1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
|
/* Subroutines for insn-output.c for Matsushita MN10300 series
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "function.h"
#include "obstack.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
/* This is used by GOTaddr2picreg to uniquely identify
UNSPEC_INT_LABELs. */
int mn10300_unspec_int_label_counter;
/* This is used in the am33_2.0-linux-gnu port, in which global symbol
names are not prefixed by underscores, to tell whether to prefix a
label with a plus sign or not, so that the assembler can tell
symbol names from register names. */
int mn10300_protect_label;
/* The selected processor. */
enum processor_type mn10300_processor = PROCESSOR_DEFAULT;
/* The size of the callee register save area. Right now we save everything
on entry since it costs us nothing in code size. It does cost us from a
speed standpoint, so we want to optimize this sooner or later. */
#define REG_SAVE_BYTES (4 * regs_ever_live[2] \
+ 4 * regs_ever_live[3] \
+ 4 * regs_ever_live[6] \
+ 4 * regs_ever_live[7] \
+ 16 * (regs_ever_live[14] || regs_ever_live[15] \
|| regs_ever_live[16] || regs_ever_live[17]))
static bool mn10300_handle_option (size_t, const char *, int);
static int mn10300_address_cost_1 (rtx, int *);
static int mn10300_address_cost (rtx);
static bool mn10300_rtx_costs (rtx, int, int, int *);
static void mn10300_file_start (void);
static bool mn10300_return_in_memory (tree, tree);
static rtx mn10300_builtin_saveregs (void);
static bool mn10300_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static int mn10300_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS mn10300_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST mn10300_address_cost
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START mn10300_file_start
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS MASK_MULT_BUG | MASK_PTR_A0D0
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION mn10300_handle_option
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO mn10300_encode_section_info
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY mn10300_return_in_memory
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE mn10300_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES mn10300_arg_partial_bytes
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS mn10300_builtin_saveregs
static void mn10300_encode_section_info (tree, rtx, int);
struct gcc_target targetm = TARGET_INITIALIZER;
/* Implement TARGET_HANDLE_OPTION. */
static bool
mn10300_handle_option (size_t code,
const char *arg ATTRIBUTE_UNUSED,
int value)
{
switch (code)
{
case OPT_mam33:
mn10300_processor = value ? PROCESSOR_AM33 : PROCESSOR_MN10300;
return true;
case OPT_mam33_2:
mn10300_processor = (value
? PROCESSOR_AM33_2
: MIN (PROCESSOR_AM33, PROCESSOR_DEFAULT));
return true;
default:
return true;
}
}
/* Implement OVERRIDE_OPTIONS. */
void
mn10300_override_options (void)
{
if (TARGET_AM33)
target_flags &= ~MASK_MULT_BUG;
}
static void
mn10300_file_start (void)
{
default_file_start ();
if (TARGET_AM33_2)
fprintf (asm_out_file, "\t.am33_2\n");
else if (TARGET_AM33)
fprintf (asm_out_file, "\t.am33\n");
}
/* Print operand X using operand code CODE to assembly language output file
FILE. */
void
print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case 'b':
case 'B':
if (cc_status.mdep.fpCC)
{
switch (code == 'b' ? GET_CODE (x)
: reverse_condition_maybe_unordered (GET_CODE (x)))
{
case NE:
fprintf (file, "ne");
break;
case EQ:
fprintf (file, "eq");
break;
case GE:
fprintf (file, "ge");
break;
case GT:
fprintf (file, "gt");
break;
case LE:
fprintf (file, "le");
break;
case LT:
fprintf (file, "lt");
break;
case ORDERED:
fprintf (file, "lge");
break;
case UNORDERED:
fprintf (file, "uo");
break;
case LTGT:
fprintf (file, "lg");
break;
case UNEQ:
fprintf (file, "ue");
break;
case UNGE:
fprintf (file, "uge");
break;
case UNGT:
fprintf (file, "ug");
break;
case UNLE:
fprintf (file, "ule");
break;
case UNLT:
fprintf (file, "ul");
break;
default:
gcc_unreachable ();
}
break;
}
/* These are normal and reversed branches. */
switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x)))
{
case NE:
fprintf (file, "ne");
break;
case EQ:
fprintf (file, "eq");
break;
case GE:
fprintf (file, "ge");
break;
case GT:
fprintf (file, "gt");
break;
case LE:
fprintf (file, "le");
break;
case LT:
fprintf (file, "lt");
break;
case GEU:
fprintf (file, "cc");
break;
case GTU:
fprintf (file, "hi");
break;
case LEU:
fprintf (file, "ls");
break;
case LTU:
fprintf (file, "cs");
break;
default:
gcc_unreachable ();
}
break;
case 'C':
/* This is used for the operand to a call instruction;
if it's a REG, enclose it in parens, else output
the operand normally. */
if (GET_CODE (x) == REG)
{
fputc ('(', file);
print_operand (file, x, 0);
fputc (')', file);
}
else
print_operand (file, x, 0);
break;
case 'D':
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "fd%d", REGNO (x) - 18);
break;
default:
gcc_unreachable ();
}
break;
/* These are the least significant word in a 64bit value. */
case 'L':
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case SUBREG:
fprintf (file, "%s", reg_names[subreg_regno (x)]);
break;
case CONST_DOUBLE:
{
long val[2];
REAL_VALUE_TYPE rv;
switch (GET_MODE (x))
{
case DFmode:
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
fprintf (file, "0x%lx", val[0]);
break;;
case SFmode:
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val[0]);
fprintf (file, "0x%lx", val[0]);
break;;
case VOIDmode:
case DImode:
print_operand_address (file,
GEN_INT (CONST_DOUBLE_LOW (x)));
break;
default:
break;
}
break;
}
case CONST_INT:
{
rtx low, high;
