1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523
|
/* Subroutines for insn-output.c for HPPA.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "flags.h"
#include "tree.h"
#include "output.h"
#include "except.h"
#include "expr.h"
#include "optabs.h"
#include "reload.h"
#include "integrate.h"
#include "function.h"
#include "toplev.h"
#include "ggc.h"
#include "recog.h"
#include "predict.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
/* Return nonzero if there is a bypass for the output of
OUT_INSN and the fp store IN_INSN. */
int
hppa_fpstore_bypass_p (rtx out_insn, rtx in_insn)
{
enum machine_mode store_mode;
enum machine_mode other_mode;
rtx set;
if (recog_memoized (in_insn) < 0
|| get_attr_type (in_insn) != TYPE_FPSTORE
|| recog_memoized (out_insn) < 0)
return 0;
store_mode = GET_MODE (SET_SRC (PATTERN (in_insn)));
set = single_set (out_insn);
if (!set)
return 0;
other_mode = GET_MODE (SET_SRC (set));
return (GET_MODE_SIZE (store_mode) == GET_MODE_SIZE (other_mode));
}
#ifndef DO_FRAME_NOTES
#ifdef INCOMING_RETURN_ADDR_RTX
#define DO_FRAME_NOTES 1
#else
#define DO_FRAME_NOTES 0
#endif
#endif
static void copy_reg_pointer (rtx, rtx);
static void fix_range (const char *);
static bool pa_handle_option (size_t, const char *, int);
static int hppa_address_cost (rtx);
static bool hppa_rtx_costs (rtx, int, int, int *);
static inline rtx force_mode (enum machine_mode, rtx);
static void pa_reorg (void);
static void pa_combine_instructions (void);
static int pa_can_combine_p (rtx, rtx, rtx, int, rtx, rtx, rtx);
static int forward_branch_p (rtx);
static void compute_zdepwi_operands (unsigned HOST_WIDE_INT, unsigned *);
static int compute_movmem_length (rtx);
static int compute_clrmem_length (rtx);
static bool pa_assemble_integer (rtx, unsigned int, int);
static void remove_useless_addtr_insns (int);
static void store_reg (int, HOST_WIDE_INT, int);
static void store_reg_modify (int, int, HOST_WIDE_INT);
static void load_reg (int, HOST_WIDE_INT, int);
static void set_reg_plus_d (int, int, HOST_WIDE_INT, int);
static void pa_output_function_prologue (FILE *, HOST_WIDE_INT);
static void update_total_code_bytes (int);
static void pa_output_function_epilogue (FILE *, HOST_WIDE_INT);
static int pa_adjust_cost (rtx, rtx, rtx, int);
static int pa_adjust_priority (rtx, int);
static int pa_issue_rate (void);
static void pa_som_asm_init_sections (void) ATTRIBUTE_UNUSED;
static section *pa_select_section (tree, int, unsigned HOST_WIDE_INT)
ATTRIBUTE_UNUSED;
static void pa_encode_section_info (tree, rtx, int);
static const char *pa_strip_name_encoding (const char *);
static bool pa_function_ok_for_sibcall (tree, tree);
static void pa_globalize_label (FILE *, const char *)
ATTRIBUTE_UNUSED;
static void pa_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
#if !defined(USE_COLLECT2)
static void pa_asm_out_constructor (rtx, int);
static void pa_asm_out_destructor (rtx, int);
#endif
static void pa_init_builtins (void);
static rtx hppa_builtin_saveregs (void);
static tree hppa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
static bool pa_scalar_mode_supported_p (enum machine_mode);
static bool pa_commutative_p (rtx x, int outer_code);
static void copy_fp_args (rtx) ATTRIBUTE_UNUSED;
static int length_fp_args (rtx) ATTRIBUTE_UNUSED;
static inline void pa_file_start_level (void) ATTRIBUTE_UNUSED;
static inline void pa_file_start_space (int) ATTRIBUTE_UNUSED;
static inline void pa_file_start_file (int) ATTRIBUTE_UNUSED;
static inline void pa_file_start_mcount (const char*) ATTRIBUTE_UNUSED;
static void pa_elf_file_start (void) ATTRIBUTE_UNUSED;
static void pa_som_file_start (void) ATTRIBUTE_UNUSED;
static void pa_linux_file_start (void) ATTRIBUTE_UNUSED;
static void pa_hpux64_gas_file_start (void) ATTRIBUTE_UNUSED;
static void pa_hpux64_hpas_file_start (void) ATTRIBUTE_UNUSED;
static void output_deferred_plabels (void);
static void output_deferred_profile_counters (void) ATTRIBUTE_UNUSED;
#ifdef ASM_OUTPUT_EXTERNAL_REAL
static void pa_hpux_file_end (void);
#endif
#ifdef HPUX_LONG_DOUBLE_LIBRARY
static void pa_hpux_init_libfuncs (void);
#endif
static rtx pa_struct_value_rtx (tree, int);
static bool pa_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static int pa_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
tree, bool);
static struct machine_function * pa_init_machine_status (void);
static enum reg_class pa_secondary_reload (bool, rtx, enum reg_class,
enum machine_mode,
secondary_reload_info *);
/* The following extra sections are only used for SOM. */
static GTY(()) section *som_readonly_data_section;
static GTY(()) section *som_one_only_readonly_data_section;
static GTY(()) section *som_one_only_data_section;
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx hppa_compare_op0, hppa_compare_op1;
enum cmp_type hppa_branch_type;
/* Which cpu we are scheduling for. */
enum processor_type pa_cpu = TARGET_SCHED_DEFAULT;
/* The UNIX standard to use for predefines and linking. */
int flag_pa_unix = TARGET_HPUX_11_11 ? 1998 : TARGET_HPUX_10_10 ? 1995 : 1993;
/* Counts for the number of callee-saved general and floating point
registers which were saved by the current function's prologue. */
static int gr_saved, fr_saved;
static rtx find_addr_reg (rtx);
/* Keep track of the number of bytes we have output in the CODE subspace
during this compilation so we'll know when to emit inline long-calls. */
unsigned long total_code_bytes;
/* The last address of the previous function plus the number of bytes in
associated thunks that have been output. This is used to determine if
a thunk can use an IA-relative branch to reach its target function. */
static int last_address;
/* Variables to handle plabels that we discover are necessary at assembly
output time. They are output after the current function. */
struct deferred_plabel GTY(())
{
rtx internal_label;
rtx symbol;
};
static GTY((length ("n_deferred_plabels"))) struct deferred_plabel *
deferred_plabels;
static size_t n_deferred_plabels = 0;
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER pa_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST pa_adjust_cost
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY pa_adjust_priority
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE pa_issue_rate
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO pa_encode_section_info
#undef TARGET_STRIP_NAME_ENCODING
#define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall
#undef TARGET_COMMUTATIVE_P
#define TARGET_COMMUTATIVE_P pa_commutative_p
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK pa_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_ASM_FILE_END
#ifdef ASM_OUTPUT_EXTERNAL_REAL
#define TARGET_ASM_FILE_END pa_hpux_file_end
#else
#define TARGET_ASM_FILE_END output_deferred_plabels
#endif
#if !defined(USE_COLLECT2)
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR pa_asm_out_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR pa_asm_out_destructor
#endif
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION pa_handle_option
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS pa_init_builtins
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS hppa_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hppa_address_cost
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG pa_reorg
#ifdef HPUX_LONG_DOUBLE_LIBRARY
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS pa_hpux_init_libfuncs
#endif
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX pa_struct_value_rtx
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY pa_return_in_memory
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE pa_pass_by_reference
#undef TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES pa_arg_partial_bytes
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS hppa_builtin_saveregs
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR hppa_gimplify_va_arg_expr
#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P pa_scalar_mode_supported_p
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM pa_tls_referenced_p
#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD pa_secondary_reload
struct gcc_target targetm = TARGET_INITIALIZER;
/* Parse the -mfixed-range= option string. */
static void
fix_range (const char *const_str)
{
int i, first, last;
char *str, *dash, *comma;
/* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
REG2 are either register names or register numbers. The effect
of this option is to mark the registers in the range from REG1 to
REG2 as ``fixed'' so they won't be used by the compiler. This is
used, e.g., to ensure that kernel mode code doesn't use fr4-fr31. */
i = strlen (const_str);
str = (char *) alloca (i + 1);
memcpy (str, const_str, i + 1);
while (1)
{
dash = strchr (str, '-');
if (!dash)
{
warning (0, "value of -mfixed-range must have form REG1-REG2");
return;
}
*dash = '\0';
comma = strchr (dash + 1, ',');
if (comma)
*comma = '\0';
first = decode_reg_name (str);
if (first < 0)
{
warning (0, "unknown register name: %s", str);
return;
}
last = decode_reg_name (dash + 1);
if (last < 0)
{
warning (0, "unknown register name: %s", dash + 1);
return;
}
*dash = '-';
if (first > last)
{
warning (0, "%s-%s is an empty range", str, dash + 1);
return;
}
for (i = first; i <= last; ++i)
fixed_regs[i] = call_used_regs[i] = 1;
if (!comma)
break;
*comma = ',';
str = comma + 1;
}
/* Check if all floating point registers have been fixed. */
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
if (!fixed_regs[i])
break;
if (i > FP_REG_LAST)
target_flags |= MASK_DISABLE_FPREGS;
}
/* Implement TARGET_HANDLE_OPTION. */
static bool
pa_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
{
switch (code)
{
case OPT_mnosnake:
case OPT_mpa_risc_1_0:
case OPT_march_1_0:
target_flags &= ~(MASK_PA_11 | MASK_PA_20);
return true;
case OPT_msnake:
case OPT_mpa_risc_1_1:
case OPT_march_1_1:
target_flags &= ~MASK_PA_20;
target_flags |= MASK_PA_11;
return true;
case OPT_mpa_risc_2_0:
case OPT_march_2_0:
target_flags |= MASK_PA_11 | MASK_PA_20;
return true;
case OPT_mschedule_:
if (strcmp (arg, "8000") == 0)
pa_cpu = PROCESSOR_8000;
else if (strcmp (arg, "7100") == 0)
pa_cpu = PROCESSOR_7100;
else if (strcmp (arg, "700") == 0)
pa_cpu = PROCESSOR_700;
else if (strcmp (arg, "7100LC") == 0)
pa_cpu = PROCESSOR_7100LC;
else if (strcmp (arg, "7200") == 0)
pa_cpu = PROCESSOR_7200;
else if (strcmp (arg, "7300") == 0)
pa_cpu = PROCESSOR_7300;
else
return false;
return true;
case OPT_mfixed_range_:
fix_range (arg);
return true;
#if TARGET_HPUX
case OPT_munix_93:
flag_pa_unix = 1993;
return true;
#endif
#if TARGET_HPUX_10_10
case OPT_munix_95:
flag_pa_unix = 1995;
return true;
#endif
#if TARGET_HPUX_11_11
case OPT_munix_98:
flag_pa_unix = 1998;
return true;
#endif
default:
return true;
}
}
void
override_options (void)
{
/* Unconditional branches in the delay slot are not compatible with dwarf2
call frame information. There is no benefit in using this optimization
on PA8000 and later processors. */
if (pa_cpu >= PROCESSOR_8000
|| (! USING_SJLJ_EXCEPTIONS && flag_exceptions)
|| flag_unwind_tables)
target_flags &= ~MASK_JUMP_IN_DELAY;
if (flag_pic && TARGET_PORTABLE_RUNTIME)
{
warning (0, "PIC code generation is not supported in the portable runtime model");
}
if (flag_pic && TARGET_FAST_INDIRECT_CALLS)
{
warning (0, "PIC code generation is not compatible with fast indirect calls");
}
if (! TARGET_GAS && write_symbols != NO_DEBUG)
{
warning (0, "-g is only supported when using GAS on this processor,");
warning (0, "-g option disabled");
write_symbols = NO_DEBUG;
}
/* We only support the "big PIC" model now. And we always generate PIC
code when in 64bit mode. */
if (flag_pic == 1 || TARGET_64BIT)
flag_pic = 2;
/* We can't guarantee that .dword is available for 32-bit targets. */
if (UNITS_PER_WORD == 4)
targetm.asm_out.aligned_op.di = NULL;
/* The unaligned ops are only available when using GAS. */
if (!TARGET_GAS)
{
targetm.asm_out.unaligned_op.hi = NULL;
targetm.asm_out.unaligned_op.si = NULL;
targetm.asm_out.unaligned_op.di = NULL;
}
init_machine_status = pa_init_machine_status;
}
static void
pa_init_builtins (void)
{
#ifdef DONT_HAVE_FPUTC_UNLOCKED
built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED] =
built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
implicit_built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED]
= implicit_built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
#endif
}
/* Function to init struct machine_function.
This will be called, via a pointer variable,
from push_function_context. */
static struct machine_function *
pa_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (machine_function));
}
/* If FROM is a probable pointer register, mark TO as a probable
pointer register with the same pointer alignment as FROM. */
static void
copy_reg_pointer (rtx to, rtx from)
{
if (REG_POINTER (from))
mark_reg_pointer (to, REGNO_POINTER_ALIGN (REGNO (from)));
}
/* Return 1 if X contains a symbolic expression. We know these
expressions will have one of a few well defined forms, so
we need only check those forms. */
int
symbolic_expression_p (rtx x)
{
/* Strip off any HIGH. */
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
return (symbolic_operand (x, VOIDmode));
}
/* Accept any constant that can be moved in one instruction into a
general register. */
int
cint_ok_for_move (HOST_WIDE_INT intval)
{
/* OK if ldo, ldil, or zdepi, can be used. */
return (CONST_OK_FOR_LETTER_P (intval, 'J')
|| CONST_OK_FOR_LETTER_P (intval, 'N')
|| CONST_OK_FOR_LETTER_P (intval, 'K'));
}
/* Return truth value of whether OP can be used as an operand in a
adddi3 insn. */
int
adddi3_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& (TARGET_64BIT ? INT_14_BITS (op) : INT_11_BITS (op))));
}
/* True iff zdepi can be used to generate this CONST_INT.
zdepi first sign extends a 5 bit signed number to a given field
length, then places this field anywhere in a zero. */
int
zdepi_cint_p (unsigned HOST_WIDE_INT x)
{
unsigned HOST_WIDE_INT lsb_mask, t;
/* This might not be obvious, but it's at least fast.
This function is critical; we don't have the time loops would take. */
lsb_mask = x & -x;
t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1);
/* Return true iff t is a power of two. */
return ((t & (t - 1)) == 0);
}
/* True iff depi or extru can be used to compute (reg & mask).
Accept bit pattern like these:
0....01....1
1....10....0
1..10..01..1 */
int
and_mask_p (unsigned HOST_WIDE_INT mask)
{
mask = ~mask;
mask += mask & -mask;
return (mask & (mask - 1)) == 0;
}
/* True iff depi can be used to compute (reg | MASK). */
int
ior_mask_p (unsigned HOST_WIDE_INT mask)
{
mask += mask & -mask;
return (mask & (mask - 1)) == 0;
}
/* Legitimize PIC addresses. If the address is already
position-independent, we return ORIG. Newly generated
position-independent addresses go to REG. If we need more
than one register, we lose. */
rtx
legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
{
rtx pic_ref = orig;
gcc_assert (!PA_SYMBOL_REF_TLS_P (orig));
/* Labels need special handling. */
if (pic_label_operand (orig, mode))
{
/* We do not want to go through the movXX expanders here since that
would create recursion.
Nor do we really want to call a generator for a named pattern
since that requires multiple patterns if we want to support
multiple word sizes.
