File: lb1sf68.asm

package info (click to toggle)
gccxml 0.9.0%2Bcvs20100501-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 79,132 kB
  • ctags: 73,371
  • sloc: ansic: 751,436; cpp: 34,175; asm: 26,833; sh: 5,077; makefile: 4,696; lex: 589; awk: 566; perl: 334; yacc: 271; pascal: 86; python: 29
file content (4031 lines) | stat: -rw-r--r-- 141,536 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
/* libgcc routines for 68000 w/o floating-point hardware.
   Copyright (C) 1994, 1996, 1997, 1998 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file.  (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.  */

/* As a special exception, if you link this library with files
   compiled with GCC to produce an executable, this does not cause
   the resulting executable to be covered by the GNU General Public License.
   This exception does not however invalidate any other reasons why
   the executable file might be covered by the GNU General Public License.  */

/* Use this one for any 680x0; assumes no floating point hardware.
   The trailing " '" appearing on some lines is for ANSI preprocessors.  Yuk.
   Some of this code comes from MINIX, via the folks at ericsson.
   D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
*/

/* These are predefined by new versions of GNU cpp.  */

#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif

#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif

#ifndef __IMMEDIATE_PREFIX__
#define __IMMEDIATE_PREFIX__ #
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

/* Use the right prefix for registers.  */

#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)

/* Use the right prefix for immediate values.  */

#define IMM(x) CONCAT1 (__IMMEDIATE_PREFIX__, x)

#define d0 REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define a1 REG (a1)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (a6)
#define fp REG (fp)
#define sp REG (sp)
#define pc REG (pc)

/* Provide a few macros to allow for PIC code support.
 * With PIC, data is stored A5 relative so we've got to take a bit of special
 * care to ensure that all loads of global data is via A5.  PIC also requires
 * jumps and subroutine calls to be PC relative rather than absolute.  We cheat
 * a little on this and in the PIC case, we use short offset branches and
 * hope that the final object code is within range (which it should be).
 */
#ifndef __PIC__

        /* Non PIC (absolute/relocatable) versions */

        .macro PICCALL addr
        jbsr        \addr
        .endm

        .macro PICJUMP addr
        jmp        \addr
        .endm

        .macro PICLEA sym, reg
        lea        \sym, \reg
        .endm

        .macro PICPEA sym, areg
        pea        \sym
        .endm

#else /* __PIC__ */

        /* Common for -mid-shared-libary and -msep-data */

        .macro PICCALL addr
        bsr        \addr
        .endm

        .macro PICJUMP addr
        bra        \addr
        .endm

# if defined(__ID_SHARED_LIBRARY__)

        /* -mid-shared-library versions  */

        .macro PICLEA sym, reg
        movel        a5@(_current_shared_library_a5_offset_), \reg
        movel        \sym@GOT(\reg), \reg
        .endm

        .macro PICPEA sym, areg
        movel        a5@(_current_shared_library_a5_offset_), \areg
        movel        \sym@GOT(\areg), sp@-
        .endm

# else /* !__ID_SHARED_LIBRARY__ */

        /* Versions for -msep-data */

        .macro PICLEA sym, reg
        movel        \sym@GOT(a5), \reg
        .endm

        .macro PICPEA sym, areg
        movel        \sym@GOT(a5), sp@-
        .endm

# endif /* !__ID_SHARED_LIBRARY__ */
#endif /* __PIC__ */


#ifdef L_floatex

| This is an attempt at a decent floating point (single, double and 
| extended double) code for the GNU C compiler. It should be easy to
| adapt to other compilers (but beware of the local labels!).

| Starting date: 21 October, 1990

| It is convenient to introduce the notation (s,e,f) for a floating point
| number, where s=sign, e=exponent, f=fraction. We will call a floating
| point number fpn to abbreviate, independently of the precision.
| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023 
| for doubles and 16383 for long doubles). We then have the following 
| different cases:
|  1. Normalized fpns have 0 < e < MAX_EXP. They correspond to 
|     (-1)^s x 1.f x 2^(e-bias-1).
|  2. Denormalized fpns have e=0. They correspond to numbers of the form
|     (-1)^s x 0.f x 2^(-bias).
|  3. +/-INFINITY have e=MAX_EXP, f=0.
|  4. Quiet NaN (Not a Number) have all bits set.
|  5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.

|=============================================================================
|                                  exceptions
|=============================================================================

| This is the floating point condition code register (_fpCCR):
|
| struct {
|   short _exception_bits;        
|   short _trap_enable_bits;        
|   short _sticky_bits;
|   short _rounding_mode;
|   short _format;
|   short _last_operation;
|   union {
|     float sf;
|     double df;
|   } _operand1;
|   union {
|     float sf;
|     double df;
|   } _operand2;
| } _fpCCR;

        .data
        .even

        .globl        SYM (_fpCCR)
        
SYM (_fpCCR):
__exception_bits:
        .word        0
__trap_enable_bits:
        .word        0
__sticky_bits:
        .word        0
__rounding_mode:
        .word        ROUND_TO_NEAREST
__format:
        .word        NIL
__last_operation:
        .word        NOOP
__operand1:
        .long        0
        .long        0
__operand2:
        .long         0
        .long        0

| Offsets:
EBITS  = __exception_bits - SYM (_fpCCR)
TRAPE  = __trap_enable_bits - SYM (_fpCCR)
STICK  = __sticky_bits - SYM (_fpCCR)
ROUND  = __rounding_mode - SYM (_fpCCR)
FORMT  = __format - SYM (_fpCCR)
LASTO  = __last_operation - SYM (_fpCCR)
OPER1  = __operand1 - SYM (_fpCCR)
OPER2  = __operand2 - SYM (_fpCCR)

| The following exception types are supported:
INEXACT_RESULT                 = 0x0001
UNDERFLOW                 = 0x0002
OVERFLOW                 = 0x0004
DIVIDE_BY_ZERO                 = 0x0008
INVALID_OPERATION         = 0x0010

| The allowed rounding modes are:
UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| The allowed values of format are:
NIL          = 0
SINGLE_FLOAT = 1
DOUBLE_FLOAT = 2
LONG_FLOAT   = 3

| The allowed values for the last operation are:
NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

|=============================================================================
|                           __clear_sticky_bits
|=============================================================================

| The sticky bits are normally not cleared (thus the name), whereas the 
| exception type and exception value reflect the last computation. 
| This routine is provided to clear them (you can also write to _fpCCR,
| since it is globally visible).

        .globl  SYM (__clear_sticky_bit)

        .text
        .even

| void __clear_sticky_bits(void);
SYM (__clear_sticky_bit):                
        PICLEA        SYM (_fpCCR),a0
#ifndef __mcoldfire__
        movew        IMM (0),a0@(STICK)
#else
        clr.w        a0@(STICK)
#endif
        rts

|=============================================================================
|                           $_exception_handler
|=============================================================================

        .globl  $_exception_handler

        .text
        .even

| This is the common exit point if an exception occurs.
| NOTE: it is NOT callable from C!
| It expects the exception type in d7, the format (SINGLE_FLOAT,
| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
| It sets the corresponding exception and sticky bits, and the format. 
| Depending on the format if fills the corresponding slots for the 
| operands which produced the exception (all this information is provided
| so if you write your own exception handlers you have enough information
| to deal with the problem).
| Then checks to see if the corresponding exception is trap-enabled, 
| in which case it pushes the address of _fpCCR and traps through 
| trap FPTRAP (15 for the moment).

FPTRAP = 15

$_exception_handler:
        PICLEA        SYM (_fpCCR),a0
        movew        d7,a0@(EBITS)        | set __exception_bits
#ifndef __mcoldfire__
        orw        d7,a0@(STICK)        | and __sticky_bits
#else
        movew        a0@(STICK),d4
        orl        d7,d4
        movew        d4,a0@(STICK)
#endif
        movew        d6,a0@(FORMT)        | and __format
        movew        d5,a0@(LASTO)        | and __last_operation

| Now put the operands in place:
#ifndef __mcoldfire__
        cmpw        IMM (SINGLE_FLOAT),d6
#else
        cmpl        IMM (SINGLE_FLOAT),d6
#endif
        beq        1f
        movel        a6@(8),a0@(OPER1)
        movel        a6@(12),a0@(OPER1+4)
        movel        a6@(16),a0@(OPER2)
        movel        a6@(20),a0@(OPER2+4)
        bra        2f
1:        movel        a6@(8),a0@(OPER1)
        movel        a6@(12),a0@(OPER2)
2:
| And check whether the exception is trap-enabled:
#ifndef __mcoldfire__
        andw        a0@(TRAPE),d7        | is exception trap-enabled?
#else
        clrl        d6
        movew        a0@(TRAPE),d6
        andl        d6,d7
#endif
        beq        1f                | no, exit
        PICPEA        SYM (_fpCCR),a1        | yes, push address of _fpCCR
        trap        IMM (FPTRAP)        | and trap
#ifndef __mcoldfire__
1:        moveml        sp@+,d2-d7        | restore data registers
#else
1:        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts
#endif /* L_floatex */

#ifdef  L_mulsi3
        .text
        .proc
        .globl        SYM (__mulsi3)
SYM (__mulsi3):
        movew        sp@(4), d0        /* x0 -> d0 */
        muluw        sp@(10), d0        /* x0*y1 */
        movew        sp@(6), d1        /* x1 -> d1 */
        muluw        sp@(8), d1        /* x1*y0 */
#ifndef __mcoldfire__
        addw        d1, d0
#else
        addl        d1, d0
#endif
        swap        d0
        clrw        d0
        movew        sp@(6), d1        /* x1 -> d1 */
        muluw        sp@(10), d1        /* x1*y1 */
        addl        d1, d0

        rts
#endif /* L_mulsi3 */

#ifdef  L_udivsi3
        .text
        .proc
        .globl        SYM (__udivsi3)
SYM (__udivsi3):
#ifndef __mcoldfire__
        movel        d2, sp@-
        movel        sp@(12), d1        /* d1 = divisor */
        movel        sp@(8), d0        /* d0 = dividend */

        cmpl        IMM (0x10000), d1 /* divisor >= 2 ^ 16 ?   */
        jcc        L3                /* then try next algorithm */
        movel        d0, d2
        clrw        d2
        swap        d2
        divu        d1, d2          /* high quotient in lower word */
        movew        d2, d0                /* save high quotient */
        swap        d0
        movew        sp@(10), d2        /* get low dividend + high rest */
        divu        d1, d2                /* low quotient */
        movew        d2, d0
        jra        L6

L3:        movel        d1, d2                /* use d2 as divisor backup */
L4:        lsrl        IMM (1), d1        /* shift divisor */
        lsrl        IMM (1), d0        /* shift dividend */
        cmpl        IMM (0x10000), d1 /* still divisor >= 2 ^ 16 ?  */
        jcc        L4
        divu        d1, d0                /* now we have 16-bit divisor */
        andl        IMM (0xffff), d0 /* mask out divisor, ignore remainder */

/* Multiply the 16-bit tentative quotient with the 32-bit divisor.  Because of
   the operand ranges, this might give a 33-bit product.  If this product is
   greater than the dividend, the tentative quotient was too large. */
        movel        d2, d1
        mulu        d0, d1                /* low part, 32 bits */
        swap        d2
        mulu        d0, d2                /* high part, at most 17 bits */
        swap        d2                /* align high part with low part */
        tstw        d2                /* high part 17 bits? */
        jne        L5                /* if 17 bits, quotient was too large */
        addl        d2, d1                /* add parts */
        jcs        L5                /* if sum is 33 bits, quotient was too large */
        cmpl        sp@(8), d1        /* compare the sum with the dividend */
        jls        L6                /* if sum > dividend, quotient was too large */
L5:        subql        IMM (1), d0        /* adjust quotient */

L6:        movel        sp@+, d2
        rts

#else /* __mcoldfire__ */

/* ColdFire implementation of non-restoring division algorithm from
   Hennessy & Patterson, Appendix A. */
        link        a6,IMM (-12)
        moveml        d2-d4,sp@
        movel        a6@(8),d0
        movel        a6@(12),d1
        clrl        d2                | clear p
        moveq        IMM (31),d4
L1:        addl        d0,d0                | shift reg pair (p,a) one bit left
        addxl        d2,d2
        movl        d2,d3                | subtract b from p, store in tmp.
        subl        d1,d3
        jcs        L2                | if no carry,
        bset        IMM (0),d0        | set the low order bit of a to 1,
        movl        d3,d2                | and store tmp in p.
L2:        subql        IMM (1),d4
        jcc        L1
        moveml        sp@,d2-d4        | restore data registers
        unlk        a6                | and return
        rts
#endif /* __mcoldfire__ */

#endif /* L_udivsi3 */

#ifdef  L_divsi3
        .text
        .proc
        .globl        SYM (__divsi3)
SYM (__divsi3):
        movel        d2, sp@-

        moveq        IMM (1), d2        /* sign of result stored in d2 (=1 or =-1) */
        movel        sp@(12), d1        /* d1 = divisor */
        jpl        L1
        negl        d1
#ifndef __mcoldfire__
        negb        d2                /* change sign because divisor <0  */
#else
        negl        d2                /* change sign because divisor <0  */
#endif
L1:        movel        sp@(8), d0        /* d0 = dividend */
        jpl        L2
        negl        d0
#ifndef __mcoldfire__
        negb        d2
#else
        negl        d2
#endif

