0;
call_used_regs[A1_REGNO] = 0;
}
}
/* How Values Fit in Registers */
/* Implements HARD_REGNO_NREGS. This is complicated by the fact that
different registers are different sizes from each other, *and* may
be different sizes in different chip families. */
int
m32c_hard_regno_nregs (int regno, enum machine_mode mode)
{
if (regno == FLG_REGNO && mode == CCmode)
return 1;
if (regno >= FIRST_PSEUDO_REGISTER)
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
if (regno >= MEM0_REGNO && regno <= MEM7_REGNO)
return (GET_MODE_SIZE (mode) + 1) / 2;
if (GET_MODE_SIZE (mode) <= 1)
return nregs_table[regno].qi_regs;
if (GET_MODE_SIZE (mode) <= 2)
return nregs_table[regno].hi_regs;
if (regno == A0_REGNO && mode == PSImode && TARGET_A16)
return 2;
if ((GET_MODE_SIZE (mode) <= 3 || mode == PSImode) && TARGET_A24)
return nregs_table[regno].pi_regs;
if (GET_MODE_SIZE (mode) <= 4)
return nregs_table[regno].si_regs;
if (GET_MODE_SIZE (mode) <= 8)
return nregs_table[regno].di_regs;
return 0;
}
/* Implements HARD_REGNO_MODE_OK. The above function does the work
already; just test its return value. */
int
m32c_hard_regno_ok (int regno, enum machine_mode mode)
{
return m32c_hard_regno_nregs (regno, mode) != 0;
}
/* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
registers are all different sizes. However, since most modes are
bigger than our registers anyway, it's easier to implement this
function that way, leaving QImode as the only unique case. */
int
m32c_modes_tieable_p (enum machine_mode m1, enum machine_mode m2)
{
if (GET_MODE_SIZE (m1) == GET_MODE_SIZE (m2))
return 1;
#if 0
if (m1 == QImode || m2 == QImode)
return 0;
#endif
return 1;
}
/* Register Classes */
/* Implements REGNO_REG_CLASS. */
enum machine_mode
m32c_regno_reg_class (int regno)
{
switch (regno)
{
case R0_REGNO:
return R0_REGS;
case R1_REGNO:
return R1_REGS;
case R2_REGNO:
return R2_REGS;
case R3_REGNO:
return R3_REGS;
case A0_REGNO:
case A1_REGNO:
return A_REGS;
case SB_REGNO:
return SB_REGS;
case FB_REGNO:
return FB_REGS;
case SP_REGNO:
return SP_REGS;
case FLG_REGNO:
return FLG_REGS;
default:
if (IS_MEM_REGNO (regno))
return MEM_REGS;
return ALL_REGS;
}
}
/* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
for certain chip families. */
int
m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED, const char *s)
{
if (memcmp (s, "Rsp", 3) == 0)
return SP_REGS;
if (memcmp (s, "Rfb", 3) == 0)
return FB_REGS;
if (memcmp (s, "Rsb", 3) == 0)
return SB_REGS;
if (memcmp (s, "Rcr", 3) == 0)
return TARGET_A16 ? CR_REGS : NO_REGS;
if (memcmp (s, "Rcl", 3) == 0)
return TARGET_A24 ? CR_REGS : NO_REGS;
if (memcmp (s, "R0w", 3) == 0)
return R0_REGS;
if (memcmp (s, "R1w", 3) == 0)
return R1_REGS;
if (memcmp (s, "R2w", 3) == 0)
return R2_REGS;
if (memcmp (s, "R3w", 3) == 0)
return R3_REGS;
if (memcmp (s, "R02", 3) == 0)
return R02_REGS;
if (memcmp (s, "R03", 3) == 0)
return R03_REGS;
if (memcmp (s, "Rdi", 3) == 0)
return DI_REGS;
if (memcmp (s, "Rhl", 3) == 0)
return HL_REGS;
if (memcmp (s, "R23", 3) == 0)
return R23_REGS;
if (memcmp (s, "Ra0", 3) == 0)
return A0_REGS;
if (memcmp (s, "Ra1", 3) == 0)
return A1_REGS;
if (memcmp (s, "Raa", 3) == 0)
return A_REGS;
if (memcmp (s, "Raw", 3) == 0)
return TARGET_A16 ? A_REGS : NO_REGS;
if (memcmp (s, "Ral", 3) == 0)
return TARGET_A24 ? A_REGS : NO_REGS;
if (memcmp (s, "Rqi", 3) == 0)
return QI_REGS;
if (memcmp (s, "Rad", 3) == 0)
return AD_REGS;
if (memcmp (s, "Rsi", 3) == 0)
return SI_REGS;
if (memcmp (s, "Rhi", 3) == 0)
return HI_REGS;
if (memcmp (s, "Rhc", 3) == 0)
return HC_REGS;
if (memcmp (s, "Rra", 3) == 0)
return RA_REGS;
if (memcmp (s, "Rfl", 3) == 0)
return FLG_REGS;
if (memcmp (s, "Rmm", 3) == 0)
{
if (fixed_regs[MEM0_REGNO])
return NO_REGS;
return MEM_REGS;
}
/* PSImode registers - i.e. whatever can hold a pointer. */
if (memcmp (s, "Rpi", 3) == 0)
{
if (TARGET_A16)
return HI_REGS;
else
return RA_REGS; /* r2r0 and r3r1 can hold pointers. */
}
/* We handle this one as an EXTRA_CONSTRAINT. */
if (memcmp (s, "Rpa", 3) == 0)
return NO_REGS;
if (*s == 'R')
{
fprintf(stderr, "unrecognized R constraint: %.3s\n", s);
gcc_unreachable();
}
return NO_REGS;
}
/* Implements REGNO_OK_FOR_BASE_P. */
int
m32c_regno_ok_for_base_p (int regno)
{
if (regno == A0_REGNO
|| regno == A1_REGNO || regno >= FIRST_PSEUDO_REGISTER)
return 1;
return 0;
}
#define DEBUG_RELOAD 0
/* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
registers of the appropriate size. */
int
m32c_preferred_reload_class (rtx x, int rclass)
{
int newclass = rclass;
#if DEBUG_RELOAD
fprintf (stderr, "\npreferred_reload_class for %s is ",
class_names[rclass]);
#endif
if (rclass == NO_REGS)
rclass = GET_MODE (x) == QImode ? HL_REGS : R03_REGS;
if (classes_intersect (rclass, CR_REGS))
{
switch (GET_MODE (x))
{
case QImode:
newclass = HL_REGS;
break;
default:
/* newclass = HI_REGS; */
break;
}
}
else if (newclass == QI_REGS && GET_MODE_SIZE (GET_MODE (x)) > 2)
newclass = SI_REGS;
else if (GET_MODE_SIZE (GET_MODE (x)) > 4
&& ~class_contents[rclass][0] & 0x000f)
newclass = DI_REGS;
rclass = reduce_class (rclass, newclass, rclass);
if (GET_MODE (x) == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
#if DEBUG_RELOAD
fprintf (stderr, "%s\n", class_names[rclass]);
debug_rtx (x);
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
fprintf (stderr, "Glorm!\n");
#endif
return rclass;
}
/* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
int
m32c_preferred_output_reload_class (rtx x, int rclass)
{
return m32c_preferred_reload_class (x, rclass);
}
/* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
address registers for reloads since they're needed for address
reloads. */
int
m32c_limit_reload_class (enum machine_mode mode, int rclass)
{
#if DEBUG_RELOAD
fprintf (stderr, "limit_reload_class for %s: %s ->",
mode_name[mode], class_names[rclass]);
#endif
if (mode == QImode)
rclass = reduce_class (rclass, HL_REGS, rclass);
else if (mode == HImode)
rclass = reduce_class (rclass, HI_REGS, rclass);
else if (mode == SImode)
rclass = reduce_class (rclass, SI_REGS, rclass);
if (rclass != A_REGS)
rclass = reduce_class (rclass, DI_REGS, rclass);
#if DEBUG_RELOAD
fprintf (stderr, " %s\n", class_names[rclass]);
#endif
return rclass;
}
/* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
r0 or r1, as those are the only real QImode registers. CR regs get
reloaded through appropriately sized general or address
registers. */
int
m32c_secondary_reload_class (int rclass, enum machine_mode mode, rtx x)
{
int cc = class_contents[rclass][0];
#if DEBUG0
fprintf (stderr, "\nsecondary reload class %s %s\n",
class_names[rclass], mode_name[mode]);
debug_rtx (x);
#endif
if (mode == QImode
&& GET_CODE (x) == MEM && (cc & ~class_contents[R23_REGS][0]) == 0)
return QI_REGS;
if (classes_intersect (rclass, CR_REGS)
&& GET_CODE (x) == REG
&& REGNO (x) >= SB_REGNO && REGNO (x) <= SP_REGNO)
return TARGET_A16 ? HI_REGS : A_REGS;
return NO_REGS;
}
/* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
reloads. */
int
m32c_class_likely_spilled_p (int regclass)
{
if (regclass == A_REGS)
return 1;
return reg_class_size[regclass] == 1;
}
/* Implements CLASS_MAX_NREGS. We calculate this according to its
documented meaning, to avoid potential inconsistencies with actual
class definitions. */
int
m32c_class_max_nregs (int regclass, enum machine_mode mode)
{
int rn, max = 0;
for (rn = 0; rn < FIRST_PSEUDO_REGISTER; rn++)
if (class_contents[regclass][0] & (1 << rn))
{
int n = m32c_hard_regno_nregs (rn, mode);
if (max < n)
max = n;
}
return max;
}
/* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
QI (r0l, r1l) because the chip doesn't support QI ops on other
registers (well, it does on a0/a1 but if we let gcc do that, reload
suffers). Otherwise, we allow changes to larger modes. */
int
m32c_cannot_change_mode_class (enum machine_mode from,
enum machine_mode to, int rclass)
{
#if DEBUG0
fprintf (stderr, "cannot change from %s to %s in %s\n",
mode_name[from], mode_name[to], class_names[rclass]);
#endif
if (to == QImode)
return (class_contents[rclass][0] & 0x1ffa);
if (class_contents[rclass][0] & 0x0005 /* r0, r1 */
&& GET_MODE_SIZE (from) > 1)
return 0;
if (GET_MODE_SIZE (from) > 2) /* all other regs */
return 0;
return 1;
}
/* Helpers for the rest of the file. */
/* TRUE if the rtx is a REG rtx for the given register. */
#define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
&& REGNO (rtx) == regno)
/* TRUE if the rtx is a pseudo - specifically, one we can use as a
base register in address calculations (hence the "strict"
argument). */
#define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
&& (REGNO (rtx) == AP_REGNO \
|| REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
/* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
constraints start with 'I', with the next two characters indicating
the type and size of the range allowed. */
int
m32c_const_ok_for_constraint_p (HOST_WIDE_INT value,
char c ATTRIBUTE_UNUSED, const char *str)
{
/* s=signed u=unsigned n=nonzero m=minus l=log2able,
[sun] bits [SUN] bytes, p=pointer size
I[-0-9][0-9] matches that number */
if (memcmp (str, "Is3", 3) == 0)
{
return (-8 <= value && value <= 7);
}
if (memcmp (str, "IS1", 3) == 0)
{
return (-128 <= value && value <= 127);
}
if (memcmp (str, "IS2", 3) == 0)
{
return (-32768 <= value && value <= 32767);
}
if (memcmp (str, "IU2", 3) == 0)
{
return (0 <= value && value <= 65535);
}
if (memcmp (str, "IU3", 3) == 0)
{
return (0 <= value && value <= 0x00ffffff);
}
if (memcmp (str, "In4", 3) == 0)
{
return (-8 <= value && value && value <= 8);
}
if (memcmp (str, "In5", 3) == 0)
{
return (-16 <= value && value && value <= 16);
}
if (memcmp (str, "In6", 3) == 0)
{
return (-32 <= value && value && value <= 32);
}
if (memcmp (str, "IM2", 3) == 0)
{
return (-65536 <= value && value && value <= -1);
}
if (memcmp (str, "Ilb", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Imb", 3) == 0)
{
int b = exact_log2 ((value ^ 0xff) & 0xff);
return (b >= 0 && b <= 7);
}
if (memcmp (str, "Ilw", 3) == 0)
{
int b = exact_log2 (value);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "Imw", 3) == 0)
{
int b = exact_log2 ((value ^ 0xffff) & 0xffff);
return (b >= 0 && b <= 15);
}
if (memcmp (str, "I00", 3) == 0)
{
return (value == 0);
}
return 0;
}
/* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
call return values. */
int
m32c_extra_constraint_p2 (rtx value, char c ATTRIBUTE_UNUSED, const char *str)
{
encode_pattern (value);
if (memcmp (str, "Sd", 2) == 0)
{
/* This is the common "src/dest" address */
rtx r;
if (GET_CODE (value) == MEM && CONSTANT_P (XEXP (value, 0)))
return 1;
if (RTX_IS ("ms") || RTX_IS ("m+si"))
return 1;