So instead we just emit the raw set, which avoids the movXX
expanders completely. */
mark_reg_pointer (reg, BITS_PER_UNIT);
emit_insn (gen_rtx_SET (VOIDmode, reg, orig));
current_function_uses_pic_offset_table = 1;
return reg;
}
if (GET_CODE (orig) == SYMBOL_REF)
{
rtx insn, tmp_reg;
gcc_assert (reg);
/* Before reload, allocate a temporary register for the intermediate
result. This allows the sequence to be deleted when the final
result is unused and the insns are trivially dead. */
tmp_reg = ((reload_in_progress || reload_completed)
? reg : gen_reg_rtx (Pmode));
emit_move_insn (tmp_reg,
gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
gen_rtx_HIGH (word_mode, orig)));
pic_ref
= gen_const_mem (Pmode,
gen_rtx_LO_SUM (Pmode, tmp_reg,
gen_rtx_UNSPEC (Pmode,
gen_rtvec (1, orig),
UNSPEC_DLTIND14R)));
current_function_uses_pic_offset_table = 1;
mark_reg_pointer (reg, BITS_PER_UNIT);
insn = emit_move_insn (reg, pic_ref);
/* Put a REG_EQUAL note on this insn, so that it can be optimized. */
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn));
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base;
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
gcc_assert (reg);
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
if (GET_CODE (orig) == CONST_INT)
{
if (INT_14_BITS (orig))
return plus_constant (base, INTVAL (orig));
orig = force_reg (Pmode, orig);
}
pic_ref = gen_rtx_PLUS (Pmode, base, orig);
/* Likewise, should we set special REG_NOTEs here? */
}
return pic_ref;
}
static GTY(()) rtx gen_tls_tga;
static rtx
gen_tls_get_addr (void)
{
if (!gen_tls_tga)
gen_tls_tga = init_one_libfunc ("__tls_get_addr");
return gen_tls_tga;
}
static rtx
hppa_tls_call (rtx arg)
{
rtx ret;
ret = gen_reg_rtx (Pmode);
emit_library_call_value (gen_tls_get_addr (), ret,
LCT_CONST, Pmode, 1, arg, Pmode);
return ret;
}
static rtx
legitimize_tls_address (rtx addr)
{
rtx ret, insn, tmp, t1, t2, tp;
enum tls_model model = SYMBOL_REF_TLS_MODEL (addr);
switch (model)
{
case TLS_MODEL_GLOBAL_DYNAMIC:
tmp = gen_reg_rtx (Pmode);
if (flag_pic)
emit_insn (gen_tgd_load_pic (tmp, addr));
else
emit_insn (gen_tgd_load (tmp, addr));
ret = hppa_tls_call (tmp);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
ret = gen_reg_rtx (Pmode);
tmp = gen_reg_rtx (Pmode);
start_sequence ();
if (flag_pic)
emit_insn (gen_tld_load_pic (tmp, addr));
else
emit_insn (gen_tld_load (tmp, addr));
t1 = hppa_tls_call (tmp);
insn = get_insns ();
end_sequence ();
t2 = gen_reg_rtx (Pmode);
emit_libcall_block (insn, t2, t1,
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_TLSLDBASE));
emit_insn (gen_tld_offset_load (ret, addr, t2));
break;
case TLS_MODEL_INITIAL_EXEC:
tp = gen_reg_rtx (Pmode);
tmp = gen_reg_rtx (Pmode);
ret = gen_reg_rtx (Pmode);
emit_insn (gen_tp_load (tp));
if (flag_pic)
emit_insn (gen_tie_load_pic (tmp, addr));
else
emit_insn (gen_tie_load (tmp, addr));
emit_move_insn (ret, gen_rtx_PLUS (Pmode, tp, tmp));
break;
case TLS_MODEL_LOCAL_EXEC:
tp = gen_reg_rtx (Pmode);
ret = gen_reg_rtx (Pmode);
emit_insn (gen_tp_load (tp));
emit_insn (gen_tle_load (ret, addr, tp));
break;
default:
gcc_unreachable ();
}
return ret;
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the PA, transform:
memory(X + <large int>)
into:
if (<large int> & mask) >= 16
Y = (<large int> & ~mask) + mask + 1 Round up.
else
Y = (<large int> & ~mask) Round down.
Z = X + Y
memory (Z + (<large int> - Y));
This is for CSE to find several similar references, and only use one Z.
X can either be a SYMBOL_REF or REG, but because combine cannot
perform a 4->2 combination we do nothing for SYMBOL_REF + D where
D will not fit in 14 bits.
MODE_FLOAT references allow displacements which fit in 5 bits, so use
0x1f as the mask.
MODE_INT references allow displacements which fit in 14 bits, so use
0x3fff as the mask.
This relies on the fact that most mode MODE_FLOAT references will use FP
registers and most mode MODE_INT references will use integer registers.
(In the rare case of an FP register used in an integer MODE, we depend
on secondary reloads to clean things up.)
It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special
manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed
addressing modes to be used).
Put X and Z into registers. Then put the entire expression into
a register. */
rtx
hppa_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
enum machine_mode mode)
{
rtx orig = x;
/* We need to canonicalize the order of operands in unscaled indexed
addresses since the code that checks if an address is valid doesn't
always try both orders. */
if (!TARGET_NO_SPACE_REGS
&& GET_CODE (x) == PLUS
&& GET_MODE (x) == Pmode
&& REG_P (XEXP (x, 0))
&& REG_P (XEXP (x, 1))
&& REG_POINTER (XEXP (x, 0))
&& !REG_POINTER (XEXP (x, 1)))
return gen_rtx_PLUS (Pmode, XEXP (x, 1), XEXP (x, 0));
if (PA_SYMBOL_REF_TLS_P (x))
return legitimize_tls_address (x);
else if (flag_pic)
return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode));
/* Strip off CONST. */
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
/* Special case. Get the SYMBOL_REF into a register and use indexing.
That should always be safe. */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
{
rtx reg = force_reg (Pmode, XEXP (x, 1));
return force_reg (Pmode, gen_rtx_PLUS (Pmode, reg, XEXP (x, 0)));
}
/* Note we must reject symbols which represent function addresses
since the assembler/linker can't handle arithmetic on plabels. */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF
&& !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0)))
|| GET_CODE (XEXP (x, 0)) == REG))
{
rtx int_part, ptr_reg;
int newoffset;
int offset = INTVAL (XEXP (x, 1));
int mask;
mask = (GET_MODE_CLASS (mode) == MODE_FLOAT
? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff);
/* Choose which way to round the offset. Round up if we
are >= halfway to the next boundary. */
if ((offset & mask) >= ((mask + 1) / 2))
newoffset = (offset & ~ mask) + mask + 1;
else
newoffset = (offset & ~ mask);
/* If the newoffset will not fit in 14 bits (ldo), then
handling this would take 4 or 5 instructions (2 to load
the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to
add the new offset and the SYMBOL_REF.) Combine can
not handle 4->2 or 5->2 combinations, so do not create
them. */
if (! VAL_14_BITS_P (newoffset)
&& GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
{
rtx const_part = plus_constant (XEXP (x, 0), newoffset);
rtx tmp_reg
= force_reg (Pmode,
gen_rtx_HIGH (Pmode, const_part));
ptr_reg
= force_reg (Pmode,
gen_rtx_LO_SUM (Pmode,
tmp_reg, const_part));
}
else
{
if (! VAL_14_BITS_P (newoffset))
int_part = force_reg (Pmode, GEN_INT (newoffset));
else
int_part = GEN_INT (newoffset);
ptr_reg = force_reg (Pmode,
gen_rtx_PLUS (Pmode,
force_reg (Pmode, XEXP (x, 0)),
int_part));
}
return plus_constant (ptr_reg, offset - newoffset);
}
/* Handle (plus (mult (a) (shadd_constant)) (b)). */
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))
&& (OBJECT_P (XEXP (x, 1))
|| GET_CODE (XEXP (x, 1)) == SUBREG)
&& GET_CODE (XEXP (x, 1)) != CONST)
{
int val = INTVAL (XEXP (XEXP (x, 0), 1));
rtx reg1, reg2;
reg1 = XEXP (x, 1);
if (GET_CODE (reg1) != REG)
reg1 = force_reg (Pmode, force_operand (reg1, 0));
reg2 = XEXP (XEXP (x, 0), 0);
if (GET_CODE (reg2) != REG)
reg2 = force_reg (Pmode, force_operand (reg2, 0));
return force_reg (Pmode, gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode,
reg2,
GEN_INT (val)),
reg1));
}
/* Similarly for (plus (plus (mult (a) (shadd_constant)) (b)) (c)).
Only do so for floating point modes since this is more speculative
and we lose if it's an integer store. */
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& shadd_constant_p (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)))
&& (mode == SFmode || mode == DFmode))
{
/* First, try and figure out what to use as a base register. */
rtx reg1, reg2, base, idx, orig_base;
reg1 = XEXP (XEXP (x, 0), 1);
reg2 = XEXP (x, 1);
base = NULL_RTX;
idx = NULL_RTX;
/* Make sure they're both regs. If one was a SYMBOL_REF [+ const],
then emit_move_sequence will turn on REG_POINTER so we'll know
it's a base register below. */
if (GET_CODE (reg1) != REG)
reg1 = force_reg (Pmode, force_operand (reg1, 0));
if (GET_CODE (reg2) != REG)
reg2 = force_reg (Pmode, force_operand (reg2, 0));
/* Figure out what the base and index are. */
if (GET_CODE (reg1) == REG
&& REG_POINTER (reg1))
{
base = reg1;
orig_base = XEXP (XEXP (x, 0), 1);
idx = gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode,
XEXP (XEXP (XEXP (x, 0), 0), 0),
XEXP (XEXP (XEXP (x, 0), 0), 1)),
XEXP (x, 1));
}
else if (GET_CODE (reg2) == REG
&& REG_POINTER (reg2))
{
base = reg2;
orig_base = XEXP (x, 1);
idx = XEXP (x, 0);
}
if (base == 0)
return orig;
/* If the index adds a large constant, try to scale the
constant so that it can be loaded with only one insn. */
if (GET_CODE (XEXP (idx, 1)) == CONST_INT
&& VAL_14_BITS_P (INTVAL (XEXP (idx, 1))
/ INTVAL (XEXP (XEXP (idx, 0), 1)))
&& INTVAL (XEXP (idx, 1)) % INTVAL (XEXP (XEXP (idx, 0), 1)) == 0)
{
/* Divide the CONST_INT by the scale factor, then add it to A. */
int val = INTVAL (XEXP (idx, 1));
val /= INTVAL (XEXP (XEXP (idx, 0), 1));
reg1 = XEXP (XEXP (idx, 0), 0);
if (GET_CODE (reg1) != REG)
reg1 = force_reg (Pmode, force_operand (reg1, 0));
reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, reg1, GEN_INT (val)));
/* We can now generate a simple scaled indexed address. */
return
force_reg
(Pmode, gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode, reg1,
XEXP (XEXP (idx, 0), 1)),
base));
}
/* If B + C is still a valid base register, then add them. */
if (GET_CODE (XEXP (idx, 1)) == CONST_INT
&& INTVAL (XEXP (idx, 1)) <= 4096
&& INTVAL (XEXP (idx, 1)) >= -4096)
{
int val = INTVAL (XEXP (XEXP (idx, 0), 1));
rtx reg1, reg2;
reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, XEXP (idx, 1)));
reg2 = XEXP (XEXP (idx, 0), 0);
if (GET_CODE (reg2) != CONST_INT)
reg2 = force_reg (Pmode, force_operand (reg2, 0));
return force_reg (Pmode, gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode,
reg2,
GEN_INT (val)),
reg1));
}
/* Get the index into a register, then add the base + index and
return a register holding the result. */
/* First get A into a register. */
reg1 = XEXP (XEXP (idx, 0), 0);
if (GET_CODE (reg1) != REG)
reg1 = force_reg (Pmode, force_operand (reg1, 0));
/* And get B into a register. */
reg2 = XEXP (idx, 1);
if (GET_CODE (reg2) != REG)
reg2 = force_reg (Pmode, force_operand (reg2, 0));
reg1 = force_reg (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode, reg1,
XEXP (XEXP (idx, 0), 1)),
reg2));
/* Add the result to our base register and return. */
return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, reg1));
}
/* Uh-oh. We might have an address for x[n-100000]. This needs
special handling to avoid creating an indexed memory address
with x-100000 as the base.
If the constant part is small enough, then it's still safe because
there is a guard page at the beginning and end of the data segment.
Scaled references are common enough that we want to try and rearrange the
terms so that we can use indexing for these addresses too. Only
do the optimization for floatint point modes. */
if (GET_CODE (x) == PLUS
&& symbolic_expression_p (XEXP (x, 1)))
{
/* Ugly. We modify things here so that the address offset specified
by the index expression is computed first, then added to x to form
the entire address. */
rtx regx1, regx2, regy1, regy2, y;
/* Strip off any CONST. */
y = XEXP (x, 1);
if (GET_CODE (y) == CONST)
y = XEXP (y, 0);
if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
{
/* See if this looks like
(plus (mult (reg) (shadd_const))
(const (plus (symbol_ref) (const_int))))
Where const_int is small. In that case the const
expression is a valid pointer for indexing.
If const_int is big, but can be divided evenly by shadd_const
and added to (reg). This allows more scaled indexed addresses. */
if (GET_CODE (XEXP (y, 0)) == SYMBOL_REF
&& GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (y, 1)) == CONST_INT
&& INTVAL (XEXP (y, 1)) >= -4096
&& INTVAL (XEXP (y, 1)) <= 4095
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
{
int val = INTVAL (XEXP (XEXP (x, 0), 1));
rtx reg1, reg2;
reg1 = XEXP (x, 1);
if (GET_CODE (reg1) != REG)
reg1 = force_reg (Pmode, force_operand (reg1, 0));
reg2 = XEXP (XEXP (x, 0), 0);
if (GET_CODE (reg2) != REG)
reg2 = force_reg (Pmode, force_operand (reg2, 0));
return force_reg (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode,
reg2,
GEN_INT (val)),
reg1));
}
else if ((mode == DFmode || mode == SFmode)
&& GET_CODE (XEXP (y, 0)) == SYMBOL_REF
&& GET_CODE (XEXP (x, 0)) == MULT
&& GET_CODE (XEXP (y, 1)) == CONST_INT
&& INTVAL (XEXP (y, 1)) % INTVAL (XEXP (XEXP (x, 0), 1)) == 0
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
{
regx1
= force_reg (Pmode, GEN_INT (INTVAL (XEXP (y, 1))
/ INTVAL (XEXP (XEXP (x, 0), 1))));
regx2 = XEXP (XEXP (x, 0), 0);
if (GET_CODE (regx2) != REG)
regx2 = force_reg (Pmode, force_operand (regx2, 0));
regx2 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode,
regx2, regx1));
return
force_reg (Pmode,
gen_rtx_PLUS (Pmode,
gen_rtx_MULT (Pmode, regx2,
XEXP (XEXP (x, 0), 1)),
force_reg (Pmode, XEXP (y, 0))));
}
else if (GET_CODE (XEXP (y, 1)) == CONST_INT
&& INTVAL (XEXP (y, 1)) >= -4096
&& INTVAL (XEXP (y, 1)) <= 4095)
{
/* This is safe because of the guard page at the
beginning and end of the data space. Just
return the original address. */
return orig;
}
else
{
/* Doesn't look like one we can optimize. */
regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
regx1 = force_reg (Pmode,
gen_rtx_fmt_ee (GET_CODE (y), Pmode,
regx1, regy2));
return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
}
}
}
return orig;
}
/* For the HPPA, REG and REG+CONST is cost 0
and addresses involving symbolic constants are cost 2.
PIC addresses are very expensive.