L2:        movel        d1, sp@-
        movel        d0, sp@-
        PICCALL        SYM (__udivsi3)        /* divide abs(dividend) by abs(divisor) */
        addql        IMM (8), sp

        tstb        d2
        jpl        L3
        negl        d0

L3:        movel        sp@+, d2
        rts
#endif /* L_divsi3 */

#ifdef  L_umodsi3
        .text
        .proc
        .globl        SYM (__umodsi3)
SYM (__umodsi3):
        movel        sp@(8), d1        /* d1 = divisor */
        movel        sp@(4), d0        /* d0 = dividend */
        movel        d1, sp@-
        movel        d0, sp@-
        PICCALL        SYM (__udivsi3)
        addql        IMM (8), sp
        movel        sp@(8), d1        /* d1 = divisor */
#ifndef __mcoldfire__
        movel        d1, sp@-
        movel        d0, sp@-
        PICCALL        SYM (__mulsi3)        /* d0 = (a/b)*b */
        addql        IMM (8), sp
#else
        mulsl        d1,d0
#endif
        movel        sp@(4), d1        /* d1 = dividend */
        subl        d0, d1                /* d1 = a - (a/b)*b */
        movel        d1, d0
        rts
#endif /* L_umodsi3 */

#ifdef  L_modsi3
        .text
        .proc
        .globl        SYM (__modsi3)
SYM (__modsi3):
        movel        sp@(8), d1        /* d1 = divisor */
        movel        sp@(4), d0        /* d0 = dividend */
        movel        d1, sp@-
        movel        d0, sp@-
        PICCALL        SYM (__divsi3)
        addql        IMM (8), sp
        movel        sp@(8), d1        /* d1 = divisor */
#ifndef __mcoldfire__
        movel        d1, sp@-
        movel        d0, sp@-
        PICCALL        SYM (__mulsi3)        /* d0 = (a/b)*b */
        addql        IMM (8), sp
#else
        mulsl        d1,d0
#endif
        movel        sp@(4), d1        /* d1 = dividend */
        subl        d0, d1                /* d1 = a - (a/b)*b */
        movel        d1, d0
        rts
#endif /* L_modsi3 */


#ifdef  L_double

        .globl        SYM (_fpCCR)
        .globl  $_exception_handler

QUIET_NaN      = 0xffffffff

D_MAX_EXP      = 0x07ff
D_BIAS         = 1022
DBL_MAX_EXP    = D_MAX_EXP - D_BIAS
DBL_MIN_EXP    = 1 - D_BIAS
DBL_MANT_DIG   = 53

INEXACT_RESULT                 = 0x0001
UNDERFLOW                 = 0x0002
OVERFLOW                 = 0x0004
DIVIDE_BY_ZERO                 = 0x0008
INVALID_OPERATION         = 0x0010

DOUBLE_FLOAT = 2

NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| Entry points:

        .globl SYM (__adddf3)
        .globl SYM (__subdf3)
        .globl SYM (__muldf3)
        .globl SYM (__divdf3)
        .globl SYM (__negdf2)
        .globl SYM (__cmpdf2)
        .globl SYM (__cmpdf2_internal)

        .text
        .even

| These are common routines to return and signal exceptions.        

Ld$den:
| Return and signal a denormalized number
        orl        d7,d0
        movew        IMM (INEXACT_RESULT+UNDERFLOW),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

Ld$infty:
Ld$overflow:
| Return a properly signed INFINITY and set the exception flags 
        movel        IMM (0x7ff00000),d0
        movel        IMM (0),d1
        orl        d7,d0
        movew        IMM (INEXACT_RESULT+OVERFLOW),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

Ld$underflow:
| Return 0 and set the exception flags 
        movel        IMM (0),d0
        movel        d0,d1
        movew        IMM (INEXACT_RESULT+UNDERFLOW),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

Ld$inop:
| Return a quiet NaN and set the exception flags
        movel        IMM (QUIET_NaN),d0
        movel        d0,d1
        movew        IMM (INEXACT_RESULT+INVALID_OPERATION),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

Ld$div$0:
| Return a properly signed INFINITY and set the exception flags
        movel        IMM (0x7ff00000),d0
        movel        IMM (0),d1
        orl        d7,d0
        movew        IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

|=============================================================================
|=============================================================================
|                         double precision routines
|=============================================================================
|=============================================================================

| A double precision floating point number (double) has the format:
|
| struct _double {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 11; /* exponent, shifted by 126 */
|  unsigned int fraction  : 52; /* fraction */
| } double;
| 
| Thus sizeof(double) = 8 (64 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the register pair d0-d1. They also preserve all registers except 
| d0-d1 and a0-a1.

|=============================================================================
|                              __subdf3
|=============================================================================

| double __subdf3(double, double);
SYM (__subdf3):
        bchg        IMM (31),sp@(12) | change sign of second operand
                                | and fall through, so we always add
|=============================================================================
|                              __adddf3
|=============================================================================

| double __adddf3(double, double);
SYM (__adddf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)        | everything will be done in registers
        moveml        d2-d7,sp@-        | save all data registers and a2 (but d0-d1)
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0        | get first operand
        movel        a6@(12),d1        | 
        movel        a6@(16),d2        | get second operand
        movel        a6@(20),d3        | 

        movel        d0,d7                | get d0's sign bit in d7 '
        addl        d1,d1                | check and clear sign bit of a, and gain one
        addxl        d0,d0                | bit of extra precision
        beq        Ladddf$b        | if zero return second operand

        movel        d2,d6                | save sign in d6 
        addl        d3,d3                | get rid of sign bit and gain one bit of
        addxl        d2,d2                | extra precision
        beq        Ladddf$a        | if zero return first operand

        andl        IMM (0x80000000),d7 | isolate a's sign bit '
        swap        d6                | and also b's sign bit '
#ifndef __mcoldfire__
        andw        IMM (0x8000),d6        |
        orw        d6,d7                | and combine them into d7, so that a's sign '
                                | bit is in the high word and b's is in the '
                                | low word, so d6 is free to be used
#else
        andl        IMM (0x8000),d6
        orl        d6,d7
#endif
        movel        d7,a0                | now save d7 into a0, so d7 is free to
                                | be used also

| Get the exponents and check for denormalized and/or infinity.

        movel        IMM (0x001fffff),d6 | mask for the fraction
        movel        IMM (0x00200000),d7 | mask to put hidden bit back

        movel        d0,d4                | 
        andl        d6,d0                | get fraction in d0
        notl        d6                | make d6 into mask for the exponent
        andl        d6,d4                | get exponent in d4
        beq        Ladddf$a$den        | branch if a is denormalized
        cmpl        d6,d4                | check for INFINITY or NaN
        beq        Ladddf$nf       | 
        orl        d7,d0                | and put hidden bit back
Ladddf$1:
        swap        d4                | shift right exponent so that it starts
#ifndef __mcoldfire__
        lsrw        IMM (5),d4        | in bit 0 and not bit 20
#else
        lsrl        IMM (5),d4        | in bit 0 and not bit 20
#endif
| Now we have a's exponent in d4 and fraction in d0-d1 '
        movel        d2,d5                | save b to get exponent
        andl        d6,d5                | get exponent in d5
        beq        Ladddf$b$den        | branch if b is denormalized
        cmpl        d6,d5                | check for INFINITY or NaN
        beq        Ladddf$nf
        notl        d6                | make d6 into mask for the fraction again
        andl        d6,d2                | and get fraction in d2
        orl        d7,d2                | and put hidden bit back
Ladddf$2:
        swap        d5                | shift right exponent so that it starts
#ifndef __mcoldfire__
        lsrw        IMM (5),d5        | in bit 0 and not bit 20
#else
        lsrl        IMM (5),d5        | in bit 0 and not bit 20
#endif

| Now we have b's exponent in d5 and fraction in d2-d3. '

| The situation now is as follows: the signs are combined in a0, the 
| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
| and d5 (b). To do the rounding correctly we need to keep all the
| bits until the end, so we need to use d0-d1-d2-d3 for the first number
| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
| exponents in a2-a3.

#ifndef __mcoldfire__
        moveml        a2-a3,sp@-        | save the address registers
#else
        movel        a2,sp@-        
        movel        a3,sp@-        
        movel        a4,sp@-        
#endif

        movel        d4,a2                | save the exponents
        movel        d5,a3                | 

        movel        IMM (0),d7        | and move the numbers around
        movel        d7,d6                |
        movel        d3,d5                |
        movel        d2,d4                |
        movel        d7,d3                |
        movel        d7,d2                |

| Here we shift the numbers until the exponents are the same, and put 
| the largest exponent in a2.
#ifndef __mcoldfire__
        exg        d4,a2                | get exponents back
        exg        d5,a3                |
        cmpw        d4,d5                | compare the exponents
#else
        movel        d4,a4                | get exponents back
        movel        a2,d4
        movel        a4,a2
        movel        d5,a4
        movel        a3,d5
        movel        a4,a3
        cmpl        d4,d5                | compare the exponents
#endif
        beq        Ladddf$3        | if equal don't shift '
        bhi        9f                | branch if second exponent is higher

| Here we have a's exponent larger than b's, so we have to shift b. We do 
| this by using as counter d2:
1:        movew        d4,d2                | move largest exponent to d2
#ifndef __mcoldfire__
        subw        d5,d2                | and subtract second exponent
        exg        d4,a2                | get back the longs we saved
        exg        d5,a3                |
#else
        subl        d5,d2                | and subtract second exponent
        movel        d4,a4                | get back the longs we saved
        movel        a2,d4
        movel        a4,a2
        movel        d5,a4
        movel        a3,d5
        movel        a4,a3
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
        cmpw        IMM (DBL_MANT_DIG+2),d2
#else
        cmpl        IMM (DBL_MANT_DIG+2),d2
#endif
        bge        Ladddf$b$small
#ifndef __mcoldfire__
        cmpw        IMM (32),d2        | if difference >= 32, shift by longs
#else
        cmpl        IMM (32),d2        | if difference >= 32, shift by longs
#endif
        bge        5f
2:
#ifndef __mcoldfire__
        cmpw        IMM (16),d2        | if difference >= 16, shift by words        
#else
        cmpl        IMM (16),d2        | if difference >= 16, shift by words        
#endif
        bge        6f
        bra        3f                | enter dbra loop

4:
#ifndef __mcoldfire__
        lsrl        IMM (1),d4
        roxrl        IMM (1),d5
        roxrl        IMM (1),d6
        roxrl        IMM (1),d7
#else
        lsrl        IMM (1),d7
        btst        IMM (0),d6
        beq        10f
        bset        IMM (31),d7
10:        lsrl        IMM (1),d6
        btst        IMM (0),d5
        beq        11f
        bset        IMM (31),d6
11:        lsrl        IMM (1),d5
        btst        IMM (0),d4
        beq        12f
        bset        IMM (31),d5
12:        lsrl        IMM (1),d4
#endif
3:
#ifndef __mcoldfire__
        dbra        d2,4b
#else
        subql        IMM (1),d2
        bpl        4b        
#endif
        movel        IMM (0),d2
        movel        d2,d3        
        bra        Ladddf$4
5:
        movel        d6,d7
        movel        d5,d6
        movel        d4,d5
        movel        IMM (0),d4
#ifndef __mcoldfire__
        subw        IMM (32),d2
#else
        subl        IMM (32),d2
#endif
        bra        2b
6:
        movew        d6,d7
        swap        d7
        movew        d5,d6
        swap        d6
        movew        d4,d5
        swap        d5
        movew        IMM (0),d4
        swap        d4
#ifndef __mcoldfire__
        subw        IMM (16),d2
#else
        subl        IMM (16),d2
#endif
        bra        3b
        
9:
#ifndef __mcoldfire__
        exg        d4,d5
        movew        d4,d6
        subw        d5,d6                | keep d5 (largest exponent) in d4
        exg        d4,a2
        exg        d5,a3
#else
        movel        d5,d6
        movel        d4,d5
        movel        d6,d4
        subl        d5,d6
        movel        d4,a4
        movel        a2,d4
        movel        a4,a2
        movel        d5,a4
        movel        a3,d5
        movel        a4,a3
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
        cmpw        IMM (DBL_MANT_DIG+2),d6
#else
        cmpl        IMM (DBL_MANT_DIG+2),d6
#endif
        bge        Ladddf$a$small
#ifndef __mcoldfire__
        cmpw        IMM (32),d6        | if difference >= 32, shift by longs
#else
        cmpl        IMM (32),d6        | if difference >= 32, shift by longs
#endif
        bge        5f
2:
#ifndef __mcoldfire__
        cmpw        IMM (16),d6        | if difference >= 16, shift by words        
#else
        cmpl        IMM (16),d6        | if difference >= 16, shift by words        
#endif
        bge        6f
        bra        3f                | enter dbra loop

4:
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
#else
        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d2
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        12f
        bset        IMM (31),d1
12:        lsrl        IMM (1),d0
#endif
3:
#ifndef __mcoldfire__
        dbra        d6,4b
#else
        subql        IMM (1),d6
        bpl        4b
#endif
        movel        IMM (0),d7
        movel        d7,d6
        bra        Ladddf$4
5:
        movel        d2,d3
        movel        d1,d2
        movel        d0,d1
        movel        IMM (0),d0
#ifndef __mcoldfire__
        subw        IMM (32),d6
#else
        subl        IMM (32),d6
#endif
        bra        2b
6:
        movew        d2,d3
        swap        d3
        movew        d1,d2
        swap        d2
        movew        d0,d1
        swap        d1
        movew        IMM (0),d0
        swap        d0
#ifndef __mcoldfire__
        subw        IMM (16),d6
#else
        subl        IMM (16),d6
#endif
        bra        3b
Ladddf$3:
#ifndef __mcoldfire__
        exg        d4,a2        
        exg        d5,a3
#else
        movel        d4,a4
        movel        a2,d4
        movel        a4,a2
        movel        d5,a4
        movel        a3,d5
        movel        a4,a3
#endif
Ladddf$4:        
| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
| the signs in a4.