if (RTX_IS ("m++rii"))
{
if (REGNO (patternr[3]) == FB_REGNO
&& INTVAL (patternr[4]) == 0)
return 1;
}
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
r = patternr[2];
else
return 0;
if (REGNO (r) == SP_REGNO)
return 0;
return m32c_legitimate_address_p (GET_MODE (value), XEXP (value, 0), 1);
}
else if (memcmp (str, "Sa", 2) == 0)
{
rtx r;
if (RTX_IS ("mr"))
r = patternr[1];
else if (RTX_IS ("m+ri"))
r = patternr[2];
else
return 0;
return (IS_REG (r, A0_REGNO) || IS_REG (r, A1_REGNO));
}
else if (memcmp (str, "Si", 2) == 0)
{
return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
}
else if (memcmp (str, "Ss", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SP_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SP_REGNO))));
}
else if (memcmp (str, "Sf", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], FB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], FB_REGNO))));
}
else if (memcmp (str, "Sb", 2) == 0)
{
return ((RTX_IS ("mr")
&& (IS_REG (patternr[1], SB_REGNO)))
|| (RTX_IS ("m+ri") && (IS_REG (patternr[2], SB_REGNO))));
}
else if (memcmp (str, "Sp", 2) == 0)
{
/* Absolute addresses 0..0x1fff used for bit addressing (I/O ports) */
return (RTX_IS ("mi")
&& !(INTVAL (patternr[1]) & ~0x1fff));
}
else if (memcmp (str, "S1", 2) == 0)
{
return r1h_operand (value, QImode);
}
gcc_assert (str[0] != 'S');
if (memcmp (str, "Rpa", 2) == 0)
return GET_CODE (value) == PARALLEL;
return 0;
}
/* This is for when we're debugging the above. */
int
m32c_extra_constraint_p (rtx value, char c, const char *str)
{
int rv = m32c_extra_constraint_p2 (value, c, str);
#if DEBUG0
fprintf (stderr, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c, str), str,
rv);
debug_rtx (value);
#endif
return rv;
}
/* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
starting with 'S'. */
int
m32c_extra_memory_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'S';
}
/* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
but don't currently define any. */
int
m32c_extra_address_constraint (char c, const char *str ATTRIBUTE_UNUSED)
{
return c == 'A';
}
/* STACK AND CALLING */
/* Frame Layout */
/* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
(yes, THREE bytes) onto the stack for the return address, but we
don't support pointers bigger than 16 bits on those chips. This
will likely wreak havoc with exception unwinding. FIXME. */
rtx
m32c_return_addr_rtx (int count)
{
enum machine_mode mode;
int offset;
rtx ra_mem;
if (count)
return NULL_RTX;
/* we want 2[$fb] */
if (TARGET_A24)
{
mode = SImode;
offset = 4;
}
else
{
/* FIXME: it's really 3 bytes */
mode = HImode;
offset = 2;
}
ra_mem =
gen_rtx_MEM (mode, plus_constant (gen_rtx_REG (Pmode, FP_REGNO), offset));
return copy_to_mode_reg (mode, ra_mem);
}
/* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
rtx
m32c_incoming_return_addr_rtx (void)
{
/* we want [sp] */
return gen_rtx_MEM (PSImode, gen_rtx_REG (PSImode, SP_REGNO));
}
/* Exception Handling Support */
/* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
pointers. */
int
m32c_eh_return_data_regno (int n)
{
switch (n)
{
case 0:
return A0_REGNO;
case 1:
return A1_REGNO;
default:
return INVALID_REGNUM;
}
}
/* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
m32c_emit_eh_epilogue. */
rtx
m32c_eh_return_stackadj_rtx (void)
{
if (!cfun->machine->eh_stack_adjust)
{
rtx sa;
sa = gen_reg_rtx (Pmode);
cfun->machine->eh_stack_adjust = sa;
}
return cfun->machine->eh_stack_adjust;
}
/* Registers That Address the Stack Frame */
/* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
the original spec called for dwarf numbers to vary with register
width as well, for example, r0l, r0, and r2r0 would each have
different dwarf numbers. GCC doesn't support this, and we don't do
it, and gdb seems to like it this way anyway. */
unsigned int
m32c_dwarf_frame_regnum (int n)
{
switch (n)
{
case R0_REGNO:
return 5;
case R1_REGNO:
return 6;
case R2_REGNO:
return 7;
case R3_REGNO:
return 8;
case A0_REGNO:
return 9;
case A1_REGNO:
return 10;
case FB_REGNO:
return 11;
case SB_REGNO:
return 19;
case SP_REGNO:
return 12;
case PC_REGNO:
return 13;
default:
return DWARF_FRAME_REGISTERS + 1;
}
}
/* The frame looks like this:
ap -> +------------------------------
| Return address (3 or 4 bytes)
| Saved FB (2 or 4 bytes)
fb -> +------------------------------
| local vars
| register saves fb
| through r0 as needed
sp -> +------------------------------
*/
/* We use this to wrap all emitted insns in the prologue. */
static rtx
F (rtx x)
{
RTX_FRAME_RELATED_P (x) = 1;
return x;
}
/* This maps register numbers to the PUSHM/POPM bitfield, and tells us
how much the stack pointer moves for each, for each cpu family. */
static struct
{
int reg1;
int bit;
int a16_bytes;
int a24_bytes;
} pushm_info[] =
{
/* These are in reverse push (nearest-to-sp) order. */
{ R0_REGNO, 0x80, 2, 2 },
{ R1_REGNO, 0x40, 2, 2 },
{ R2_REGNO, 0x20, 2, 2 },
{ R3_REGNO, 0x10, 2, 2 },
{ A0_REGNO, 0x08, 2, 4 },
{ A1_REGNO, 0x04, 2, 4 },
{ SB_REGNO, 0x02, 2, 4 },
{ FB_REGNO, 0x01, 2, 4 }
};
#define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
/* Returns TRUE if we need to save/restore the given register. We
save everything for exception handlers, so that any register can be
unwound. For interrupt handlers, we save everything if the handler
calls something else (because we don't know what *that* function
might do), but try to be a bit smarter if the handler is a leaf
function. We always save $a0, though, because we use that in the
epilog to copy $fb to $sp. */
static int
need_to_save (int regno)
{
if (fixed_regs[regno])
return 0;
if (cfun->calls_eh_return)
return 1;
if (regno == FP_REGNO)
return 0;
if (cfun->machine->is_interrupt
&& (!cfun->machine->is_leaf || regno == A0_REGNO))
return 1;
if (regs_ever_live[regno]
&& (!call_used_regs[regno] || cfun->machine->is_interrupt))
return 1;
return 0;
}
/* This function contains all the intelligence about saving and
restoring registers. It always figures out the register save set.
When called with PP_justcount, it merely returns the size of the
save set (for eliminating the frame pointer, for example). When
called with PP_pushm or PP_popm, it emits the appropriate
instructions for saving (pushm) or restoring (popm) the
registers. */
static int
m32c_pushm_popm (Push_Pop_Type ppt)
{
int reg_mask = 0;
int byte_count = 0, bytes;
int i;
rtx dwarf_set[PUSHM_N];
int n_dwarfs = 0;
int nosave_mask = 0;
if (cfun->return_rtx
&& GET_CODE (cfun->return_rtx) == PARALLEL
&& !(cfun->calls_eh_return || cfun->machine->is_interrupt))
{
rtx exp = XVECEXP (cfun->return_rtx, 0, 0);
rtx rv = XEXP (exp, 0);
int rv_bytes = GET_MODE_SIZE (GET_MODE (rv));
if (rv_bytes > 2)
nosave_mask |= 0x20; /* PSI, SI */
else
nosave_mask |= 0xf0; /* DF */
if (rv_bytes > 4)
nosave_mask |= 0x50; /* DI */
}
for (i = 0; i < (int) PUSHM_N; i++)
{
/* Skip if neither register needs saving. */
if (!need_to_save (pushm_info[i].reg1))
continue;
if (pushm_info[i].bit & nosave_mask)
continue;
reg_mask |= pushm_info[i].bit;
bytes = TARGET_A16 ? pushm_info[i].a16_bytes : pushm_info[i].a24_bytes;
if (ppt == PP_pushm)
{
enum machine_mode mode = (bytes == 2) ? HImode : SImode;
rtx addr;
/* Always use stack_pointer_rtx instead of calling
rtx_gen_REG ourselves. Code elsewhere in GCC assumes
that there is a single rtx representing the stack pointer,
namely stack_pointer_rtx, and uses == to recognize it. */
addr = stack_pointer_rtx;
if (byte_count != 0)
addr = gen_rtx_PLUS (GET_MODE (addr), addr, GEN_INT (byte_count));
dwarf_set[n_dwarfs++] =
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (mode, addr),
gen_rtx_REG (mode, pushm_info[i].reg1));
F (dwarf_set[n_dwarfs - 1]);
}
byte_count += bytes;
}
if (cfun->machine->is_interrupt)
{
cfun->machine->intr_pushm = reg_mask & 0xfe;
reg_mask = 0;
byte_count = 0;
}
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (need_to_save (i))
{
byte_count += 2;
cfun->machine->intr_pushmem[i - MEM0_REGNO] = 1;
}
if (ppt == PP_pushm && byte_count)
{
rtx note = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (n_dwarfs + 1));
rtx pushm;
if (reg_mask)
{
XVECEXP (note, 0, 0)
= gen_rtx_SET (VOIDmode,
stack_pointer_rtx,
gen_rtx_PLUS (GET_MODE (stack_pointer_rtx),
stack_pointer_rtx,
GEN_INT (-byte_count)));
F (XVECEXP (note, 0, 0));
for (i = 0; i < n_dwarfs; i++)
XVECEXP (note, 0, i + 1) = dwarf_set[i];
pushm = F (emit_insn (gen_pushm (GEN_INT (reg_mask))));
REG_NOTES (pushm) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, note,
REG_NOTES (pushm));
}
if (cfun->machine->is_interrupt)
for (i = MEM0_REGNO; i <= MEM7_REGNO; i++)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
pushm = emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode, i)));
else
pushm = emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode, i)));
F (pushm);
}
}
if (ppt == PP_popm && byte_count)
{
if (cfun->machine->is_interrupt)
for (i = MEM7_REGNO; i >= MEM0_REGNO; i--)
if (cfun->machine->intr_pushmem[i - MEM0_REGNO])
{
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, i)));
else
emit_insn (gen_pophi_24 (gen_rtx_REG (HImode, i)));
}
if (reg_mask)
emit_insn (gen_popm (GEN_INT (reg_mask)));
}
return byte_count;
}
/* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
diagrams our call frame. */
int
m32c_initial_elimination_offset (int from, int to)
{
int ofs = 0;
if (from == AP_REGNO)
{
if (TARGET_A16)
ofs += 5;
else
ofs += 8;
}
if (to == SP_REGNO)
{
ofs += m32c_pushm_popm (PP_justcount);
ofs += get_frame_size ();
}
/* Account for push rounding. */
if (TARGET_A24)
ofs = (ofs + 1) & ~1;
#if DEBUG0
fprintf (stderr, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from,
to, ofs);
#endif
return ofs;
}
/* Passing Function Arguments on the Stack */
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES m32c_promote_prototypes
static bool
m32c_promote_prototypes (tree fntype ATTRIBUTE_UNUSED)
{
return 0;
}
/* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
M32C has word stacks. */
int
m32c_push_rounding (int n)
{
if (TARGET_R8C || TARGET_M16C)
return n;
return (n + 1) & ~1;
}
/* Passing Arguments in Registers */
/* Implements FUNCTION_ARG. Arguments are passed partly in registers,
partly on stack. If our function returns a struct, a pointer to a
buffer for it is at the top of the stack (last thing pushed). The
first few real arguments may be in registers as follows:
R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
arg2 in r2 if it's HI (else pushed on stack)
rest on stack
M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
rest on stack
Structs are not passed in registers, even if they fit. Only
integer and pointer types are passed in registers.