It is no coincidence that this has the same structure
as GO_IF_LEGITIMATE_ADDRESS. */
static int
hppa_address_cost (rtx X)
{
switch (GET_CODE (X))
{
case REG:
case PLUS:
case LO_SUM:
return 1;
case HIGH:
return 2;
default:
return 4;
}
}
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
hppa_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case CONST_INT:
if (INTVAL (x) == 0)
*total = 0;
else if (INT_14_BITS (x))
*total = 1;
else
*total = 2;
return true;
case HIGH:
*total = 2;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 4;
return true;
case CONST_DOUBLE:
if ((x == CONST0_RTX (DFmode) || x == CONST0_RTX (SFmode))
&& outer_code != SET)
*total = 0;
else
*total = 8;
return true;
case MULT:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
*total = COSTS_N_INSNS (3);
else if (TARGET_PA_11 && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT)
*total = COSTS_N_INSNS (8);
else
*total = COSTS_N_INSNS (20);
return true;
case DIV:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
*total = COSTS_N_INSNS (14);
return true;
}
/* FALLTHRU */
case UDIV:
case MOD:
case UMOD:
*total = COSTS_N_INSNS (60);
return true;
case PLUS: /* this includes shNadd insns */
case MINUS:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
*total = COSTS_N_INSNS (3);
else
*total = COSTS_N_INSNS (1);
return true;
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
*total = COSTS_N_INSNS (1);
return true;
default:
return false;
}
}
/* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
new rtx with the correct mode. */
static inline rtx
force_mode (enum machine_mode mode, rtx orig)
{
if (mode == GET_MODE (orig))
return orig;
gcc_assert (REGNO (orig) < FIRST_PSEUDO_REGISTER);
return gen_rtx_REG (mode, REGNO (orig));
}
/* Return 1 if *X is a thread-local symbol. */
static int
pa_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
return PA_SYMBOL_REF_TLS_P (*x);
}
/* Return 1 if X contains a thread-local symbol. */
bool
pa_tls_referenced_p (rtx x)
{
if (!TARGET_HAVE_TLS)
return false;
return for_each_rtx (&x, &pa_tls_symbol_ref_1, 0);
}
/* Emit insns to move operands[1] into operands[0].
Return 1 if we have written out everything that needs to be done to
do the move. Otherwise, return 0 and the caller will emit the move
normally.
Note SCRATCH_REG may not be in the proper mode depending on how it
will be used. This routine is responsible for creating a new copy
of SCRATCH_REG in the proper mode. */
int
emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
{
register rtx operand0 = operands[0];
register rtx operand1 = operands[1];
register rtx tem;
/* We can only handle indexed addresses in the destination operand
of floating point stores. Thus, we need to break out indexed
addresses from the destination operand. */
if (GET_CODE (operand0) == MEM && IS_INDEX_ADDR_P (XEXP (operand0, 0)))
{
/* This is only safe up to the beginning of life analysis. */
gcc_assert (!no_new_pseudos);
tem = copy_to_mode_reg (Pmode, XEXP (operand0, 0));
operand0 = replace_equiv_address (operand0, tem);
}
/* On targets with non-equivalent space registers, break out unscaled
indexed addresses from the source operand before the final CSE.
We have to do this because the REG_POINTER flag is not correctly
carried through various optimization passes and CSE may substitute
a pseudo without the pointer set for one with the pointer set. As
a result, we loose various opportunities to create insns with
unscaled indexed addresses. */
if (!TARGET_NO_SPACE_REGS
&& !cse_not_expected
&& GET_CODE (operand1) == MEM
&& GET_CODE (XEXP (operand1, 0)) == PLUS
&& REG_P (XEXP (XEXP (operand1, 0), 0))
&& REG_P (XEXP (XEXP (operand1, 0), 1)))
operand1
= replace_equiv_address (operand1,
copy_to_mode_reg (Pmode, XEXP (operand1, 0)));
if (scratch_reg
&& reload_in_progress && GET_CODE (operand0) == REG
&& REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
operand0 = reg_equiv_mem[REGNO (operand0)];
else if (scratch_reg
&& reload_in_progress && GET_CODE (operand0) == SUBREG
&& GET_CODE (SUBREG_REG (operand0)) == REG
&& REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
{
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
the code which tracks sets/uses for delete_output_reload. */
rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
SUBREG_BYTE (operand0));
operand0 = alter_subreg (&temp);
}
if (scratch_reg
&& reload_in_progress && GET_CODE (operand1) == REG
&& REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
operand1 = reg_equiv_mem[REGNO (operand1)];
else if (scratch_reg
&& reload_in_progress && GET_CODE (operand1) == SUBREG
&& GET_CODE (SUBREG_REG (operand1)) == REG
&& REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
{
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
the code which tracks sets/uses for delete_output_reload. */
rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
SUBREG_BYTE (operand1));
operand1 = alter_subreg (&temp);
}
if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
&& ((tem = find_replacement (&XEXP (operand0, 0)))
!= XEXP (operand0, 0)))
operand0 = replace_equiv_address (operand0, tem);
if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
&& ((tem = find_replacement (&XEXP (operand1, 0)))
!= XEXP (operand1, 0)))
operand1 = replace_equiv_address (operand1, tem);
/* Handle secondary reloads for loads/stores of FP registers from
REG+D addresses where D does not fit in 5 or 14 bits, including
(subreg (mem (addr))) cases. */
if (scratch_reg
&& fp_reg_operand (operand0, mode)
&& ((GET_CODE (operand1) == MEM
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4 ? SFmode : DFmode),
XEXP (operand1, 0)))
|| ((GET_CODE (operand1) == SUBREG
&& GET_CODE (XEXP (operand1, 0)) == MEM
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
? SFmode : DFmode),
XEXP (XEXP (operand1, 0), 0))))))
{
if (GET_CODE (operand1) == SUBREG)
operand1 = XEXP (operand1, 0);
/* SCRATCH_REG will hold an address and maybe the actual data. We want
it in WORD_MODE regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (word_mode, scratch_reg);
/* D might not fit in 14 bits either; for such cases load D into
scratch reg. */
if (!memory_address_p (Pmode, XEXP (operand1, 0)))
{
emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
emit_move_insn (scratch_reg,
gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
Pmode,
XEXP (XEXP (operand1, 0), 0),
scratch_reg));
}
else
emit_move_insn (scratch_reg, XEXP (operand1, 0));
emit_insn (gen_rtx_SET (VOIDmode, operand0,
replace_equiv_address (operand1, scratch_reg)));
return 1;
}
else if (scratch_reg
&& fp_reg_operand (operand1, mode)
&& ((GET_CODE (operand0) == MEM
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
? SFmode : DFmode),
XEXP (operand0, 0)))
|| ((GET_CODE (operand0) == SUBREG)
&& GET_CODE (XEXP (operand0, 0)) == MEM
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
? SFmode : DFmode),
XEXP (XEXP (operand0, 0), 0)))))
{
if (GET_CODE (operand0) == SUBREG)
operand0 = XEXP (operand0, 0);
/* SCRATCH_REG will hold an address and maybe the actual data. We want
it in WORD_MODE regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (word_mode, scratch_reg);
/* D might not fit in 14 bits either; for such cases load D into
scratch reg. */
if (!memory_address_p (Pmode, XEXP (operand0, 0)))
{
emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
0)),
Pmode,
XEXP (XEXP (operand0, 0),
0),
scratch_reg));
}
else
emit_move_insn (scratch_reg, XEXP (operand0, 0));
emit_insn (gen_rtx_SET (VOIDmode,
replace_equiv_address (operand0, scratch_reg),
operand1));
return 1;
}
/* Handle secondary reloads for loads of FP registers from constant
expressions by forcing the constant into memory.
Use scratch_reg to hold the address of the memory location.
The proper fix is to change PREFERRED_RELOAD_CLASS to return
NO_REGS when presented with a const_int and a register class
containing only FP registers. Doing so unfortunately creates
more problems than it solves. Fix this for 2.5. */
else if (scratch_reg
&& CONSTANT_P (operand1)
&& fp_reg_operand (operand0, mode))
{
rtx const_mem, xoperands[2];
/* SCRATCH_REG will hold an address and maybe the actual data. We want
it in WORD_MODE regardless of what mode it was originally given
to us. */
scratch_reg = force_mode (word_mode, scratch_reg);
/* Force the constant into memory and put the address of the
memory location into scratch_reg. */
const_mem = force_const_mem (mode, operand1);
xoperands[0] = scratch_reg;
xoperands[1] = XEXP (const_mem, 0);
emit_move_sequence (xoperands, Pmode, 0);
/* Now load the destination register. */
emit_insn (gen_rtx_SET (mode, operand0,
replace_equiv_address (const_mem, scratch_reg)));
return 1;
}
/* Handle secondary reloads for SAR. These occur when trying to load
the SAR from memory, FP register, or with a constant. */
else if (scratch_reg
&& GET_CODE (operand0) == REG
&& REGNO (operand0) < FIRST_PSEUDO_REGISTER
&& REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS
&& (GET_CODE (operand1) == MEM
|| GET_CODE (operand1) == CONST_INT
|| (GET_CODE (operand1) == REG
&& FP_REG_CLASS_P (REGNO_REG_CLASS (REGNO (operand1))))))
{
/* D might not fit in 14 bits either; for such cases load D into
scratch reg. */
if (GET_CODE (operand1) == MEM
&& !memory_address_p (Pmode, XEXP (operand1, 0)))
{
/* We are reloading the address into the scratch register, so we
want to make sure the scratch register is a full register. */
scratch_reg = force_mode (word_mode, scratch_reg);
emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1,
0)),
Pmode,
XEXP (XEXP (operand1, 0),
0),
scratch_reg));
/* Now we are going to load the scratch register from memory,
we want to load it in the same width as the original MEM,
which must be the same as the width of the ultimate destination,
OPERAND0. */
scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
emit_move_insn (scratch_reg,
replace_equiv_address (operand1, scratch_reg));
}
else
{
/* We want to load the scratch register using the same mode as
the ultimate destination. */
scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
emit_move_insn (scratch_reg, operand1);
}
/* And emit the insn to set the ultimate destination. We know that
the scratch register has the same mode as the destination at this
point. */
emit_move_insn (operand0, scratch_reg);
return 1;
}
/* Handle the most common case: storing into a register. */
else if (register_operand (operand0, mode))
{
if (register_operand (operand1, mode)
|| (GET_CODE (operand1) == CONST_INT
&& cint_ok_for_move (INTVAL (operand1)))
|| (operand1 == CONST0_RTX (mode))
|| (GET_CODE (operand1) == HIGH
&& !symbolic_operand (XEXP (operand1, 0), VOIDmode))
/* Only `general_operands' can come here, so MEM is ok. */
|| GET_CODE (operand1) == MEM)
{
/* Various sets are created during RTL generation which don't
have the REG_POINTER flag correctly set. After the CSE pass,
instruction recognition can fail if we don't consistently
set this flag when performing register copies. This should
also improve the opportunities for creating insns that use
unscaled indexing. */
if (REG_P (operand0) && REG_P (operand1))
{
if (REG_POINTER (operand1)
&& !REG_POINTER (operand0)
&& !HARD_REGISTER_P (operand0))
copy_reg_pointer (operand0, operand1);
else if (REG_POINTER (operand0)
&& !REG_POINTER (operand1)
&& !HARD_REGISTER_P (operand1))
copy_reg_pointer (operand1, operand0);
}
/* When MEMs are broken out, the REG_POINTER flag doesn't
get set. In some cases, we can set the REG_POINTER flag
from the declaration for the MEM. */
if (REG_P (operand0)
&& GET_CODE (operand1) == MEM
&& !REG_POINTER (operand0))
{
tree decl = MEM_EXPR (operand1);
/* Set the register pointer flag and register alignment
if the declaration for this memory reference is a
pointer type. Fortran indirect argument references
are ignored. */
if (decl
&& !(flag_argument_noalias > 1
&& TREE_CODE (decl) == INDIRECT_REF
&& TREE_CODE (TREE_OPERAND (decl, 0)) == PARM_DECL))
{
tree type;
/* If this is a COMPONENT_REF, use the FIELD_DECL from
tree operand 1. */
if (TREE_CODE (decl) == COMPONENT_REF)
decl = TREE_OPERAND (decl, 1);
type = TREE_TYPE (decl);
if (TREE_CODE (type) == ARRAY_TYPE)
type = get_inner_array_type (type);
if (POINTER_TYPE_P (type))
{
int align;
type = TREE_TYPE (type);
/* Using TYPE_ALIGN_OK is rather conservative as
only the ada frontend actually sets it. */
align = (TYPE_ALIGN_OK (type) ? TYPE_ALIGN (type)
: BITS_PER_UNIT);
mark_reg_pointer (operand0, align);
}
}
}
emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
return 1;
}
}
else if (GET_CODE (operand0) == MEM)
{
if (mode == DFmode && operand1 == CONST0_RTX (mode)
&& !(reload_in_progress || reload_completed))
{
rtx temp = gen_reg_rtx (DFmode);
emit_insn (gen_rtx_SET (VOIDmode, temp, operand1));
emit_insn (gen_rtx_SET (VOIDmode, operand0, temp));
return 1;
}
if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode))
{
/* Run this case quickly. */
emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
return 1;
}
if (! (reload_in_progress || reload_completed))
{
operands[0] = validize_mem (operand0);
operands[1] = operand1 = force_reg (mode, operand1);
}
}
/* Simplify the source if we need to.
Note we do have to handle function labels here, even though we do
not consider them legitimate constants. Loop optimizations can
call the emit_move_xxx with one as a source. */
if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|| function_label_operand (operand1, mode)
|| (GET_CODE (operand1) == HIGH
&& symbolic_operand (XEXP (operand1, 0), mode)))
{
int ishighonly = 0;
if (GET_CODE (operand1) == HIGH)
{
ishighonly = 1;
operand1 = XEXP (operand1, 0);
}
if (symbolic_operand (operand1, mode))
{
/* Argh. The assembler and linker can't handle arithmetic
involving plabels.