| Here we have to decide whether to add or subtract the numbers:
#ifndef __mcoldfire__
        exg        d7,a0                | get the signs 
        exg        d6,a3                | a3 is free to be used
#else
        movel        d7,a4
        movel        a0,d7
        movel        a4,a0
        movel        d6,a4
        movel        a3,d6
        movel        a4,a3
#endif
        movel        d7,d6                |
        movew        IMM (0),d7        | get a's sign in d7 '
        swap        d6              |
        movew        IMM (0),d6        | and b's sign in d6 '
        eorl        d7,d6                | compare the signs
        bmi        Lsubdf$0        | if the signs are different we have 
                                | to subtract
#ifndef __mcoldfire__
        exg        d7,a0                | else we add the numbers
        exg        d6,a3                |
#else
        movel        d7,a4
        movel        a0,d7
        movel        a4,a0
        movel        d6,a4
        movel        a3,d6
        movel        a4,a3
#endif
        addl        d7,d3                |
        addxl        d6,d2                |
        addxl        d5,d1                | 
        addxl        d4,d0           |

        movel        a2,d4                | return exponent to d4
        movel        a0,d7                | 
        andl        IMM (0x80000000),d7 | d7 now has the sign

#ifndef __mcoldfire__
        moveml        sp@+,a2-a3        
#else
        movel        sp@+,a4        
        movel        sp@+,a3        
        movel        sp@+,a2        
#endif

| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
        btst        IMM (DBL_MANT_DIG+1),d0        
        beq        1f
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
        addw        IMM (1),d4
#else
        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d2
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        12f
        bset        IMM (31),d1
12:        lsrl        IMM (1),d0
        addl        IMM (1),d4
#endif
1:
        lea        pc@(Ladddf$5),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Ladddf$5:
| Put back the exponent and check for overflow
#ifndef __mcoldfire__
        cmpw        IMM (0x7ff),d4        | is the exponent big?
#else
        cmpl        IMM (0x7ff),d4        | is the exponent big?
#endif
        bge        1f
        bclr        IMM (DBL_MANT_DIG-1),d0
#ifndef __mcoldfire__
        lslw        IMM (4),d4        | put exponent back into position
#else
        lsll        IMM (4),d4        | put exponent back into position
#endif
        swap        d0                | 
#ifndef __mcoldfire__
        orw        d4,d0                |
#else
        orl        d4,d0                |
#endif
        swap        d0                |
        bra        Ladddf$ret
1:
        moveq        IMM (ADD),d5
        bra        Ld$overflow

Lsubdf$0:
| Here we do the subtraction.
#ifndef __mcoldfire__
        exg        d7,a0                | put sign back in a0
        exg        d6,a3                |
#else
        movel        d7,a4
        movel        a0,d7
        movel        a4,a0
        movel        d6,a4
        movel        a3,d6
        movel        a4,a3
#endif
        subl        d7,d3                |
        subxl        d6,d2                |
        subxl        d5,d1                |
        subxl        d4,d0                |
        beq        Ladddf$ret$1        | if zero just exit
        bpl        1f                | if positive skip the following
        movel        a0,d7                |
        bchg        IMM (31),d7        | change sign bit in d7
        movel        d7,a0                |
        negl        d3                |
        negxl        d2                |
        negxl        d1              | and negate result
        negxl        d0              |
1:        
        movel        a2,d4                | return exponent to d4
        movel        a0,d7
        andl        IMM (0x80000000),d7 | isolate sign bit
#ifndef __mcoldfire__
        moveml        sp@+,a2-a3        |
#else
        movel        sp@+,a4
        movel        sp@+,a3
        movel        sp@+,a2
#endif

| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
        btst        IMM (DBL_MANT_DIG+1),d0        
        beq        1f
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
        addw        IMM (1),d4
#else
        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d2
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        12f
        bset        IMM (31),d1
12:        lsrl        IMM (1),d0
        addl        IMM (1),d4
#endif
1:
        lea        pc@(Lsubdf$1),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Lsubdf$1:
| Put back the exponent and sign (we don't have overflow). '
        bclr        IMM (DBL_MANT_DIG-1),d0        
#ifndef __mcoldfire__
        lslw        IMM (4),d4        | put exponent back into position
#else
        lsll        IMM (4),d4        | put exponent back into position
#endif
        swap        d0                | 
#ifndef __mcoldfire__
        orw        d4,d0                |
#else
        orl        d4,d0                |
#endif
        swap        d0                |
        bra        Ladddf$ret

| If one of the numbers was too small (difference of exponents >= 
| DBL_MANT_DIG+1) we return the other (and now we don't have to '
| check for finiteness or zero).
Ladddf$a$small:
#ifndef __mcoldfire__
        moveml        sp@+,a2-a3        
#else
        movel        sp@+,a4
        movel        sp@+,a3
        movel        sp@+,a2
#endif
        movel        a6@(16),d0
        movel        a6@(20),d1
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | restore data registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts

Ladddf$b$small:
#ifndef __mcoldfire__
        moveml        sp@+,a2-a3        
#else
        movel        sp@+,a4        
        movel        sp@+,a3        
        movel        sp@+,a2        
#endif
        movel        a6@(8),d0
        movel        a6@(12),d1
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | restore data registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts

Ladddf$a$den:
        movel        d7,d4                | d7 contains 0x00200000
        bra        Ladddf$1

Ladddf$b$den:
        movel        d7,d5           | d7 contains 0x00200000
        notl        d6
        bra        Ladddf$2

Ladddf$b:
| Return b (if a is zero)
        movel        d2,d0
        movel        d3,d1
        bne        1f                        | Check if b is -0
        cmpl        IMM (0x80000000),d0
        bne        1f
        andl        IMM (0x80000000),d7        | Use the sign of a
        clrl        d0
        bra        Ladddf$ret
Ladddf$a:
        movel        a6@(8),d0
        movel        a6@(12),d1
1:
        moveq        IMM (ADD),d5
| Check for NaN and +/-INFINITY.
        movel        d0,d7                         |
        andl        IMM (0x80000000),d7        |
        bclr        IMM (31),d0                |
        cmpl        IMM (0x7ff00000),d0        |
        bge        2f                        |
        movel        d0,d0                   | check for zero, since we don't  '
        bne        Ladddf$ret                | want to return -0 by mistake
        bclr        IMM (31),d7                |
        bra        Ladddf$ret                |
2:
        andl        IMM (0x000fffff),d0        | check for NaN (nonzero fraction)
        orl        d1,d0                        |
        bne        Ld$inop                 |
        bra        Ld$infty                |
        
Ladddf$ret$1:
#ifndef __mcoldfire__
        moveml        sp@+,a2-a3        | restore regs and exit
#else
        movel        sp@+,a4
        movel        sp@+,a3
        movel        sp@+,a2
#endif

Ladddf$ret:
| Normal exit.
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
        orl        d7,d0                | put sign bit back
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

Ladddf$ret$den:
| Return a denormalized number.
#ifndef __mcoldfire__
        lsrl        IMM (1),d0        | shift right once more
        roxrl        IMM (1),d1        |
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
#endif
        bra        Ladddf$ret

Ladddf$nf:
        moveq        IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
        movel        a6@(8),d0        | get the numbers back (remember that we
        movel        a6@(12),d1        | did some processing already)
        movel        a6@(16),d2        | 
        movel        a6@(20),d3        | 
        movel        IMM (0x7ff00000),d4 | useful constant (INFINITY)
        movel        d0,d7                | save sign bits
        movel        d2,d6                | 
        bclr        IMM (31),d0        | clear sign bits
        bclr        IMM (31),d2        | 
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
        cmpl        d4,d0                | check first a (d0)
        bhi        Ld$inop                | if d0 > 0x7ff00000 or equal and
        bne        2f
        tstl        d1                | d1 > 0, a is NaN
        bne        Ld$inop                | 
2:        cmpl        d4,d2                | check now b (d1)
        bhi        Ld$inop                | 
        bne        3f
        tstl        d3                | 
        bne        Ld$inop                | 
3:
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or subtracting them.
        eorl        d7,d6                | to check sign bits
        bmi        1f
        andl        IMM (0x80000000),d7 | get (common) sign bit
        bra        Ld$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
        cmpl        d2,d0                | are both infinite?
        bne        1f                | if d0 <> d2 they are not equal
        cmpl        d3,d1                | if d0 == d2 test d3 and d1
        beq        Ld$inop                | if equal return NaN
1:        
        andl        IMM (0x80000000),d7 | get a's sign bit '
        cmpl        d4,d0                | test now for infinity
        beq        Ld$infty        | if a is INFINITY return with this sign
        bchg        IMM (31),d7        | else we know b is INFINITY and has
        bra        Ld$infty        | the opposite sign

|=============================================================================
|                              __muldf3
|=============================================================================

| double __muldf3(double, double);
SYM (__muldf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0                | get a into d0-d1
        movel        a6@(12),d1                | 
        movel        a6@(16),d2                | and b into d2-d3
        movel        a6@(20),d3                |
        movel        d0,d7                        | d7 will hold the sign of the product
        eorl        d2,d7                        |
        andl        IMM (0x80000000),d7        |
        movel        d7,a0                        | save sign bit into a0 
        movel        IMM (0x7ff00000),d7        | useful constant (+INFINITY)
        movel        d7,d6                        | another (mask for fraction)
        notl        d6                        |
        bclr        IMM (31),d0                | get rid of a's sign bit '
        movel        d0,d4                        | 
        orl        d1,d4                        | 
        beq        Lmuldf$a$0                | branch if a is zero
        movel        d0,d4                        |
        bclr        IMM (31),d2                | get rid of b's sign bit '
        movel        d2,d5                        |
        orl        d3,d5                        | 
        beq        Lmuldf$b$0                | branch if b is zero
        movel        d2,d5                        | 
        cmpl        d7,d0                        | is a big?
        bhi        Lmuldf$inop                | if a is NaN return NaN
        beq        Lmuldf$a$nf                | we still have to check d1 and b ...
        cmpl        d7,d2                        | now compare b with INFINITY
        bhi        Lmuldf$inop                | is b NaN?
        beq        Lmuldf$b$nf                 | we still have to check d3 ...
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5.
        andl        d7,d4                        | isolate exponent in d4
        beq        Lmuldf$a$den                | if exponent zero, have denormalized
        andl        d6,d0                        | isolate fraction
        orl        IMM (0x00100000),d0        | and put hidden bit back
        swap        d4                        | I like exponents in the first byte
#ifndef __mcoldfire__
        lsrw        IMM (4),d4                | 
#else
        lsrl        IMM (4),d4                | 
#endif
Lmuldf$1:                        
        andl        d7,d5                        |
        beq        Lmuldf$b$den                |
        andl        d6,d2                        |
        orl        IMM (0x00100000),d2        | and put hidden bit back
        swap        d5                        |
#ifndef __mcoldfire__
        lsrw        IMM (4),d5                |
#else
        lsrl        IMM (4),d5                |
#endif
Lmuldf$2:                                |
#ifndef __mcoldfire__
        addw        d5,d4                        | add exponents
        subw        IMM (D_BIAS+1),d4        | and subtract bias (plus one)
#else
        addl        d5,d4                        | add exponents
        subl        IMM (D_BIAS+1),d4        | and subtract bias (plus one)
#endif

| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were 
| denormalized to start with!), which means that in the product bit 104 
| (which will correspond to bit 8 of the fourth long) is set.

| Here we have to do the product.
| To do it we have to juggle the registers back and forth, as there are not
| enough to keep everything in them. So we use the address registers to keep
| some intermediate data.

#ifndef __mcoldfire__
        moveml        a2-a3,sp@-        | save a2 and a3 for temporary use
#else
        movel        a2,sp@-
        movel        a3,sp@-
        movel        a4,sp@-
#endif
        movel        IMM (0),a2        | a2 is a null register
        movel        d4,a3                | and a3 will preserve the exponent

| First, shift d2-d3 so bit 20 becomes bit 31:
#ifndef __mcoldfire__
        rorl        IMM (5),d2        | rotate d2 5 places right
        swap        d2                | and swap it
        rorl        IMM (5),d3        | do the same thing with d3
        swap        d3                |
        movew        d3,d6                | get the rightmost 11 bits of d3
        andw        IMM (0x07ff),d6        |
        orw        d6,d2                | and put them into d2
        andw        IMM (0xf800),d3        | clear those bits in d3
#else
        moveq        IMM (11),d7        | left shift d2 11 bits
        lsll        d7,d2
        movel        d3,d6                | get a copy of d3
        lsll        d7,d3                | left shift d3 11 bits
        andl        IMM (0xffe00000),d6 | get the top 11 bits of d3
        moveq        IMM (21),d7        | right shift them 21 bits
        lsrl        d7,d6
        orl        d6,d2                | stick them at the end of d2
#endif

        movel        d2,d6                | move b into d6-d7
        movel        d3,d7           | move a into d4-d5
        movel        d0,d4           | and clear d0-d1-d2-d3 (to put result)
        movel        d1,d5           |
        movel        IMM (0),d3        |
        movel        d3,d2           |
        movel        d3,d1           |
        movel        d3,d0                |

| We use a1 as counter:        
        movel        IMM (DBL_MANT_DIG-1),a1                
#ifndef __mcoldfire__
        exg        d7,a1
#else
        movel        d7,a4
        movel        a1,d7
        movel        a4,a1
#endif