Note that when arg1 doesn't fit in r1, arg2 may still be passed in
r2 if it fits. */
rtx
m32c_function_arg (CUMULATIVE_ARGS * ca,
enum machine_mode mode, tree type, int named)
{
/* Can return a reg, parallel, or 0 for stack */
rtx rv = NULL_RTX;
#if DEBUG0
fprintf (stderr, "func_arg %d (%s, %d)\n",
ca->parm_num, mode_name[mode], named);
debug_tree (type);
#endif
if (mode == VOIDmode)
return GEN_INT (0);
if (ca->force_mem || !named)
{
#if DEBUG0
fprintf (stderr, "func arg: force %d named %d, mem\n", ca->force_mem,
named);
#endif
return NULL_RTX;
}
if (type && INTEGRAL_TYPE_P (type) && POINTER_TYPE_P (type))
return NULL_RTX;
if (type && AGGREGATE_TYPE_P (type))
return NULL_RTX;
switch (ca->parm_num)
{
case 1:
if (GET_MODE_SIZE (mode) == 1 || GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, TARGET_A16 ? R1_REGNO : R0_REGNO);
break;
case 2:
if (TARGET_A16 && GET_MODE_SIZE (mode) == 2)
rv = gen_rtx_REG (mode, R2_REGNO);
break;
}
#if DEBUG0
debug_rtx (rv);
#endif
return rv;
}
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
static bool
m32c_pass_by_reference (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
bool named ATTRIBUTE_UNUSED)
{
return 0;
}
/* Implements INIT_CUMULATIVE_ARGS. */
void
m32c_init_cumulative_args (CUMULATIVE_ARGS * ca,
tree fntype,
rtx libname ATTRIBUTE_UNUSED,
tree fndecl,
int n_named_args ATTRIBUTE_UNUSED)
{
if (fntype && aggregate_value_p (TREE_TYPE (fntype), fndecl))
ca->force_mem = 1;
else
ca->force_mem = 0;
ca->parm_num = 1;
}
/* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
returning structures, so we always reset that. Otherwise, we only
need to know the sequence number of the argument to know what to do
with it. */
void
m32c_function_arg_advance (CUMULATIVE_ARGS * ca,
enum machine_mode mode ATTRIBUTE_UNUSED,
tree type ATTRIBUTE_UNUSED,
int named ATTRIBUTE_UNUSED)
{
if (ca->force_mem)
ca->force_mem = 0;
else
ca->parm_num++;
}
/* Implements FUNCTION_ARG_REGNO_P. */
int
m32c_function_arg_regno_p (int r)
{
if (TARGET_A24)
return (r == R0_REGNO);
return (r == R1_REGNO || r == R2_REGNO);
}
/* HImode and PSImode are the two "native" modes as far as GCC is
concerned, but the chips also support a 32 bit mode which is used
for some opcodes in R8C/M16C and for reset vectors and such. */
#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
static bool
m32c_valid_pointer_mode (enum machine_mode mode)
{
if (mode == HImode
|| mode == PSImode
|| mode == SImode
)
return 1;
return 0;
}
/* How Scalar Function Values Are Returned */
/* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
combination of registers starting there (r2r0 for longs, r3r1r2r0
for long long, r3r2r1r0 for doubles), except that that ABI
currently doesn't work because it ends up using all available
general registers and gcc often can't compile it. So, instead, we
return anything bigger than 16 bits in "mem0" (effectively, a
memory location). */
rtx
m32c_libcall_value (enum machine_mode mode)
{
/* return reg or parallel */
#if 0
/* FIXME: GCC has difficulty returning large values in registers,
because that ties up most of the general registers and gives the
register allocator little to work with. Until we can resolve
this, large values are returned in memory. */
if (mode == DFmode)
{
rtx rv;
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (4));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R0_REGNO),
GEN_INT (0));
XVECEXP (rv, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R1_REGNO),
GEN_INT (2));
XVECEXP (rv, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R2_REGNO),
GEN_INT (4));
XVECEXP (rv, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (HImode,
R3_REGNO),
GEN_INT (6));
return rv;
}
if (TARGET_A24 && GET_MODE_SIZE (mode) > 2)
{
rtx rv;
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (1));
XVECEXP (rv, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode,
R0_REGNO),
GEN_INT (0));
return rv;
}
#endif
if (GET_MODE_SIZE (mode) > 2)
return gen_rtx_REG (mode, MEM0_REGNO);
return gen_rtx_REG (mode, R0_REGNO);
}
/* Implements FUNCTION_VALUE. Functions and libcalls have the same
conventions. */
rtx
m32c_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
/* return reg or parallel */
enum machine_mode mode = TYPE_MODE (valtype);
return m32c_libcall_value (mode);
}
/* How Large Values Are Returned */
/* We return structures by pushing the address on the stack, even if
we use registers for the first few "real" arguments. */
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
static rtx
m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return 0;
}
/* Function Entry and Exit */
/* Implements EPILOGUE_USES. Interrupts restore all registers. */
int
m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED)
{
if (cfun->machine->is_interrupt)
return 1;
return 0;
}
/* Implementing the Varargs Macros */
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
static bool
m32c_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED)
{
return 1;
}
/* Trampolines for Nested Functions */
/*
m16c:
1 0000 75C43412 mov.w #0x1234,a0
2 0004 FC000000 jmp.a label
m32c:
1 0000 BC563412 mov.l:s #0x123456,a0
2 0004 CC000000 jmp.a label
*/
/* Implements TRAMPOLINE_SIZE. */
int
m32c_trampoline_size (void)
{
/* Allocate extra space so we can avoid the messy shifts when we
initialize the trampoline; we just write past the end of the
opcode. */
return TARGET_A16 ? 8 : 10;
}
/* Implements TRAMPOLINE_ALIGNMENT. */
int
m32c_trampoline_alignment (void)
{
return 2;
}
/* Implements INITIALIZE_TRAMPOLINE. */
void
m32c_initialize_trampoline (rtx tramp, rtx function, rtx chainval)
{
#define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
if (TARGET_A16)
{
/* Note: we subtract a "word" because the moves want signed
constants, not unsigned constants. */
emit_move_insn (A0 (HImode, 0), GEN_INT (0xc475 - 0x10000));
emit_move_insn (A0 (HImode, 2), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xfc - 0x100));
/* We use 16 bit addresses here, but store the zero to turn it
into a 24 bit offset. */
emit_move_insn (A0 (HImode, 5), function);
emit_move_insn (A0 (QImode, 7), GEN_INT (0x00));
}
else
{
/* Note that the PSI moves actually write 4 bytes. Make sure we
write stuff out in the right order, and leave room for the
extra byte at the end. */
emit_move_insn (A0 (QImode, 0), GEN_INT (0xbc - 0x100));
emit_move_insn (A0 (PSImode, 1), chainval);
emit_move_insn (A0 (QImode, 4), GEN_INT (0xcc - 0x100));
emit_move_insn (A0 (PSImode, 5), function);
}
#undef A0
}
/* Implicit Calls to Library Routines */
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS m32c_init_libfuncs
static void
m32c_init_libfuncs (void)
{
if (TARGET_A24)
{
/* We do this because the M32C has an HImode operand, but the
M16C has an 8 bit operand. Since gcc looks at the match data
and not the expanded rtl, we have to reset the array so that
the right modes are found. */
setcc_gen_code[EQ] = CODE_FOR_seq_24;
setcc_gen_code[NE] = CODE_FOR_sne_24;
setcc_gen_code[GT] = CODE_FOR_sgt_24;
setcc_gen_code[GE] = CODE_FOR_sge_24;
setcc_gen_code[LT] = CODE_FOR_slt_24;
setcc_gen_code[LE] = CODE_FOR_sle_24;
setcc_gen_code[GTU] = CODE_FOR_sgtu_24;
setcc_gen_code[GEU] = CODE_FOR_sgeu_24;
setcc_gen_code[LTU] = CODE_FOR_sltu_24;
setcc_gen_code[LEU] = CODE_FOR_sleu_24;
}
}
/* Addressing Modes */
/* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
wide range of non-orthogonal addressing modes, including the
ability to double-indirect on *some* of them. Not all insns
support all modes, either, but we rely on predicates and
constraints to deal with that. */
int
m32c_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
int mode_adjust;
if (CONSTANT_P (x))
return 1;
/* Wide references to memory will be split after reload, so we must
ensure that all parts of such splits remain legitimate
addresses. */
mode_adjust = GET_MODE_SIZE (mode) - 1;
/* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
if (GET_CODE (x) == PRE_DEC
|| GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_MODIFY)
{
return (GET_CODE (XEXP (x, 0)) == REG
&& REGNO (XEXP (x, 0)) == SP_REGNO);
}
#if 0
/* This is the double indirection detection, but it currently
doesn't work as cleanly as this code implies, so until we've had
a chance to debug it, leave it disabled. */
if (TARGET_A24 && GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) != PLUS)
{
#if DEBUG_DOUBLE
fprintf (stderr, "double indirect\n");
#endif
x = XEXP (x, 0);
}
#endif
encode_pattern (x);
if (RTX_IS ("r"))
{
/* Most indexable registers can be used without displacements,
although some of them will be emitted with an explicit zero
to please the assembler. */
switch (REGNO (patternr[0]))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
default:
if (IS_PSEUDO (patternr[0], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+ri"))
{
/* This is more interesting, because different base registers
allow for different displacements - both range and signedness
- and it differs from chip series to chip series too. */
int rn = REGNO (patternr[1]);
HOST_WIDE_INT offs = INTVAL (patternr[2]);
switch (rn)
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
/* The syntax only allows positive offsets, but when the
offsets span the entire memory range, we can simulate
negative offsets by wrapping. */
if (TARGET_A16)
return (offs >= -65536 && offs <= 65535 - mode_adjust);
if (rn == SB_REGNO)
return (offs >= 0 && offs <= 65535 - mode_adjust);
/* A0 or A1 */
return (offs >= -16777216 && offs <= 16777215);
case FB_REGNO:
if (TARGET_A16)
return (offs >= -128 && offs <= 127 - mode_adjust);
return (offs >= -65536 && offs <= 65535 - mode_adjust);
case SP_REGNO:
return (offs >= -128 && offs <= 127 - mode_adjust);
default:
if (IS_PSEUDO (patternr[1], strict))
return 1;
return 0;
}
}
if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
{
rtx reg = patternr[1];
/* We don't know where the symbol is, so only allow base
registers which support displacements spanning the whole
address range. */
switch (REGNO (reg))
{
case A0_REGNO:
case A1_REGNO:
/* $sb needs a secondary reload, but since it's involved in
memory address reloads too, we don't deal with it very
well. */
/* case SB_REGNO: */
return 1;
default:
if (IS_PSEUDO (reg, strict))
return 1;
return 0;
}
}
return 0;
}
/* Implements REG_OK_FOR_BASE_P. */
int
m32c_reg_ok_for_base_p (rtx x, int strict)
{
if (GET_CODE (x) != REG)
return 0;
switch (REGNO (x))
{
case A0_REGNO:
case A1_REGNO:
case SB_REGNO:
case FB_REGNO:
case SP_REGNO:
return 1;
default:
if (IS_PSEUDO (x, strict))
return 1;
return 0;
}
}
/* We have three choices for choosing fb->aN offsets. If we choose -128,
we need one MOVA -128[fb],aN opcode and 16 bit aN displacements,
like this:
EB 4B FF mova -128[$fb],$a0
D8 0C FF FF mov.w:Q #0,-1[$a0]
Alternately, we subtract the frame size, and hopefully use 8 bit aN
displacements:
7B F4 stc $fb,$a0
77 54 00 01 sub #256,$a0
D8 08 01 mov.w:Q #0,1[$a0]
If we don't offset (i.e. offset by zero), we end up with:
7B F4 stc $fb,$a0
D8 0C 00 FF mov.w:Q #0,-256[$a0]
We have to subtract *something* so that we have a PLUS rtx to mark
that we've done this reload. The -128 offset will never result in
an 8 bit aN offset, and the payoff for the second case is five
loads *if* those loads are within 256 bytes of the other end of the
frame, so the third case seems best. Note that we subtract the
zero, but detect that in the addhi3 pattern. */
#define BIG_FB_ADJ 0
/* Implements LEGITIMIZE_ADDRESS. The only address we really have to
worry about is frame base offsets, as $fb has a limited
displacement range. We deal with this by attempting to reload $fb
itself into an address register; that seems to result in the best
code. */
int
m32c_legitimize_address (rtx * x ATTRIBUTE_UNUSED,
rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "m32c_legitimize_address for mode %s\n", mode_name[mode]);
debug_rtx (*x);
fprintf (stderr, "\n");
#endif
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
/* reload FB to A_REGS */
rtx temp = gen_reg_rtx (Pmode);
*x = copy_rtx (*x);
emit_insn (gen_rtx_SET (VOIDmode, temp, XEXP (*x, 0)));
XEXP (*x, 0) = temp;
return 1;
}
return 0;
}
/* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
int
m32c_legitimize_reload_address (rtx * x,
enum machine_mode mode,
int opnum,
int type, int ind_levels ATTRIBUTE_UNUSED)
{
#if DEBUG0
fprintf (stderr, "\nm32c_legitimize_reload_address for mode %s\n",
mode_name[mode]);
debug_rtx (*x);
#endif
/* At one point, this function tried to get $fb copied to an address
register, which in theory would maximize sharing, but gcc was
*also* still trying to reload the whole address, and we'd run out
of address registers. So we let gcc do the naive (but safe)
reload instead, when the above function doesn't handle it for
us.