So we force the plabel into memory, load operand0 from
the memory location, then add in the constant part. */
if ((GET_CODE (operand1) == CONST
&& GET_CODE (XEXP (operand1, 0)) == PLUS
&& function_label_operand (XEXP (XEXP (operand1, 0), 0), Pmode))
|| function_label_operand (operand1, mode))
{
rtx temp, const_part;
/* Figure out what (if any) scratch register to use. */
if (reload_in_progress || reload_completed)
{
scratch_reg = scratch_reg ? scratch_reg : operand0;
/* SCRATCH_REG will hold an address and maybe the actual
data. We want it in WORD_MODE regardless of what mode it
was originally given to us. */
scratch_reg = force_mode (word_mode, scratch_reg);
}
else if (flag_pic)
scratch_reg = gen_reg_rtx (Pmode);
if (GET_CODE (operand1) == CONST)
{
/* Save away the constant part of the expression. */
const_part = XEXP (XEXP (operand1, 0), 1);
gcc_assert (GET_CODE (const_part) == CONST_INT);
/* Force the function label into memory. */
temp = force_const_mem (mode, XEXP (XEXP (operand1, 0), 0));
}
else
{
/* No constant part. */
const_part = NULL_RTX;
/* Force the function label into memory. */
temp = force_const_mem (mode, operand1);
}
/* Get the address of the memory location. PIC-ify it if
necessary. */
temp = XEXP (temp, 0);
if (flag_pic)
temp = legitimize_pic_address (temp, mode, scratch_reg);
/* Put the address of the memory location into our destination
register. */
operands[1] = temp;
emit_move_sequence (operands, mode, scratch_reg);
/* Now load from the memory location into our destination
register. */
operands[1] = gen_rtx_MEM (Pmode, operands[0]);
emit_move_sequence (operands, mode, scratch_reg);
/* And add back in the constant part. */
if (const_part != NULL_RTX)
expand_inc (operand0, const_part);
return 1;
}
if (flag_pic)
{
rtx temp;
if (reload_in_progress || reload_completed)
{
temp = scratch_reg ? scratch_reg : operand0;
/* TEMP will hold an address and maybe the actual
data. We want it in WORD_MODE regardless of what mode it
was originally given to us. */
temp = force_mode (word_mode, temp);
}
else
temp = gen_reg_rtx (Pmode);
/* (const (plus (symbol) (const_int))) must be forced to
memory during/after reload if the const_int will not fit
in 14 bits. */
if (GET_CODE (operand1) == CONST
&& GET_CODE (XEXP (operand1, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT
&& !INT_14_BITS (XEXP (XEXP (operand1, 0), 1))
&& (reload_completed || reload_in_progress)
&& flag_pic)
{
rtx const_mem = force_const_mem (mode, operand1);
operands[1] = legitimize_pic_address (XEXP (const_mem, 0),
mode, temp);
operands[1] = replace_equiv_address (const_mem, operands[1]);
emit_move_sequence (operands, mode, temp);
}
else
{
operands[1] = legitimize_pic_address (operand1, mode, temp);
if (REG_P (operand0) && REG_P (operands[1]))
copy_reg_pointer (operand0, operands[1]);
emit_insn (gen_rtx_SET (VOIDmode, operand0, operands[1]));
}
}
/* On the HPPA, references to data space are supposed to use dp,
register 27, but showing it in the RTL inhibits various cse
and loop optimizations. */
else
{
rtx temp, set;
if (reload_in_progress || reload_completed)
{
temp = scratch_reg ? scratch_reg : operand0;
/* TEMP will hold an address and maybe the actual
data. We want it in WORD_MODE regardless of what mode it
was originally given to us. */
temp = force_mode (word_mode, temp);
}
else
temp = gen_reg_rtx (mode);
/* Loading a SYMBOL_REF into a register makes that register
safe to be used as the base in an indexed address.
Don't mark hard registers though. That loses. */
if (GET_CODE (operand0) == REG
&& REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
mark_reg_pointer (operand0, BITS_PER_UNIT);
if (REGNO (temp) >= FIRST_PSEUDO_REGISTER)
mark_reg_pointer (temp, BITS_PER_UNIT);
if (ishighonly)
set = gen_rtx_SET (mode, operand0, temp);
else
set = gen_rtx_SET (VOIDmode,
operand0,
gen_rtx_LO_SUM (mode, temp, operand1));
emit_insn (gen_rtx_SET (VOIDmode,
temp,
gen_rtx_HIGH (mode, operand1)));
emit_insn (set);
}
return 1;
}
else if (pa_tls_referenced_p (operand1))
{
rtx tmp = operand1;
rtx addend = NULL;
if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
{
addend = XEXP (XEXP (tmp, 0), 1);
tmp = XEXP (XEXP (tmp, 0), 0);
}
gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
tmp = legitimize_tls_address (tmp);
if (addend)
{
tmp = gen_rtx_PLUS (mode, tmp, addend);
tmp = force_operand (tmp, operands[0]);
}
operands[1] = tmp;
}
else if (GET_CODE (operand1) != CONST_INT
|| !cint_ok_for_move (INTVAL (operand1)))
{
rtx insn, temp;
rtx op1 = operand1;
HOST_WIDE_INT value = 0;
HOST_WIDE_INT insv = 0;
int insert = 0;
if (GET_CODE (operand1) == CONST_INT)
value = INTVAL (operand1);
if (TARGET_64BIT
&& GET_CODE (operand1) == CONST_INT
&& HOST_BITS_PER_WIDE_INT > 32
&& GET_MODE_BITSIZE (GET_MODE (operand0)) > 32)
{
HOST_WIDE_INT nval;
/* Extract the low order 32 bits of the value and sign extend.
If the new value is the same as the original value, we can
can use the original value as-is. If the new value is
different, we use it and insert the most-significant 32-bits
of the original value into the final result. */
nval = ((value & (((HOST_WIDE_INT) 2 << 31) - 1))
^ ((HOST_WIDE_INT) 1 << 31)) - ((HOST_WIDE_INT) 1 << 31);
if (value != nval)
{
#if HOST_BITS_PER_WIDE_INT > 32
insv = value >= 0 ? value >> 32 : ~(~value >> 32);
#endif
insert = 1;
value = nval;
operand1 = GEN_INT (nval);
}
}
if (reload_in_progress || reload_completed)
temp = scratch_reg ? scratch_reg : operand0;
else
temp = gen_reg_rtx (mode);
/* We don't directly split DImode constants on 32-bit targets
because PLUS uses an 11-bit immediate and the insn sequence
generated is not as efficient as the one using HIGH/LO_SUM. */
if (GET_CODE (operand1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= BITS_PER_WORD
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& !insert)
{
/* Directly break constant into high and low parts. This
provides better optimization opportunities because various
passes recognize constants split with PLUS but not LO_SUM.
We use a 14-bit signed low part except when the addition
of 0x4000 to the high part might change the sign of the
high part. */
HOST_WIDE_INT low = value & 0x3fff;
HOST_WIDE_INT high = value & ~ 0x3fff;
if (low >= 0x2000)
{
if (high == 0x7fffc000 || (mode == HImode && high == 0x4000))
high += 0x2000;
else
high += 0x4000;
}
low = value - high;
emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (high)));
operands[1] = gen_rtx_PLUS (mode, temp, GEN_INT (low));
}
else
{
emit_insn (gen_rtx_SET (VOIDmode, temp,
gen_rtx_HIGH (mode, operand1)));
operands[1] = gen_rtx_LO_SUM (mode, temp, operand1);
}
insn = emit_move_insn (operands[0], operands[1]);
/* Now insert the most significant 32 bits of the value
into the register. When we don't have a second register
available, it could take up to nine instructions to load
a 64-bit integer constant. Prior to reload, we force
constants that would take more than three instructions
to load to the constant pool. During and after reload,
we have to handle all possible values. */
if (insert)
{
/* Use a HIGH/LO_SUM/INSV sequence if we have a second
register and the value to be inserted is outside the
range that can be loaded with three depdi instructions. */
if (temp != operand0 && (insv >= 16384 || insv < -16384))
{
operand1 = GEN_INT (insv);
emit_insn (gen_rtx_SET (VOIDmode, temp,
gen_rtx_HIGH (mode, operand1)));
emit_move_insn (temp, gen_rtx_LO_SUM (mode, temp, operand1));
emit_insn (gen_insv (operand0, GEN_INT (32),
const0_rtx, temp));
}
else
{
int len = 5, pos = 27;
/* Insert the bits using the depdi instruction. */
while (pos >= 0)
{
HOST_WIDE_INT v5 = ((insv & 31) ^ 16) - 16;
HOST_WIDE_INT sign = v5 < 0;
/* Left extend the insertion. */
insv = (insv >= 0 ? insv >> len : ~(~insv >> len));
while (pos > 0 && (insv & 1) == sign)
{
insv = (insv >= 0 ? insv >> 1 : ~(~insv >> 1));
len += 1;
pos -= 1;
}
emit_insn (gen_insv (operand0, GEN_INT (len),
GEN_INT (pos), GEN_INT (v5)));
len = pos > 0 && pos < 5 ? pos : 5;
pos -= len;
}
}
}
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_EQUAL, op1, REG_NOTES (insn));
return 1;
}
}
/* Now have insn-emit do whatever it normally does. */
return 0;
}
/* Examine EXP and return nonzero if it contains an ADDR_EXPR (meaning
it will need a link/runtime reloc). */
int
reloc_needed (tree exp)
{
int reloc = 0;
switch (TREE_CODE (exp))
{
case ADDR_EXPR:
return 1;
case PLUS_EXPR:
case MINUS_EXPR:
reloc = reloc_needed (TREE_OPERAND (exp, 0));
reloc |= reloc_needed (TREE_OPERAND (exp, 1));
break;
case NOP_EXPR:
case CONVERT_EXPR:
case NON_LVALUE_EXPR:
reloc = reloc_needed (TREE_OPERAND (exp, 0));
break;
case CONSTRUCTOR:
{
tree value;
unsigned HOST_WIDE_INT ix;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
if (value)
reloc |= reloc_needed (value);
}
break;
case ERROR_MARK:
break;
default:
break;
}
return reloc;
}
/* Does operand (which is a symbolic_operand) live in text space?
If so, SYMBOL_REF_FLAG, which is set by pa_encode_section_info,
will be true. */
int
read_only_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (operand) == CONST)
operand = XEXP (XEXP (operand, 0), 0);
if (flag_pic)
{
if (GET_CODE (operand) == SYMBOL_REF)
return SYMBOL_REF_FLAG (operand) && !CONSTANT_POOL_ADDRESS_P (operand);
}
else
{
if (GET_CODE (operand) == SYMBOL_REF)
return SYMBOL_REF_FLAG (operand) || CONSTANT_POOL_ADDRESS_P (operand);
}
return 1;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
const char *
singlemove_string (rtx *operands)
{
HOST_WIDE_INT intval;
if (GET_CODE (operands[0]) == MEM)
return "stw %r1,%0";
if (GET_CODE (operands[1]) == MEM)
return "ldw %1,%0";
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
long i;
REAL_VALUE_TYPE d;
gcc_assert (GET_MODE (operands[1]) == SFmode);
/* Translate the CONST_DOUBLE to a CONST_INT with the same target
bit pattern. */
REAL_VALUE_FROM_CONST_DOUBLE (d, operands[1]);
REAL_VALUE_TO_TARGET_SINGLE (d, i);
operands[1] = GEN_INT (i);
/* Fall through to CONST_INT case. */
}
if (GET_CODE (operands[1]) == CONST_INT)
{
intval = INTVAL (operands[1]);
if (VAL_14_BITS_P (intval))
return "ldi %1,%0";
else if ((intval & 0x7ff) == 0)
return "ldil L'%1,%0";
else if (zdepi_cint_p (intval))
return "{zdepi %Z1,%0|depwi,z %Z1,%0}";
else
return "ldil L'%1,%0\n\tldo R'%1(%0),%0";
}
return "copy %1,%0";
}
/* Compute position (in OP[1]) and width (in OP[2])
useful for copying IMM to a register using the zdepi
instructions. Store the immediate value to insert in OP[0]. */
static void
compute_zdepwi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
{
int lsb, len;
/* Find the least significant set bit in IMM. */
for (lsb = 0; lsb < 32; lsb++)
{
if ((imm & 1) != 0)
break;
imm >>= 1;
}
/* Choose variants based on *sign* of the 5-bit field. */
if ((imm & 0x10) == 0)
len = (lsb <= 28) ? 4 : 32 - lsb;
else
{
/* Find the width of the bitstring in IMM. */
for (len = 5; len < 32; len++)
{
if ((imm & (1 << len)) == 0)
break;
}
/* Sign extend IMM as a 5-bit value. */
imm = (imm & 0xf) - 0x10;
}
op[0] = imm;
op[1] = 31 - lsb;
op[2] = len;
}
/* Compute position (in OP[1]) and width (in OP[2])
useful for copying IMM to a register using the depdi,z
instructions. Store the immediate value to insert in OP[0]. */
void
compute_zdepdi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
{
HOST_WIDE_INT lsb, len;
/* Find the least significant set bit in IMM. */
for (lsb = 0; lsb < HOST_BITS_PER_WIDE_INT; lsb++)
{
if ((imm & 1) != 0)
break;
imm >>= 1;
}
/* Choose variants based on *sign* of the 5-bit field. */
if ((imm & 0x10) == 0)
len = ((lsb <= HOST_BITS_PER_WIDE_INT - 4)
? 4 : HOST_BITS_PER_WIDE_INT - lsb);
else
{
/* Find the width of the bitstring in IMM. */
for (len = 5; len < HOST_BITS_PER_WIDE_INT; len++)
{
if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0)
break;
}
/* Sign extend IMM as a 5-bit value. */
imm = (imm & 0xf) - 0x10;
}
op[0] = imm;
op[1] = 63 - lsb;
op[2] = len;
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
const char *
output_move_double (rtx *operands)
{
enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. */
gcc_assert (optype0 == REGOP || optype1 == REGOP);
/* Handle copies between general and floating registers. */
if (optype0 == REGOP && optype1 == REGOP
&& FP_REG_P (operands[0]) ^ FP_REG_P (operands[1]))
{
if (FP_REG_P (operands[0]))
{
output_asm_insn ("{stws|stw} %1,-16(%%sp)", operands);
output_asm_insn ("{stws|stw} %R1,-12(%%sp)", operands);
return "{fldds|fldd} -16(%%sp),%0";
}
else
{
output_asm_insn ("{fstds|fstd} %1,-16(%%sp)", operands);
output_asm_insn ("{ldws|ldw} -16(%%sp),%0", operands);
return "{ldws|ldw} -12(%%sp),%R0";
}
}
/* Handle auto decrementing and incrementing loads and stores
specifically, since the structure of the function doesn't work
for them without major modification. Do it better when we learn
this port about the general inc/dec addressing of PA.
(This was written by tege. Chide him if it doesn't work.) */
if (optype0 == MEMOP)
{
/* We have to output the address syntax ourselves, since print_operand
doesn't deal with the addresses we want to use. Fix this later. */
rtx addr = XEXP (operands[0], 0);
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
{
rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
operands[0] = XEXP (addr, 0);
gcc_assert (GET_CODE (operands[1]) == REG
&& GET_CODE (operands[0]) == REG);
gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
/* No overlap between high target register and address
register. (We do this in a non-obvious way to
save a register file writeback) */
if (GET_CODE (addr) == POST_INC)
return "{stws|stw},ma %1,8(%0)\n\tstw %R1,-4(%0)";
return "{stws|stw},ma %1,-8(%0)\n\tstw %R1,12(%0)";
}
else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
{
rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
operands[0] = XEXP (addr, 0);
gcc_assert (GET_CODE (operands[1]) == REG
&& GET_CODE (operands[0]) == REG);
gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
/* No overlap between high target register and address
register. (We do this in a non-obvious way to save a
register file writeback) */
if (GET_CODE (addr) == PRE_INC)
return "{stws|stw},mb %1,8(%0)\n\tstw %R1,4(%0)";
return "{stws|stw},mb %1,-8(%0)\n\tstw %R1,4(%0)";
}
}
if (optype1 == MEMOP)
{
/* We have to output the address syntax ourselves, since print_operand
doesn't deal with the addresses we want to use. Fix this later. */
rtx addr = XEXP (operands[1], 0);
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
{
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
operands[1] = XEXP (addr, 0);
gcc_assert (GET_CODE (operands[0]) == REG
&& GET_CODE (operands[1]) == REG);
if (!reg_overlap_mentioned_p (high_reg, addr))
{
/* No overlap between high target register and address
register. (We do this in a non-obvious way to
save a register file writeback) */
if (GET_CODE (addr) == POST_INC)
return "{ldws|ldw},ma 8(%1),%0\n\tldw -4(%1),%R0";
return "{ldws|ldw},ma -8(%1),%0\n\tldw 12(%1),%R0";
}
else
{
/* This is an undefined situation. We should load into the
address register *and* update that register. Probably
we don't need to handle this at all. */
if (GET_CODE (addr) == POST_INC)
return "ldw 4(%1),%R0\n\t{ldws|ldw},ma 8(%1),%0";
return "ldw 4(%1),%R0\n\t{ldws|ldw},ma -8(%1),%0";
}
}
else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
{
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
operands[1] = XEXP (addr, 0);
gcc_assert (GET_CODE (operands[0]) == REG
&& GET_CODE (operands[1]) == REG);
if (!reg_overlap_mentioned_p (high_reg, addr))
{
/* No overlap between high target register and address
register. (We do this in a non-obvious way to
save a register file writeback) */
if (GET_CODE (addr) == PRE_INC)
return "{ldws|ldw},mb 8(%1),%0\n\tldw 4(%1),%R0";
return "{ldws|ldw},mb -8(%1),%0\n\tldw 4(%1),%R0";
}
else
{
/* This is an undefined situation. We should load into the
address register *and* update that register. Probably
we don't need to handle this at all. */
if (GET_CODE (addr) == PRE_INC)
return "ldw 12(%1),%R0\n\t{ldws|ldw},mb 8(%1),%0";
return "ldw -4(%1),%R0\n\t{ldws|ldw},mb -8(%1),%0";
}
}
else if (GET_CODE (addr) == PLUS
&& GET_CODE (XEXP (addr, 0)) == MULT)
{
rtx xoperands[4];
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
if (!reg_overlap_mentioned_p (high_reg, addr))
{
xoperands[0] = high_reg;
xoperands[1] = XEXP (addr, 1);
xoperands[2] = XEXP (XEXP (addr, 0), 0);
xoperands[3] = XEXP (XEXP (addr, 0), 1);
output_asm_insn ("{sh%O3addl %2,%1,%0|shladd,l %2,%O3,%1,%0}",
xoperands);
return "ldw 4(%0),%R0\n\tldw 0(%0),%0";
}
else
{
xoperands[0] = high_reg;
xoperands[1] = XEXP (addr, 1);
xoperands[2] = XEXP (XEXP (addr, 0), 0);
xoperands[3] = XEXP (XEXP (addr, 0), 1);
output_asm_insn ("{sh%O3addl %2,%1,%R0|shladd,l %2,%O3,%1,%R0}",
xoperands);
return "ldw 0(%R0),%0\n\tldw 4(%R0),%R0";
}
}
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (XEXP (operands[0], 0));
if (optype1 == MEMOP)
addreg1 = find_addr_reg (XEXP (operands[1], 0));
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adjust_address (operands[0], SImode, 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adjust_address (operands[1], SImode, 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
/* If the first move would clobber the source of the second one,
do them in the other order.