1:
#ifndef __mcoldfire__
        exg        d7,a1                | put counter back in a1
#else
        movel        d7,a4
        movel        a1,d7
        movel        a4,a1
#endif
        addl        d3,d3                | shift sum once left
        addxl        d2,d2           |
        addxl        d1,d1           |
        addxl        d0,d0           |
        addl        d7,d7                |
        addxl        d6,d6                |
        bcc        2f                | if bit clear skip the following
#ifndef __mcoldfire__
        exg        d7,a2                |
#else
        movel        d7,a4
        movel        a2,d7
        movel        a4,a2
#endif
        addl        d5,d3                | else add a to the sum
        addxl        d4,d2                |
        addxl        d7,d1                |
        addxl        d7,d0                |
#ifndef __mcoldfire__
        exg        d7,a2                | 
#else
        movel        d7,a4
        movel        a2,d7
        movel        a4,a2
#endif
2:
#ifndef __mcoldfire__
        exg        d7,a1                | put counter in d7
        dbf        d7,1b                | decrement and branch
#else
        movel        d7,a4
        movel        a1,d7
        movel        a4,a1
        subql        IMM (1),d7
        bpl        1b
#endif

        movel        a3,d4                | restore exponent
#ifndef __mcoldfire__
        moveml        sp@+,a2-a3
#else
        movel        sp@+,a4
        movel        sp@+,a3
        movel        sp@+,a2
#endif

| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The 
| first thing to do now is to normalize it so bit 8 becomes bit 
| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
        swap        d0
        swap        d1
        movew        d1,d0
        swap        d2
        movew        d2,d1
        swap        d3
        movew        d3,d2
        movew        IMM (0),d3
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
#else
        moveq        IMM (29),d6
        lsrl        IMM (3),d3
        movel        d2,d7
        lsll        d6,d7
        orl        d7,d3
        lsrl        IMM (3),d2
        movel        d1,d7
        lsll        d6,d7
        orl        d7,d2
        lsrl        IMM (3),d1
        movel        d0,d7
        lsll        d6,d7
        orl        d7,d1
        lsrl        IMM (3),d0
#endif
        
| Now round, check for over- and underflow, and exit.
        movel        a0,d7                | get sign bit back into d7
        moveq        IMM (MULTIPLY),d5

        btst        IMM (DBL_MANT_DIG+1-32),d0
        beq        Lround$exit
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        addw        IMM (1),d4
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
        addl        IMM (1),d4
#endif
        bra        Lround$exit

Lmuldf$inop:
        moveq        IMM (MULTIPLY),d5
        bra        Ld$inop

Lmuldf$b$nf:
        moveq        IMM (MULTIPLY),d5
        movel        a0,d7                | get sign bit back into d7
        tstl        d3                | we know d2 == 0x7ff00000, so check d3
        bne        Ld$inop                | if d3 <> 0 b is NaN
        bra        Ld$overflow        | else we have overflow (since a is finite)

Lmuldf$a$nf:
        moveq        IMM (MULTIPLY),d5
        movel        a0,d7                | get sign bit back into d7
        tstl        d1                | we know d0 == 0x7ff00000, so check d1
        bne        Ld$inop                | if d1 <> 0 a is NaN
        bra        Ld$overflow        | else signal overflow

| If either number is zero return zero, unless the other is +/-INFINITY or
| NaN, in which case we return NaN.
Lmuldf$b$0:
        moveq        IMM (MULTIPLY),d5
#ifndef __mcoldfire__
        exg        d2,d0                | put b (==0) into d0-d1
        exg        d3,d1                | and a (with sign bit cleared) into d2-d3
        movel        a0,d0                | set result sign
#else
        movel        d0,d2                | put a into d2-d3
        movel        d1,d3
        movel        a0,d0                | put result zero into d0-d1
        movq        IMM(0),d1
#endif
        bra        1f
Lmuldf$a$0:
        movel        a0,d0                | set result sign
        movel        a6@(16),d2        | put b into d2-d3 again
        movel        a6@(20),d3        |
        bclr        IMM (31),d2        | clear sign bit
1:        cmpl        IMM (0x7ff00000),d2 | check for non-finiteness
        bge        Ld$inop                | in case NaN or +/-INFINITY return NaN
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 21
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmuldf$a$den:
        movel        IMM (1),d4
        andl        d6,d0
1:        addl        d1,d1           | shift a left until bit 20 is set
        addxl        d0,d0                |
#ifndef __mcoldfire__
        subw        IMM (1),d4        | and adjust exponent
#else
        subl        IMM (1),d4        | and adjust exponent
#endif
        btst        IMM (20),d0        |
        bne        Lmuldf$1        |
        bra        1b

Lmuldf$b$den:
        movel        IMM (1),d5
        andl        d6,d2
1:        addl        d3,d3                | shift b left until bit 20 is set
        addxl        d2,d2                |
#ifndef __mcoldfire__
        subw        IMM (1),d5        | and adjust exponent
#else
        subql        IMM (1),d5        | and adjust exponent
#endif
        btst        IMM (20),d2        |
        bne        Lmuldf$2        |
        bra        1b


|=============================================================================
|                              __divdf3
|=============================================================================

| double __divdf3(double, double);
SYM (__divdf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0        | get a into d0-d1
        movel        a6@(12),d1        | 
        movel        a6@(16),d2        | and b into d2-d3
        movel        a6@(20),d3        |
        movel        d0,d7                | d7 will hold the sign of the result
        eorl        d2,d7                |
        andl        IMM (0x80000000),d7
        movel        d7,a0                | save sign into a0
        movel        IMM (0x7ff00000),d7 | useful constant (+INFINITY)
        movel        d7,d6                | another (mask for fraction)
        notl        d6                |
        bclr        IMM (31),d0        | get rid of a's sign bit '
        movel        d0,d4                |
        orl        d1,d4                |
        beq        Ldivdf$a$0        | branch if a is zero
        movel        d0,d4                |
        bclr        IMM (31),d2        | get rid of b's sign bit '
        movel        d2,d5                |
        orl        d3,d5                |
        beq        Ldivdf$b$0        | branch if b is zero
        movel        d2,d5
        cmpl        d7,d0                | is a big?
        bhi        Ldivdf$inop        | if a is NaN return NaN
        beq        Ldivdf$a$nf        | if d0 == 0x7ff00000 we check d1
        cmpl        d7,d2                | now compare b with INFINITY 
        bhi        Ldivdf$inop        | if b is NaN return NaN
        beq        Ldivdf$b$nf        | if d2 == 0x7ff00000 we check d3
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d4 and d5 and normalize the numbers to
| ensure that the ratio of the fractions is around 1. We do this by
| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
| set, even if they were denormalized to start with.
| Thus, the result will satisfy: 2 > result > 1/2.
        andl        d7,d4                | and isolate exponent in d4
        beq        Ldivdf$a$den        | if exponent is zero we have a denormalized
        andl        d6,d0                | and isolate fraction
        orl        IMM (0x00100000),d0 | and put hidden bit back
        swap        d4                | I like exponents in the first byte
#ifndef __mcoldfire__
        lsrw        IMM (4),d4        | 
#else
        lsrl        IMM (4),d4        | 
#endif
Ldivdf$1:                        | 
        andl        d7,d5                |
        beq        Ldivdf$b$den        |
        andl        d6,d2                |
        orl        IMM (0x00100000),d2
        swap        d5                |
#ifndef __mcoldfire__
        lsrw        IMM (4),d5        |
#else
        lsrl        IMM (4),d5        |
#endif
Ldivdf$2:                        |
#ifndef __mcoldfire__
        subw        d5,d4                | subtract exponents
        addw        IMM (D_BIAS),d4        | and add bias
#else
        subl        d5,d4                | subtract exponents
        addl        IMM (D_BIAS),d4        | and add bias
#endif

| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0-d1        hold a (first operand, bit DBL_MANT_DIG-32=0, bit 
| DBL_MANT_DIG-1-32=1)
| d2-d3        hold b (second operand, bit DBL_MANT_DIG-32=1)
| d4        holds the difference of the exponents, corrected by the bias
| a0        holds the sign of the ratio

| To do the rounding correctly we need to keep information about the
| nonsignificant bits. One way to do this would be to do the division
| using four registers; another is to use two registers (as originally
| I did), but use a sticky bit to preserve information about the 
| fractional part. Note that we can keep that info in a1, which is not
| used.
        movel        IMM (0),d6        | d6-d7 will hold the result
        movel        d6,d7                | 
        movel        IMM (0),a1        | and a1 will hold the sticky bit

        movel        IMM (DBL_MANT_DIG-32+1),d5        
        
1:        cmpl        d0,d2                | is a < b?
        bhi        3f                | if b > a skip the following
        beq        4f                | if d0==d2 check d1 and d3
2:        subl        d3,d1                | 
        subxl        d2,d0                | a <-- a - b
        bset        d5,d6                | set the corresponding bit in d6
3:        addl        d1,d1                | shift a by 1
        addxl        d0,d0                |
#ifndef __mcoldfire__
        dbra        d5,1b                | and branch back
#else
        subql        IMM (1), d5
        bpl        1b
#endif
        bra        5f                        
4:        cmpl        d1,d3                | here d0==d2, so check d1 and d3
        bhi        3b                | if d1 > d2 skip the subtraction
        bra        2b                | else go do it
5:
| Here we have to start setting the bits in the second long.
        movel        IMM (31),d5        | again d5 is counter

1:        cmpl        d0,d2                | is a < b?
        bhi        3f                | if b > a skip the following
        beq        4f                | if d0==d2 check d1 and d3
2:        subl        d3,d1                | 
        subxl        d2,d0                | a <-- a - b
        bset        d5,d7                | set the corresponding bit in d7
3:        addl        d1,d1                | shift a by 1
        addxl        d0,d0                |
#ifndef __mcoldfire__
        dbra        d5,1b                | and branch back
#else
        subql        IMM (1), d5
        bpl        1b
#endif
        bra        5f                        
4:        cmpl        d1,d3                | here d0==d2, so check d1 and d3
        bhi        3b                | if d1 > d2 skip the subtraction
        bra        2b                | else go do it
5:
| Now go ahead checking until we hit a one, which we store in d2.
        movel        IMM (DBL_MANT_DIG),d5
1:        cmpl        d2,d0                | is a < b?
        bhi        4f                | if b < a, exit
        beq        3f                | if d0==d2 check d1 and d3
2:        addl        d1,d1                | shift a by 1
        addxl        d0,d0                |
#ifndef __mcoldfire__
        dbra        d5,1b                | and branch back
#else
        subql        IMM (1), d5
        bpl        1b
#endif
        movel        IMM (0),d2        | here no sticky bit was found
        movel        d2,d3
        bra        5f                        
3:        cmpl        d1,d3                | here d0==d2, so check d1 and d3
        bhi        2b                | if d1 > d2 go back
4:
| Here put the sticky bit in d2-d3 (in the position which actually corresponds
| to it; if you don't do this the algorithm loses in some cases). '
        movel        IMM (0),d2
        movel        d2,d3
#ifndef __mcoldfire__
        subw        IMM (DBL_MANT_DIG),d5
        addw        IMM (63),d5
        cmpw        IMM (31),d5
#else
        subl        IMM (DBL_MANT_DIG),d5
        addl        IMM (63),d5
        cmpl        IMM (31),d5
#endif
        bhi        2f
1:        bset        d5,d3
        bra        5f
#ifndef __mcoldfire__
        subw        IMM (32),d5
#else
        subl        IMM (32),d5
#endif
2:        bset        d5,d2
5:
| Finally we are finished! Move the longs in the address registers to
| their final destination:
        movel        d6,d0
        movel        d7,d1
        movel        IMM (0),d3

| Here we have finished the division, with the result in d0-d1-d2-d3, with
| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
| not set:
        btst        IMM (DBL_MANT_DIG-32+1),d0
        beq        1f
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        roxrl        IMM (1),d2
        roxrl        IMM (1),d3
        addw        IMM (1),d4
#else
        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d2
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        12f
        bset        IMM (31),d1
12:        lsrl        IMM (1),d0
        addl        IMM (1),d4
#endif
1:
| Now round, check for over- and underflow, and exit.
        movel        a0,d7                | restore sign bit to d7
        moveq        IMM (DIVIDE),d5
        bra        Lround$exit

Ldivdf$inop:
        moveq        IMM (DIVIDE),d5
        bra        Ld$inop

Ldivdf$a$0:
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return a properly signed zero.
        moveq        IMM (DIVIDE),d5
        bclr        IMM (31),d2        |
        movel        d2,d4                | 
        orl        d3,d4                | 
        beq        Ld$inop                | if b is also zero return NaN
        cmpl        IMM (0x7ff00000),d2 | check for NaN
        bhi        Ld$inop                | 
        blt        1f                |
        tstl        d3                |
        bne        Ld$inop                |
1:        movel        a0,d0                | else return signed zero
        moveq        IMM(0),d1        | 
        PICLEA        SYM (_fpCCR),a0        | clear exception flags
        movew        IMM (0),a0@        |
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | 
#else
        moveml        sp@,d2-d7        | 
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | 
        rts                        |         

Ldivdf$b$0:
        moveq        IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
        movel        a0,d7                | put a's sign bit back in d7 '
        cmpl        IMM (0x7ff00000),d0 | compare d0 with INFINITY
        bhi        Ld$inop                | if larger it is NaN
        tstl        d1                | 
        bne        Ld$inop                | 
        bra        Ld$div$0        | else signal DIVIDE_BY_ZERO

Ldivdf$b$nf:
        moveq        IMM (DIVIDE),d5
| If d2 == 0x7ff00000 we have to check d3.
        tstl        d3                |
        bne        Ld$inop                | if d3 <> 0, b is NaN
        bra        Ld$underflow        | else b is +/-INFINITY, so signal underflow