split_double (x, &low, &high);
fprintf (file, "%ld", (long)INTVAL (low));
break;
}
default:
gcc_unreachable ();
}
break;
/* Similarly, but for the most significant word. */
case 'H':
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
x = adjust_address (x, SImode, 4);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
break;
case SUBREG:
fprintf (file, "%s", reg_names[subreg_regno (x) + 1]);
break;
case CONST_DOUBLE:
{
long val[2];
REAL_VALUE_TYPE rv;
switch (GET_MODE (x))
{
case DFmode:
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
fprintf (file, "0x%lx", val[1]);
break;;
case SFmode:
gcc_unreachable ();
case VOIDmode:
case DImode:
print_operand_address (file,
GEN_INT (CONST_DOUBLE_HIGH (x)));
break;
default:
break;
}
break;
}
case CONST_INT:
{
rtx low, high;
split_double (x, &low, &high);
fprintf (file, "%ld", (long)INTVAL (high));
break;
}
default:
gcc_unreachable ();
}
break;
case 'A':
fputc ('(', file);
if (GET_CODE (XEXP (x, 0)) == REG)
output_address (gen_rtx_PLUS (SImode, XEXP (x, 0), const0_rtx));
else
output_address (XEXP (x, 0));
fputc (')', file);
break;
case 'N':
gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
fprintf (file, "%d", (int)((~INTVAL (x)) & 0xff));
break;
case 'U':
gcc_assert (INTVAL (x) >= -128 && INTVAL (x) <= 255);
fprintf (file, "%d", (int)(INTVAL (x) & 0xff));
break;
/* For shift counts. The hardware ignores the upper bits of
any immediate, but the assembler will flag an out of range
shift count as an error. So we mask off the high bits
of the immediate here. */
case 'S':
if (GET_CODE (x) == CONST_INT)
{
fprintf (file, "%d", (int)(INTVAL (x) & 0x1f));
break;
}
/* FALL THROUGH */
default:
switch (GET_CODE (x))
{
case MEM:
fputc ('(', file);
output_address (XEXP (x, 0));
fputc (')', file);
break;
case PLUS:
output_address (x);
break;
case REG:
fprintf (file, "%s", reg_names[REGNO (x)]);
break;
case SUBREG:
fprintf (file, "%s", reg_names[subreg_regno (x)]);
break;
/* This will only be single precision.... */
case CONST_DOUBLE:
{
unsigned long val;
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
REAL_VALUE_TO_TARGET_SINGLE (rv, val);
fprintf (file, "0x%lx", val);
break;
}
case CONST_INT:
case SYMBOL_REF:
case CONST:
case LABEL_REF:
case CODE_LABEL:
case UNSPEC:
print_operand_address (file, x);
break;
default:
gcc_unreachable ();
}
break;
}
}
/* Output assembly language output for the address ADDR to FILE. */
void
print_operand_address (FILE *file, rtx addr)
{
switch (GET_CODE (addr))
{
case POST_INC:
print_operand_address (file, XEXP (addr, 0));
fputc ('+', file);
break;
case REG:
print_operand (file, addr, 0);
break;
case PLUS:
{
rtx base, index;
if (REG_P (XEXP (addr, 0))
&& REG_OK_FOR_BASE_P (XEXP (addr, 0)))
base = XEXP (addr, 0), index = XEXP (addr, 1);
else if (REG_P (XEXP (addr, 1))
&& REG_OK_FOR_BASE_P (XEXP (addr, 1)))
base = XEXP (addr, 1), index = XEXP (addr, 0);
else
gcc_unreachable ();
print_operand (file, index, 0);
fputc (',', file);
print_operand (file, base, 0);;
break;
}
case SYMBOL_REF:
output_addr_const (file, addr);
break;
default:
output_addr_const (file, addr);
break;
}
}
/* Count the number of FP registers that have to be saved. */
static int
fp_regs_to_save (void)
{
int i, n = 0;
if (! TARGET_AM33_2)
return 0;
for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
if (regs_ever_live[i] && ! call_used_regs[i])
++n;
return n;
}
/* Print a set of registers in the format required by "movm" and "ret".
Register K is saved if bit K of MASK is set. The data and address
registers can be stored individually, but the extended registers cannot.
We assume that the mask alread takes that into account. For instance,
bits 14 to 17 must have the same value. */
void
mn10300_print_reg_list (FILE *file, int mask)
{
int need_comma;
int i;
need_comma = 0;
fputc ('[', file);
for (i = 0; i < FIRST_EXTENDED_REGNUM; i++)
if ((mask & (1 << i)) != 0)
{
if (need_comma)
fputc (',', file);
fputs (reg_names [i], file);
need_comma = 1;
}
if ((mask & 0x3c000) != 0)
{
gcc_assert ((mask & 0x3c000) == 0x3c000);
if (need_comma)
fputc (',', file);
fputs ("exreg1", file);
need_comma = 1;
}
fputc (']', file);
}
int
can_use_return_insn (void)
{
/* size includes the fixed stack space needed for function calls. */
int size = get_frame_size () + current_function_outgoing_args_size;
/* And space for the return pointer. */
size += current_function_outgoing_args_size ? 4 : 0;
return (reload_completed
&& size == 0
&& !regs_ever_live[2]
&& !regs_ever_live[3]
&& !regs_ever_live[6]
&& !regs_ever_live[7]
&& !regs_ever_live[14]
&& !regs_ever_live[15]
&& !regs_ever_live[16]
&& !regs_ever_live[17]
&& fp_regs_to_save () == 0
&& !frame_pointer_needed);
}
/* Returns the set of live, callee-saved registers as a bitmask. The
callee-saved extended registers cannot be stored individually, so
all of them will be included in the mask if any one of them is used. */
int
mn10300_get_live_callee_saved_regs (void)
{
int mask;
int i;
mask = 0;
for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
if (regs_ever_live[i] && ! call_used_regs[i])
mask |= (1 << i);
if ((mask & 0x3c000) != 0)
mask |= 0x3c000;
return mask;
}
/* Generate an instruction that pushes several registers onto the stack.
Register K will be saved if bit K in MASK is set. The function does
nothing if MASK is zero.
To be compatible with the "movm" instruction, the lowest-numbered
register must be stored in the lowest slot. If MASK is the set
{ R1,...,RN }, where R1...RN are ordered least first, the generated
instruction will have the form:
(parallel
(set (reg:SI 9) (plus:SI (reg:SI 9) (const_int -N*4)))
(set (mem:SI (plus:SI (reg:SI 9)
(const_int -1*4)))
(reg:SI RN))
...