This can happen in two cases:
mem -> register where the first half of the destination register
is the same register used in the memory's address. Reload
can create such insns.
mem in this case will be either register indirect or register
indirect plus a valid offset.
register -> register move where REGNO(dst) == REGNO(src + 1)
someone (Tim/Tege?) claimed this can happen for parameter loads.
Handle mem -> register case first. */
if (optype0 == REGOP
&& (optype1 == MEMOP || optype1 == OFFSOP)
&& refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
operands[1], 0))
{
/* Do the late half first. */
if (addreg1)
output_asm_insn ("ldo 4(%0),%0", &addreg1);
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Then clobber. */
if (addreg1)
output_asm_insn ("ldo -4(%0),%0", &addreg1);
return singlemove_string (operands);
}
/* Now handle register -> register case. */
if (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
{
output_asm_insn (singlemove_string (latehalf), latehalf);
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("ldo 4(%0),%0", &addreg0);
if (addreg1)
output_asm_insn ("ldo 4(%0),%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("ldo -4(%0),%0", &addreg0);
if (addreg1)
output_asm_insn ("ldo -4(%0),%0", &addreg1);
return "";
}
const char *
output_fp_move_double (rtx *operands)
{
if (FP_REG_P (operands[0]))
{
if (FP_REG_P (operands[1])
|| operands[1] == CONST0_RTX (GET_MODE (operands[0])))
output_asm_insn ("fcpy,dbl %f1,%0", operands);
else
output_asm_insn ("fldd%F1 %1,%0", operands);
}
else if (FP_REG_P (operands[1]))
{
output_asm_insn ("fstd%F0 %1,%0", operands);
}
else
{
rtx xoperands[2];
gcc_assert (operands[1] == CONST0_RTX (GET_MODE (operands[0])));
/* This is a pain. You have to be prepared to deal with an
arbitrary address here including pre/post increment/decrement.
so avoid this in the MD. */
gcc_assert (GET_CODE (operands[0]) == REG);
xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
xoperands[0] = operands[0];
output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands);
}
return "";
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (rtx addr)
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 0)))
addr = XEXP (addr, 1);
else if (CONSTANT_P (XEXP (addr, 1)))
addr = XEXP (addr, 0);
else
gcc_unreachable ();
}
gcc_assert (GET_CODE (addr) == REG);
return addr;
}
/* Emit code to perform a block move.
OPERANDS[0] is the destination pointer as a REG, clobbered.
OPERANDS[1] is the source pointer as a REG, clobbered.
OPERANDS[2] is a register for temporary storage.
OPERANDS[3] is a register for temporary storage.
OPERANDS[4] is the size as a CONST_INT
OPERANDS[5] is the alignment safe to use, as a CONST_INT.
OPERANDS[6] is another temporary register. */
const char *
output_block_move (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
{
int align = INTVAL (operands[5]);
unsigned long n_bytes = INTVAL (operands[4]);
/* We can't move more than a word at a time because the PA
has no longer integer move insns. (Could use fp mem ops?) */
if (align > (TARGET_64BIT ? 8 : 4))
align = (TARGET_64BIT ? 8 : 4);
/* Note that we know each loop below will execute at least twice
(else we would have open-coded the copy). */
switch (align)
{
case 8:
/* Pre-adjust the loop counter. */
operands[4] = GEN_INT (n_bytes - 16);
output_asm_insn ("ldi %4,%2", operands);
/* Copying loop. */
output_asm_insn ("ldd,ma 8(%1),%3", operands);
output_asm_insn ("ldd,ma 8(%1),%6", operands);
output_asm_insn ("std,ma %3,8(%0)", operands);
output_asm_insn ("addib,>= -16,%2,.-12", operands);
output_asm_insn ("std,ma %6,8(%0)", operands);
/* Handle the residual. There could be up to 7 bytes of
residual to copy! */
if (n_bytes % 16 != 0)
{
operands[4] = GEN_INT (n_bytes % 8);
if (n_bytes % 16 >= 8)
output_asm_insn ("ldd,ma 8(%1),%3", operands);
if (n_bytes % 8 != 0)
output_asm_insn ("ldd 0(%1),%6", operands);
if (n_bytes % 16 >= 8)
output_asm_insn ("std,ma %3,8(%0)", operands);
if (n_bytes % 8 != 0)
output_asm_insn ("stdby,e %6,%4(%0)", operands);
}
return "";
case 4:
/* Pre-adjust the loop counter. */
operands[4] = GEN_INT (n_bytes - 8);
output_asm_insn ("ldi %4,%2", operands);
/* Copying loop. */
output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
output_asm_insn ("{ldws|ldw},ma 4(%1),%6", operands);
output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
output_asm_insn ("addib,>= -8,%2,.-12", operands);
output_asm_insn ("{stws|stw},ma %6,4(%0)", operands);
/* Handle the residual. There could be up to 7 bytes of
residual to copy! */
if (n_bytes % 8 != 0)
{
operands[4] = GEN_INT (n_bytes % 4);
if (n_bytes % 8 >= 4)
output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
if (n_bytes % 4 != 0)
output_asm_insn ("ldw 0(%1),%6", operands);
if (n_bytes % 8 >= 4)
output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
if (n_bytes % 4 != 0)
output_asm_insn ("{stbys|stby},e %6,%4(%0)", operands);
}
return "";
case 2:
/* Pre-adjust the loop counter. */
operands[4] = GEN_INT (n_bytes - 4);
output_asm_insn ("ldi %4,%2", operands);
/* Copying loop. */
output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
output_asm_insn ("{ldhs|ldh},ma 2(%1),%6", operands);
output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
output_asm_insn ("addib,>= -4,%2,.-12", operands);
output_asm_insn ("{sths|sth},ma %6,2(%0)", operands);
/* Handle the residual. */
if (n_bytes % 4 != 0)
{
if (n_bytes % 4 >= 2)
output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
if (n_bytes % 2 != 0)
output_asm_insn ("ldb 0(%1),%6", operands);
if (n_bytes % 4 >= 2)
output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
if (n_bytes % 2 != 0)
output_asm_insn ("stb %6,0(%0)", operands);
}
return "";
case 1:
/* Pre-adjust the loop counter. */
operands[4] = GEN_INT (n_bytes - 2);
output_asm_insn ("ldi %4,%2", operands);
/* Copying loop. */
output_asm_insn ("{ldbs|ldb},ma 1(%1),%3", operands);
output_asm_insn ("{ldbs|ldb},ma 1(%1),%6", operands);
output_asm_insn ("{stbs|stb},ma %3,1(%0)", operands);
output_asm_insn ("addib,>= -2,%2,.-12", operands);
output_asm_insn ("{stbs|stb},ma %6,1(%0)", operands);
/* Handle the residual. */
if (n_bytes % 2 != 0)
{
output_asm_insn ("ldb 0(%1),%3", operands);
output_asm_insn ("stb %3,0(%0)", operands);
}
return "";
default:
gcc_unreachable ();
}
}
/* Count the number of insns necessary to handle this block move.
Basic structure is the same as emit_block_move, except that we
count insns rather than emit them. */
static int
compute_movmem_length (rtx insn)
{
rtx pat = PATTERN (insn);
unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 7), 0));
unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0));
unsigned int n_insns = 0;
/* We can't move more than four bytes at a time because the PA
has no longer integer move insns. (Could use fp mem ops?) */
if (align > (TARGET_64BIT ? 8 : 4))
align = (TARGET_64BIT ? 8 : 4);
/* The basic copying loop. */
n_insns = 6;
/* Residuals. */
if (n_bytes % (2 * align) != 0)
{
if ((n_bytes % (2 * align)) >= align)
n_insns += 2;
if ((n_bytes % align) != 0)
n_insns += 2;
}
/* Lengths are expressed in bytes now; each insn is 4 bytes. */
return n_insns * 4;
}
/* Emit code to perform a block clear.
OPERANDS[0] is the destination pointer as a REG, clobbered.
OPERANDS[1] is a register for temporary storage.
OPERANDS[2] is the size as a CONST_INT
OPERANDS[3] is the alignment safe to use, as a CONST_INT. */
const char *
output_block_clear (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
{
int align = INTVAL (operands[3]);
unsigned long n_bytes = INTVAL (operands[2]);
/* We can't clear more than a word at a time because the PA
has no longer integer move insns. */
if (align > (TARGET_64BIT ? 8 : 4))
align = (TARGET_64BIT ? 8 : 4);
/* Note that we know each loop below will execute at least twice
(else we would have open-coded the copy). */
switch (align)
{
case 8:
/* Pre-adjust the loop counter. */
operands[2] = GEN_INT (n_bytes - 16);
output_asm_insn ("ldi %2,%1", operands);
/* Loop. */
output_asm_insn ("std,ma %%r0,8(%0)", operands);
output_asm_insn ("addib,>= -16,%1,.-4", operands);
output_asm_insn ("std,ma %%r0,8(%0)", operands);
/* Handle the residual. There could be up to 7 bytes of
residual to copy! */
if (n_bytes % 16 != 0)
{
operands[2] = GEN_INT (n_bytes % 8);
if (n_bytes % 16 >= 8)
output_asm_insn ("std,ma %%r0,8(%0)", operands);
if (n_bytes % 8 != 0)
output_asm_insn ("stdby,e %%r0,%2(%0)", operands);
}
return "";
case 4:
/* Pre-adjust the loop counter. */
operands[2] = GEN_INT (n_bytes - 8);
output_asm_insn ("ldi %2,%1", operands);
/* Loop. */
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
output_asm_insn ("addib,>= -8,%1,.-4", operands);
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
/* Handle the residual. There could be up to 7 bytes of
residual to copy! */
if (n_bytes % 8 != 0)
{
operands[2] = GEN_INT (n_bytes % 4);
if (n_bytes % 8 >= 4)
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
if (n_bytes % 4 != 0)
output_asm_insn ("{stbys|stby},e %%r0,%2(%0)", operands);
}
return "";
case 2:
/* Pre-adjust the loop counter. */
operands[2] = GEN_INT (n_bytes - 4);
output_asm_insn ("ldi %2,%1", operands);
/* Loop. */
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
output_asm_insn ("addib,>= -4,%1,.-4", operands);
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
/* Handle the residual. */
if (n_bytes % 4 != 0)
{
if (n_bytes % 4 >= 2)
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
if (n_bytes % 2 != 0)
output_asm_insn ("stb %%r0,0(%0)", operands);
}
return "";
case 1:
/* Pre-adjust the loop counter. */
operands[2] = GEN_INT (n_bytes - 2);
output_asm_insn ("ldi %2,%1", operands);
/* Loop. */
output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
output_asm_insn ("addib,>= -2,%1,.-4", operands);
output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
/* Handle the residual. */
if (n_bytes % 2 != 0)
output_asm_insn ("stb %%r0,0(%0)", operands);
return "";
default:
gcc_unreachable ();
}
}
/* Count the number of insns necessary to handle this block move.