The code below is a second attempt at the above. */
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == REG
&& REGNO (XEXP (*x, 0)) == FB_REGNO
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
&& (INTVAL (XEXP (*x, 1)) < -128
|| INTVAL (XEXP (*x, 1)) > (128 - GET_MODE_SIZE (mode))))
{
rtx sum;
int offset = INTVAL (XEXP (*x, 1));
int adjustment = -BIG_FB_ADJ;
sum = gen_rtx_PLUS (Pmode, XEXP (*x, 0),
GEN_INT (adjustment));
*x = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - adjustment));
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (sum, NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
if (GET_CODE (*x) == PLUS
&& GET_CODE (XEXP (*x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (*x, 0), 0)) == REG
&& REGNO (XEXP (XEXP (*x, 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (*x, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (*x, 1)) == CONST_INT
)
{
if (type == RELOAD_OTHER)
type = RELOAD_FOR_OTHER_ADDRESS;
push_reload (XEXP (*x, 0), NULL_RTX, &XEXP (*x, 0), NULL,
A_REGS, Pmode, VOIDmode, 0, 0, opnum,
type);
return 1;
}
return 0;
}
/* Used in GO_IF_MODE_DEPENDENT_ADDRESS. */
int
m32c_mode_dependent_address (rtx addr)
{
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_DEC)
return 1;
return 0;
}
/* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
so we can allow anything. */
int
m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return 1;
}
/* Condition Code Status */
#undef TARGET_FIXED_CONDITION_CODE_REGS
#define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
static bool
m32c_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
{
*p1 = FLG_REGNO;
*p2 = INVALID_REGNUM;
return true;
}
/* Describing Relative Costs of Operations */
/* Implements REGISTER_MOVE_COST. We make impossible moves
prohibitively expensive, like trying to put QIs in r2/r3 (there are
no opcodes to do that). We also discourage use of mem* registers
since they're really memory. */
int
m32c_register_move_cost (enum machine_mode mode, int from, int to)
{
int cost = COSTS_N_INSNS (3);
int cc = class_contents[from][0] | class_contents[to][0];
/* FIXME: pick real values, but not 2 for now. */
if (mode == QImode && (cc & class_contents[R23_REGS][0]))
{
if (!(cc & ~class_contents[R23_REGS][0]))
cost = COSTS_N_INSNS (1000);
else
cost = COSTS_N_INSNS (80);
}
if (!class_can_hold_mode (from, mode) || !class_can_hold_mode (to, mode))
cost = COSTS_N_INSNS (1000);
if (classes_intersect (from, CR_REGS))
cost += COSTS_N_INSNS (5);
if (classes_intersect (to, CR_REGS))
cost += COSTS_N_INSNS (5);
if (from == MEM_REGS || to == MEM_REGS)
cost += COSTS_N_INSNS (50);
else if (classes_intersect (from, MEM_REGS)
|| classes_intersect (to, MEM_REGS))
cost += COSTS_N_INSNS (10);
#if DEBUG0
fprintf (stderr, "register_move_cost %s from %s to %s = %d\n",
mode_name[mode], class_names[from], class_names[to], cost);
#endif
return cost;
}
/* Implements MEMORY_MOVE_COST. */
int
m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
int reg_class ATTRIBUTE_UNUSED,
int in ATTRIBUTE_UNUSED)
{
/* FIXME: pick real values. */
return COSTS_N_INSNS (10);
}
/* Here we try to describe when we use multiple opcodes for one RTX so
that gcc knows when to use them. */
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS m32c_rtx_costs
static bool
m32c_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case REG:
if (REGNO (x) >= MEM0_REGNO && REGNO (x) <= MEM7_REGNO)
*total += COSTS_N_INSNS (500);
else
*total += COSTS_N_INSNS (1);
return true;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
{
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (1);
return true;
}
if (INTVAL (XEXP (x, 1)) > 8
|| INTVAL (XEXP (x, 1)) < -8)
{
/* mov.b #N, r1l */
/* mov.b r1l, r1h */
*total += COSTS_N_INSNS (2);
return true;
}
return true;
case LE:
case LEU:
case LT:
case LTU:
case GT:
case GTU:
case GE:
case GEU:
case NE:
case EQ:
if (outer_code == SET)
{
*total += COSTS_N_INSNS (2);
return true;
}
break;
case ZERO_EXTRACT:
{
rtx dest = XEXP (x, 0);
rtx addr = XEXP (dest, 0);
switch (GET_CODE (addr))
{
case CONST_INT:
*total += COSTS_N_INSNS (1);
break;
case SYMBOL_REF:
*total += COSTS_N_INSNS (3);
break;
default:
*total += COSTS_N_INSNS (2);
break;
}
return true;
}
break;
default:
/* Reasonable default. */
if (TARGET_A16 && GET_MODE(x) == SImode)
*total += COSTS_N_INSNS (2);
break;
}
return false;
}
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST m32c_address_cost
static int
m32c_address_cost (rtx addr)
{
/* fprintf(stderr, "\naddress_cost\n");
debug_rtx(addr);*/
switch (GET_CODE (addr))
{
case CONST_INT:
return COSTS_N_INSNS(1);
case SYMBOL_REF:
return COSTS_N_INSNS(3);
case REG:
return COSTS_N_INSNS(2);
default:
return 0;
}
}
/* Defining the Output Assembler Language */
/* The Overall Framework of an Assembler File */
#undef TARGET_HAVE_NAMED_SECTIONS
#define TARGET_HAVE_NAMED_SECTIONS true
/* Output of Data */
/* We may have 24 bit sizes, which is the native address size.
Currently unused, but provided for completeness. */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER m32c_asm_integer
static bool
m32c_asm_integer (rtx x, unsigned int size, int aligned_p)
{
switch (size)
{
case 3:
fprintf (asm_out_file, "\t.3byte\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
case 4:
if (GET_CODE (x) == SYMBOL_REF)
{
fprintf (asm_out_file, "\t.long\t");
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
}
break;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Output of Assembler Instructions */
/* We use a lookup table because the addressing modes are non-orthogonal. */
static struct
{
char code;
char const *pattern;
char const *format;
}
const conversions[] = {
{ 0, "r", "0" },
{ 0, "mr", "z[1]" },
{ 0, "m+ri", "3[2]" },
{ 0, "m+rs", "3[2]" },
{ 0, "m+r+si", "4+5[2]" },
{ 0, "ms", "1" },
{ 0, "mi", "1" },
{ 0, "m+si", "2+3" },
{ 0, "mmr", "[z[2]]" },
{ 0, "mm+ri", "[4[3]]" },
{ 0, "mm+rs", "[4[3]]" },
{ 0, "mm+r+si", "[5+6[3]]" },
{ 0, "mms", "[[2]]" },
{ 0, "mmi", "[[2]]" },
{ 0, "mm+si", "[4[3]]" },
{ 0, "i", "#0" },
{ 0, "s", "#0" },
{ 0, "+si", "#1+2" },
{ 0, "l", "#0" },
{ 'l', "l", "0" },
{ 'd', "i", "0" },
{ 'd', "s", "0" },
{ 'd', "+si", "1+2" },
{ 'D', "i", "0" },
{ 'D', "s", "0" },
{ 'D', "+si", "1+2" },
{ 'x', "i", "#0" },
{ 'X', "i", "#0" },
{ 'm', "i", "#0" },
{ 'b', "i", "#0" },
{ 'B', "i", "0" },
{ 'p', "i", "0" },
{ 0, 0, 0 }
};
/* This is in order according to the bitfield that pushm/popm use. */
static char const *pushm_regs[] = {
"fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
};
/* Implements PRINT_OPERAND. */
void
m32c_print_operand (FILE * file, rtx x, int code)
{
int i, j, b;
const char *comma;
HOST_WIDE_INT ival;
int unsigned_const = 0;
int force_sign;
/* Multiplies; constants are converted to sign-extended format but
we need unsigned, so 'u' and 'U' tell us what size unsigned we
need. */
if (code == 'u')
{
unsigned_const = 2;
code = 0;
}
if (code == 'U')
{
unsigned_const = 1;
code = 0;
}
/* This one is only for debugging; you can put it in a pattern to
force this error. */
if (code == '!')