(set (mem:SI (plus:SI (reg:SI 9)
(const_int -N*4)))
(reg:SI R1))) */
void
mn10300_gen_multiple_store (int mask)
{
if (mask != 0)
{
int i;
int count;
rtx par;
int pari;
/* Count how many registers need to be saved. */
count = 0;
for (i = 0; i <= LAST_EXTENDED_REGNUM; i++)
if ((mask & (1 << i)) != 0)
count += 1;
/* We need one PARALLEL element to update the stack pointer and
an additional element for each register that is stored. */
par = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + 1));
/* Create the instruction that updates the stack pointer. */
XVECEXP (par, 0, 0)
= gen_rtx_SET (SImode,
stack_pointer_rtx,
gen_rtx_PLUS (SImode,
stack_pointer_rtx,
GEN_INT (-count * 4)));
/* Create each store. */
pari = 1;
for (i = LAST_EXTENDED_REGNUM; i >= 0; i--)
if ((mask & (1 << i)) != 0)
{
rtx address = gen_rtx_PLUS (SImode,
stack_pointer_rtx,
GEN_INT (-pari * 4));
XVECEXP(par, 0, pari)
= gen_rtx_SET (VOIDmode,
gen_rtx_MEM (SImode, address),
gen_rtx_REG (SImode, i));
pari += 1;
}
par = emit_insn (par);
RTX_FRAME_RELATED_P (par) = 1;
}
}
void
expand_prologue (void)
{
HOST_WIDE_INT size;
/* SIZE includes the fixed stack space needed for function calls. */
size = get_frame_size () + current_function_outgoing_args_size;
size += (current_function_outgoing_args_size ? 4 : 0);
/* If we use any of the callee-saved registers, save them now. */
mn10300_gen_multiple_store (mn10300_get_live_callee_saved_regs ());
if (TARGET_AM33_2 && fp_regs_to_save ())
{
int num_regs_to_save = fp_regs_to_save (), i;
HOST_WIDE_INT xsize;
enum { save_sp_merge,
save_sp_no_merge,
save_sp_partial_merge,
save_a0_merge,
save_a0_no_merge } strategy;
unsigned int strategy_size = (unsigned)-1, this_strategy_size;
rtx reg;
rtx insn;
/* We have several different strategies to save FP registers.
We can store them using SP offsets, which is beneficial if
there are just a few registers to save, or we can use `a0' in
post-increment mode (`a0' is the only call-clobbered address
register that is never used to pass information to a
function). Furthermore, if we don't need a frame pointer, we
can merge the two SP adds into a single one, but this isn't
always beneficial; sometimes we can just split the two adds
so that we don't exceed a 16-bit constant size. The code
below will select which strategy to use, so as to generate
smallest code. Ties are broken in favor or shorter sequences
(in terms of number of instructions). */
#define SIZE_ADD_AX(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
: (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 2)
#define SIZE_ADD_SP(S) ((((S) >= (1 << 15)) || ((S) < -(1 << 15))) ? 6 \
: (((S) >= (1 << 7)) || ((S) < -(1 << 7))) ? 4 : 3)
#define SIZE_FMOV_LIMIT(S,N,L,SIZE1,SIZE2,ELSE) \
(((S) >= (L)) ? (SIZE1) * (N) \
: ((S) + 4 * (N) >= (L)) ? (((L) - (S)) / 4 * (SIZE2) \
+ ((S) + 4 * (N) - (L)) / 4 * (SIZE1)) \
: (ELSE))
#define SIZE_FMOV_SP_(S,N) \
(SIZE_FMOV_LIMIT ((S), (N), (1 << 24), 7, 6, \
SIZE_FMOV_LIMIT ((S), (N), (1 << 8), 6, 4, \
(S) ? 4 * (N) : 3 + 4 * ((N) - 1))))
#define SIZE_FMOV_SP(S,N) (SIZE_FMOV_SP_ ((unsigned HOST_WIDE_INT)(S), (N)))
/* Consider alternative save_sp_merge only if we don't need the
frame pointer and size is nonzero. */
if (! frame_pointer_needed && size)
{
/* Insn: add -(size + 4 * num_regs_to_save), sp. */
this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
/* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
this_strategy_size += SIZE_FMOV_SP (size, num_regs_to_save);
if (this_strategy_size < strategy_size)
{
strategy = save_sp_merge;
strategy_size = this_strategy_size;
}
}
/* Consider alternative save_sp_no_merge unconditionally. */
/* Insn: add -4 * num_regs_to_save, sp. */
this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
/* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
if (size)
{
/* Insn: add -size, sp. */
this_strategy_size += SIZE_ADD_SP (-size);
}
if (this_strategy_size < strategy_size)
{
strategy = save_sp_no_merge;
strategy_size = this_strategy_size;
}
/* Consider alternative save_sp_partial_merge only if we don't
need a frame pointer and size is reasonably large. */
if (! frame_pointer_needed && size + 4 * num_regs_to_save > 128)
{
/* Insn: add -128, sp. */
this_strategy_size = SIZE_ADD_SP (-128);
/* Insn: fmov fs#, (##, sp), for each fs# to be saved. */
this_strategy_size += SIZE_FMOV_SP (128 - 4 * num_regs_to_save,
num_regs_to_save);
if (size)
{
/* Insn: add 128-size, sp. */
this_strategy_size += SIZE_ADD_SP (128 - size);
}
if (this_strategy_size < strategy_size)
{
strategy = save_sp_partial_merge;
strategy_size = this_strategy_size;
}
}
/* Consider alternative save_a0_merge only if we don't need a
frame pointer, size is nonzero and the user hasn't
changed the calling conventions of a0. */
if (! frame_pointer_needed && size
&& call_used_regs[FIRST_ADDRESS_REGNUM]
&& ! fixed_regs[FIRST_ADDRESS_REGNUM])
{
/* Insn: add -(size + 4 * num_regs_to_save), sp. */
this_strategy_size = SIZE_ADD_SP (-(size + 4 * num_regs_to_save));
/* Insn: mov sp, a0. */
this_strategy_size++;
if (size)
{
/* Insn: add size, a0. */
this_strategy_size += SIZE_ADD_AX (size);
}
/* Insn: fmov fs#, (a0+), for each fs# to be saved. */
this_strategy_size += 3 * num_regs_to_save;
if (this_strategy_size < strategy_size)
{
strategy = save_a0_merge;
strategy_size = this_strategy_size;
}
}
/* Consider alternative save_a0_no_merge if the user hasn't
changed the calling conventions of a0. */
if (call_used_regs[FIRST_ADDRESS_REGNUM]
&& ! fixed_regs[FIRST_ADDRESS_REGNUM])
{
/* Insn: add -4 * num_regs_to_save, sp. */
this_strategy_size = SIZE_ADD_SP (-4 * num_regs_to_save);
/* Insn: mov sp, a0. */
this_strategy_size++;
/* Insn: fmov fs#, (a0+), for each fs# to be saved. */
this_strategy_size += 3 * num_regs_to_save;
if (size)
{
/* Insn: add -size, sp. */
this_strategy_size += SIZE_ADD_SP (-size);
}
if (this_strategy_size < strategy_size)
{
strategy = save_a0_no_merge;
strategy_size = this_strategy_size;
}
}
/* Emit the initial SP add, common to all strategies. */
switch (strategy)
{
case save_sp_no_merge:
case save_a0_no_merge:
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-4 * num_regs_to_save)));
xsize = 0;
break;
case save_sp_partial_merge:
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-128)));
xsize = 128 - 4 * num_regs_to_save;
size -= xsize;
break;
case save_sp_merge:
case save_a0_merge:
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-(size + 4 * num_regs_to_save))));
/* We'll have to adjust FP register saves according to the
frame size. */
xsize = size;
/* Since we've already created the stack frame, don't do it
again at the end of the function. */
size = 0;
break;
default:
gcc_unreachable ();
}
/* Now prepare register a0, if we have decided to use it. */
switch (strategy)
{
case save_sp_merge:
case save_sp_no_merge:
case save_sp_partial_merge:
reg = 0;
break;
case save_a0_merge:
case save_a0_no_merge:
reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM);
emit_insn (gen_movsi (reg, stack_pointer_rtx));
if (xsize)
emit_insn (gen_addsi3 (reg, reg, GEN_INT (xsize)));
reg = gen_rtx_POST_INC (SImode, reg);
break;
default:
gcc_unreachable ();
}
/* Now actually save the FP registers. */
for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
if (regs_ever_live[i] && ! call_used_regs[i])
{
rtx addr;
if (reg)
addr = reg;
else
{
/* If we aren't using `a0', use an SP offset. */
if (xsize)
{
addr = gen_rtx_PLUS (SImode,
stack_pointer_rtx,
GEN_INT (xsize));
}
else
addr = stack_pointer_rtx;
xsize += 4;
}
insn = emit_insn (gen_movsi (gen_rtx_MEM (SImode, addr),
gen_rtx_REG (SImode, i)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Now put the frame pointer into the frame pointer register. */
if (frame_pointer_needed)
emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
/* Allocate stack for this frame. */
if (size)
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (-size)));
if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
{
rtx insn = get_last_insn ();
rtx last = emit_insn (gen_GOTaddr2picreg ());
/* Mark these insns as possibly dead. Sometimes, flow2 may
delete all uses of the PIC register. In this case, let it
delete the initialization too. */
do
{
insn = NEXT_INSN (insn);
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
const0_rtx,
REG_NOTES (insn));
}
while (insn != last);
}
}
void
expand_epilogue (void)
{
HOST_WIDE_INT size;
/* SIZE includes the fixed stack space needed for function calls. */
size = get_frame_size () + current_function_outgoing_args_size;
size += (current_function_outgoing_args_size ? 4 : 0);
if (TARGET_AM33_2 && fp_regs_to_save ())
{
int num_regs_to_save = fp_regs_to_save (), i;
rtx reg = 0;
/* We have several options to restore FP registers. We could
load them from SP offsets, but, if there are enough FP
registers to restore, we win if we use a post-increment
addressing mode. */
/* If we have a frame pointer, it's the best option, because we
already know it has the value we want. */
if (frame_pointer_needed)
reg = gen_rtx_REG (SImode, FRAME_POINTER_REGNUM);
/* Otherwise, we may use `a1', since it's call-clobbered and
it's never used for return values. But only do so if it's
smaller than using SP offsets. */
else
{
enum { restore_sp_post_adjust,
restore_sp_pre_adjust,
restore_sp_partial_adjust,
restore_a1 } strategy;
unsigned int this_strategy_size, strategy_size = (unsigned)-1;
/* Consider using sp offsets before adjusting sp. */
/* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
this_strategy_size = SIZE_FMOV_SP (size, num_regs_to_save);
/* If size is too large, we'll have to adjust SP with an
add. */
if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
{
/* Insn: add size + 4 * num_regs_to_save, sp. */
this_strategy_size += SIZE_ADD_SP (size + 4 * num_regs_to_save);
}
/* If we don't have to restore any non-FP registers,
we'll be able to save one byte by using rets. */
if (! REG_SAVE_BYTES)
this_strategy_size--;
if (this_strategy_size < strategy_size)
{
strategy = restore_sp_post_adjust;
strategy_size = this_strategy_size;
}
/* Consider using sp offsets after adjusting sp. */
/* Insn: add size, sp. */
this_strategy_size = SIZE_ADD_SP (size);
/* Insn: fmov (##,sp),fs#, for each fs# to be restored. */
this_strategy_size += SIZE_FMOV_SP (0, num_regs_to_save);
/* We're going to use ret to release the FP registers
save area, so, no savings. */
if (this_strategy_size < strategy_size)
{
strategy = restore_sp_pre_adjust;
strategy_size = this_strategy_size;
}
/* Consider using sp offsets after partially adjusting sp.
When size is close to 32Kb, we may be able to adjust SP
with an imm16 add instruction while still using fmov
(d8,sp). */
if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
{
/* Insn: add size + 4 * num_regs_to_save
+ REG_SAVE_BYTES - 252,sp. */
this_strategy_size = SIZE_ADD_SP (size + 4 * num_regs_to_save
+ REG_SAVE_BYTES - 252);
/* Insn: fmov (##,sp),fs#, fo each fs# to be restored. */
this_strategy_size += SIZE_FMOV_SP (252 - REG_SAVE_BYTES
- 4 * num_regs_to_save,
num_regs_to_save);
/* We're going to use ret to release the FP registers
save area, so, no savings. */
if (this_strategy_size < strategy_size)
{
strategy = restore_sp_partial_adjust;
strategy_size = this_strategy_size;
}
}
/* Consider using a1 in post-increment mode, as long as the
user hasn't changed the calling conventions of a1. */
if (call_used_regs[FIRST_ADDRESS_REGNUM+1]
&& ! fixed_regs[FIRST_ADDRESS_REGNUM+1])
{
/* Insn: mov sp,a1. */
this_strategy_size = 1;
if (size)
{
/* Insn: add size,a1. */
this_strategy_size += SIZE_ADD_AX (size);
}
/* Insn: fmov (a1+),fs#, for each fs# to be restored. */
this_strategy_size += 3 * num_regs_to_save;
/* If size is large enough, we may be able to save a
couple of bytes. */
if (size + 4 * num_regs_to_save + REG_SAVE_BYTES > 255)
{
/* Insn: mov a1,sp. */
this_strategy_size += 2;
}
/* If we don't have to restore any non-FP registers,
we'll be able to save one byte by using rets. */
if (! REG_SAVE_BYTES)
this_strategy_size--;
if (this_strategy_size < strategy_size)
{
strategy = restore_a1;
strategy_size = this_strategy_size;
}
}
switch (strategy)
{
case restore_sp_post_adjust:
break;
case restore_sp_pre_adjust:
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (size)));
size = 0;
break;
case restore_sp_partial_adjust:
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (size + 4 * num_regs_to_save
+ REG_SAVE_BYTES - 252)));
size = 252 - REG_SAVE_BYTES - 4 * num_regs_to_save;
break;
case restore_a1:
reg = gen_rtx_REG (SImode, FIRST_ADDRESS_REGNUM + 1);
emit_insn (gen_movsi (reg, stack_pointer_rtx));
if (size)
emit_insn (gen_addsi3 (reg, reg, GEN_INT (size)));
break;
default:
gcc_unreachable ();
}
}
/* Adjust the selected register, if any, for post-increment. */
if (reg)
reg = gen_rtx_POST_INC (SImode, reg);
for (i = FIRST_FP_REGNUM; i <= LAST_FP_REGNUM; ++i)
if (regs_ever_live[i] && ! call_used_regs[i])
{
rtx addr;
if (reg)
addr = reg;
else if (size)
{
/* If we aren't using a post-increment register, use an
SP offset. */
addr = gen_rtx_PLUS (SImode,
stack_pointer_rtx,
GEN_INT (size));
}
else
addr = stack_pointer_rtx;
size += 4;
emit_insn (gen_movsi (gen_rtx_REG (SImode, i),
gen_rtx_MEM (SImode, addr)));
}
/* If we were using the restore_a1 strategy and the number of
bytes to be released won't fit in the `ret' byte, copy `a1'
to `sp', to avoid having to use `add' to adjust it. */
if (! frame_pointer_needed && reg && size + REG_SAVE_BYTES > 255)
{
emit_move_insn (stack_pointer_rtx, XEXP (reg, 0));
size = 0;
}
}
/* Maybe cut back the stack, except for the register save area.