Basic structure is the same as emit_block_move, except that we
count insns rather than emit them. */
static int
compute_clrmem_length (rtx insn)
{
rtx pat = PATTERN (insn);
unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 4), 0));
unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 3), 0));
unsigned int n_insns = 0;
/* We can't clear more than a word at a time because the PA
has no longer integer move insns. */
if (align > (TARGET_64BIT ? 8 : 4))
align = (TARGET_64BIT ? 8 : 4);
/* The basic loop. */
n_insns = 4;
/* Residuals. */
if (n_bytes % (2 * align) != 0)
{
if ((n_bytes % (2 * align)) >= align)
n_insns++;
if ((n_bytes % align) != 0)
n_insns++;
}
/* Lengths are expressed in bytes now; each insn is 4 bytes. */
return n_insns * 4;
}
const char *
output_and (rtx *operands)
{
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
{
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
int ls0, ls1, ms0, p, len;
for (ls0 = 0; ls0 < 32; ls0++)
if ((mask & (1 << ls0)) == 0)
break;
for (ls1 = ls0; ls1 < 32; ls1++)
if ((mask & (1 << ls1)) != 0)
break;
for (ms0 = ls1; ms0 < 32; ms0++)
if ((mask & (1 << ms0)) == 0)
break;
gcc_assert (ms0 == 32);
if (ls1 == 32)
{
len = ls0;
gcc_assert (len);
operands[2] = GEN_INT (len);
return "{extru|extrw,u} %1,31,%2,%0";
}
else
{
/* We could use this `depi' for the case above as well, but `depi'
requires one more register file access than an `extru'. */
p = 31 - ls0;
len = ls1 - ls0;
operands[2] = GEN_INT (p);
operands[3] = GEN_INT (len);
return "{depi|depwi} 0,%2,%3,%0";
}
}
else
return "and %1,%2,%0";
}
/* Return a string to perform a bitwise-and of operands[1] with operands[2]
storing the result in operands[0]. */
const char *
output_64bit_and (rtx *operands)
{
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
{
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
int ls0, ls1, ms0, p, len;
for (ls0 = 0; ls0 < HOST_BITS_PER_WIDE_INT; ls0++)
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls0)) == 0)
break;
for (ls1 = ls0; ls1 < HOST_BITS_PER_WIDE_INT; ls1++)
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls1)) != 0)
break;
for (ms0 = ls1; ms0 < HOST_BITS_PER_WIDE_INT; ms0++)
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ms0)) == 0)
break;
gcc_assert (ms0 == HOST_BITS_PER_WIDE_INT);
if (ls1 == HOST_BITS_PER_WIDE_INT)
{
len = ls0;
gcc_assert (len);
operands[2] = GEN_INT (len);
return "extrd,u %1,63,%2,%0";
}
else
{
/* We could use this `depi' for the case above as well, but `depi'
requires one more register file access than an `extru'. */
p = 63 - ls0;
len = ls1 - ls0;
operands[2] = GEN_INT (p);
operands[3] = GEN_INT (len);
return "depdi 0,%2,%3,%0";
}
}
else
return "and %1,%2,%0";
}
const char *
output_ior (rtx *operands)
{
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
int bs0, bs1, p, len;
if (INTVAL (operands[2]) == 0)
return "copy %1,%0";
for (bs0 = 0; bs0 < 32; bs0++)
if ((mask & (1 << bs0)) != 0)
break;
for (bs1 = bs0; bs1 < 32; bs1++)
if ((mask & (1 << bs1)) == 0)
break;
gcc_assert (bs1 == 32 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
p = 31 - bs0;
len = bs1 - bs0;
operands[2] = GEN_INT (p);
operands[3] = GEN_INT (len);
return "{depi|depwi} -1,%2,%3,%0";
}
/* Return a string to perform a bitwise-and of operands[1] with operands[2]
storing the result in operands[0]. */
const char *
output_64bit_ior (rtx *operands)
{
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
int bs0, bs1, p, len;
if (INTVAL (operands[2]) == 0)
return "copy %1,%0";
for (bs0 = 0; bs0 < HOST_BITS_PER_WIDE_INT; bs0++)
if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs0)) != 0)
break;
for (bs1 = bs0; bs1 < HOST_BITS_PER_WIDE_INT; bs1++)
if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs1)) == 0)
break;
gcc_assert (bs1 == HOST_BITS_PER_WIDE_INT
|| ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
p = 63 - bs0;
len = bs1 - bs0;
operands[2] = GEN_INT (p);
operands[3] = GEN_INT (len);
return "depdi -1,%2,%3,%0";
}
/* Target hook for assembling integer objects. This code handles
aligned SI and DI integers specially since function references
must be preceded by P%. */
static bool
pa_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
if (size == UNITS_PER_WORD
&& aligned_p
&& function_label_operand (x, VOIDmode))
{
fputs (size == 8? "\t.dword\tP%" : "\t.word\tP%", asm_out_file);
output_addr_const (asm_out_file, x);
fputc ('\n', asm_out_file);
return true;
}
return default_assemble_integer (x, size, aligned_p);
}
/* Output an ascii string. */
void
output_ascii (FILE *file, const char *p, int size)
{
int i;
int chars_output;
unsigned char partial_output[16]; /* Max space 4 chars can occupy. */
/* The HP assembler can only take strings of 256 characters at one
time. This is a limitation on input line length, *not* the
length of the string. Sigh. Even worse, it seems that the
restriction is in number of input characters (see \xnn &
\whatever). So we have to do this very carefully. */
fputs ("\t.STRING \"", file);
chars_output = 0;
for (i = 0; i < size; i += 4)
{
int co = 0;
int io = 0;
for (io = 0, co = 0; io < MIN (4, size - i); io++)
{
register unsigned int c = (unsigned char) p[i + io];
if (c == '\"' || c == '\\')
partial_output[co++] = '\\';
if (c >= ' ' && c < 0177)
partial_output[co++] = c;
else
{
unsigned int hexd;
partial_output[co++] = '\\';
partial_output[co++] = 'x';
hexd = c / 16 - 0 + '0';
if (hexd > '9')
hexd -= '9' - 'a' + 1;
partial_output[co++] = hexd;
hexd = c % 16 - 0 + '0';
if (hexd > '9')
hexd -= '9' - 'a' + 1;
partial_output[co++] = hexd;
}
}
if (chars_output + co > 243)
{
fputs ("\"\n\t.STRING \"", file);
chars_output = 0;
}
fwrite (partial_output, 1, (size_t) co, file);
chars_output += co;
co = 0;
}
fputs ("\"\n", file);
}
/* Try to rewrite floating point comparisons & branches to avoid
useless add,tr insns.
CHECK_NOTES is nonzero if we should examine REG_DEAD notes
to see if FPCC is dead. CHECK_NOTES is nonzero for the
first attempt to remove useless add,tr insns. It is zero
for the second pass as reorg sometimes leaves bogus REG_DEAD
notes lying around.
When CHECK_NOTES is zero we can only eliminate add,tr insns
when there's a 1:1 correspondence between fcmp and ftest/fbranch
instructions. */
static void
remove_useless_addtr_insns (int check_notes)
{
rtx insn;
static int pass = 0;
/* This is fairly cheap, so always run it when optimizing. */
if (optimize > 0)
{
int fcmp_count = 0;
int fbranch_count = 0;
/* Walk all the insns in this function looking for fcmp & fbranch
instructions. Keep track of how many of each we find. */
for (insn = get_insns (); insn; insn = next_insn (insn))
{
rtx tmp;
/* Ignore anything that isn't an INSN or a JUMP_INSN. */
if (GET_CODE (insn) != INSN && GET_CODE (insn) != JUMP_INSN)
continue;
tmp = PATTERN (insn);
/* It must be a set. */
if (GET_CODE (tmp) != SET)
continue;
/* If the destination is CCFP, then we've found an fcmp insn. */
tmp = SET_DEST (tmp);
if (GET_CODE (tmp) == REG && REGNO (tmp) == 0)
{
fcmp_count++;
continue;
}
tmp = PATTERN (insn);
/* If this is an fbranch instruction, bump the fbranch counter. */
if (GET_CODE (tmp) == SET
&& SET_DEST (tmp) == pc_rtx
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
&& GET_CODE (XEXP (SET_SRC (tmp), 0)) == NE
&& GET_CODE (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == REG
&& REGNO (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == 0)
{
fbranch_count++;
continue;
}
}
/* Find all floating point compare + branch insns. If possible,
reverse the comparison & the branch to avoid add,tr insns. */
for (insn = get_insns (); insn; insn = next_insn (insn))
{
rtx tmp, next;
/* Ignore anything that isn't an INSN. */
if (GET_CODE (insn) != INSN)
continue;
tmp = PATTERN (insn);
/* It must be a set. */
if (GET_CODE (tmp) != SET)
continue;
/* The destination must be CCFP, which is register zero. */
tmp = SET_DEST (tmp);
if (GET_CODE (tmp) != REG || REGNO (tmp) != 0)
continue;
/* INSN should be a set of CCFP.
See if the result of this insn is used in a reversed FP
conditional branch. If so, reverse our condition and
the branch. Doing so avoids useless add,tr insns. */
next = next_insn (insn);
while (next)
{
/* Jumps, calls and labels stop our search. */
if (GET_CODE (next) == JUMP_INSN
|| GET_CODE (next) == CALL_INSN
|| GET_CODE (next) == CODE_LABEL)
break;
/* As does another fcmp insn. */
if (GET_CODE (next) == INSN
&& GET_CODE (PATTERN (next)) == SET
&& GET_CODE (SET_DEST (PATTERN (next))) == REG
&& REGNO (SET_DEST (PATTERN (next))) == 0)
break;
next = next_insn (next);
}
/* Is NEXT_INSN a branch? */
if (next
&& GET_CODE (next) == JUMP_INSN)
{
rtx pattern = PATTERN (next);
/* If it a reversed fp conditional branch (e.g. uses add,tr)
and CCFP dies, then reverse our conditional and the branch
to avoid the add,tr. */
if (GET_CODE (pattern) == SET
&& SET_DEST (pattern) == pc_rtx
&& GET_CODE (SET_SRC (pattern)) == IF_THEN_ELSE
&& GET_CODE (XEXP (SET_SRC (pattern), 0)) == NE
&& GET_CODE (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == REG
&& REGNO (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == 0
&& GET_CODE (XEXP (SET_SRC (pattern), 1)) == PC
&& (fcmp_count == fbranch_count
|| (check_notes
&& find_regno_note (next, REG_DEAD, 0))))
{
/* Reverse the branch. */
tmp = XEXP (SET_SRC (pattern), 1);
XEXP (SET_SRC (pattern), 1) = XEXP (SET_SRC (pattern), 2);
XEXP (SET_SRC (pattern), 2) = tmp;
INSN_CODE (next) = -1;
/* Reverse our condition. */
tmp = PATTERN (insn);
PUT_CODE (XEXP (tmp, 1),
(reverse_condition_maybe_unordered
(GET_CODE (XEXP (tmp, 1)))));
}
}
}
}
pass = !pass;
}
/* You may have trouble believing this, but this is the 32 bit HP-PA
stack layout. Wow.
Offset Contents
Variable arguments (optional; any number may be allocated)
SP-(4*(N+9)) arg word N
: :
SP-56 arg word 5
SP-52 arg word 4
Fixed arguments (must be allocated; may remain unused)
SP-48 arg word 3
SP-44 arg word 2
SP-40 arg word 1
SP-36 arg word 0
Frame Marker
SP-32 External Data Pointer (DP)
SP-28 External sr4
SP-24 External/stub RP (RP')
SP-20 Current RP
SP-16 Static Link
SP-12 Clean up
SP-8 Calling Stub RP (RP'')
SP-4 Previous SP
Top of Frame
SP-0 Stack Pointer (points to next available address)
*/
/* This function saves registers as follows. Registers marked with ' are
this function's registers (as opposed to the previous function's).
If a frame_pointer isn't needed, r4 is saved as a general register;
the space for the frame pointer is still allocated, though, to keep
things simple.
Top of Frame
SP (FP') Previous FP
SP + 4 Alignment filler (sigh)
SP + 8 Space for locals reserved here.
.
.
.
SP + n All call saved register used.
.
.
.
SP + o All call saved fp registers used.
.
.
.
SP + p (SP') points to next available address.
*/
/* Global variables set by output_function_prologue(). */
/* Size of frame. Need to know this to emit return insns from
leaf procedures. */
static HOST_WIDE_INT actual_fsize, local_fsize;
static int save_fregs;
/* Emit RTL to store REG at the memory location specified by BASE+DISP.
Handle case where DISP > 8k by using the add_high_const patterns.
Note in DISP > 8k case, we will leave the high part of the address
in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/
static void
store_reg (int reg, HOST_WIDE_INT disp, int base)
{
rtx insn, dest, src, basereg;
src = gen_rtx_REG (word_mode, reg);
basereg = gen_rtx_REG (Pmode, base);
if (VAL_14_BITS_P (disp))
{
dest = gen_rtx_MEM (word_mode, plus_constant (basereg, disp));
insn = emit_move_insn (dest, src);
}
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
{
rtx delta = GEN_INT (disp);
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg, delta);
insn = emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
if (DO_FRAME_NOTES)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, tmpreg,
gen_rtx_PLUS (Pmode, basereg, delta)),
REG_NOTES (insn));
RTX_FRAME_RELATED_P (insn) = 1;
}
dest = gen_rtx_MEM (word_mode, tmpreg);
insn = emit_move_insn (dest, src);
}
else
{
rtx delta = GEN_INT (disp);
rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg, high);
dest = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
insn = emit_move_insn (dest, src);
if (DO_FRAME_NOTES)
{
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (word_mode,
gen_rtx_PLUS (word_mode, basereg,
delta)),
src),
REG_NOTES (insn));
}
}
if (DO_FRAME_NOTES)
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Emit RTL to store REG at the memory location specified by BASE and then
add MOD to BASE. MOD must be <= 8k. */
static void
store_reg_modify (int base, int reg, HOST_WIDE_INT mod)
{
rtx insn, basereg, srcreg, delta;
gcc_assert (VAL_14_BITS_P (mod));
basereg = gen_rtx_REG (Pmode, base);
srcreg = gen_rtx_REG (word_mode, reg);
delta = GEN_INT (mod);
insn = emit_insn (gen_post_store (basereg, srcreg, delta));
if (DO_FRAME_NOTES)
{
RTX_FRAME_RELATED_P (insn) = 1;
/* RTX_FRAME_RELATED_P must be set on each frame related set
in a parallel with more than one element. */
RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 0)) = 1;
RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
}
}
/* Emit RTL to set REG to the value specified by BASE+DISP. Handle case
where DISP > 8k by using the add_high_const patterns. NOTE indicates
whether to add a frame note or not.
In the DISP > 8k case, we leave the high part of the address in %r1.
There is code in expand_hppa_{prologue,epilogue} that knows about this. */
static void
set_reg_plus_d (int reg, int base, HOST_WIDE_INT disp, int note)
{
rtx insn;
if (VAL_14_BITS_P (disp))
{
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
plus_constant (gen_rtx_REG (Pmode, base), disp));
}
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
{
rtx basereg = gen_rtx_REG (Pmode, base);
rtx delta = GEN_INT (disp);
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg, delta);
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
gen_rtx_PLUS (Pmode, tmpreg, basereg));
if (DO_FRAME_NOTES)
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, tmpreg,
gen_rtx_PLUS (Pmode, basereg, delta)),
REG_NOTES (insn));
}
else
{
rtx basereg = gen_rtx_REG (Pmode, base);
rtx delta = GEN_INT (disp);
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg,
gen_rtx_PLUS (Pmode, basereg,
gen_rtx_HIGH (Pmode, delta)));
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
gen_rtx_LO_SUM (Pmode, tmpreg, delta));
}
if (DO_FRAME_NOTES && note)
RTX_FRAME_RELATED_P (insn) = 1;
}
HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size, int *fregs_live)
{
int freg_saved = 0;
int i, j;
/* The code in hppa_expand_prologue and hppa_expand_epilogue must
be consistent with the rounding and size calculation done here.
Change them at the same time. */
/* We do our own stack alignment. First, round the size of the
stack locals up to a word boundary. */
size = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
/* Space for previous frame pointer + filler. If any frame is
allocated, we need to add in the STARTING_FRAME_OFFSET. We
waste some space here for the sake of HP compatibility. The
first slot is only used when the frame pointer is needed. */
if (size || frame_pointer_needed)
size += STARTING_FRAME_OFFSET;
/* If the current function calls __builtin_eh_return, then we need
to allocate stack space for registers that will hold data for
the exception handler. */
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
unsigned int i;
for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
continue;
size += i * UNITS_PER_WORD;
}
/* Account for space used by the callee general register saves. */
for (i = 18, j = frame_pointer_needed ? 4 : 3; i >= j; i--)
if (regs_ever_live[i])
size += UNITS_PER_WORD;
/* Account for space used by the callee floating point register saves. */
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
if (regs_ever_live[i]
|| (!TARGET_64BIT && regs_ever_live[i + 1]))
{
freg_saved = 1;
/* We always save both halves of the FP register, so always
increment the frame size by 8 bytes. */
size += 8;
}
/* If any of the floating registers are saved, account for the
alignment needed for the floating point register save block. */
if (freg_saved)
{
size = (size + 7) & ~7;
if (fregs_live)
*fregs_live = 1;
}
/* The various ABIs include space for the outgoing parameters in the
size of the current function's stack frame. We don't need to align
for the outgoing arguments as their alignment is set by the final
rounding for the frame as a whole. */
size += current_function_outgoing_args_size;
/* Allocate space for the fixed frame marker. This space must be
allocated for any function that makes calls or allocates
stack space. */
if (!current_function_is_leaf || size)
size += TARGET_64BIT ? 48 : 32;
/* Finally, round to the preferred stack boundary. */
return ((size + PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)
& ~(PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1));
}
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used. */
/* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
of memory. If any fpu reg is used in the function, we allocate
such a block here, at the bottom of the frame, just in case it's needed.