{
fprintf (stderr, "dj: unreviewed pattern:");
if (current_output_insn)
debug_rtx (current_output_insn);
gcc_unreachable ();
}
/* PSImode operations are either .w or .l depending on the target. */
if (code == '&')
{
if (TARGET_A16)
fprintf (file, "w");
else
fprintf (file, "l");
return;
}
/* Inverted conditionals. */
if (code == 'C')
{
switch (GET_CODE (x))
{
case LE:
fputs ("gt", file);
break;
case LEU:
fputs ("gtu", file);
break;
case LT:
fputs ("ge", file);
break;
case LTU:
fputs ("geu", file);
break;
case GT:
fputs ("le", file);
break;
case GTU:
fputs ("leu", file);
break;
case GE:
fputs ("lt", file);
break;
case GEU:
fputs ("ltu", file);
break;
case NE:
fputs ("eq", file);
break;
case EQ:
fputs ("ne", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Regular conditionals. */
if (code == 'c')
{
switch (GET_CODE (x))
{
case LE:
fputs ("le", file);
break;
case LEU:
fputs ("leu", file);
break;
case LT:
fputs ("lt", file);
break;
case LTU:
fputs ("ltu", file);
break;
case GT:
fputs ("gt", file);
break;
case GTU:
fputs ("gtu", file);
break;
case GE:
fputs ("ge", file);
break;
case GEU:
fputs ("geu", file);
break;
case NE:
fputs ("ne", file);
break;
case EQ:
fputs ("eq", file);
break;
default:
gcc_unreachable ();
}
return;
}
/* Used in negsi2 to do HImode ops on the two parts of an SImode
operand. */
if (code == 'h' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == SImode)
{
x = m32c_subreg (HImode, x, SImode, 2);
code = 0;
}
if (code == 'h' && GET_MODE (x) == HImode)
{
x = m32c_subreg (QImode, x, HImode, 0);
code = 0;
}
if (code == 'H' && GET_MODE (x) == HImode)
{
/* We can't actually represent this as an rtx. Do it here. */
if (GET_CODE (x) == REG)
{
switch (REGNO (x))
{
case R0_REGNO:
fputs ("r0h", file);
return;
case R1_REGNO:
fputs ("r1h", file);
return;
default:
gcc_unreachable();
}
}
/* This should be a MEM. */
x = m32c_subreg (QImode, x, HImode, 1);
code = 0;
}
/* This is for BMcond, which always wants word register names. */
if (code == 'h' && GET_MODE (x) == QImode)
{
if (GET_CODE (x) == REG)
x = gen_rtx_REG (HImode, REGNO (x));
code = 0;
}
/* 'x' and 'X' need to be ignored for non-immediates. */
if ((code == 'x' || code == 'X') && GET_CODE (x) != CONST_INT)
code = 0;
encode_pattern (x);
force_sign = 0;
for (i = 0; conversions[i].pattern; i++)
if (conversions[i].code == code
&& streq (conversions[i].pattern, pattern))
{
for (j = 0; conversions[i].format[j]; j++)
/* backslash quotes the next character in the output pattern. */
if (conversions[i].format[j] == '\\')
{
fputc (conversions[i].format[j + 1], file);
j++;
}
/* Digits in the output pattern indicate that the
corresponding RTX is to be output at that point. */
else if (ISDIGIT (conversions[i].format[j]))
{
rtx r = patternr[conversions[i].format[j] - '0'];
switch (GET_CODE (r))
{
case REG:
fprintf (file, "%s",
reg_name_with_mode (REGNO (r), GET_MODE (r)));
break;
case CONST_INT:
switch (code)
{
case 'b':
case 'B':
{
int v = INTVAL (r);
int i = (int) exact_log2 (v);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xffff) & 0xffff);
if (i == -1)
i = (int) exact_log2 ((v ^ 0xff) & 0xff);
/* Bit position. */
fprintf (file, "%d", i);
}
break;
case 'x':
/* Unsigned byte. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xff);
break;
case 'X':
/* Unsigned word. */
fprintf (file, HOST_WIDE_INT_PRINT_HEX,
INTVAL (r) & 0xffff);
break;
case 'p':
/* pushm and popm encode a register set into a single byte. */
comma = "";
for (b = 7; b >= 0; b--)
if (INTVAL (r) & (1 << b))
{
fprintf (file, "%s%s", comma, pushm_regs[b]);
comma = ",";
}
break;
case 'm':
/* "Minus". Output -X */
ival = (-INTVAL (r) & 0xffff);
if (ival & 0x8000)
ival = ival - 0x10000;
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
default:
ival = INTVAL (r);
if (conversions[i].format[j + 1] == '[' && ival < 0)
{
/* We can simulate negative displacements by
taking advantage of address space
wrapping when the offset can span the
entire address range. */
rtx base =
patternr[conversions[i].format[j + 2] - '0'];
if (GET_CODE (base) == REG)
switch (REGNO (base))
{
case A0_REGNO:
case A1_REGNO:
if (TARGET_A24)
ival = 0x1000000 + ival;
else
ival = 0x10000 + ival;
break;
case SB_REGNO:
if (TARGET_A16)
ival = 0x10000 + ival;
break;
}
}
else if (code == 'd' && ival < 0 && j == 0)
/* The "mova" opcode is used to do addition by
computing displacements, but again, we need
displacements to be unsigned *if* they're
the only component of the displacement
(i.e. no "symbol-4" type displacement). */
ival = (TARGET_A24 ? 0x1000000 : 0x10000) + ival;
if (conversions[i].format[j] == '0')
{
/* More conversions to unsigned. */
if (unsigned_const == 2)
ival &= 0xffff;
if (unsigned_const == 1)
ival &= 0xff;
}
if (streq (conversions[i].pattern, "mi")
|| streq (conversions[i].pattern, "mmi"))
{
/* Integers used as addresses are unsigned. */
ival &= (TARGET_A24 ? 0xffffff : 0xffff);
}
if (force_sign && ival >= 0)
fputc ('+', file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ival);
break;
}
break;
case CONST_DOUBLE:
/* We don't have const_double constants. If it
happens, make it obvious. */
fprintf (file, "[const_double 0x%lx]",
(unsigned long) CONST_DOUBLE_HIGH (r));
break;
case SYMBOL_REF:
assemble_name (file, XSTR (r, 0));
break;
case LABEL_REF:
output_asm_label (r);
break;
default:
fprintf (stderr, "don't know how to print this operand:");
debug_rtx (r);
gcc_unreachable ();
}
}
else
{
if (conversions[i].format[j] == 'z')
{
/* Some addressing modes *must* have a displacement,
so insert a zero here if needed. */
int k;
for (k = j + 1; conversions[i].format[k]; k++)
if (ISDIGIT (conversions[i].format[k]))
{
rtx reg = patternr[conversions[i].format[k] - '0'];
if (GET_CODE (reg) == REG
&& (REGNO (reg) == SB_REGNO
|| REGNO (reg) == FB_REGNO
|| REGNO (reg) == SP_REGNO))
fputc ('0', file);
}
continue;
}
/* Signed displacements off symbols need to have signs
blended cleanly. */
if (conversions[i].format[j] == '+'
&& (!code || code == 'D' || code == 'd')
&& ISDIGIT (conversions[i].format[j + 1])
&& (GET_CODE (patternr[conversions[i].format[j + 1] - '0'])
== CONST_INT))
{
force_sign = 1;
continue;
}
fputc (conversions[i].format[j], file);
}
break;
}
if (!conversions[i].pattern)
{
fprintf (stderr, "unconvertible operand %c `%s'", code ? code : '-',
pattern);
debug_rtx (x);
fprintf (file, "[%c.%s]", code ? code : '-', pattern);
}
return;
}
/* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
above for descriptions of what these do. */
int
m32c_print_operand_punct_valid_p (int c)
{
if (c == '&' || c == '!')
return 1;
return 0;
}
/* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
void
m32c_print_operand_address (FILE * stream, rtx address)
{
gcc_assert (GET_CODE (address) == MEM);
m32c_print_operand (stream, XEXP (address, 0), 0);
}
/* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
differently than general registers. */
void
m32c_output_reg_push (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpushc\tflg\n");
else
fprintf (s, "\tpush.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
/* Likewise for ASM_OUTPUT_REG_POP. */
void
m32c_output_reg_pop (FILE * s, int regno)
{
if (regno == FLG_REGNO)
fprintf (s, "\tpopc\tflg\n");
else
fprintf (s, "\tpop.%c\t%s\n",
" bwll"[reg_push_size (regno)], reg_names[regno]);
}
/* Defining target-specific uses of `__attribute__' */
/* Used to simplify the logic below. Find the attributes wherever
they may be. */
#define M32C_ATTRIBUTES(decl) \
(TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
: DECL_ATTRIBUTES (decl) \
? (DECL_ATTRIBUTES (decl)) \
: TYPE_ATTRIBUTES (TREE_TYPE (decl))
/* Returns TRUE if the given tree has the "interrupt" attribute. */
static int
interrupt_p (tree node ATTRIBUTE_UNUSED)
{
tree list = M32C_ATTRIBUTES (node);
while (list)
{
if (is_attribute_p ("interrupt", TREE_PURPOSE (list)))
return 1;
list = TREE_CHAIN (list);
}
return 0;
}
static tree
interrupt_handler (tree * node ATTRIBUTE_UNUSED,
tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool * no_add_attrs ATTRIBUTE_UNUSED)
{
return NULL_TREE;
}
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
static const struct attribute_spec m32c_attribute_table[] = {
{"interrupt", 0, 0, false, false, false, interrupt_handler},
{0, 0, 0, 0, 0, 0, 0}
};
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
static int
m32c_comp_type_attributes (tree type1 ATTRIBUTE_UNUSED,
tree type2 ATTRIBUTE_UNUSED)
{
/* 0=incompatible 1=compatible 2=warning */
return 1;
}
#undef TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
static void
m32c_insert_attributes (tree node ATTRIBUTE_UNUSED,
tree * attr_ptr ATTRIBUTE_UNUSED)
{
/* Nothing to do here. */
}
/* Predicates */
/* Returns TRUE if we support a move between the first two operands.