If the frame pointer exists, then use the frame pointer to
cut back the stack.
If the stack size + register save area is more than 255 bytes,
then the stack must be cut back here since the size + register
save size is too big for a ret/retf instruction.
Else leave it alone, it will be cut back as part of the
ret/retf instruction, or there wasn't any stack to begin with.
Under no circumstances should the register save area be
deallocated here, that would leave a window where an interrupt
could occur and trash the register save area. */
if (frame_pointer_needed)
{
emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
size = 0;
}
else if (size + REG_SAVE_BYTES > 255)
{
emit_insn (gen_addsi3 (stack_pointer_rtx,
stack_pointer_rtx,
GEN_INT (size)));
size = 0;
}
/* Adjust the stack and restore callee-saved registers, if any. */
if (size || regs_ever_live[2] || regs_ever_live[3]
|| regs_ever_live[6] || regs_ever_live[7]
|| regs_ever_live[14] || regs_ever_live[15]
|| regs_ever_live[16] || regs_ever_live[17]
|| frame_pointer_needed)
emit_jump_insn (gen_return_internal_regs
(GEN_INT (size + REG_SAVE_BYTES)));
else
emit_jump_insn (gen_return_internal ());
}
/* Update the condition code from the insn. */
void
notice_update_cc (rtx body, rtx insn)
{
switch (get_attr_cc (insn))
{
case CC_NONE:
/* Insn does not affect CC at all. */
break;
case CC_NONE_0HIT:
/* Insn does not change CC, but the 0'th operand has been changed. */
if (cc_status.value1 != 0
&& reg_overlap_mentioned_p (recog_data.operand[0], cc_status.value1))
cc_status.value1 = 0;
break;
case CC_SET_ZN:
/* Insn sets the Z,N flags of CC to recog_data.operand[0].
V,C are unusable. */
CC_STATUS_INIT;
cc_status.flags |= CC_NO_CARRY | CC_OVERFLOW_UNUSABLE;
cc_status.value1 = recog_data.operand[0];
break;
case CC_SET_ZNV:
/* Insn sets the Z,N,V flags of CC to recog_data.operand[0].
C is unusable. */
CC_STATUS_INIT;
cc_status.flags |= CC_NO_CARRY;
cc_status.value1 = recog_data.operand[0];
break;
case CC_COMPARE:
/* The insn is a compare instruction. */
CC_STATUS_INIT;
cc_status.value1 = SET_SRC (body);
if (GET_CODE (cc_status.value1) == COMPARE
&& GET_MODE (XEXP (cc_status.value1, 0)) == SFmode)
cc_status.mdep.fpCC = 1;
break;
case CC_CLOBBER:
/* Insn doesn't leave CC in a usable state. */
CC_STATUS_INIT;
break;
default:
gcc_unreachable ();
}
}
/* Recognize the PARALLEL rtx generated by mn10300_gen_multiple_store().
This function is for MATCH_PARALLEL and so assumes OP is known to be
parallel. If OP is a multiple store, return a mask indicating which
registers it saves. Return 0 otherwise. */
int
store_multiple_operation (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
int count;
int mask;
int i;
unsigned int last;
rtx elt;
count = XVECLEN (op, 0);
if (count < 2)
return 0;
/* Check that first instruction has the form (set (sp) (plus A B)) */
elt = XVECEXP (op, 0, 0);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| REGNO (SET_DEST (elt)) != STACK_POINTER_REGNUM
|| GET_CODE (SET_SRC (elt)) != PLUS)
return 0;
/* Check that A is the stack pointer and B is the expected stack size.
For OP to match, each subsequent instruction should push a word onto
the stack. We therefore expect the first instruction to create
COUNT-1 stack slots. */
elt = SET_SRC (elt);
if (GET_CODE (XEXP (elt, 0)) != REG
|| REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
|| GET_CODE (XEXP (elt, 1)) != CONST_INT
|| INTVAL (XEXP (elt, 1)) != -(count - 1) * 4)
return 0;
/* Now go through the rest of the vector elements. They must be
ordered so that the first instruction stores the highest-numbered
register to the highest stack slot and that subsequent instructions
store a lower-numbered register to the slot below.
LAST keeps track of the smallest-numbered register stored so far.
MASK is the set of stored registers. */
last = LAST_EXTENDED_REGNUM + 1;
mask = 0;
for (i = 1; i < count; i++)
{
/* Check that element i is a (set (mem M) R) and that R is valid. */
elt = XVECEXP (op, 0, i);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_CODE (SET_SRC (elt)) != REG
|| REGNO (SET_SRC (elt)) >= last)
return 0;
/* R was OK, so provisionally add it to MASK. We return 0 in any
case if the rest of the instruction has a flaw. */
last = REGNO (SET_SRC (elt));
mask |= (1 << last);
/* Check that M has the form (plus (sp) (const_int -I*4)) */
elt = XEXP (SET_DEST (elt), 0);
if (GET_CODE (elt) != PLUS
|| GET_CODE (XEXP (elt, 0)) != REG
|| REGNO (XEXP (elt, 0)) != STACK_POINTER_REGNUM
|| GET_CODE (XEXP (elt, 1)) != CONST_INT
|| INTVAL (XEXP (elt, 1)) != -i * 4)
return 0;
}
/* All or none of the callee-saved extended registers must be in the set. */
if ((mask & 0x3c000) != 0
&& (mask & 0x3c000) != 0x3c000)
return 0;
return mask;
}
/* What (if any) secondary registers are needed to move IN with mode
MODE into a register in register class CLASS.