If this function is a leaf procedure, then we may choose not
to do a "save" insn. The decision about whether or not
to do this is made in regclass.c. */
static void
pa_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
/* The function's label and associated .PROC must never be
separated and must be output *after* any profiling declarations
to avoid changing spaces/subspaces within a procedure. */
ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
fputs ("\t.PROC\n", file);
/* hppa_expand_prologue does the dirty work now. We just need
to output the assembler directives which denote the start
of a function. */
fprintf (file, "\t.CALLINFO FRAME=" HOST_WIDE_INT_PRINT_DEC, actual_fsize);
if (regs_ever_live[2])
fputs (",CALLS,SAVE_RP", file);
else
fputs (",NO_CALLS", file);
/* The SAVE_SP flag is used to indicate that register %r3 is stored
at the beginning of the frame and that it is used as the frame
pointer for the frame. We do this because our current frame
layout doesn't conform to that specified in the HP runtime
documentation and we need a way to indicate to programs such as
GDB where %r3 is saved. The SAVE_SP flag was chosen because it
isn't used by HP compilers but is supported by the assembler.
However, SAVE_SP is supposed to indicate that the previous stack
pointer has been saved in the frame marker. */
if (frame_pointer_needed)
fputs (",SAVE_SP", file);
/* Pass on information about the number of callee register saves
performed in the prologue.
The compiler is supposed to pass the highest register number
saved, the assembler then has to adjust that number before
entering it into the unwind descriptor (to account for any
caller saved registers with lower register numbers than the
first callee saved register). */
if (gr_saved)
fprintf (file, ",ENTRY_GR=%d", gr_saved + 2);
if (fr_saved)
fprintf (file, ",ENTRY_FR=%d", fr_saved + 11);
fputs ("\n\t.ENTRY\n", file);
remove_useless_addtr_insns (0);
}
void
hppa_expand_prologue (void)
{
int merge_sp_adjust_with_store = 0;
HOST_WIDE_INT size = get_frame_size ();
HOST_WIDE_INT offset;
int i;
rtx insn, tmpreg;
gr_saved = 0;
fr_saved = 0;
save_fregs = 0;
/* Compute total size for frame pointer, filler, locals and rounding to
the next word boundary. Similar code appears in compute_frame_size
and must be changed in tandem with this code. */
local_fsize = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
if (local_fsize || frame_pointer_needed)
local_fsize += STARTING_FRAME_OFFSET;
actual_fsize = compute_frame_size (size, &save_fregs);
/* Compute a few things we will use often. */
tmpreg = gen_rtx_REG (word_mode, 1);
/* Save RP first. The calling conventions manual states RP will
always be stored into the caller's frame at sp - 20 or sp - 16
depending on which ABI is in use. */
if (regs_ever_live[2] || current_function_calls_eh_return)
store_reg (2, TARGET_64BIT ? -16 : -20, STACK_POINTER_REGNUM);
/* Allocate the local frame and set up the frame pointer if needed. */
if (actual_fsize != 0)
{
if (frame_pointer_needed)
{
/* Copy the old frame pointer temporarily into %r1. Set up the
new stack pointer, then store away the saved old frame pointer
into the stack at sp and at the same time update the stack
pointer by actual_fsize bytes. Two versions, first
handles small (<8k) frames. The second handles large (>=8k)
frames. */
insn = emit_move_insn (tmpreg, frame_pointer_rtx);
if (DO_FRAME_NOTES)
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
if (DO_FRAME_NOTES)
RTX_FRAME_RELATED_P (insn) = 1;
if (VAL_14_BITS_P (actual_fsize))
store_reg_modify (STACK_POINTER_REGNUM, 1, actual_fsize);
else
{
/* It is incorrect to store the saved frame pointer at *sp,
then increment sp (writes beyond the current stack boundary).
So instead use stwm to store at *sp and post-increment the
stack pointer as an atomic operation. Then increment sp to
finish allocating the new frame. */
HOST_WIDE_INT adjust1 = 8192 - 64;
HOST_WIDE_INT adjust2 = actual_fsize - adjust1;
store_reg_modify (STACK_POINTER_REGNUM, 1, adjust1);
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
adjust2, 1);
}
/* We set SAVE_SP in frames that need a frame pointer. Thus,
we need to store the previous stack pointer (frame pointer)
into the frame marker on targets that use the HP unwind
library. This allows the HP unwind library to be used to
unwind GCC frames. However, we are not fully compatible
with the HP library because our frame layout differs from
that specified in the HP runtime specification.
We don't want a frame note on this instruction as the frame
marker moves during dynamic stack allocation.
This instruction also serves as a blockage to prevent
register spills from being scheduled before the stack
pointer is raised. This is necessary as we store
registers using the frame pointer as a base register,
and the frame pointer is set before sp is raised. */
if (TARGET_HPUX_UNWIND_LIBRARY)
{
rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx,
GEN_INT (TARGET_64BIT ? -8 : -4));
emit_move_insn (gen_rtx_MEM (word_mode, addr),
frame_pointer_rtx);
}
else
emit_insn (gen_blockage ());
}
/* no frame pointer needed. */
else
{
/* In some cases we can perform the first callee register save
and allocating the stack frame at the same time. If so, just
make a note of it and defer allocating the frame until saving
the callee registers. */
if (VAL_14_BITS_P (actual_fsize) && local_fsize == 0)
merge_sp_adjust_with_store = 1;
/* Can not optimize. Adjust the stack frame by actual_fsize
bytes. */
else
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
actual_fsize, 1);
}
}
/* Normal register save.
Do not save the frame pointer in the frame_pointer_needed case. It
was done earlier. */
if (frame_pointer_needed)
{
offset = local_fsize;
/* Saving the EH return data registers in the frame is the simplest
way to get the frame unwind information emitted. We put them
just before the general registers. */
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
unsigned int i, regno;
for (i = 0; ; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
store_reg (regno, offset, FRAME_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
for (i = 18; i >= 4; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
{
store_reg (i, offset, FRAME_POINTER_REGNUM);
offset += UNITS_PER_WORD;
gr_saved++;
}
/* Account for %r3 which is saved in a special place. */
gr_saved++;
}
/* No frame pointer needed. */
else
{
offset = local_fsize - actual_fsize;
/* Saving the EH return data registers in the frame is the simplest
way to get the frame unwind information emitted. */
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
unsigned int i, regno;
for (i = 0; ; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
/* If merge_sp_adjust_with_store is nonzero, then we can
optimize the first save. */
if (merge_sp_adjust_with_store)
{
store_reg_modify (STACK_POINTER_REGNUM, regno, -offset);
merge_sp_adjust_with_store = 0;
}
else
store_reg (regno, offset, STACK_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
for (i = 18; i >= 3; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
{
/* If merge_sp_adjust_with_store is nonzero, then we can
optimize the first GR save. */
if (merge_sp_adjust_with_store)
{
store_reg_modify (STACK_POINTER_REGNUM, i, -offset);
merge_sp_adjust_with_store = 0;
}
else
store_reg (i, offset, STACK_POINTER_REGNUM);
offset += UNITS_PER_WORD;
gr_saved++;
}
/* If we wanted to merge the SP adjustment with a GR save, but we never
did any GR saves, then just emit the adjustment here. */
if (merge_sp_adjust_with_store)
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
actual_fsize, 1);
}
/* The hppa calling conventions say that %r19, the pic offset
register, is saved at sp - 32 (in this function's frame)
when generating PIC code. FIXME: What is the correct thing
to do for functions which make no calls and allocate no
frame? Do we need to allocate a frame, or can we just omit
the save? For now we'll just omit the save.
We don't want a note on this insn as the frame marker can
move if there is a dynamic stack allocation. */
if (flag_pic && actual_fsize != 0 && !TARGET_64BIT)
{
rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (-32));
emit_move_insn (gen_rtx_MEM (word_mode, addr), pic_offset_table_rtx);
}
/* Align pointer properly (doubleword boundary). */
offset = (offset + 7) & ~7;
/* Floating point register store. */
if (save_fregs)
{
rtx base;
/* First get the frame or stack pointer to the start of the FP register
save area. */
if (frame_pointer_needed)
{
set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0);
base = frame_pointer_rtx;
}
else
{
set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
base = stack_pointer_rtx;
}
/* Now actually save the FP registers. */
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
{
if (regs_ever_live[i]
|| (! TARGET_64BIT && regs_ever_live[i + 1]))
{
rtx addr, insn, reg;
addr = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg));
reg = gen_rtx_REG (DFmode, i);
insn = emit_move_insn (addr, reg);
if (DO_FRAME_NOTES)
{
RTX_FRAME_RELATED_P (insn) = 1;
if (TARGET_64BIT)
{
rtx mem = gen_rtx_MEM (DFmode,
plus_constant (base, offset));
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SET (VOIDmode, mem, reg),
REG_NOTES (insn));
}
else
{
rtx meml = gen_rtx_MEM (SFmode,
plus_constant (base, offset));
rtx memr = gen_rtx_MEM (SFmode,
plus_constant (base, offset + 4));
rtx regl = gen_rtx_REG (SFmode, i);
rtx regr = gen_rtx_REG (SFmode, i + 1);
rtx setl = gen_rtx_SET (VOIDmode, meml, regl);
rtx setr = gen_rtx_SET (VOIDmode, memr, regr);
rtvec vec;
RTX_FRAME_RELATED_P (setl) = 1;
RTX_FRAME_RELATED_P (setr) = 1;
vec = gen_rtvec (2, setl, setr);
REG_NOTES (insn)
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
gen_rtx_SEQUENCE (VOIDmode, vec),
REG_NOTES (insn));
}
}
offset += GET_MODE_SIZE (DFmode);
fr_saved++;
}
}
}
}
/* Emit RTL to load REG from the memory location specified by BASE+DISP.
Handle case where DISP > 8k by using the add_high_const patterns. */
static void
load_reg (int reg, HOST_WIDE_INT disp, int base)
{
rtx dest = gen_rtx_REG (word_mode, reg);
rtx basereg = gen_rtx_REG (Pmode, base);
rtx src;
if (VAL_14_BITS_P (disp))
src = gen_rtx_MEM (word_mode, plus_constant (basereg, disp));
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
{
rtx delta = GEN_INT (disp);
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg, delta);
if (TARGET_DISABLE_INDEXING)
{
emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
src = gen_rtx_MEM (word_mode, tmpreg);
}
else
src = gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, tmpreg, basereg));
}
else
{
rtx delta = GEN_INT (disp);
rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
rtx tmpreg = gen_rtx_REG (Pmode, 1);
emit_move_insn (tmpreg, high);
src = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
}
emit_move_insn (dest, src);
}
/* Update the total code bytes output to the text section. */
static void
update_total_code_bytes (int nbytes)
{
if ((TARGET_PORTABLE_RUNTIME || !TARGET_GAS || !TARGET_SOM)
&& !IN_NAMED_SECTION_P (cfun->decl))
{
if (INSN_ADDRESSES_SET_P ())
{
unsigned long old_total = total_code_bytes;
total_code_bytes += nbytes;
/* Be prepared to handle overflows. */
if (old_total > total_code_bytes)
total_code_bytes = -1;
}
else
total_code_bytes = -1;
}
}
/* This function generates the assembly code for function exit.
Args are as for output_function_prologue ().
The function epilogue should not depend on the current stack
pointer! It should use the frame pointer only. This is mandatory
because of alloca; we also take advantage of it to omit stack
adjustments before returning. */
static void
pa_output_function_epilogue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
rtx insn = get_last_insn ();
last_address = 0;
/* hppa_expand_epilogue does the dirty work now. We just need
to output the assembler directives which denote the end
of a function.
To make debuggers happy, emit a nop if the epilogue was completely
eliminated due to a volatile call as the last insn in the
current function. That way the return address (in %r2) will
always point to a valid instruction in the current function. */
/* Get the last real insn. */
if (GET_CODE (insn) == NOTE)
insn = prev_real_insn (insn);
/* If it is a sequence, then look inside. */
if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
insn = XVECEXP (PATTERN (insn), 0, 0);
/* If insn is a CALL_INSN, then it must be a call to a volatile
function (otherwise there would be epilogue insns). */
if (insn && GET_CODE (insn) == CALL_INSN)
{
fputs ("\tnop\n", file);
last_address += 4;
}
fputs ("\t.EXIT\n\t.PROCEND\n", file);
if (TARGET_SOM && TARGET_GAS)
{
/* We done with this subspace except possibly for some additional
debug information. Forget that we are in this subspace to ensure
that the next function is output in its own subspace. */
in_section = NULL;
cfun->machine->in_nsubspa = 2;
}
if (INSN_ADDRESSES_SET_P ())
{
insn = get_last_nonnote_insn ();
last_address += INSN_ADDRESSES (INSN_UID (insn));
if (INSN_P (insn))
last_address += insn_default_length (insn);
last_address = ((last_address + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
& ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
}
/* Finally, update the total number of code bytes output so far. */
update_total_code_bytes (last_address);
}
void
hppa_expand_epilogue (void)
{
rtx tmpreg;
HOST_WIDE_INT offset;
HOST_WIDE_INT ret_off = 0;
int i;
int merge_sp_adjust_with_load = 0;
/* We will use this often. */
tmpreg = gen_rtx_REG (word_mode, 1);
/* Try to restore RP early to avoid load/use interlocks when
RP gets used in the return (bv) instruction. This appears to still
be necessary even when we schedule the prologue and epilogue. */
if (regs_ever_live [2] || current_function_calls_eh_return)
{
ret_off = TARGET_64BIT ? -16 : -20;
if (frame_pointer_needed)
{
load_reg (2, ret_off, FRAME_POINTER_REGNUM);
ret_off = 0;
}
else
{
/* No frame pointer, and stack is smaller than 8k. */
if (VAL_14_BITS_P (ret_off - actual_fsize))
{
load_reg (2, ret_off - actual_fsize, STACK_POINTER_REGNUM);
ret_off = 0;
}
}
}
/* General register restores. */
if (frame_pointer_needed)
{
offset = local_fsize;
/* If the current function calls __builtin_eh_return, then we need
to restore the saved EH data registers. */
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
unsigned int i, regno;
for (i = 0; ; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
load_reg (regno, offset, FRAME_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
for (i = 18; i >= 4; i--)
if (regs_ever_live[i] && ! call_used_regs[i])
{
load_reg (i, offset, FRAME_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
else
{
offset = local_fsize - actual_fsize;
/* If the current function calls __builtin_eh_return, then we need
to restore the saved EH data registers. */
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
unsigned int i, regno;
for (i = 0; ; ++i)
{
regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
/* Only for the first load.
merge_sp_adjust_with_load holds the register load
with which we will merge the sp adjustment. */
if (merge_sp_adjust_with_load == 0
&& local_fsize == 0
&& VAL_14_BITS_P (-actual_fsize))
merge_sp_adjust_with_load = regno;
else
load_reg (regno, offset, STACK_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
for (i = 18; i >= 3; i--)
{
if (regs_ever_live[i] && ! call_used_regs[i])
{
/* Only for the first load.
merge_sp_adjust_with_load holds the register load
with which we will merge the sp adjustment. */
if (merge_sp_adjust_with_load == 0
&& local_fsize == 0
&& VAL_14_BITS_P (-actual_fsize))
merge_sp_adjust_with_load = i;
else
load_reg (i, offset, STACK_POINTER_REGNUM);
offset += UNITS_PER_WORD;
}
}
}
/* Align pointer properly (doubleword boundary). */
offset = (offset + 7) & ~7;
/* FP register restores. */
if (save_fregs)
{
/* Adjust the register to index off of. */
if (frame_pointer_needed)
set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0);
else
set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
/* Actually do the restores now. */
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
if (regs_ever_live[i]
|| (! TARGET_64BIT && regs_ever_live[i + 1]))
{
rtx src = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg));
rtx dest = gen_rtx_REG (DFmode, i);
emit_move_insn (dest, src);
}
}
/* Emit a blockage insn here to keep these insns from being moved to
an earlier spot in the epilogue, or into the main instruction stream.