Ldivdf$a$nf:
        moveq        IMM (DIVIDE),d5
| If d0 == 0x7ff00000 we have to check d1.
        tstl        d1                |
        bne        Ld$inop                | if d1 <> 0, a is NaN
| If a is INFINITY we have to check b
        cmpl        d7,d2                | compare b with INFINITY 
        bge        Ld$inop                | if b is NaN or INFINITY return NaN
        tstl        d3                |
        bne        Ld$inop                | 
        bra        Ld$overflow        | else return overflow

| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivdf$a$den:
        movel        IMM (1),d4
        andl        d6,d0
1:        addl        d1,d1                | shift a left until bit 20 is set
        addxl        d0,d0
#ifndef __mcoldfire__
        subw        IMM (1),d4        | and adjust exponent
#else
        subl        IMM (1),d4        | and adjust exponent
#endif
        btst        IMM (DBL_MANT_DIG-32-1),d0
        bne        Ldivdf$1
        bra        1b

Ldivdf$b$den:
        movel        IMM (1),d5
        andl        d6,d2
1:        addl        d3,d3                | shift b left until bit 20 is set
        addxl        d2,d2
#ifndef __mcoldfire__
        subw        IMM (1),d5        | and adjust exponent
#else
        subql        IMM (1),d5        | and adjust exponent
#endif
        btst        IMM (DBL_MANT_DIG-32-1),d2
        bne        Ldivdf$2
        bra        1b

Lround$exit:
| This is a common exit point for __muldf3 and __divdf3. When they enter
| this point the sign of the result is in d7, the result in d0-d1, normalized
| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.

| First check for underlow in the exponent:
#ifndef __mcoldfire__
        cmpw        IMM (-DBL_MANT_DIG-1),d4                
#else
        cmpl        IMM (-DBL_MANT_DIG-1),d4                
#endif
        blt        Ld$underflow        
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
        movel        d7,a0                |
        movel        IMM (0),d6        | use d6-d7 to collect bits flushed right
        movel        d6,d7                | use d6-d7 to collect bits flushed right
#ifndef __mcoldfire__
        cmpw        IMM (1),d4        | if the exponent is less than 1 we 
#else
        cmpl        IMM (1),d4        | if the exponent is less than 1 we 
#endif
        bge        2f                | have to shift right (denormalize)
1:
#ifndef __mcoldfire__
        addw        IMM (1),d4        | adjust the exponent
        lsrl        IMM (1),d0        | shift right once 
        roxrl        IMM (1),d1        |
        roxrl        IMM (1),d2        |
        roxrl        IMM (1),d3        |
        roxrl        IMM (1),d6        | 
        roxrl        IMM (1),d7        |
        cmpw        IMM (1),d4        | is the exponent 1 already?
#else
        addl        IMM (1),d4        | adjust the exponent
        lsrl        IMM (1),d7
        btst        IMM (0),d6
        beq        13f
        bset        IMM (31),d7
13:        lsrl        IMM (1),d6
        btst        IMM (0),d3
        beq        14f
        bset        IMM (31),d6
14:        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d2
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        12f
        bset        IMM (31),d1
12:        lsrl        IMM (1),d0
        cmpl        IMM (1),d4        | is the exponent 1 already?
#endif
        beq        2f                | if not loop back
        bra        1b              |
        bra        Ld$underflow        | safety check, shouldn't execute '
2:        orl        d6,d2                | this is a trick so we don't lose  '
        orl        d7,d3                | the bits which were flushed right
        movel        a0,d7                | get back sign bit into d7
| Now call the rounding routine (which takes care of denormalized numbers):
        lea        pc@(Lround$0),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).

| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 0x7ff).
#ifndef __mcoldfire__
        cmpw        IMM (0x07ff),d4
#else
        cmpl        IMM (0x07ff),d4
#endif
        bge        Ld$overflow
| Now check for a denormalized number (exponent==0):
        movew        d4,d4
        beq        Ld$den
1:
| Put back the exponents and sign and return.
#ifndef __mcoldfire__
        lslw        IMM (4),d4        | exponent back to fourth byte
#else
        lsll        IMM (4),d4        | exponent back to fourth byte
#endif
        bclr        IMM (DBL_MANT_DIG-32-1),d0
        swap        d0                | and put back exponent
#ifndef __mcoldfire__
        orw        d4,d0                | 
#else
        orl        d4,d0                | 
#endif
        swap        d0                |
        orl        d7,d0                | and sign also

        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

|=============================================================================
|                              __negdf2
|=============================================================================

| double __negdf2(double, double);
SYM (__negdf2):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        moveq        IMM (NEGATE),d5
        movel        a6@(8),d0        | get number to negate in d0-d1
        movel        a6@(12),d1        |
        bchg        IMM (31),d0        | negate
        movel        d0,d2                | make a positive copy (for the tests)
        bclr        IMM (31),d2        |
        movel        d2,d4                | check for zero
        orl        d1,d4                |
        beq        2f                | if zero (either sign) return +zero
        cmpl        IMM (0x7ff00000),d2 | compare to +INFINITY
        blt        1f                | if finite, return
        bhi        Ld$inop                | if larger (fraction not zero) is NaN
        tstl        d1                | if d2 == 0x7ff00000 check d1
        bne        Ld$inop                |
        movel        d0,d7                | else get sign and return INFINITY
        andl        IMM (0x80000000),d7
        bra        Ld$infty                
1:        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts
2:        bclr        IMM (31),d0
        bra        1b

|=============================================================================
|                              __cmpdf2
|=============================================================================

GREATER =  1
LESS    = -1
EQUAL   =  0

| int __cmpdf2_internal(double, double, int);
SYM (__cmpdf2_internal):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-         | save registers
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        moveq        IMM (COMPARE),d5
        movel        a6@(8),d0        | get first operand
        movel        a6@(12),d1        |
        movel        a6@(16),d2        | get second operand
        movel        a6@(20),d3        |
| First check if a and/or b are (+/-) zero and in that case clear
| the sign bit.
        movel        d0,d6                | copy signs into d6 (a) and d7(b)
        bclr        IMM (31),d0        | and clear signs in d0 and d2
        movel        d2,d7                |
        bclr        IMM (31),d2        |
        cmpl        IMM (0x7ff00000),d0 | check for a == NaN
        bhi        Lcmpd$inop                | if d0 > 0x7ff00000, a is NaN
        beq        Lcmpdf$a$nf        | if equal can be INFINITY, so check d1
        movel        d0,d4                | copy into d4 to test for zero
        orl        d1,d4                |
        beq        Lcmpdf$a$0        |
Lcmpdf$0:
        cmpl        IMM (0x7ff00000),d2 | check for b == NaN
        bhi        Lcmpd$inop                | if d2 > 0x7ff00000, b is NaN
        beq        Lcmpdf$b$nf        | if equal can be INFINITY, so check d3
        movel        d2,d4                |
        orl        d3,d4                |
        beq        Lcmpdf$b$0        |
Lcmpdf$1:
| Check the signs
        eorl        d6,d7
        bpl        1f
| If the signs are not equal check if a >= 0
        tstl        d6
        bpl        Lcmpdf$a$gt$b        | if (a >= 0 && b < 0) => a > b
        bmi        Lcmpdf$b$gt$a        | if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
        tstl        d6
        bpl        1f
| If both are negative exchange them
#ifndef __mcoldfire__
        exg        d0,d2
        exg        d1,d3
#else
        movel        d0,d7
        movel        d2,d0
        movel        d7,d2
        movel        d1,d7
        movel        d3,d1
        movel        d7,d3
#endif
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
        cmpl        d0,d2
        bhi        Lcmpdf$b$gt$a        | |b| > |a|
        bne        Lcmpdf$a$gt$b        | |b| < |a|
| If we got here d0 == d2, so we compare d1 and d3.
        cmpl        d1,d3
        bhi        Lcmpdf$b$gt$a        | |b| > |a|
        bne        Lcmpdf$a$gt$b        | |b| < |a|
| If we got here a == b.
        movel        IMM (EQUAL),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts
Lcmpdf$a$gt$b:
        movel        IMM (GREATER),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts
Lcmpdf$b$gt$a:
        movel        IMM (LESS),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

Lcmpdf$a$0:        
        bclr        IMM (31),d6
        bra        Lcmpdf$0
Lcmpdf$b$0:
        bclr        IMM (31),d7
        bra        Lcmpdf$1

Lcmpdf$a$nf:
        tstl        d1
        bne        Ld$inop
        bra        Lcmpdf$0

Lcmpdf$b$nf:
        tstl        d3
        bne        Ld$inop
        bra        Lcmpdf$1

Lcmpd$inop:
        movl        a6@(24),d0
        moveq        IMM (INEXACT_RESULT+INVALID_OPERATION),d7
        moveq        IMM (DOUBLE_FLOAT),d6
        PICJUMP        $_exception_handler

| int __cmpdf2(double, double);
SYM (__cmpdf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        bsr        SYM (__cmpdf2_internal)
        unlk        a6
        rts

|=============================================================================
|                           rounding routines
|=============================================================================

| The rounding routines expect the number to be normalized in registers
| d0-d1-d2-d3, with the exponent in register d4. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d4.

Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.

| Check for denormalized numbers:
1:        btst        IMM (DBL_MANT_DIG-32),d0
        bne        2f                | if set the number is normalized
| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -D_BIAS+1).
#ifndef __mcoldfire__
        cmpw        IMM (1),d4        | remember that the exponent is at least one
#else
        cmpl        IMM (1),d4        | remember that the exponent is at least one
#endif
         beq        2f                | an exponent of one means denormalized
        addl        d3,d3                | else shift and adjust the exponent
        addxl        d2,d2                |
        addxl        d1,d1                |
        addxl        d0,d0                |
#ifndef __mcoldfire__
        dbra        d4,1b                |
#else
        subql        IMM (1), d4
        bpl        1b
#endif
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
        btst        IMM (0),d1        | is delta < 1?
        beq        2f                | if so, do not do anything
        orl        d2,d3                | is delta == 1?
        bne        1f                | if so round to even
        movel        d1,d3                | 
        andl        IMM (2),d3        | bit 1 is the last significant bit
        movel        IMM (0),d2        |
        addl        d3,d1                |
        addxl        d2,d0                |
        bra        2f                | 
1:        movel        IMM (1),d3        | else add 1 
        movel        IMM (0),d2        |
        addl        d3,d1                |
        addxl        d2,d0
| Shift right once (because we used bit #DBL_MANT_DIG-32!).
2:
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1                
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
#endif

| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
| 'fraction overflow' ...).
        btst        IMM (DBL_MANT_DIG-32),d0        
        beq        1f
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        addw        IMM (1),d4
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
        addl        IMM (1),d4
#endif
1:
| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
        btst        IMM (DBL_MANT_DIG-32-1),d0
        beq        1f
        jmp        a0@
1:        movel        IMM (0),d4
        jmp        a0@

Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
        jmp        a0@
#endif /* L_double */

#ifdef  L_float

        .globl        SYM (_fpCCR)
        .globl  $_exception_handler

QUIET_NaN    = 0xffffffff
SIGNL_NaN    = 0x7f800001
INFINITY     = 0x7f800000

F_MAX_EXP      = 0xff
F_BIAS         = 126
FLT_MAX_EXP    = F_MAX_EXP - F_BIAS
FLT_MIN_EXP    = 1 - F_BIAS
FLT_MANT_DIG   = 24

INEXACT_RESULT                 = 0x0001
UNDERFLOW                 = 0x0002
OVERFLOW                 = 0x0004
DIVIDE_BY_ZERO                 = 0x0008
INVALID_OPERATION         = 0x0010

SINGLE_FLOAT = 1

NOOP         = 0
ADD          = 1
MULTIPLY     = 2
DIVIDE       = 3
NEGATE       = 4
COMPARE      = 5
EXTENDSFDF   = 6
TRUNCDFSF    = 7

UNKNOWN           = -1
ROUND_TO_NEAREST  = 0 | round result to nearest representable value
ROUND_TO_ZERO     = 1 | round result towards zero
ROUND_TO_PLUS     = 2 | round result towards plus infinity
ROUND_TO_MINUS    = 3 | round result towards minus infinity

| Entry points:

        .globl SYM (__addsf3)
        .globl SYM (__subsf3)
        .globl SYM (__mulsf3)
        .globl SYM (__divsf3)
        .globl SYM (__negsf2)
        .globl SYM (__cmpsf2)
        .globl SYM (__cmpsf2_internal)

| These are common routines to return and signal exceptions.        