At the moment, we just want to discourage mem to mem moves until
after reload, because reload has a hard time with our limited
number of address registers, and we can get into a situation where
we need three of them when we only have two. */
bool
m32c_mov_ok (rtx * operands, enum machine_mode mode ATTRIBUTE_UNUSED)
{
rtx op0 = operands[0];
rtx op1 = operands[1];
if (TARGET_A24)
return true;
#define DEBUG_MOV_OK 0
#if DEBUG_MOV_OK
fprintf (stderr, "m32c_mov_ok %s\n", mode_name[mode]);
debug_rtx (op0);
debug_rtx (op1);
#endif
if (GET_CODE (op0) == SUBREG)
op0 = XEXP (op0, 0);
if (GET_CODE (op1) == SUBREG)
op1 = XEXP (op1, 0);
if (GET_CODE (op0) == MEM
&& GET_CODE (op1) == MEM
&& ! reload_completed)
{
#if DEBUG_MOV_OK
fprintf (stderr, " - no, mem to mem\n");
#endif
return false;
}
#if DEBUG_MOV_OK
fprintf (stderr, " - ok\n");
#endif
return true;
}
/* Returns TRUE if two consecutive HImode mov instructions, generated
for moving an immediate double data to a double data type variable
location, can be combined into single SImode mov instruction. */
bool
m32c_immd_dbl_mov (rtx * operands,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
int flag = 0, okflag = 0, offset1 = 0, offset2 = 0, offsetsign = 0;
const char *str1;
const char *str2;
if (GET_CODE (XEXP (operands[0], 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 1;
else if (GET_CODE (XEXP (operands[0], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[0], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (XEXP (operands[0], 0), 0), 1), 0) %4)
&& GET_CODE (XEXP (operands[2], 0)) == CONST
&& GET_CODE (XEXP (XEXP (operands[2], 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (operands[2], 0), 0), 0)) == SYMBOL_REF
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 2;
else if (GET_CODE (XEXP (operands[0], 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operands[0], 0), 0)) == REG
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[0])
&& !MEM_IN_STRUCT_P (operands[0])
&& !(XINT (XEXP (XEXP (operands[0], 0), 1), 0) %4)
&& REGNO (XEXP (XEXP (operands[2], 0), 0)) == FB_REGNO
&& GET_CODE (XEXP (XEXP (operands[2], 0), 1)) == CONST_INT
&& MEM_SCALAR_P (operands[2])
&& !MEM_IN_STRUCT_P (operands[2]))
flag = 3;
else
return false;
switch (flag)
{
case 1:
str1 = XSTR (XEXP (operands[0], 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp (str1, str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 2:
str1 = XSTR (XEXP (XEXP (XEXP (operands[0], 0), 0), 0), 0);
str2 = XSTR (XEXP (XEXP (XEXP (operands[2], 0), 0), 0), 0);
if (strcmp(str1,str2) == 0)
okflag = 1;
else
okflag = 0;
break;
case 3:
offset1 = XINT (XEXP (XEXP (operands[0], 0), 1), 0);
offset2 = XINT (XEXP (XEXP (operands[2], 0), 1), 0);
offsetsign = offset1 >> ((sizeof (offset1) * 8) -1);
if (((offset2-offset1) == 2) && offsetsign != 0)
okflag = 1;
else
okflag = 0;
break;
default:
okflag = 0;
}
if (okflag == 1)
{
HOST_WIDE_INT val;
operands[4] = gen_rtx_MEM (SImode, XEXP (operands[0], 0));
val = (XINT (operands[3], 0) << 16) + (XINT (operands[1], 0) & 0xFFFF);
operands[5] = gen_rtx_CONST_INT (VOIDmode, val);
return true;
}
return false;
}
/* Expanders */
/* Subregs are non-orthogonal for us, because our registers are all
different sizes. */
static rtx
m32c_subreg (enum machine_mode outer,
rtx x, enum machine_mode inner, int byte)
{
int r, nr = -1;
/* Converting MEMs to different types that are the same size, we
just rewrite them. */
if (GET_CODE (x) == SUBREG
&& SUBREG_BYTE (x) == 0
&& GET_CODE (SUBREG_REG (x)) == MEM
&& (GET_MODE_SIZE (GET_MODE (x))
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
rtx oldx = x;
x = gen_rtx_MEM (GET_MODE (x), XEXP (SUBREG_REG (x), 0));
MEM_COPY_ATTRIBUTES (x, SUBREG_REG (oldx));
}
/* Push/pop get done as smaller push/pops. */
if (GET_CODE (x) == MEM
&& (GET_CODE (XEXP (x, 0)) == PRE_DEC
|| GET_CODE (XEXP (x, 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (x, 0));
if (GET_CODE (x) == SUBREG
&& GET_CODE (XEXP (x, 0)) == MEM
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == PRE_DEC
|| GET_CODE (XEXP (XEXP (x, 0), 0)) == POST_INC))
return gen_rtx_MEM (outer, XEXP (XEXP (x, 0), 0));
if (GET_CODE (x) != REG)
return simplify_gen_subreg (outer, x, inner, byte);
r = REGNO (x);
if (r >= FIRST_PSEUDO_REGISTER || r == AP_REGNO)
return simplify_gen_subreg (outer, x, inner, byte);
if (IS_MEM_REGNO (r))
return simplify_gen_subreg (outer, x, inner, byte);
/* This is where the complexities of our register layout are
described. */
if (byte == 0)
nr = r;
else if (outer == HImode)
{
if (r == R0_REGNO && byte == 2)
nr = R2_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
else if (r == R0_REGNO && byte == 6)
nr = R3_REGNO;
else if (r == R1_REGNO && byte == 2)
nr = R3_REGNO;
else if (r == A0_REGNO && byte == 2)
nr = A1_REGNO;
}
else if (outer == SImode)
{
if (r == R0_REGNO && byte == 0)
nr = R0_REGNO;
else if (r == R0_REGNO && byte == 4)
nr = R1_REGNO;
}
if (nr == -1)
{
fprintf (stderr, "m32c_subreg %s %s %d\n",
mode_name[outer], mode_name[inner], byte);
debug_rtx (x);
gcc_unreachable ();
}
return gen_rtx_REG (outer, nr);
}
/* Used to emit move instructions. We split some moves,
and avoid mem-mem moves. */
int
m32c_prepare_move (rtx * operands, enum machine_mode mode)
{
if (TARGET_A16 && mode == PSImode)
return m32c_split_move (operands, mode, 1);
if ((GET_CODE (operands[0]) == MEM)
&& (GET_CODE (XEXP (operands[0], 0)) == PRE_MODIFY))
{
rtx pmv = XEXP (operands[0], 0);
rtx dest_reg = XEXP (pmv, 0);
rtx dest_mod = XEXP (pmv, 1);
emit_insn (gen_rtx_SET (Pmode, dest_reg, dest_mod));
operands[0] = gen_rtx_MEM (mode, dest_reg);
}
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
operands[1] = copy_to_mode_reg (mode, operands[1]);
return 0;
}
#define DEBUG_SPLIT 0
/* Returns TRUE if the given PSImode move should be split. We split
for all r8c/m16c moves, since it doesn't support them, and for
POP.L as we can only *push* SImode. */
int
m32c_split_psi_p (rtx * operands)
{
#if DEBUG_SPLIT
fprintf (stderr, "\nm32c_split_psi_p\n");
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
if (TARGET_A16)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, A16\n");
#endif
return 1;
}
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC)
{
#if DEBUG_SPLIT
fprintf (stderr, "yes, pop.l\n");
#endif
return 1;
}
#if DEBUG_SPLIT
fprintf (stderr, "no, default\n");
#endif
return 0;
}
/* Split the given move. SPLIT_ALL is 0 if splitting is optional
(define_expand), 1 if it is not optional (define_insn_and_split),
and 3 for define_split (alternate api). */
int
m32c_split_move (rtx * operands, enum machine_mode mode, int split_all)
{
rtx s[4], d[4];
int parts, si, di, rev = 0;
int rv = 0, opi = 2;
enum machine_mode submode = HImode;
rtx *ops, local_ops[10];
/* define_split modifies the existing operands, but the other two
emit new insns. OPS is where we store the operand pairs, which
we emit later. */
if (split_all == 3)
ops = operands;
else
ops = local_ops;
/* Else HImode. */
if (mode == DImode)
submode = SImode;
/* Before splitting mem-mem moves, force one operand into a
register. */
if (!no_new_pseudos && MEM_P (operands[0]) && MEM_P (operands[1]))
{
#if DEBUG0
fprintf (stderr, "force_reg...\n");
debug_rtx (operands[1]);
#endif
operands[1] = force_reg (mode, operands[1]);
#if DEBUG0
debug_rtx (operands[1]);
#endif
}
parts = 2;
#if DEBUG_SPLIT
fprintf (stderr, "\nsplit_move %d all=%d\n", no_new_pseudos, split_all);
debug_rtx (operands[0]);
debug_rtx (operands[1]);
#endif
/* Note that split_all is not used to select the api after this
point, so it's safe to set it to 3 even with define_insn. */
/* None of the chips can move SI operands to sp-relative addresses,
so we always split those. */
if (m32c_extra_constraint_p (operands[0], 'S', "Ss"))
split_all = 3;
/* We don't need to split these. */
if (TARGET_A24
&& split_all != 3
&& (mode == SImode || mode == PSImode)
&& !(GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == POST_INC))
return 0;
/* First, enumerate the subregs we'll be dealing with. */
for (si = 0; si < parts; si++)
{
d[si] =
m32c_subreg (submode, operands[0], mode,
si * GET_MODE_SIZE (submode));
s[si] =
m32c_subreg (submode, operands[1], mode,
si * GET_MODE_SIZE (submode));
}
/* Split pushes by emitting a sequence of smaller pushes. */
if (GET_CODE (d[0]) == MEM && GET_CODE (XEXP (d[0], 0)) == PRE_DEC)
{
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_PRE_DEC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
ops[opi++] = s[si];
}
rv = 1;
}
/* Likewise for pops. */
else if (GET_CODE (s[0]) == MEM && GET_CODE (XEXP (s[0], 0)) == POST_INC)
{
for (di = 0; di < parts; di++)
{
ops[opi++] = d[di];
ops[opi++] = gen_rtx_MEM (submode,
gen_rtx_POST_INC (Pmode,
gen_rtx_REG (Pmode,
SP_REGNO)));
}
rv = 1;
}
else if (split_all)
{
/* if d[di] == s[si] for any di < si, we'll early clobber. */
for (di = 0; di < parts - 1; di++)
for (si = di + 1; si < parts; si++)
if (reg_mentioned_p (d[di], s[si]))
rev = 1;
if (rev)
for (si = 0; si < parts; si++)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
else
for (si = parts - 1; si >= 0; si--)
{
ops[opi++] = d[si];
ops[opi++] = s[si];
}
rv = 1;
}
/* Now emit any moves we may have accumulated. */
if (rv && split_all != 3)
{
int i;
for (i = 2; i < opi; i += 2)
emit_move_insn (ops[i], ops[i + 1]);
}
return rv;
}
/* The m32c has a number of opcodes that act like memcpy, strcmp, and
the like. For the R8C they expect one of the addresses to be in
R1L:An so we need to arrange for that. Otherwise, it's just a
matter of picking out the operands we want and emitting the right
pattern for them. All these expanders, which correspond to
patterns in blkmov.md, must return nonzero if they expand the insn,
or zero if they should FAIL. */
/* This is a memset() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
the count (HI), and $2 the value (QI). */
int
m32c_expand_setmemhi(rtx *operands)
{
rtx desta, count, val;
rtx desto, counto;
desta = XEXP (operands[0], 0);
count = operands[1];
val = operands[2];
desto = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
/* This looks like an arbitrary restriction, but this is by far the
most common case. For counts 8..14 this actually results in
smaller code with no speed penalty because the half-sized
constant can be loaded with a shorter opcode. */
if (GET_CODE (count) == CONST_INT
&& GET_CODE (val) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1)
&& (INTVAL (val) <= 7 && INTVAL (val) >= -8))
{
unsigned v = INTVAL (val) & 0xff;
v = v | (v << 8);
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
val = copy_to_mode_reg (HImode, GEN_INT (v));
if (TARGET_A16)
emit_insn (gen_setmemhi_whi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_wpsi_op (desto, counto, val, desta, count));
return 1;
}
/* This is the generalized memset() case. */
if (GET_CODE (val) != REG
|| REGNO (val) < FIRST_PSEUDO_REGISTER)
val = copy_to_mode_reg (QImode, val);
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
if (TARGET_A16)
emit_insn (gen_setmemhi_bhi_op (desto, counto, val, desta, count));
else
emit_insn (gen_setmemhi_bpsi_op (desto, counto, val, desta, count));
return 1;
}
/* This is a memcpy() opcode. All operands are implied, so we need to
arrange for them to be in the right registers. The opcode wants
addresses, not [mem] syntax. $0 is the destination (MEM:BLK), $1
is the source (MEM:BLK), and $2 the count (HI). */
int
m32c_expand_movmemhi(rtx *operands)
{
rtx desta, srca, count;
rtx desto, srco, counto;
desta = XEXP (operands[0], 0);
srca = XEXP (operands[1], 0);
count = operands[2];
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
counto = gen_reg_rtx (HImode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
/* Similar to setmem, but we don't need to check the value. */
if (GET_CODE (count) == CONST_INT
&& ! (INTVAL (count) & 1)
&& (INTVAL (count) > 1))
{
count = copy_to_mode_reg (HImode, GEN_INT (INTVAL (count) / 2));
if (TARGET_A16)
emit_insn (gen_movmemhi_whi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_wpsi_op (desto, srco, counto, desta, srca, count));
return 1;
}
/* This is the generalized memset() case. */
if (GET_CODE (count) != REG
|| REGNO (count) < FIRST_PSEUDO_REGISTER)
count = copy_to_mode_reg (HImode, count);
if (TARGET_A16)
emit_insn (gen_movmemhi_bhi_op (desto, srco, counto, desta, srca, count));
else
emit_insn (gen_movmemhi_bpsi_op (desto, srco, counto, desta, srca, count));
return 1;
}
/* This is a stpcpy() opcode. $0 is the destination (MEM:BLK) after
the copy, which should point to the NUL at the end of the string,
$1 is the destination (MEM:BLK), and $2 is the source (MEM:BLK).