We might be able to simplify this. */
enum reg_class
mn10300_secondary_reload_class (enum reg_class class, enum machine_mode mode,
rtx in)
{
/* Memory loads less than a full word wide can't have an
address or stack pointer destination. They must use
a data register as an intermediate register. */
if ((GET_CODE (in) == MEM
|| (GET_CODE (in) == REG
&& REGNO (in) >= FIRST_PSEUDO_REGISTER)
|| (GET_CODE (in) == SUBREG
&& GET_CODE (SUBREG_REG (in)) == REG
&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER))
&& (mode == QImode || mode == HImode)
&& (class == ADDRESS_REGS || class == SP_REGS
|| class == SP_OR_ADDRESS_REGS))
{
if (TARGET_AM33)
return DATA_OR_EXTENDED_REGS;
return DATA_REGS;
}
/* We can't directly load sp + const_int into a data register;
we must use an address register as an intermediate. */
if (class != SP_REGS
&& class != ADDRESS_REGS
&& class != SP_OR_ADDRESS_REGS
&& class != SP_OR_EXTENDED_REGS
&& class != ADDRESS_OR_EXTENDED_REGS
&& class != SP_OR_ADDRESS_OR_EXTENDED_REGS
&& (in == stack_pointer_rtx
|| (GET_CODE (in) == PLUS
&& (XEXP (in, 0) == stack_pointer_rtx
|| XEXP (in, 1) == stack_pointer_rtx))))
return ADDRESS_REGS;
if (GET_CODE (in) == PLUS
&& (XEXP (in, 0) == stack_pointer_rtx
|| XEXP (in, 1) == stack_pointer_rtx))
{
if (TARGET_AM33)
return DATA_OR_EXTENDED_REGS;
return DATA_REGS;
}
if (TARGET_AM33_2 && class == FP_REGS
&& GET_CODE (in) == MEM && ! OK_FOR_Q (in))
{
if (TARGET_AM33)
return DATA_OR_EXTENDED_REGS;
return DATA_REGS;
}
/* Otherwise assume no secondary reloads are needed. */
return NO_REGS;
}
int
initial_offset (int from, int to)
{
/* The difference between the argument pointer and the frame pointer
is the size of the callee register save area. */
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
{
if (regs_ever_live[2] || regs_ever_live[3]
|| regs_ever_live[6] || regs_ever_live[7]
|| regs_ever_live[14] || regs_ever_live[15]
|| regs_ever_live[16] || regs_ever_live[17]
|| fp_regs_to_save ()
|| frame_pointer_needed)
return REG_SAVE_BYTES
+ 4 * fp_regs_to_save ();
else
return 0;
}
/* The difference between the argument pointer and the stack pointer is
the sum of the size of this function's frame, the callee register save
area, and the fixed stack space needed for function calls (if any). */
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
{
if (regs_ever_live[2] || regs_ever_live[3]
|| regs_ever_live[6] || regs_ever_live[7]
|| regs_ever_live[14] || regs_ever_live[15]
|| regs_ever_live[16] || regs_ever_live[17]
|| fp_regs_to_save ()
|| frame_pointer_needed)
return (get_frame_size () + REG_SAVE_BYTES
+ 4 * fp_regs_to_save ()
+ (current_function_outgoing_args_size
? current_function_outgoing_args_size + 4 : 0));
else
return (get_frame_size ()
+ (current_function_outgoing_args_size
? current_function_outgoing_args_size + 4 : 0));
}
/* The difference between the frame pointer and stack pointer is the sum
of the size of this function's frame and the fixed stack space needed
for function calls (if any). */
if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
return (get_frame_size ()
+ (current_function_outgoing_args_size
? current_function_outgoing_args_size + 4 : 0));
gcc_unreachable ();
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
mn10300_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
{
/* Return values > 8 bytes in length in memory. */
return (int_size_in_bytes (type) > 8
|| int_size_in_bytes (type) == 0
|| TYPE_MODE (type) == BLKmode);
}
/* Flush the argument registers to the stack for a stdarg function;
return the new argument pointer. */
static rtx
mn10300_builtin_saveregs (void)
{
rtx offset, mem;
tree fntype = TREE_TYPE (current_function_decl);
int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node)))
? UNITS_PER_WORD : 0);
int set = get_varargs_alias_set ();
if (argadj)
offset = plus_constant (current_function_arg_offset_rtx, argadj);
else
offset = current_function_arg_offset_rtx;
mem = gen_rtx_MEM (SImode, current_function_internal_arg_pointer);
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (SImode, 0));
mem = gen_rtx_MEM (SImode,
plus_constant (current_function_internal_arg_pointer, 4));
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (SImode, 1));
return copy_to_reg (expand_binop (Pmode, add_optab,
current_function_internal_arg_pointer,
offset, 0, 0, OPTAB_LIB_WIDEN));
}
void
mn10300_va_start (tree valist, rtx nextarg)
{
nextarg = expand_builtin_saveregs ();
std_expand_builtin_va_start (valist, nextarg);
}
/* Return true when a parameter should be passed by reference. */
static bool
mn10300_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
enum machine_mode mode, tree type,
bool named ATTRIBUTE_UNUSED)
{
unsigned HOST_WIDE_INT size;
if (type)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
return (size > 8 || size == 0);
}
/* Return an RTX to represent where a value with mode MODE will be returned
from a function. If the result is 0, the argument is pushed. */
rtx
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, int named ATTRIBUTE_UNUSED)
{
rtx result = 0;
int size, align;
/* We only support using 2 data registers as argument registers. */
int nregs = 2;
/* Figure out the size of the object to be passed. */
if (mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
/* Figure out the alignment of the object to be passed. */
align = size;
cum->nbytes = (cum->nbytes + 3) & ~3;
/* Don't pass this arg via a register if all the argument registers
are used up. */
if (cum->nbytes > nregs * UNITS_PER_WORD)