        .text
        .even

Lf$den:
| Return and signal a denormalized number
        orl        d7,d0
        moveq        IMM (INEXACT_RESULT+UNDERFLOW),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

Lf$infty:
Lf$overflow:
| Return a properly signed INFINITY and set the exception flags 
        movel        IMM (INFINITY),d0
        orl        d7,d0
        moveq        IMM (INEXACT_RESULT+OVERFLOW),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

Lf$underflow:
| Return 0 and set the exception flags 
        moveq        IMM (0),d0
        moveq        IMM (INEXACT_RESULT+UNDERFLOW),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

Lf$inop:
| Return a quiet NaN and set the exception flags
        movel        IMM (QUIET_NaN),d0
        moveq        IMM (INEXACT_RESULT+INVALID_OPERATION),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

Lf$div$0:
| Return a properly signed INFINITY and set the exception flags
        movel        IMM (INFINITY),d0
        orl        d7,d0
        moveq        IMM (INEXACT_RESULT+DIVIDE_BY_ZERO),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

|=============================================================================
|=============================================================================
|                         single precision routines
|=============================================================================
|=============================================================================

| A single precision floating point number (float) has the format:
|
| struct _float {
|  unsigned int sign      : 1;  /* sign bit */ 
|  unsigned int exponent  : 8;  /* exponent, shifted by 126 */
|  unsigned int fraction  : 23; /* fraction */
| } float;
| 
| Thus sizeof(float) = 4 (32 bits). 
|
| All the routines are callable from C programs, and return the result 
| in the single register d0. They also preserve all registers except 
| d0-d1 and a0-a1.

|=============================================================================
|                              __subsf3
|=============================================================================

| float __subsf3(float, float);
SYM (__subsf3):
        bchg        IMM (31),sp@(8)        | change sign of second operand
                                | and fall through
|=============================================================================
|                              __addsf3
|=============================================================================

| float __addsf3(float, float);
SYM (__addsf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)        | everything will be done in registers
        moveml        d2-d7,sp@-        | save all data registers but d0-d1
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0        | get first operand
        movel        a6@(12),d1        | get second operand
        movel        d0,a0                | get d0's sign bit '
        addl        d0,d0                | check and clear sign bit of a
        beq        Laddsf$b        | if zero return second operand
        movel        d1,a1                | save b's sign bit '
        addl        d1,d1                | get rid of sign bit
        beq        Laddsf$a        | if zero return first operand

| Get the exponents and check for denormalized and/or infinity.

        movel        IMM (0x00ffffff),d4        | mask to get fraction
        movel        IMM (0x01000000),d5        | mask to put hidden bit back

        movel        d0,d6                | save a to get exponent
        andl        d4,d0                | get fraction in d0
        notl         d4                | make d4 into a mask for the exponent
        andl        d4,d6                | get exponent in d6
        beq        Laddsf$a$den        | branch if a is denormalized
        cmpl        d4,d6                | check for INFINITY or NaN
        beq        Laddsf$nf
        swap        d6                | put exponent into first word
        orl        d5,d0                | and put hidden bit back
Laddsf$1:
| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
        movel        d1,d7                | get exponent in d7
        andl        d4,d7                | 
        beq        Laddsf$b$den        | branch if b is denormalized
        cmpl        d4,d7                | check for INFINITY or NaN
        beq        Laddsf$nf
        swap        d7                | put exponent into first word
        notl         d4                | make d4 into a mask for the fraction
        andl        d4,d1                | get fraction in d1
        orl        d5,d1                | and put hidden bit back
Laddsf$2:
| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '

| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we 
| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
| bit).

        movel        d1,d2                | move b to d2, since we want to use
                                | two registers to do the sum
        movel        IMM (0),d1        | and clear the new ones
        movel        d1,d3                |

| Here we shift the numbers in registers d0 and d1 so the exponents are the
| same, and put the largest exponent in d6. Note that we are using two
| registers for each number (see the discussion by D. Knuth in "Seminumerical 
| Algorithms").
#ifndef __mcoldfire__
        cmpw        d6,d7                | compare exponents
#else
        cmpl        d6,d7                | compare exponents
#endif
        beq        Laddsf$3        | if equal don't shift '
        bhi        5f                | branch if second exponent largest
1:
        subl        d6,d7                | keep the largest exponent
        negl        d7
#ifndef __mcoldfire__
        lsrw        IMM (8),d7        | put difference in lower byte
#else
        lsrl        IMM (8),d7        | put difference in lower byte
#endif
| if difference is too large we don't shift (actually, we can just exit) '
#ifndef __mcoldfire__
        cmpw        IMM (FLT_MANT_DIG+2),d7                
#else
        cmpl        IMM (FLT_MANT_DIG+2),d7                
#endif
        bge        Laddsf$b$small
#ifndef __mcoldfire__
        cmpw        IMM (16),d7        | if difference >= 16 swap
#else
        cmpl        IMM (16),d7        | if difference >= 16 swap
#endif
        bge        4f
2:
#ifndef __mcoldfire__
        subw        IMM (1),d7
#else
        subql        IMM (1), d7
#endif
3:
#ifndef __mcoldfire__
        lsrl        IMM (1),d2        | shift right second operand
        roxrl        IMM (1),d3
        dbra        d7,3b
#else
        lsrl        IMM (1),d3
        btst        IMM (0),d2
        beq        10f
        bset        IMM (31),d3
10:        lsrl        IMM (1),d2
        subql        IMM (1), d7
        bpl        3b
#endif
        bra        Laddsf$3
4:
        movew        d2,d3
        swap        d3
        movew        d3,d2
        swap        d2
#ifndef __mcoldfire__
        subw        IMM (16),d7
#else
        subl        IMM (16),d7
#endif
        bne        2b                | if still more bits, go back to normal case
        bra        Laddsf$3
5:
#ifndef __mcoldfire__
        exg        d6,d7                | exchange the exponents
#else
        eorl        d6,d7
        eorl        d7,d6
        eorl        d6,d7
#endif
        subl        d6,d7                | keep the largest exponent
        negl        d7                |
#ifndef __mcoldfire__
        lsrw        IMM (8),d7        | put difference in lower byte
#else
        lsrl        IMM (8),d7        | put difference in lower byte
#endif
| if difference is too large we don't shift (and exit!) '
#ifndef __mcoldfire__
        cmpw        IMM (FLT_MANT_DIG+2),d7                
#else
        cmpl        IMM (FLT_MANT_DIG+2),d7                
#endif
        bge        Laddsf$a$small
#ifndef __mcoldfire__
        cmpw        IMM (16),d7        | if difference >= 16 swap
#else
        cmpl        IMM (16),d7        | if difference >= 16 swap
#endif
        bge        8f
6:
#ifndef __mcoldfire__
        subw        IMM (1),d7
#else
        subl        IMM (1),d7
#endif
7:
#ifndef __mcoldfire__
        lsrl        IMM (1),d0        | shift right first operand
        roxrl        IMM (1),d1
        dbra        d7,7b
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
        subql        IMM (1),d7
        bpl        7b
#endif
        bra        Laddsf$3
8:
        movew        d0,d1
        swap        d1
        movew        d1,d0
        swap        d0
#ifndef __mcoldfire__
        subw        IMM (16),d7
#else
        subl        IMM (16),d7
#endif
        bne        6b                | if still more bits, go back to normal case
                                | otherwise we fall through

| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
| signs are stored in a0 and a1).

Laddsf$3:
| Here we have to decide whether to add or subtract the numbers
#ifndef __mcoldfire__
        exg        d6,a0                | get signs back
        exg        d7,a1                | and save the exponents
#else
        movel        d6,d4
        movel        a0,d6
        movel        d4,a0
        movel        d7,d4
        movel        a1,d7
        movel        d4,a1
#endif
        eorl        d6,d7                | combine sign bits
        bmi        Lsubsf$0        | if negative a and b have opposite 
                                | sign so we actually subtract the
                                | numbers

| Here we have both positive or both negative
#ifndef __mcoldfire__
        exg        d6,a0                | now we have the exponent in d6
#else
        movel        d6,d4
        movel        a0,d6
        movel        d4,a0
#endif
        movel        a0,d7                | and sign in d7
        andl        IMM (0x80000000),d7
| Here we do the addition.
        addl        d3,d1
        addxl        d2,d0
| Note: now we have d2, d3, d4 and d5 to play with! 

| Put the exponent, in the first byte, in d2, to use the "standard" rounding
| routines:
        movel        d6,d2
#ifndef __mcoldfire__
        lsrw        IMM (8),d2
#else
        lsrl        IMM (8),d2
#endif

| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
| the case of denormalized numbers in the rounding routine itself).
| As in the addition (not in the subtraction!) we could have set 
| one more bit we check this:
        btst        IMM (FLT_MANT_DIG+1),d0        
        beq        1f
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
#endif
        addl        IMM (1),d2
1:
        lea        pc@(Laddsf$4),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Laddsf$4:
| Put back the exponent, but check for overflow.
#ifndef __mcoldfire__
        cmpw        IMM (0xff),d2
#else
        cmpl        IMM (0xff),d2
#endif
        bhi        1f
        bclr        IMM (FLT_MANT_DIG-1),d0
#ifndef __mcoldfire__
        lslw        IMM (7),d2
#else
        lsll        IMM (7),d2
#endif
        swap        d2
        orl        d2,d0
        bra        Laddsf$ret
1:
        moveq        IMM (ADD),d5
        bra        Lf$overflow

Lsubsf$0:
| We are here if a > 0 and b < 0 (sign bits cleared).
| Here we do the subtraction.
        movel        d6,d7                | put sign in d7
        andl        IMM (0x80000000),d7

        subl        d3,d1                | result in d0-d1
        subxl        d2,d0                |
        beq        Laddsf$ret        | if zero just exit
        bpl        1f                | if positive skip the following
        bchg        IMM (31),d7        | change sign bit in d7
        negl        d1
        negxl        d0
1:
#ifndef __mcoldfire__
        exg        d2,a0                | now we have the exponent in d2
        lsrw        IMM (8),d2        | put it in the first byte
#else
        movel        d2,d4
        movel        a0,d2
        movel        d4,a0
        lsrl        IMM (8),d2        | put it in the first byte
#endif

| Now d0-d1 is positive and the sign bit is in d7.

| Note that we do not have to normalize, since in the subtraction bit
| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
| the rounding routines themselves.
        lea        pc@(Lsubsf$1),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Lsubsf$1:
| Put back the exponent (we can't have overflow!). '
        bclr        IMM (FLT_MANT_DIG-1),d0
#ifndef __mcoldfire__
        lslw        IMM (7),d2
#else
        lsll        IMM (7),d2
#endif
        swap        d2
        orl        d2,d0
        bra        Laddsf$ret

| If one of the numbers was too small (difference of exponents >= 
| FLT_MANT_DIG+2) we return the other (and now we don't have to '
| check for finiteness or zero).
Laddsf$a$small:
        movel        a6@(12),d0
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | restore data registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts

Laddsf$b$small:
        movel        a6@(8),d0
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | restore data registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts

| If the numbers are denormalized remember to put exponent equal to 1.

Laddsf$a$den:
        movel        d5,d6                | d5 contains 0x01000000
        swap        d6
        bra        Laddsf$1

Laddsf$b$den:
        movel        d5,d7
        swap        d7
        notl         d4                | make d4 into a mask for the fraction
                                | (this was not executed after the jump)
        bra        Laddsf$2

| The rest is mainly code for the different results which can be 
| returned (checking always for +/-INFINITY and NaN).

Laddsf$b:
| Return b (if a is zero).
        movel        a6@(12),d0
        cmpl        IMM (0x80000000),d0        | Check if b is -0
        bne        1f
        movel        a0,d7
        andl        IMM (0x80000000),d7        | Use the sign of a
        clrl        d0
        bra        Laddsf$ret
Laddsf$a:
| Return a (if b is zero).
        movel        a6@(8),d0
1:
        moveq        IMM (ADD),d5
| We have to check for NaN and +/-infty.
        movel        d0,d7
        andl        IMM (0x80000000),d7        | put sign in d7
        bclr        IMM (31),d0                | clear sign
        cmpl        IMM (INFINITY),d0        | check for infty or NaN
        bge        2f
        movel        d0,d0                | check for zero (we do this because we don't '
        bne        Laddsf$ret        | want to return -0 by mistake
        bclr        IMM (31),d7        | if zero be sure to clear sign
        bra        Laddsf$ret        | if everything OK just return
2:
| The value to be returned is either +/-infty or NaN
        andl        IMM (0x007fffff),d0        | check for NaN
        bne        Lf$inop                        | if mantissa not zero is NaN
        bra        Lf$infty

Laddsf$ret:
| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
| We have to clear the exception flags (just the exception type).
        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
        orl        d7,d0                | put sign bit
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | restore data registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | and return
        rts

Laddsf$ret$den:
| Return a denormalized number (for addition we don't signal underflow) '
        lsrl        IMM (1),d0        | remember to shift right back once
        bra        Laddsf$ret        | and return

| Note: when adding two floats of the same sign if either one is 
| NaN we return NaN without regard to whether the other is finite or 
| not. When subtracting them (i.e., when adding two numbers of 
| opposite signs) things are more complicated: if both are INFINITY 
| we return NaN, if only one is INFINITY and the other is NaN we return
| NaN, but if it is finite we return INFINITY with the corresponding sign.