Since our opcode leaves the destination pointing *after* the NUL,
we must emit an adjustment. */
int
m32c_expand_movstr(rtx *operands)
{
rtx desta, srca;
rtx desto, srco;
desta = XEXP (operands[1], 0);
srca = XEXP (operands[2], 0);
desto = gen_reg_rtx (Pmode);
srco = gen_reg_rtx (Pmode);
if (GET_CODE (desta) != REG
|| REGNO (desta) < FIRST_PSEUDO_REGISTER)
desta = copy_to_mode_reg (Pmode, desta);
if (GET_CODE (srca) != REG
|| REGNO (srca) < FIRST_PSEUDO_REGISTER)
srca = copy_to_mode_reg (Pmode, srca);
emit_insn (gen_movstr_op (desto, srco, desta, srca));
/* desto ends up being a1, which allows this type of add through MOVA. */
emit_insn (gen_addpsi3 (operands[0], desto, GEN_INT (-1)));
return 1;
}
/* This is a strcmp() opcode. $0 is the destination (HI) which holds
<=>0 depending on the comparison, $1 is one string (MEM:BLK), and
$2 is the other (MEM:BLK). We must do the comparison, and then
convert the flags to a signed integer result. */
int
m32c_expand_cmpstr(rtx *operands)
{
rtx src1a, src2a;
src1a = XEXP (operands[1], 0);
src2a = XEXP (operands[2], 0);
if (GET_CODE (src1a) != REG
|| REGNO (src1a) < FIRST_PSEUDO_REGISTER)
src1a = copy_to_mode_reg (Pmode, src1a);
if (GET_CODE (src2a) != REG
|| REGNO (src2a) < FIRST_PSEUDO_REGISTER)
src2a = copy_to_mode_reg (Pmode, src2a);
emit_insn (gen_cmpstrhi_op (src1a, src2a, src1a, src2a));
emit_insn (gen_cond_to_int (operands[0]));
return 1;
}
typedef rtx (*shift_gen_func)(rtx, rtx, rtx);
static shift_gen_func
shift_gen_func_for (int mode, int code)
{
#define GFF(m,c,f) if (mode == m && code == c) return f
GFF(QImode, ASHIFT, gen_ashlqi3_i);
GFF(QImode, ASHIFTRT, gen_ashrqi3_i);
GFF(QImode, LSHIFTRT, gen_lshrqi3_i);
GFF(HImode, ASHIFT, gen_ashlhi3_i);
GFF(HImode, ASHIFTRT, gen_ashrhi3_i);
GFF(HImode, LSHIFTRT, gen_lshrhi3_i);
GFF(PSImode, ASHIFT, gen_ashlpsi3_i);
GFF(PSImode, ASHIFTRT, gen_ashrpsi3_i);
GFF(PSImode, LSHIFTRT, gen_lshrpsi3_i);
GFF(SImode, ASHIFT, TARGET_A16 ? gen_ashlsi3_16 : gen_ashlsi3_24);
GFF(SImode, ASHIFTRT, TARGET_A16 ? gen_ashrsi3_16 : gen_ashrsi3_24);
GFF(SImode, LSHIFTRT, TARGET_A16 ? gen_lshrsi3_16 : gen_lshrsi3_24);
#undef GFF
gcc_unreachable ();
}
/* The m32c only has one shift, but it takes a signed count. GCC
doesn't want this, so we fake it by negating any shift count when
we're pretending to shift the other way. Also, the shift count is
limited to -8..8. It's slightly better to use two shifts for 9..15
than to load the count into r1h, so we do that too. */
int
m32c_prepare_shift (rtx * operands, int scale, int shift_code)
{
enum machine_mode mode = GET_MODE (operands[0]);
shift_gen_func func = shift_gen_func_for (mode, shift_code);
rtx temp;
if (GET_CODE (operands[2]) == CONST_INT)
{
int maxc = TARGET_A24 && (mode == PSImode || mode == SImode) ? 32 : 8;
int count = INTVAL (operands[2]) * scale;
while (count > maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (maxc)));
operands[1] = temp;
count -= maxc;
}
while (count < -maxc)
{
temp = gen_reg_rtx (mode);
emit_insn (func (temp, operands[1], GEN_INT (-maxc)));
operands[1] = temp;
count += maxc;
}
emit_insn (func (operands[0], operands[1], GEN_INT (count)));
return 1;
}
temp = gen_reg_rtx (QImode);
if (scale < 0)
/* The pattern has a NEG that corresponds to this. */
emit_move_insn (temp, gen_rtx_NEG (QImode, operands[2]));
else if (TARGET_A16 && mode == SImode)
/* We do this because the code below may modify this, we don't
want to modify the origin of this value. */
emit_move_insn (temp, operands[2]);
else
/* We'll only use it for the shift, no point emitting a move. */
temp = operands[2];
if (TARGET_A16 && GET_MODE_SIZE (mode) == 4)
{
/* The m16c has a limit of -16..16 for SI shifts, even when the
shift count is in a register. Since there are so many targets
of these shifts, it's better to expand the RTL here than to
call a helper function.
The resulting code looks something like this:
cmp.b r1h,-16
jge.b 1f
shl.l -16,dest
add.b r1h,16
1f: cmp.b r1h,16
jle.b 1f
shl.l 16,dest
sub.b r1h,16
1f: shl.l r1h,dest
We take advantage of the fact that "negative" shifts are
undefined to skip one of the comparisons. */
rtx count;
rtx label, lref, insn, tempvar;
emit_move_insn (operands[0], operands[1]);
count = temp;
label = gen_label_rtx ();
lref = gen_rtx_LABEL_REF (VOIDmode, label);
LABEL_NUSES (label) ++;
tempvar = gen_reg_rtx (mode);
if (shift_code == ASHIFT)
{
/* This is a left shift. We only need check positive counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_LE (VOIDmode, 0, 0),
count, GEN_INT (16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (8)));
emit_insn (func (operands[0], tempvar, GEN_INT (8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (-16)));
emit_label_after (label, insn);
}
else
{
/* This is a right shift. We only need check negative counts. */
emit_jump_insn (gen_cbranchqi4 (gen_rtx_GE (VOIDmode, 0, 0),
count, GEN_INT (-16), label));
emit_insn (func (tempvar, operands[0], GEN_INT (-8)));
emit_insn (func (operands[0], tempvar, GEN_INT (-8)));
insn = emit_insn (gen_addqi3 (count, count, GEN_INT (16)));
emit_label_after (label, insn);
}
operands[1] = operands[0];
emit_insn (func (operands[0], operands[0], count));
return 1;
}
operands[2] = temp;
return 0;
}
/* The m32c has a limited range of operations that work on PSImode
values; we have to expand to SI, do the math, and truncate back to
PSI. Yes, this is expensive, but hopefully gcc will learn to avoid
those cases. */
void
m32c_expand_neg_mulpsi3 (rtx * operands)
{
/* operands: a = b * i */
rtx temp1; /* b as SI */
rtx scale /* i as SI */;
rtx temp2; /* a*b as SI */
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
if (GET_CODE (operands[2]) != CONST_INT)
{
scale = gen_reg_rtx (SImode);
emit_insn (gen_zero_extendpsisi2 (scale, operands[2]));
}
else
scale = copy_to_mode_reg (SImode, operands[2]);
emit_insn (gen_zero_extendpsisi2 (temp1, operands[1]));
temp2 = expand_simple_binop (SImode, MULT, temp1, scale, temp2, 1, OPTAB_LIB);
emit_insn (gen_truncsipsi2 (operands[0], temp2));
}
static rtx compare_op0, compare_op1;
void
m32c_pend_compare (rtx *operands)
{
compare_op0 = operands[0];
compare_op1 = operands[1];
}
void
m32c_unpend_compare (void)
{
switch (GET_MODE (compare_op0))
{
case QImode:
emit_insn (gen_cmpqi_op (compare_op0, compare_op1));
case HImode:
emit_insn (gen_cmphi_op (compare_op0, compare_op1));
case PSImode:
emit_insn (gen_cmppsi_op (compare_op0, compare_op1));
}
}
void
m32c_expand_scc (int code, rtx *operands)
{
enum machine_mode mode = TARGET_A16 ? QImode : HImode;
emit_insn (gen_rtx_SET (mode,
operands[0],
gen_rtx_fmt_ee (code,
mode,
compare_op0,
compare_op1)));
}
/* Pattern Output Functions */
/* Returns a (OP (reg:CC FLG_REGNO) (const_int 0)) from some other
match_operand rtx's OP. */
rtx
m32c_cmp_flg_0 (rtx cmp)
{
return gen_rtx_fmt_ee (GET_CODE (cmp),
GET_MODE (cmp),
gen_rtx_REG (CCmode, FLG_REGNO),
GEN_INT (0));
}
int
m32c_expand_movcc (rtx *operands)
{
rtx rel = operands[1];
rtx cmp;
if (GET_CODE (rel) != EQ && GET_CODE (rel) != NE)
return 1;
if (GET_CODE (operands[2]) != CONST_INT
|| GET_CODE (operands[3]) != CONST_INT)
return 1;
emit_insn (gen_cmpqi(XEXP (rel, 0), XEXP (rel, 1)));
if (GET_CODE (rel) == NE)
{
rtx tmp = operands[2];
operands[2] = operands[3];
operands[3] = tmp;
}
cmp = gen_rtx_fmt_ee (GET_CODE (rel),
GET_MODE (rel),
compare_op0,
compare_op1);
emit_move_insn (operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
cmp,
operands[2],
operands[3]));
return 0;
}
/* Used for the "insv" pattern. Return nonzero to fail, else done. */
int
m32c_expand_insv (rtx *operands)
{
rtx op0, src0, p;
int mask;
if (INTVAL (operands[1]) != 1)
return 1;
/* Our insv opcode (bset, bclr) can only insert a one-bit constant. */
if (GET_CODE (operands[3]) != CONST_INT)
return 1;
if (INTVAL (operands[3]) != 0
&& INTVAL (operands[3]) != 1
&& INTVAL (operands[3]) != -1)
return 1;
mask = 1 << INTVAL (operands[2]);
op0 = operands[0];
if (GET_CODE (op0) == SUBREG
&& SUBREG_BYTE (op0) == 0)
{
rtx sub = SUBREG_REG (op0);
if (GET_MODE (sub) == HImode || GET_MODE (sub) == QImode)
op0 = sub;
}
if (no_new_pseudos
|| (GET_CODE (op0) == MEM && MEM_VOLATILE_P (op0)))
src0 = op0;
else
{
src0 = gen_reg_rtx (GET_MODE (op0));
emit_move_insn (src0, op0);
}
if (GET_MODE (op0) == HImode
&& INTVAL (operands[2]) >= 8
&& GET_MODE (op0) == MEM)
{
/* We are little endian. */
rtx new_mem = gen_rtx_MEM (QImode, plus_constant (XEXP (op0, 0), 1));
MEM_COPY_ATTRIBUTES (new_mem, op0);
mask >>= 8;
}
/* First, we generate a mask with the correct polarity. If we are
storing a zero, we want an AND mask, so invert it. */
if (INTVAL (operands[3]) == 0)
{
/* Storing a zero, use an AND mask */
if (GET_MODE (op0) == HImode)
mask ^= 0xffff;
else
mask ^= 0xff;
}
/* Now we need to properly sign-extend the mask in case we need to
fall back to an AND or OR opcode. */
if (GET_MODE (op0) == HImode)
{
if (mask & 0x8000)
mask -= 0x10000;
}
else
{
if (mask & 0x80)
mask -= 0x100;
}
switch ( (INTVAL (operands[3]) ? 4 : 0)
+ ((GET_MODE (op0) == HImode) ? 2 : 0)
+ (TARGET_A24 ? 1 : 0))
{
case 0: p = gen_andqi3_16 (op0, src0, GEN_INT (mask)); break;
case 1: p = gen_andqi3_24 (op0, src0, GEN_INT (mask)); break;
case 2: p = gen_andhi3_16 (op0, src0, GEN_INT (mask)); break;
case 3: p = gen_andhi3_24 (op0, src0, GEN_INT (mask)); break;
case 4: p = gen_iorqi3_16 (op0, src0, GEN_INT (mask)); break;
case 5: p = gen_iorqi3_24 (op0, src0, GEN_INT (mask)); break;
case 6: p = gen_iorhi3_16 (op0, src0, GEN_INT (mask)); break;
case 7: p = gen_iorhi3_24 (op0, src0, GEN_INT (mask)); break;
}
emit_insn (p);
return 0;
}
const char *
m32c_scc_pattern(rtx *operands, RTX_CODE code)
{
static char buf[30];
if (GET_CODE (operands[0]) == REG
&& REGNO (operands[0]) == R0_REGNO)
{
if (code == EQ)
return "stzx\t#1,#0,r0l";
if (code == NE)
return "stzx\t#0,#1,r0l";
}
sprintf(buf, "bm%s\t0,%%h0\n\tand.b\t#1,%%0", GET_RTX_NAME (code));
return buf;
}
/* Returns TRUE if the current function is a leaf, and thus we can
determine which registers an interrupt function really needs to
save. The logic below is mostly about finding the insn sequence
that's the function, versus any sequence that might be open for the
current insn. */
static int
m32c_leaf_function_p (void)
{
rtx saved_first, saved_last;
struct sequence_stack *seq;
int rv;
saved_first = cfun->emit->x_first_insn;
saved_last = cfun->emit->x_last_insn;
for (seq = cfun->emit->sequence_stack; seq && seq->next; seq = seq->next)
;
if (seq)
{
cfun->emit->x_first_insn = seq->first;
cfun->emit->x_last_insn = seq->last;
}
rv = leaf_function_p ();
cfun->emit->x_first_insn = saved_first;
cfun->emit->x_last_insn = saved_last;
return rv;
}
/* Returns TRUE if the current function needs to use the ENTER/EXIT
opcodes. If the function doesn't need the frame base or stack
pointer, it can use the simpler RTS opcode. */
static bool
m32c_function_needs_enter (void)
{
rtx insn;
struct sequence_stack *seq;
rtx sp = gen_rtx_REG (Pmode, SP_REGNO);
rtx fb = gen_rtx_REG (Pmode, FB_REGNO);
insn = get_insns ();
for (seq = cfun->emit->sequence_stack;
seq;
insn = seq->first, seq = seq->next);
while (insn)
{
if (reg_mentioned_p (sp, insn))
return true;
if (reg_mentioned_p (fb, insn))
return true;
insn = NEXT_INSN (insn);
}
return false;
}
/* Mark all the subexpressions of the PARALLEL rtx PAR as
frame-related. Return PAR.
dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
PARALLEL rtx other than the first if they do not have the
FRAME_RELATED flag set on them. So this function is handy for
marking up 'enter' instructions. */
static rtx
m32c_all_frame_related (rtx par)
{
int len = XVECLEN (par, 0);
int i;
for (i = 0; i < len; i++)
F (XVECEXP (par, 0, i));
return par;
}
/* Emits the prologue. See the frame layout comment earlier in this
file. We can reserve up to 256 bytes with the ENTER opcode, beyond
that we manually update sp. */
void
m32c_emit_prologue (void)
{
int frame_size, extra_frame_size = 0, reg_save_size;
int complex_prologue = 0;
cfun->machine->is_leaf = m32c_leaf_function_p ();
if (interrupt_p (cfun->decl))
{
cfun->machine->is_interrupt = 1;
complex_prologue = 1;
}
reg_save_size = m32c_pushm_popm (PP_justcount);
if (interrupt_p (cfun->decl))
emit_insn (gen_pushm (GEN_INT (cfun->machine->intr_pushm)));
frame_size =
m32c_initial_elimination_offset (FB_REGNO, SP_REGNO) - reg_save_size;
if (frame_size == 0
&& !cfun->machine->is_interrupt
&& !m32c_function_needs_enter ())
cfun->machine->use_rts = 1;
if (frame_size > 254)
{
extra_frame_size = frame_size - 254;
frame_size = 254;
}
if (cfun->machine->use_rts == 0)
F (emit_insn (m32c_all_frame_related
(TARGET_A16
? gen_prologue_enter_16 (GEN_INT (frame_size))
: gen_prologue_enter_24 (GEN_INT (frame_size)))));
if (extra_frame_size)
{
complex_prologue = 1;
if (TARGET_A16)
F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode, SP_REGNO),
gen_rtx_REG (HImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
else
F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode, SP_REGNO),
gen_rtx_REG (PSImode, SP_REGNO),
GEN_INT (-extra_frame_size))));
}
complex_prologue += m32c_pushm_popm (PP_pushm);
/* This just emits a comment into the .s file for debugging. */
if (complex_prologue)
emit_insn (gen_prologue_end ());
}
/* Likewise, for the epilogue. The only exception is that, for
interrupts, we must manually unwind the frame as the REIT opcode
doesn't do that. */
void
m32c_emit_epilogue (void)
{
/* This just emits a comment into the .s file for debugging. */
if (m32c_pushm_popm (PP_justcount) > 0 || cfun->machine->is_interrupt)
emit_insn (gen_epilogue_start ());
m32c_pushm_popm (PP_popm);
if (cfun->machine->is_interrupt)
{
enum machine_mode spmode = TARGET_A16 ? HImode : PSImode;
emit_move_insn (gen_rtx_REG (spmode, A0_REGNO),
gen_rtx_REG (spmode, FP_REGNO));
emit_move_insn (gen_rtx_REG (spmode, SP_REGNO),
gen_rtx_REG (spmode, A0_REGNO));
if (TARGET_A16)
emit_insn (gen_pophi_16 (gen_rtx_REG (HImode, FP_REGNO)));
else
emit_insn (gen_poppsi (gen_rtx_REG (PSImode, FP_REGNO)));
emit_insn (gen_popm (GEN_INT (cfun->machine->intr_pushm)));
emit_jump_insn (gen_epilogue_reit (GEN_INT (TARGET_A16 ? 4 : 6)));
}
else if (cfun->machine->use_rts)
emit_jump_insn (gen_epilogue_rts ());
else
emit_jump_insn (gen_epilogue_exitd (GEN_INT (TARGET_A16 ? 2 : 4)));
emit_barrier ();
}
void
m32c_emit_eh_epilogue (rtx ret_addr)
{
/* R0[R2] has the stack adjustment. R1[R3] has the address to
return to. We have to fudge the stack, pop everything, pop SP
(fudged), and return (fudged). This is actually easier to do in
assembler, so punt to libgcc. */
emit_jump_insn (gen_eh_epilogue (ret_addr, cfun->machine->eh_stack_adjust));
/* emit_insn (gen_rtx_CLOBBER (HImode, gen_rtx_REG (HImode, R0L_REGNO))); */
emit_barrier ();
}
/* Indicate which flags must be properly set for a given conditional. */
static int
flags_needed_for_conditional (rtx cond)
{
switch (GET_CODE (cond))
{
case LE:
case GT:
return FLAGS_OSZ;
case LEU:
case GTU:
return FLAGS_ZC;
case LT:
case GE:
return FLAGS_OS;
case LTU:
case GEU:
return FLAGS_C;
case EQ:
case NE:
return FLAGS_Z;
default:
return FLAGS_N;
}
}
#define DEBUG_CMP 0
/* Returns true if a compare insn is redundant because it would only
set flags that are already set correctly. */
static bool
m32c_compare_redundant (rtx cmp, rtx *operands)
{
int flags_needed;
int pflags;
rtx prev, pp, next;
rtx op0, op1, op2;
#if DEBUG_CMP
int prev_icode, i;
#endif
op0 = operands[0];
op1 = operands[1];
op2 = operands[2];
#if DEBUG_CMP
fprintf(stderr, "\n\033[32mm32c_compare_redundant\033[0m\n");
debug_rtx(cmp);
for (i=0; i<2; i++)
{
fprintf(stderr, "operands[%d] = ", i);
debug_rtx(operands[i]);
}
#endif
next = next_nonnote_insn (cmp);
if (!next || !INSN_P (next))
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by insn\n");
debug_rtx(next);
#endif
return false;
}
if (GET_CODE (PATTERN (next)) == SET
&& GET_CODE (XEXP ( PATTERN (next), 1)) == IF_THEN_ELSE)
{
next = XEXP (XEXP (PATTERN (next), 1), 0);
}
else if (GET_CODE (PATTERN (next)) == SET)
{
/* If this is a conditional, flags_needed will be something
other than FLAGS_N, which we test below. */
next = XEXP (PATTERN (next), 1);
}
else
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
#if DEBUG_CMP
fprintf(stderr, "conditional is: ");
debug_rtx(next);
#endif
flags_needed = flags_needed_for_conditional (next);
if (flags_needed == FLAGS_N)
{
#if DEBUG_CMP
fprintf(stderr, "compare not followed by conditional\n");
debug_rtx(next);
#endif
return false;
}
/* Compare doesn't set overflow and carry the same way that
arithmetic instructions do, so we can't replace those. */
if (flags_needed & FLAGS_OC)
return false;
prev = cmp;
do {
prev = prev_nonnote_insn (prev);
if (!prev)
{
#if DEBUG_CMP
fprintf(stderr, "No previous insn.\n");
#endif
return false;
}
if (!INSN_P (prev))
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is a non-insn.\n");
#endif
return false;
}
pp = PATTERN (prev);
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf(stderr, "Previous insn is not a SET.\n");
#endif
return false;
}
pflags = get_attr_flags (prev);
/* Looking up attributes of previous insns corrupted the recog
tables. */
INSN_UID (cmp) = -1;
recog (PATTERN (cmp), cmp, 0);
if (pflags == FLAGS_N
&& reg_mentioned_p (op0, pp))
{
#if DEBUG_CMP
fprintf(stderr, "intermediate non-flags insn uses op:\n");
debug_rtx(prev);
#endif
return false;
}
} while (pflags == FLAGS_N);
#if DEBUG_CMP
fprintf(stderr, "previous flag-setting insn:\n");
debug_rtx(prev);
debug_rtx(pp);
#endif
if (GET_CODE (pp) == SET
&& GET_CODE (XEXP (pp, 0)) == REG
&& REGNO (XEXP (pp, 0)) == FLG_REGNO
&& GET_CODE (XEXP (pp, 1)) == COMPARE)
{
/* Adjacent cbranches must have the same operands to be
redundant. */
rtx pop0 = XEXP (XEXP (pp, 1), 0);
rtx pop1 = XEXP (XEXP (pp, 1), 1);
#if DEBUG_CMP
fprintf(stderr, "adjacent cbranches\n");
debug_rtx(pop0);
debug_rtx(pop1);
#endif
if (rtx_equal_p (op0, pop0)
&& rtx_equal_p (op1, pop1))
return true;
#if DEBUG_CMP
fprintf(stderr, "prev cmp not same\n");
#endif
return false;
}
/* Else the previous insn must be a SET, with either the source or
dest equal to operands[0], and operands[1] must be zero. */
if (!rtx_equal_p (op1, const0_rtx))
{
#if DEBUG_CMP
fprintf(stderr, "operands[1] not const0_rtx\n");
#endif
return false;
}
if (GET_CODE (pp) != SET)
{
#if DEBUG_CMP
fprintf (stderr, "pp not set\n");
#endif
return false;
}
if (!rtx_equal_p (op0, SET_SRC (pp))
&& !rtx_equal_p (op0, SET_DEST (pp)))
{
#if DEBUG_CMP
fprintf(stderr, "operands[0] not found in set\n");
#endif
return false;
}
#if DEBUG_CMP
fprintf(stderr, "cmp flags %x prev flags %x\n", flags_needed, pflags);
#endif
if ((pflags & flags_needed) == flags_needed)
return true;
return false;
}
/* Return the pattern for a compare. This will be commented out if
the compare is redundant, else a normal pattern is returned. Thus,
the assembler output says where the compare would have been. */
char *
m32c_output_compare (rtx insn, rtx *operands)
{
static char template[] = ";cmp.b\t%1,%0";
/* ^ 5 */
template[5] = " bwll"[GET_MODE_SIZE(GET_MODE(operands[0]))];
if (m32c_compare_redundant (insn, operands))
{
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp not needed\n");
#endif
return template;
}
#if DEBUG_CMP
fprintf(stderr, "cbranch: cmp needed: `%s'\n", template);
#endif
return template + 1;
}
/* The Global `targetm' Variable. */
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-m32c.h"
|