return 0;
/* Don't pass this arg via a register if it would be split between
registers and memory. */
if (type == NULL_TREE
&& cum->nbytes + size > nregs * UNITS_PER_WORD)
return 0;
switch (cum->nbytes / UNITS_PER_WORD)
{
case 0:
result = gen_rtx_REG (mode, 0);
break;
case 1:
result = gen_rtx_REG (mode, 1);
break;
default:
result = 0;
}
return result;
}
/* Return the number of bytes of registers to use for an argument passed
partially in registers and partially in memory. */
static int
mn10300_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
int size, align;
/* We only support using 2 data registers as argument registers. */
int nregs = 2;
/* Figure out the size of the object to be passed. */
if (mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
/* Figure out the alignment of the object to be passed. */
align = size;
cum->nbytes = (cum->nbytes + 3) & ~3;
/* Don't pass this arg via a register if all the argument registers
are used up. */
if (cum->nbytes > nregs * UNITS_PER_WORD)
return 0;
if (cum->nbytes + size <= nregs * UNITS_PER_WORD)
return 0;
/* Don't pass this arg via a register if it would be split between
registers and memory. */
if (type == NULL_TREE
&& cum->nbytes + size > nregs * UNITS_PER_WORD)
return 0;
return nregs * UNITS_PER_WORD - cum->nbytes;
}
/* Return the location of the function's value. This will be either
$d0 for integer functions, $a0 for pointers, or a PARALLEL of both
$d0 and $a0 if the -mreturn-pointer-on-do flag is set. Note that
we only return the PARALLEL for outgoing values; we do not want
callers relying on this extra copy. */
rtx
mn10300_function_value (tree valtype, tree func, int outgoing)
{
rtx rv;
enum machine_mode mode = TYPE_MODE (valtype);
if (! POINTER_TYPE_P (valtype))
return gen_rtx_REG (mode, FIRST_DATA_REGNUM);
else if (! TARGET_PTR_A0D0 || ! outgoing
|| current_function_returns_struct)
return gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM);
rv = gen_rtx_PARALLEL (mode, rtvec_alloc (2));
XVECEXP (rv, 0, 0)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, FIRST_ADDRESS_REGNUM),
GEN_INT (0));
XVECEXP (rv, 0, 1)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, FIRST_DATA_REGNUM),
GEN_INT (0));
return rv;
}
/* Output a tst insn. */
const char *
output_tst (rtx operand, rtx insn)
{
rtx temp;
int past_call = 0;
/* We can save a byte if we can find a register which has the value
zero in it. */
temp = PREV_INSN (insn);
while (optimize && temp)
{
rtx set;
/* We allow the search to go through call insns. We record
the fact that we've past a CALL_INSN and reject matches which
use call clobbered registers. */
if (GET_CODE (temp) == CODE_LABEL
|| GET_CODE (temp) == JUMP_INSN
|| GET_CODE (temp) == BARRIER)
break;
if (GET_CODE (temp) == CALL_INSN)
past_call = 1;
if (GET_CODE (temp) == NOTE)
{
temp = PREV_INSN (temp);
continue;
}
/* It must be an insn, see if it is a simple set. */
set = single_set (temp);
if (!set)
{
temp = PREV_INSN (temp);
continue;
}
/* Are we setting a data register to zero (this does not win for
address registers)?
If it's a call clobbered register, have we past a call?
Make sure the register we find isn't the same as ourself;
the mn10300 can't encode that.
??? reg_set_between_p return nonzero anytime we pass a CALL_INSN
so the code to detect calls here isn't doing anything useful. */
if (REG_P (SET_DEST (set))
&& SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
&& !reg_set_between_p (SET_DEST (set), temp, insn)
&& (REGNO_REG_CLASS (REGNO (SET_DEST (set)))
== REGNO_REG_CLASS (REGNO (operand)))
&& REGNO_REG_CLASS (REGNO (SET_DEST (set))) != EXTENDED_REGS
&& REGNO (SET_DEST (set)) != REGNO (operand)
&& (!past_call
|| !call_used_regs[REGNO (SET_DEST (set))]))
{
rtx xoperands[2];
xoperands[0] = operand;
xoperands[1] = SET_DEST (set);
output_asm_insn ("cmp %1,%0", xoperands);
return "";
}
if (REGNO_REG_CLASS (REGNO (operand)) == EXTENDED_REGS
&& REG_P (SET_DEST (set))
&& SET_SRC (set) == CONST0_RTX (GET_MODE (SET_DEST (set)))
&& !reg_set_between_p (SET_DEST (set), temp, insn)
&& (REGNO_REG_CLASS (REGNO (SET_DEST (set)))
!= REGNO_REG_CLASS (REGNO (operand)))
&& REGNO_REG_CLASS (REGNO (SET_DEST (set))) == EXTENDED_REGS
&& REGNO (SET_DEST (set)) != REGNO (operand)
&& (!past_call
|| !call_used_regs[REGNO (SET_DEST (set))]))
{
rtx xoperands[2];
xoperands[0] = operand;
xoperands[1] = SET_DEST (set);
output_asm_insn ("cmp %1,%0", xoperands);
return "";
}
temp = PREV_INSN (temp);
}
return "cmp 0,%0";
}
int
impossible_plus_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) != PLUS)
return 0;
if (XEXP (op, 0) == stack_pointer_rtx
|| XEXP (op, 1) == stack_pointer_rtx)
return 1;
return 0;
}
/* Similarly, but when using a zero_extract pattern for a btst where
the source operand might end up in memory. */
int
mask_ok_for_mem_btst (int len, int bit)
{
unsigned int mask = 0;
while (len > 0)
{
mask |= (1 << bit);
bit++;
len--;
}
/* MASK must bit into an 8bit value. */
return (((mask & 0xff) == mask)
|| ((mask & 0xff00) == mask)
|| ((mask & 0xff0000) == mask)
|| ((mask & 0xff000000) == mask));
}
/* Return 1 if X contains a symbolic expression. We know these
expressions will have one of a few well defined forms, so
we need only check those forms. */
int
symbolic_operand (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
default:
return 0;
}
}
/* Try machine dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
Normally it is always safe for this macro to do nothing. It exists to
recognize opportunities to optimize the output.