Laddsf$nf:
        moveq        IMM (ADD),d5
| This could be faster but it is not worth the effort, since it is not
| executed very often. We sacrifice speed for clarity here.
        movel        a6@(8),d0        | get the numbers back (remember that we
        movel        a6@(12),d1        | did some processing already)
        movel        IMM (INFINITY),d4 | useful constant (INFINITY)
        movel        d0,d2                | save sign bits
        movel        d1,d3
        bclr        IMM (31),d0        | clear sign bits
        bclr        IMM (31),d1
| We know that one of them is either NaN of +/-INFINITY
| Check for NaN (if either one is NaN return NaN)
        cmpl        d4,d0                | check first a (d0)
        bhi        Lf$inop                
        cmpl        d4,d1                | check now b (d1)
        bhi        Lf$inop                
| Now comes the check for +/-INFINITY. We know that both are (maybe not
| finite) numbers, but we have to check if both are infinite whether we
| are adding or subtracting them.
        eorl        d3,d2                | to check sign bits
        bmi        1f
        movel        d0,d7
        andl        IMM (0x80000000),d7        | get (common) sign bit
        bra        Lf$infty
1:
| We know one (or both) are infinite, so we test for equality between the
| two numbers (if they are equal they have to be infinite both, so we
| return NaN).
        cmpl        d1,d0                | are both infinite?
        beq        Lf$inop                | if so return NaN

        movel        d0,d7
        andl        IMM (0x80000000),d7 | get a's sign bit '
        cmpl        d4,d0                | test now for infinity
        beq        Lf$infty        | if a is INFINITY return with this sign
        bchg        IMM (31),d7        | else we know b is INFINITY and has
        bra        Lf$infty        | the opposite sign

|=============================================================================
|                             __mulsf3
|=============================================================================

| float __mulsf3(float, float);
SYM (__mulsf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0        | get a into d0
        movel        a6@(12),d1        | and b into d1
        movel        d0,d7                | d7 will hold the sign of the product
        eorl        d1,d7                |
        andl        IMM (0x80000000),d7
        movel        IMM (INFINITY),d6        | useful constant (+INFINITY)
        movel        d6,d5                        | another (mask for fraction)
        notl        d5                        |
        movel        IMM (0x00800000),d4        | this is to put hidden bit back
        bclr        IMM (31),d0                | get rid of a's sign bit '
        movel        d0,d2                        |
        beq        Lmulsf$a$0                | branch if a is zero
        bclr        IMM (31),d1                | get rid of b's sign bit '
        movel        d1,d3                |
        beq        Lmulsf$b$0        | branch if b is zero
        cmpl        d6,d0                | is a big?
        bhi        Lmulsf$inop        | if a is NaN return NaN
        beq        Lmulsf$inf        | if a is INFINITY we have to check b
        cmpl        d6,d1                | now compare b with INFINITY
        bhi        Lmulsf$inop        | is b NaN?
        beq        Lmulsf$overflow | is b INFINITY?
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3.
        andl        d6,d2                | and isolate exponent in d2
        beq        Lmulsf$a$den        | if exponent is zero we have a denormalized
        andl        d5,d0                | and isolate fraction
        orl        d4,d0                | and put hidden bit back
        swap        d2                | I like exponents in the first byte
#ifndef __mcoldfire__
        lsrw        IMM (7),d2        | 
#else
        lsrl        IMM (7),d2        | 
#endif
Lmulsf$1:                        | number
        andl        d6,d3                |
        beq        Lmulsf$b$den        |
        andl        d5,d1                |
        orl        d4,d1                |
        swap        d3                |
#ifndef __mcoldfire__
        lsrw        IMM (7),d3        |
#else
        lsrl        IMM (7),d3        |
#endif
Lmulsf$2:                        |
#ifndef __mcoldfire__
        addw        d3,d2                | add exponents
        subw        IMM (F_BIAS+1),d2 | and subtract bias (plus one)
#else
        addl        d3,d2                | add exponents
        subl        IMM (F_BIAS+1),d2 | and subtract bias (plus one)
#endif

| We are now ready to do the multiplication. The situation is as follows:
| both a and b have bit FLT_MANT_DIG-1 set (even if they were 
| denormalized to start with!), which means that in the product 
| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the 
| high long) is set. 

| To do the multiplication let us move the number a little bit around ...
        movel        d1,d6                | second operand in d6
        movel        d0,d5                | first operand in d4-d5
        movel        IMM (0),d4
        movel        d4,d1                | the sums will go in d0-d1
        movel        d4,d0

| now bit FLT_MANT_DIG-1 becomes bit 31:
        lsll        IMM (31-FLT_MANT_DIG+1),d6                

| Start the loop (we loop #FLT_MANT_DIG times):
        moveq        IMM (FLT_MANT_DIG-1),d3        
1:        addl        d1,d1                | shift sum 
        addxl        d0,d0
        lsll        IMM (1),d6        | get bit bn
        bcc        2f                | if not set skip sum
        addl        d5,d1                | add a
        addxl        d4,d0
2:
#ifndef __mcoldfire__
        dbf        d3,1b                | loop back
#else
        subql        IMM (1),d3
        bpl        1b
#endif

| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
| (mod 32) of d0 set. The first thing to do now is to normalize it so bit 
| FLT_MANT_DIG is set (to do the rounding).
#ifndef __mcoldfire__
        rorl        IMM (6),d1
        swap        d1
        movew        d1,d3
        andw        IMM (0x03ff),d3
        andw        IMM (0xfd00),d1
#else
        movel        d1,d3
        lsll        IMM (8),d1
        addl        d1,d1
        addl        d1,d1
        moveq        IMM (22),d5
        lsrl        d5,d3
        orl        d3,d1
        andl        IMM (0xfffffd00),d1
#endif
        lsll        IMM (8),d0
        addl        d0,d0
        addl        d0,d0
#ifndef __mcoldfire__
        orw        d3,d0
#else
        orl        d3,d0
#endif

        moveq        IMM (MULTIPLY),d5
        
        btst        IMM (FLT_MANT_DIG+1),d0
        beq        Lround$exit
#ifndef __mcoldfire__
        lsrl        IMM (1),d0
        roxrl        IMM (1),d1
        addw        IMM (1),d2
#else
        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
        addql        IMM (1),d2
#endif
        bra        Lround$exit

Lmulsf$inop:
        moveq        IMM (MULTIPLY),d5
        bra        Lf$inop

Lmulsf$overflow:
        moveq        IMM (MULTIPLY),d5
        bra        Lf$overflow

Lmulsf$inf:
        moveq        IMM (MULTIPLY),d5
| If either is NaN return NaN; else both are (maybe infinite) numbers, so
| return INFINITY with the correct sign (which is in d7).
        cmpl        d6,d1                | is b NaN?
        bhi        Lf$inop                | if so return NaN
        bra        Lf$overflow        | else return +/-INFINITY

| If either number is zero return zero, unless the other is +/-INFINITY, 
| or NaN, in which case we return NaN.
Lmulsf$b$0:
| Here d1 (==b) is zero.
        movel        a6@(8),d1        | get a again to check for non-finiteness
        bra        1f
Lmulsf$a$0:
        movel        a6@(12),d1        | get b again to check for non-finiteness
1:        bclr        IMM (31),d1        | clear sign bit 
        cmpl        IMM (INFINITY),d1 | and check for a large exponent
        bge        Lf$inop                | if b is +/-INFINITY or NaN return NaN
        movel        d7,d0                | else return signed zero
        PICLEA        SYM (_fpCCR),a0        |
        movew        IMM (0),a0@        | 
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7        | 
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                | 
        rts                        | 

| If a number is denormalized we put an exponent of 1 but do not put the 
| hidden bit back into the fraction; instead we shift left until bit 23
| (the hidden bit) is set, adjusting the exponent accordingly. We do this
| to ensure that the product of the fractions is close to 1.
Lmulsf$a$den:
        movel        IMM (1),d2
        andl        d5,d0
1:        addl        d0,d0                | shift a left (until bit 23 is set)
#ifndef __mcoldfire__
        subw        IMM (1),d2        | and adjust exponent
#else
        subql        IMM (1),d2        | and adjust exponent
#endif
        btst        IMM (FLT_MANT_DIG-1),d0
        bne        Lmulsf$1        |
        bra        1b                | else loop back

Lmulsf$b$den:
        movel        IMM (1),d3
        andl        d5,d1
1:        addl        d1,d1                | shift b left until bit 23 is set
#ifndef __mcoldfire__
        subw        IMM (1),d3        | and adjust exponent
#else
        subql        IMM (1),d3        | and adjust exponent
#endif
        btst        IMM (FLT_MANT_DIG-1),d1
        bne        Lmulsf$2        |
        bra        1b                | else loop back

|=============================================================================
|                             __divsf3
|=============================================================================

| float __divsf3(float, float);
SYM (__divsf3):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        movel        a6@(8),d0                | get a into d0
        movel        a6@(12),d1                | and b into d1
        movel        d0,d7                        | d7 will hold the sign of the result
        eorl        d1,d7                        |
        andl        IMM (0x80000000),d7        | 
        movel        IMM (INFINITY),d6        | useful constant (+INFINITY)
        movel        d6,d5                        | another (mask for fraction)
        notl        d5                        |
        movel        IMM (0x00800000),d4        | this is to put hidden bit back
        bclr        IMM (31),d0                | get rid of a's sign bit '
        movel        d0,d2                        |
        beq        Ldivsf$a$0                | branch if a is zero
        bclr        IMM (31),d1                | get rid of b's sign bit '
        movel        d1,d3                        |
        beq        Ldivsf$b$0                | branch if b is zero
        cmpl        d6,d0                        | is a big?
        bhi        Ldivsf$inop                | if a is NaN return NaN
        beq        Ldivsf$inf                | if a is INFINITY we have to check b
        cmpl        d6,d1                        | now compare b with INFINITY 
        bhi        Ldivsf$inop                | if b is NaN return NaN
        beq        Ldivsf$underflow
| Here we have both numbers finite and nonzero (and with no sign bit).
| Now we get the exponents into d2 and d3 and normalize the numbers to
| ensure that the ratio of the fractions is close to 1. We do this by
| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
        andl        d6,d2                | and isolate exponent in d2
        beq        Ldivsf$a$den        | if exponent is zero we have a denormalized
        andl        d5,d0                | and isolate fraction
        orl        d4,d0                | and put hidden bit back
        swap        d2                | I like exponents in the first byte
#ifndef __mcoldfire__
        lsrw        IMM (7),d2        | 
#else
        lsrl        IMM (7),d2        | 
#endif
Ldivsf$1:                        | 
        andl        d6,d3                |
        beq        Ldivsf$b$den        |
        andl        d5,d1                |
        orl        d4,d1                |
        swap        d3                |
#ifndef __mcoldfire__
        lsrw        IMM (7),d3        |
#else
        lsrl        IMM (7),d3        |
#endif
Ldivsf$2:                        |
#ifndef __mcoldfire__
        subw        d3,d2                | subtract exponents
         addw        IMM (F_BIAS),d2        | and add bias
#else
        subl        d3,d2                | subtract exponents
         addl        IMM (F_BIAS),d2        | and add bias
#endif
 
| We are now ready to do the division. We have prepared things in such a way
| that the ratio of the fractions will be less than 2 but greater than 1/2.
| At this point the registers in use are:
| d0        holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
| d1        holds b (second operand, bit FLT_MANT_DIG=1)
| d2        holds the difference of the exponents, corrected by the bias
| d7        holds the sign of the ratio
| d4, d5, d6 hold some constants
        movel        d7,a0                | d6-d7 will hold the ratio of the fractions
        movel        IMM (0),d6        | 
        movel        d6,d7

        moveq        IMM (FLT_MANT_DIG+1),d3
1:        cmpl        d0,d1                | is a < b?
        bhi        2f                |
        bset        d3,d6                | set a bit in d6
        subl        d1,d0                | if a >= b  a <-- a-b
        beq        3f                | if a is zero, exit
2:        addl        d0,d0                | multiply a by 2
#ifndef __mcoldfire__
        dbra        d3,1b
#else
        subql        IMM (1),d3
        bpl        1b
#endif

| Now we keep going to set the sticky bit ...
        moveq        IMM (FLT_MANT_DIG),d3
1:        cmpl        d0,d1
        ble        2f
        addl        d0,d0
#ifndef __mcoldfire__
        dbra        d3,1b
#else
        subql        IMM(1),d3
        bpl        1b
#endif
        movel        IMM (0),d1
        bra        3f
2:        movel        IMM (0),d1
#ifndef __mcoldfire__
        subw        IMM (FLT_MANT_DIG),d3
        addw        IMM (31),d3
#else
        subl        IMM (FLT_MANT_DIG),d3
        addl        IMM (31),d3
#endif
        bset        d3,d1
3:
        movel        d6,d0                | put the ratio in d0-d1
        movel        a0,d7                | get sign back

| Because of the normalization we did before we are guaranteed that 
| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
        btst        IMM (FLT_MANT_DIG+1),d0                
        beq        1f              | if it is not set, then bit 24 is set
        lsrl        IMM (1),d0        |
#ifndef __mcoldfire__
        addw        IMM (1),d2        |
#else
        addl        IMM (1),d2        |
#endif
1:
| Now round, check for over- and underflow, and exit.
        moveq        IMM (DIVIDE),d5
        bra        Lround$exit

Ldivsf$inop:
        moveq        IMM (DIVIDE),d5
        bra        Lf$inop

Ldivsf$overflow:
        moveq        IMM (DIVIDE),d5
        bra        Lf$overflow

Ldivsf$underflow:
        moveq        IMM (DIVIDE),d5
        bra        Lf$underflow

Ldivsf$a$0:
        moveq        IMM (DIVIDE),d5
| If a is zero check to see whether b is zero also. In that case return
| NaN; then check if b is NaN, and return NaN also in that case. Else
| return a properly signed zero.
        andl        IMM (0x7fffffff),d1        | clear sign bit and test b
        beq        Lf$inop                        | if b is also zero return NaN
        cmpl        IMM (INFINITY),d1        | check for NaN
        bhi        Lf$inop                        | 
        movel        d7,d0                        | else return signed zero
        PICLEA        SYM (_fpCCR),a0                |
        movew        IMM (0),a0@                |
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7                | 
#else
        moveml        sp@,d2-d7                | 
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6                        | 
        rts                                | 
        
Ldivsf$b$0:
        moveq        IMM (DIVIDE),d5
| If we got here a is not zero. Check if a is NaN; in that case return NaN,
| else return +/-INFINITY. Remember that a is in d0 with the sign bit 
| cleared already.
        cmpl        IMM (INFINITY),d0        | compare d0 with INFINITY
        bhi        Lf$inop                        | if larger it is NaN
        bra        Lf$div$0                | else signal DIVIDE_BY_ZERO

Ldivsf$inf:
        moveq        IMM (DIVIDE),d5
| If a is INFINITY we have to check b
        cmpl        IMM (INFINITY),d1        | compare b with INFINITY 
        bge        Lf$inop                        | if b is NaN or INFINITY return NaN
        bra        Lf$overflow                | else return overflow

| If a number is denormalized we put an exponent of 1 but do not put the 
| bit back into the fraction.
Ldivsf$a$den:
        movel        IMM (1),d2
        andl        d5,d0
1:        addl        d0,d0                | shift a left until bit FLT_MANT_DIG-1 is set
#ifndef __mcoldfire__
        subw        IMM (1),d2        | and adjust exponent
#else
        subl        IMM (1),d2        | and adjust exponent
#endif
        btst        IMM (FLT_MANT_DIG-1),d0
        bne        Ldivsf$1
        bra        1b