But on a few ports with segmented architectures and indexed addressing
(mn10300, hppa) it is used to rewrite certain problematical addresses. */
rtx
legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (flag_pic && ! legitimate_pic_operand_p (x))
x = legitimize_pic_address (oldx, NULL_RTX);
/* Uh-oh. We might have an address for x[n-100000]. This needs
special handling to avoid creating an indexed memory address
with x-100000 as the base. */
if (GET_CODE (x) == PLUS
&& symbolic_operand (XEXP (x, 1), VOIDmode))
{
/* Ugly. We modify things here so that the address offset specified
by the index expression is computed first, then added to x to form
the entire address. */
rtx regx1, regy1, regy2, y;
/* Strip off any CONST. */
y = XEXP (x, 1);
if (GET_CODE (y) == CONST)
y = XEXP (y, 0);
if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
{
regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
regx1 = force_reg (Pmode,
gen_rtx_fmt_ee (GET_CODE (y), Pmode, regx1, regy2));
return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
}
}
return x;
}
/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
@GOTOFF in `reg'. */
rtx
legitimize_pic_address (rtx orig, rtx reg)
{
if (GET_CODE (orig) == LABEL_REF
|| (GET_CODE (orig) == SYMBOL_REF
&& (CONSTANT_POOL_ADDRESS_P (orig)
|| ! MN10300_GLOBAL_P (orig))))
{
if (reg == 0)
reg = gen_reg_rtx (Pmode);
emit_insn (gen_symGOTOFF2reg (reg, orig));
return reg;
}
else if (GET_CODE (orig) == SYMBOL_REF)
{
if (reg == 0)
reg = gen_reg_rtx (Pmode);
emit_insn (gen_symGOT2reg (reg, orig));
return reg;
}
return orig;
}
/* Return zero if X references a SYMBOL_REF or LABEL_REF whose symbol
isn't protected by a PIC unspec; nonzero otherwise. */
int
legitimate_pic_operand_p (rtx x)
{
register const char *fmt;
register int i;
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
return 0;
if (GET_CODE (x) == UNSPEC
&& (XINT (x, 1) == UNSPEC_PIC
|| XINT (x, 1) == UNSPEC_GOT
|| XINT (x, 1) == UNSPEC_GOTOFF
|| XINT (x, 1) == UNSPEC_PLT))
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (! legitimate_pic_operand_p (XVECEXP (x, i, j)))
return 0;
}
else if (fmt[i] == 'e' && ! legitimate_pic_operand_p (XEXP (x, i)))
return 0;
}
return 1;
}
/* Return TRUE if the address X, taken from a (MEM:MODE X) rtx, is
legitimate, and FALSE otherwise. */
bool
legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
if (CONSTANT_ADDRESS_P (x)
&& (! flag_pic || legitimate_pic_operand_p (x)))
return TRUE;
if (RTX_OK_FOR_BASE_P (x, strict))
return TRUE;
if (TARGET_AM33
&& GET_CODE (x) == POST_INC
&& RTX_OK_FOR_BASE_P (XEXP (x, 0), strict)
&& (mode == SImode || mode == SFmode || mode == HImode))
return TRUE;
if (GET_CODE (x) == PLUS)
{
rtx base = 0, index = 0;
if (REG_P (XEXP (x, 0))
&& REGNO_STRICT_OK_FOR_BASE_P (REGNO (XEXP (x, 0)), strict))
{
base = XEXP (x, 0);
index = XEXP (x, 1);
}
if (REG_P (XEXP (x, 1))
&& REGNO_STRICT_OK_FOR_BASE_P (REGNO (XEXP (x, 1)), strict))
{
base = XEXP (x, 1);
index = XEXP (x, 0);
}
if (base != 0 && index != 0)
{
if (GET_CODE (index) == CONST_INT)
return TRUE;
if (GET_CODE (index) == CONST
&& GET_CODE (XEXP (index, 0)) != PLUS
&& (! flag_pic
|| legitimate_pic_operand_p (index)))
return TRUE;
}
}
return FALSE;
}
static int
mn10300_address_cost_1 (rtx x, int *unsig)
{
switch (GET_CODE (x))
{
case REG:
switch (REGNO_REG_CLASS (REGNO (x)))
{
case SP_REGS:
*unsig = 1;
return 0;
case ADDRESS_REGS:
return 1;
case DATA_REGS:
case EXTENDED_REGS:
case FP_REGS:
return 3;
case NO_REGS:
return 5;
default:
gcc_unreachable ();
}
case PLUS:
case MINUS:
case ASHIFT:
case AND:
case IOR:
return (mn10300_address_cost_1 (XEXP (x, 0), unsig)
+ mn10300_address_cost_1 (XEXP (x, 1), unsig));
case EXPR_LIST:
case SUBREG:
case MEM:
return mn10300_address_cost (XEXP (x, 0));
case ZERO_EXTEND:
*unsig = 1;
return mn10300_address_cost_1 (XEXP (x, 0), unsig);
case CONST_INT:
if (INTVAL (x) == 0)
return 0;
if (INTVAL (x) + (*unsig ? 0 : 0x80) < 0x100)
return 1;
if (INTVAL (x) + (*unsig ? 0 : 0x8000) < 0x10000)
return 3;
if (INTVAL (x) + (*unsig ? 0 : 0x800000) < 0x1000000)
return 5;
return 7;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 8;
default:
gcc_unreachable ();
}
}
static int
mn10300_address_cost (rtx x)
{
int s = 0;
return mn10300_address_cost_1 (x, &s);
}
static bool
mn10300_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
/* Zeros are extremely cheap. */
if (INTVAL (x) == 0 && outer_code == SET)
*total = 0;
/* If it fits in 8 bits, then it's still relatively cheap. */
else if (INT_8_BITS (INTVAL (x)))
*total = 1;
/* This is the "base" cost, includes constants where either the
upper or lower 16bits are all zeros. */
else if (INT_16_BITS (INTVAL (x))
|| (INTVAL (x) & 0xffff) == 0
|| (INTVAL (x) & 0xffff0000) == 0)
*total = 2;
else
*total = 4;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
/* These are more costly than a CONST_INT, but we can relax them,
so they're less costly than a CONST_DOUBLE. */
*total = 6;
return true;
case CONST_DOUBLE:
/* We don't optimize CONST_DOUBLEs well nor do we relax them well,
so their cost is very high. */
*total = 8;
return true;
/* ??? This probably needs more work. */
case MOD:
case DIV:
case MULT:
*total = 8;
return true;
default:
return false;
}
}
/* Check whether a constant used to initialize a DImode or DFmode can
use a clr instruction. The code here must be kept in sync with
movdf and movdi. */
bool
mn10300_wide_const_load_uses_clr (rtx operands[2])
{
long val[2];
if (GET_CODE (operands[0]) != REG
|| REGNO_REG_CLASS (REGNO (operands[0])) != DATA_REGS)
return false;
switch (GET_CODE (operands[1]))
{
case CONST_INT:
{
rtx low, high;
split_double (operands[1], &low, &high);
val[0] = INTVAL (low);
val[1] = INTVAL (high);
}
break;
case CONST_DOUBLE:
if (GET_MODE (operands[1]) == DFmode)
{
REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]);
REAL_VALUE_TO_TARGET_DOUBLE (rv, val);
}
else if (GET_MODE (operands[1]) == VOIDmode
|| GET_MODE (operands[1]) == DImode)
{
val[0] = CONST_DOUBLE_LOW (operands[1]);
val[1] = CONST_DOUBLE_HIGH (operands[1]);
}
break;
default:
return false;
}
return val[0] == 0 || val[1] == 0;
}
/* If using PIC, mark a SYMBOL_REF for a non-global symbol so that we
may access it using GOTOFF instead of GOT. */
static void
mn10300_encode_section_info (tree decl, rtx rtl, int first ATTRIBUTE_UNUSED)
{
rtx symbol;
if (GET_CODE (rtl) != MEM)
return;
symbol = XEXP (rtl, 0);
if (GET_CODE (symbol) != SYMBOL_REF)
return;
if (flag_pic)
SYMBOL_REF_FLAG (symbol) = (*targetm.binds_local_p) (decl);
}
|