Ldivsf$b$den:
        movel        IMM (1),d3
        andl        d5,d1
1:        addl        d1,d1                | shift b left until bit FLT_MANT_DIG is set
#ifndef __mcoldfire__
        subw        IMM (1),d3        | and adjust exponent
#else
        subl        IMM (1),d3        | and adjust exponent
#endif
        btst        IMM (FLT_MANT_DIG-1),d1
        bne        Ldivsf$2
        bra        1b

Lround$exit:
| This is a common exit point for __mulsf3 and __divsf3. 

| First check for underlow in the exponent:
#ifndef __mcoldfire__
        cmpw        IMM (-FLT_MANT_DIG-1),d2                
#else
        cmpl        IMM (-FLT_MANT_DIG-1),d2                
#endif
        blt        Lf$underflow        
| It could happen that the exponent is less than 1, in which case the 
| number is denormalized. In this case we shift right and adjust the 
| exponent until it becomes 1 or the fraction is zero (in the latter case 
| we signal underflow and return zero).
        movel        IMM (0),d6        | d6 is used temporarily
#ifndef __mcoldfire__
        cmpw        IMM (1),d2        | if the exponent is less than 1 we 
#else
        cmpl        IMM (1),d2        | if the exponent is less than 1 we 
#endif
        bge        2f                | have to shift right (denormalize)
1:
#ifndef __mcoldfire__
        addw        IMM (1),d2        | adjust the exponent
        lsrl        IMM (1),d0        | shift right once 
        roxrl        IMM (1),d1        |
        roxrl        IMM (1),d6        | d6 collect bits we would lose otherwise
        cmpw        IMM (1),d2        | is the exponent 1 already?
#else
        addql        IMM (1),d2        | adjust the exponent
        lsrl        IMM (1),d6
        btst        IMM (0),d1
        beq        11f
        bset        IMM (31),d6
11:        lsrl        IMM (1),d1
        btst        IMM (0),d0
        beq        10f
        bset        IMM (31),d1
10:        lsrl        IMM (1),d0
        cmpl        IMM (1),d2        | is the exponent 1 already?
#endif
        beq        2f                | if not loop back
        bra        1b              |
        bra        Lf$underflow        | safety check, shouldn't execute '
2:        orl        d6,d1                | this is a trick so we don't lose  '
                                | the extra bits which were flushed right
| Now call the rounding routine (which takes care of denormalized numbers):
        lea        pc@(Lround$0),a0 | to return from rounding routine
        PICLEA        SYM (_fpCCR),a1        | check the rounding mode
#ifdef __mcoldfire__
        clrl        d6
#endif
        movew        a1@(6),d6        | rounding mode in d6
        beq        Lround$to$nearest
#ifndef __mcoldfire__
        cmpw        IMM (ROUND_TO_PLUS),d6
#else
        cmpl        IMM (ROUND_TO_PLUS),d6
#endif
        bhi        Lround$to$minus
        blt        Lround$to$zero
        bra        Lround$to$plus
Lround$0:
| Here we have a correctly rounded result (either normalized or denormalized).

| Here we should have either a normalized number or a denormalized one, and
| the exponent is necessarily larger or equal to 1 (so we don't have to  '
| check again for underflow!). We have to check for overflow or for a 
| denormalized number (which also signals underflow).
| Check for overflow (i.e., exponent >= 255).
#ifndef __mcoldfire__
        cmpw        IMM (0x00ff),d2
#else
        cmpl        IMM (0x00ff),d2
#endif
        bge        Lf$overflow
| Now check for a denormalized number (exponent==0).
        movew        d2,d2
        beq        Lf$den
1:
| Put back the exponents and sign and return.
#ifndef __mcoldfire__
        lslw        IMM (7),d2        | exponent back to fourth byte
#else
        lsll        IMM (7),d2        | exponent back to fourth byte
#endif
        bclr        IMM (FLT_MANT_DIG-1),d0
        swap        d0                | and put back exponent
#ifndef __mcoldfire__
        orw        d2,d0                | 
#else
        orl        d2,d0
#endif
        swap        d0                |
        orl        d7,d0                | and sign also

        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

|=============================================================================
|                             __negsf2
|=============================================================================

| This is trivial and could be shorter if we didn't bother checking for NaN '
| and +/-INFINITY.

| float __negsf2(float);
SYM (__negsf2):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        moveq        IMM (NEGATE),d5
        movel        a6@(8),d0        | get number to negate in d0
        bchg        IMM (31),d0        | negate
        movel        d0,d1                | make a positive copy
        bclr        IMM (31),d1        |
        tstl        d1                | check for zero
        beq        2f                | if zero (either sign) return +zero
        cmpl        IMM (INFINITY),d1 | compare to +INFINITY
        blt        1f                |
        bhi        Lf$inop                | if larger (fraction not zero) is NaN
        movel        d0,d7                | else get sign and return INFINITY
        andl        IMM (0x80000000),d7
        bra        Lf$infty                
1:        PICLEA        SYM (_fpCCR),a0
        movew        IMM (0),a0@
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts
2:        bclr        IMM (31),d0
        bra        1b

|=============================================================================
|                             __cmpsf2
|=============================================================================

GREATER =  1
LESS    = -1
EQUAL   =  0

| int __cmpsf2_internal(float, float, int);
SYM (__cmpsf2_internal):
#ifndef __mcoldfire__
        link        a6,IMM (0)
        moveml        d2-d7,sp@-         | save registers
#else
        link        a6,IMM (-24)
        moveml        d2-d7,sp@
#endif
        moveq        IMM (COMPARE),d5
        movel        a6@(8),d0        | get first operand
        movel        a6@(12),d1        | get second operand
| Check if either is NaN, and in that case return garbage and signal
| INVALID_OPERATION. Check also if either is zero, and clear the signs
| if necessary.
        movel        d0,d6
        andl        IMM (0x7fffffff),d0
        beq        Lcmpsf$a$0
        cmpl        IMM (0x7f800000),d0
        bhi        Lcmpf$inop
Lcmpsf$1:
        movel        d1,d7
        andl        IMM (0x7fffffff),d1
        beq        Lcmpsf$b$0
        cmpl        IMM (0x7f800000),d1
        bhi        Lcmpf$inop
Lcmpsf$2:
| Check the signs
        eorl        d6,d7
        bpl        1f
| If the signs are not equal check if a >= 0
        tstl        d6
        bpl        Lcmpsf$a$gt$b        | if (a >= 0 && b < 0) => a > b
        bmi        Lcmpsf$b$gt$a        | if (a < 0 && b >= 0) => a < b
1:
| If the signs are equal check for < 0
        tstl        d6
        bpl        1f
| If both are negative exchange them
#ifndef __mcoldfire__
        exg        d0,d1
#else
        movel        d0,d7
        movel        d1,d0
        movel        d7,d1
#endif
1:
| Now that they are positive we just compare them as longs (does this also
| work for denormalized numbers?).
        cmpl        d0,d1
        bhi        Lcmpsf$b$gt$a        | |b| > |a|
        bne        Lcmpsf$a$gt$b        | |b| < |a|
| If we got here a == b.
        movel        IMM (EQUAL),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
#endif
        unlk        a6
        rts
Lcmpsf$a$gt$b:
        movel        IMM (GREATER),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts
Lcmpsf$b$gt$a:
        movel        IMM (LESS),d0
#ifndef __mcoldfire__
        moveml        sp@+,d2-d7         | put back the registers
#else
        moveml        sp@,d2-d7
        | XXX if frame pointer is ever removed, stack pointer must
        | be adjusted here.
#endif
        unlk        a6
        rts

Lcmpsf$a$0:        
        bclr        IMM (31),d6
        bra        Lcmpsf$1
Lcmpsf$b$0:
        bclr        IMM (31),d7
        bra        Lcmpsf$2

Lcmpf$inop:
        movl        a6@(16),d0
        moveq        IMM (INEXACT_RESULT+INVALID_OPERATION),d7
        moveq        IMM (SINGLE_FLOAT),d6
        PICJUMP        $_exception_handler

| int __cmpsf2(float, float);
SYM (__cmpsf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        bsr (__cmpsf2_internal)
        unlk        a6
        rts

|=============================================================================
|                           rounding routines
|=============================================================================

| The rounding routines expect the number to be normalized in registers
| d0-d1, with the exponent in register d2. They assume that the 
| exponent is larger or equal to 1. They return a properly normalized number
| if possible, and a denormalized number otherwise. The exponent is returned
| in d2.

Lround$to$nearest:
| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
| Here we assume that the exponent is not too small (this should be checked
| before entering the rounding routine), but the number could be denormalized.

| Check for denormalized numbers:
1:        btst        IMM (FLT_MANT_DIG),d0
        bne        2f                | if set the number is normalized
| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent 
| is one (remember that a denormalized number corresponds to an 
| exponent of -F_BIAS+1).
#ifndef __mcoldfire__
        cmpw        IMM (1),d2        | remember that the exponent is at least one
#else
        cmpl        IMM (1),d2        | remember that the exponent is at least one
#endif
         beq        2f                | an exponent of one means denormalized
        addl        d1,d1                | else shift and adjust the exponent
        addxl        d0,d0                |
#ifndef __mcoldfire__
        dbra        d2,1b                |
#else
        subql        IMM (1),d2
        bpl        1b
#endif
2:
| Now round: we do it as follows: after the shifting we can write the
| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
| If delta < 1, do nothing. If delta > 1, add 1 to f. 
| If delta == 1, we make sure the rounded number will be even (odd?) 
| (after shifting).
        btst        IMM (0),d0        | is delta < 1?
        beq        2f                | if so, do not do anything
        tstl        d1                | is delta == 1?
        bne        1f                | if so round to even
        movel        d0,d1                | 
        andl        IMM (2),d1        | bit 1 is the last significant bit
        addl        d1,d0                | 
        bra        2f                | 
1:        movel        IMM (1),d1        | else add 1 
        addl        d1,d0                |
| Shift right once (because we used bit #FLT_MANT_DIG!).
2:        lsrl        IMM (1),d0                
| Now check again bit #FLT_MANT_DIG (rounding could have produced a
| 'fraction overflow' ...).
        btst        IMM (FLT_MANT_DIG),d0        
        beq        1f
        lsrl        IMM (1),d0
#ifndef __mcoldfire__
        addw        IMM (1),d2
#else
        addql        IMM (1),d2
#endif
1:
| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we 
| have to put the exponent to zero and return a denormalized number.
        btst        IMM (FLT_MANT_DIG-1),d0
        beq        1f
        jmp        a0@
1:        movel        IMM (0),d2
        jmp        a0@

Lround$to$zero:
Lround$to$plus:
Lround$to$minus:
        jmp        a0@
#endif /* L_float */

| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
| __ledf2, __ltdf2 to all return the same value as a direct call to
| __cmpdf2 would.  In this implementation, each of these routines
| simply calls __cmpdf2.  It would be more efficient to give the
| __cmpdf2 routine several names, but separating them out will make it
| easier to write efficient versions of these routines someday.
| If the operands recompare unordered unordered __gtdf2 and __gedf2 return -1.
| The other routines return 1.

#ifdef  L_eqdf2
        .text
        .proc
        .globl        SYM (__eqdf2)
SYM (__eqdf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_eqdf2 */

#ifdef  L_nedf2
        .text
        .proc
        .globl        SYM (__nedf2)
SYM (__nedf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_nedf2 */

#ifdef  L_gtdf2
        .text
        .proc
        .globl        SYM (__gtdf2)
SYM (__gtdf2):
        link        a6,IMM (0)
        pea        -1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_gtdf2 */

#ifdef  L_gedf2
        .text
        .proc
        .globl        SYM (__gedf2)
SYM (__gedf2):
        link        a6,IMM (0)
        pea        -1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_gedf2 */

#ifdef  L_ltdf2
        .text
        .proc
        .globl        SYM (__ltdf2)
SYM (__ltdf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_ltdf2 */

#ifdef  L_ledf2
        .text
        .proc
        .globl        SYM (__ledf2)
SYM (__ledf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(20),sp@-
        movl        a6@(16),sp@-
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpdf2_internal)
        unlk        a6
        rts
#endif /* L_ledf2 */

| The comments above about __eqdf2, et. al., also apply to __eqsf2,
| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.

#ifdef  L_eqsf2
        .text
        .proc
        .globl        SYM (__eqsf2)
SYM (__eqsf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_eqsf2 */

#ifdef  L_nesf2
        .text
        .proc
        .globl        SYM (__nesf2)
SYM (__nesf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_nesf2 */

#ifdef  L_gtsf2
        .text
        .proc
        .globl        SYM (__gtsf2)
SYM (__gtsf2):
        link        a6,IMM (0)
        pea        -1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_gtsf2 */

#ifdef  L_gesf2
        .text
        .proc
        .globl        SYM (__gesf2)
SYM (__gesf2):
        link        a6,IMM (0)
        pea        -1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_gesf2 */

#ifdef  L_ltsf2
        .text
        .proc
        .globl        SYM (__ltsf2)
SYM (__ltsf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_ltsf2 */

#ifdef  L_lesf2
        .text
        .proc
        .globl        SYM (__lesf2)
SYM (__lesf2):
        link        a6,IMM (0)
        pea        1
        movl        a6@(12),sp@-
        movl        a6@(8),sp@-
        PICCALL        SYM (__cmpsf2_internal)
        unlk        a6
        rts
#endif /* L_lesf2 */