This is necessary as we must not cut the stack back before all the
restores are finished. */
emit_insn (gen_blockage ());
/* Reset stack pointer (and possibly frame pointer). The stack
pointer is initially set to fp + 64 to avoid a race condition. */
if (frame_pointer_needed)
{
rtx delta = GEN_INT (-64);
set_reg_plus_d (STACK_POINTER_REGNUM, FRAME_POINTER_REGNUM, 64, 0);
emit_insn (gen_pre_load (frame_pointer_rtx, stack_pointer_rtx, delta));
}
/* If we were deferring a callee register restore, do it now. */
else if (merge_sp_adjust_with_load)
{
rtx delta = GEN_INT (-actual_fsize);
rtx dest = gen_rtx_REG (word_mode, merge_sp_adjust_with_load);
emit_insn (gen_pre_load (dest, stack_pointer_rtx, delta));
}
else if (actual_fsize != 0)
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
- actual_fsize, 0);
/* If we haven't restored %r2 yet (no frame pointer, and a stack
frame greater than 8k), do so now. */
if (ret_off != 0)
load_reg (2, ret_off, STACK_POINTER_REGNUM);
if (DO_FRAME_NOTES && current_function_calls_eh_return)
{
rtx sa = EH_RETURN_STACKADJ_RTX;
emit_insn (gen_blockage ());
emit_insn (TARGET_64BIT
? gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx, sa)
: gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, sa));
}
}
rtx
hppa_pic_save_rtx (void)
{
return get_hard_reg_initial_val (word_mode, PIC_OFFSET_TABLE_REGNUM);
}
#ifndef NO_DEFERRED_PROFILE_COUNTERS
#define NO_DEFERRED_PROFILE_COUNTERS 0
#endif
/* Define heap vector type for funcdef numbers. */
DEF_VEC_I(int);
DEF_VEC_ALLOC_I(int,heap);
/* Vector of funcdef numbers. */
static VEC(int,heap) *funcdef_nos;
/* Output deferred profile counters. */
static void
output_deferred_profile_counters (void)
{
unsigned int i;
int align, n;
if (VEC_empty (int, funcdef_nos))
return;
switch_to_section (data_section);
align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
for (i = 0; VEC_iterate (int, funcdef_nos, i, n); i++)
{
targetm.asm_out.internal_label (asm_out_file, "LP", n);
assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
}
VEC_free (int, heap, funcdef_nos);
}
void
hppa_profile_hook (int label_no)
{
/* We use SImode for the address of the function in both 32 and
64-bit code to avoid having to provide DImode versions of the
lcla2 and load_offset_label_address insn patterns. */
rtx reg = gen_reg_rtx (SImode);
rtx label_rtx = gen_label_rtx ();
rtx begin_label_rtx, call_insn;
char begin_label_name[16];
ASM_GENERATE_INTERNAL_LABEL (begin_label_name, FUNC_BEGIN_PROLOG_LABEL,
label_no);
begin_label_rtx = gen_rtx_SYMBOL_REF (SImode, ggc_strdup (begin_label_name));
if (TARGET_64BIT)
emit_move_insn (arg_pointer_rtx,
gen_rtx_PLUS (word_mode, virtual_outgoing_args_rtx,
GEN_INT (64)));
emit_move_insn (gen_rtx_REG (word_mode, 26), gen_rtx_REG (word_mode, 2));
/* The address of the function is loaded into %r25 with a instruction-
relative sequence that avoids the use of relocations. The sequence
is split so that the load_offset_label_address instruction can
occupy the delay slot of the call to _mcount. */
if (TARGET_PA_20)
emit_insn (gen_lcla2 (reg, label_rtx));
else
emit_insn (gen_lcla1 (reg, label_rtx));
emit_insn (gen_load_offset_label_address (gen_rtx_REG (SImode, 25),
reg, begin_label_rtx, label_rtx));
#if !NO_DEFERRED_PROFILE_COUNTERS
{
rtx count_label_rtx, addr, r24;
char count_label_name[16];
VEC_safe_push (int, heap, funcdef_nos, label_no);
ASM_GENERATE_INTERNAL_LABEL (count_label_name, "LP", label_no);
count_label_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (count_label_name));
addr = force_reg (Pmode, count_label_rtx);
r24 = gen_rtx_REG (Pmode, 24);
emit_move_insn (r24, addr);
call_insn =
emit_call_insn (gen_call (gen_rtx_MEM (Pmode,
gen_rtx_SYMBOL_REF (Pmode,
"_mcount")),
GEN_INT (TARGET_64BIT ? 24 : 12)));
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), r24);
}
#else
call_insn =
emit_call_insn (gen_call (gen_rtx_MEM (Pmode,
gen_rtx_SYMBOL_REF (Pmode,
"_mcount")),
GEN_INT (TARGET_64BIT ? 16 : 8)));
#endif
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 25));
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 26));
/* Indicate the _mcount call cannot throw, nor will it execute a
non-local goto. */
REG_NOTES (call_insn)
= gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx, REG_NOTES (call_insn));
}
/* Fetch the return address for the frame COUNT steps up from
the current frame, after the prologue. FRAMEADDR is the
frame pointer of the COUNT frame.
We want to ignore any export stub remnants here. To handle this,
we examine the code at the return address, and if it is an export
stub, we return a memory rtx for the stub return address stored
at frame-24.
The value returned is used in two different ways:
1. To find a function's caller.
2. To change the return address for a function.
This function handles most instances of case 1; however, it will
fail if there are two levels of stubs to execute on the return
path. The only way I believe that can happen is if the return value
needs a parameter relocation, which never happens for C code.
This function handles most instances of case 2; however, it will
fail if we did not originally have stub code on the return path
but will need stub code on the new return path. This can happen if
the caller & callee are both in the main program, but the new
return location is in a shared library. */
rtx
return_addr_rtx (int count, rtx frameaddr)
{
rtx label;
rtx rp;
rtx saved_rp;
rtx ins;
if (count != 0)
return NULL_RTX;
rp = get_hard_reg_initial_val (Pmode, 2);
if (TARGET_64BIT || TARGET_NO_SPACE_REGS)
return rp;
saved_rp = gen_reg_rtx (Pmode);
emit_move_insn (saved_rp, rp);
/* Get pointer to the instruction stream. We have to mask out the
privilege level from the two low order bits of the return address
pointer here so that ins will point to the start of the first
instruction that would have been executed if we returned. */
ins = copy_to_reg (gen_rtx_AND (Pmode, rp, MASK_RETURN_ADDR));
label = gen_label_rtx ();
/* Check the instruction stream at the normal return address for the
export stub:
0x4bc23fd1 | stub+8: ldw -18(sr0,sp),rp
0x004010a1 | stub+12: ldsid (sr0,rp),r1
0x00011820 | stub+16: mtsp r1,sr0
0xe0400002 | stub+20: be,n 0(sr0,rp)
If it is an export stub, than our return address is really in
-24[frameaddr]. */
emit_cmp_insn (gen_rtx_MEM (SImode, ins), GEN_INT (0x4bc23fd1), NE,
NULL_RTX, SImode, 1);
emit_jump_insn (gen_bne (label));
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 4)),
GEN_INT (0x004010a1), NE, NULL_RTX, SImode, 1);
emit_jump_insn (gen_bne (label));
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 8)),
GEN_INT (0x00011820), NE, NULL_RTX, SImode, 1);
emit_jump_insn (gen_bne (label));
/* 0xe0400002 must be specified as -532676606 so that it won't be
rejected as an invalid immediate operand on 64-bit hosts. */
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 12)),
GEN_INT (-532676606), NE, NULL_RTX, SImode, 1);
/* If there is no export stub then just use the value saved from
the return pointer register. */
emit_jump_insn (gen_bne (label));
/* Here we know that our return address points to an export
stub. We don't want to return the address of the export stub,
but rather the return address of the export stub. That return
address is stored at -24[frameaddr]. */
emit_move_insn (saved_rp,
gen_rtx_MEM (Pmode,
memory_address (Pmode,
plus_constant (frameaddr,
-24))));
emit_label (label);
return saved_rp;
}
/* This is only valid once reload has completed because it depends on
knowing exactly how much (if any) frame there is and...
It's only valid if there is no frame marker to de-allocate and...
It's only valid if %r2 hasn't been saved into the caller's frame
(we're not profiling and %r2 isn't live anywhere). */
int
hppa_can_use_return_insn_p (void)
{
return (reload_completed
&& (compute_frame_size (get_frame_size (), 0) ? 0 : 1)
&& ! regs_ever_live[2]
&& ! frame_pointer_needed);
}
void
emit_bcond_fp (enum rtx_code code, rtx operand0)
{
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx_fmt_ee (code,
VOIDmode,
gen_rtx_REG (CCFPmode, 0),
const0_rtx),
gen_rtx_LABEL_REF (VOIDmode, operand0),
pc_rtx)));
}
rtx
gen_cmp_fp (enum rtx_code code, rtx operand0, rtx operand1)
{
return gen_rtx_SET (VOIDmode, gen_rtx_REG (CCFPmode, 0),
gen_rtx_fmt_ee (code, CCFPmode, operand0, operand1));
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
static int
pa_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
enum attr_type attr_type;
/* Don't adjust costs for a pa8000 chip, also do not adjust any
true dependencies as they are described with bypasses now. */
if (pa_cpu >= PROCESSOR_8000 || REG_NOTE_KIND (link) == 0)
return cost;
if (! recog_memoized (insn))
return 0;
attr_type = get_attr_type (insn);
switch (REG_NOTE_KIND (link))
{
case REG_DEP_ANTI:
/* Anti dependency; DEP_INSN reads a register that INSN writes some
cycles later. */
if (attr_type == TYPE_FPLOAD)
{
rtx pat = PATTERN (insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) == PARALLEL)
{
/* This happens for the fldXs,mb patterns. */
pat = XVECEXP (pat, 0, 0);
}
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
/* If this happens, we have to extend this to schedule
optimally. Return 0 for now. */
return 0;
if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
{
if (! recog_memoized (dep_insn))
return 0;
switch (get_attr_type (dep_insn))
{
case TYPE_FPALU:
case TYPE_FPMULSGL:
case TYPE_FPMULDBL:
case TYPE_FPDIVSGL:
case TYPE_FPDIVDBL:
case TYPE_FPSQRTSGL:
case TYPE_FPSQRTDBL:
/* A fpload can't be issued until one cycle before a
preceding arithmetic operation has finished if
the target of the fpload is any of the sources
(or destination) of the arithmetic operation. */
return insn_default_latency (dep_insn) - 1;
default:
return 0;
}
}
}
else if (attr_type == TYPE_FPALU)
{
rtx pat = PATTERN (insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) == PARALLEL)
{
/* This happens for the fldXs,mb patterns. */
pat = XVECEXP (pat, 0, 0);
}
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
/* If this happens, we have to extend this to schedule
optimally. Return 0 for now. */
return 0;
if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
{
if (! recog_memoized (dep_insn))
return 0;
switch (get_attr_type (dep_insn))
{
case TYPE_FPDIVSGL:
case TYPE_FPDIVDBL:
case TYPE_FPSQRTSGL:
case TYPE_FPSQRTDBL:
/* An ALU flop can't be issued until two cycles before a
preceding divide or sqrt operation has finished if
the target of the ALU flop is any of the sources
(or destination) of the divide or sqrt operation. */
return insn_default_latency (dep_insn) - 2;
default:
return 0;
}
}
}
/* For other anti dependencies, the cost is 0. */
return 0;
case REG_DEP_OUTPUT:
/* Output dependency; DEP_INSN writes a register that INSN writes some
cycles later. */
if (attr_type == TYPE_FPLOAD)
{
rtx pat = PATTERN (insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) == PARALLEL)
{
/* This happens for the fldXs,mb patterns. */
pat = XVECEXP (pat, 0, 0);
}
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
/* If this happens, we have to extend this to schedule
optimally. Return 0 for now. */
return 0;
if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
{
if (! recog_memoized (dep_insn))
return 0;
switch (get_attr_type (dep_insn))
{
case TYPE_FPALU:
case TYPE_FPMULSGL:
case TYPE_FPMULDBL:
case TYPE_FPDIVSGL:
case TYPE_FPDIVDBL:
case TYPE_FPSQRTSGL:
case TYPE_FPSQRTDBL:
/* A fpload can't be issued until one cycle before a
preceding arithmetic operation has finished if
the target of the fpload is the destination of the
arithmetic operation.
Exception: For PA7100LC, PA7200 and PA7300, the cost
is 3 cycles, unless they bundle together. We also
pay the penalty if the second insn is a fpload. */
return insn_default_latency (dep_insn) - 1;
default:
return 0;
}
}
}
else if (attr_type == TYPE_FPALU)
{
rtx pat = PATTERN (insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) == PARALLEL)
{
/* This happens for the fldXs,mb patterns. */
pat = XVECEXP (pat, 0, 0);
}
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
/* If this happens, we have to extend this to schedule
optimally. Return 0 for now. */
return 0;
if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
{
if (! recog_memoized (dep_insn))
return 0;
switch (get_attr_type (dep_insn))
{
case TYPE_FPDIVSGL:
case TYPE_FPDIVDBL:
case TYPE_FPSQRTSGL:
case TYPE_FPSQRTDBL:
/* An ALU flop can't be issued until two cycles before a
preceding divide or sqrt operation has finished if
the target of the ALU flop is also the target of
the divide or sqrt operation. */
return insn_default_latency (dep_insn) - 2;
default:
return 0;
}
}
}
/* For other output dependencies, the cost is 0. */
return 0;
default:
gcc_unreachable ();
}
}
/* Adjust scheduling priorities. We use this to try and keep addil
and the next use of %r1 close together. */
static int
pa_adjust_priority (rtx insn, int priority)
{
rtx set = single_set (insn);
rtx src, dest;
if (set)
{
src = SET_SRC (set);
dest = SET_DEST (set);
if (GET_CODE (src) == LO_SUM
&& symbolic_operand (XEXP (src, 1), VOIDmode)
&& ! read_only_operand (XEXP (src, 1), VOIDmode))
priority >>= 3;
else if (GET_CODE (src) == MEM
&& GET_CODE (XEXP (src, 0)) == LO_SUM
&& symbolic_operand (XEXP (XEXP (src, 0), 1), VOIDmode)
&& ! read_only_operand (XEXP (XEXP (src, 0), 1), VOIDmode))
priority >>= 1;
else if (GET_CODE (dest) == MEM
&& GET_CODE (XEXP (dest, 0)) == LO_SUM
&& symbolic_operand (XEXP (XEXP (dest, 0), 1), VOIDmode)
&& ! read_only_operand (XEXP (XEXP (dest, 0), 1), VOIDmode))
priority >>= 3;
}
return priority;
}
/* The 700 can only issue a single insn at a time.
The 7XXX processors can issue two insns at a time.
The 8000 can issue 4 insns at a time. */
static int
pa_issue_rate (void)
{
switch (pa_cpu)
{
case PROCESSOR_700: return 1;
case PROCESSOR_7100: return 2;
case PROCESSOR_7100LC: return 2;
case PROCESSOR_7200: return 2;
case PROCESSOR_7300: return 2;
case PROCESSOR_8000: return 4;
default:
gcc_unreachable ();
}
}
/* Return any length adjustment needed by INSN which already has its length
computed as LENGTH. Return zero if no adjustment is necessary.
For the PA: function calls, millicode calls, and backwards short
conditional branches with unfilled delay slots need an adjustment by +1
(to account for the NOP which will be inserted into the instruction stream).
Also compute the length of an inline block move here as it is too
complicated to express as a length attribute in pa.md. */
int
pa_adjust_insn_length (rtx insn, int length)
{
rtx pat = PATTERN (insn);
/* Jumps inside switch tables which have unfilled delay slots need
adjustment. */
if (GET_CODE (insn) == JUMP_INSN
&& GET_CODE (pat) == PARALLEL
&& get_attr_type (insn) == TYPE_BTABLE_BRANCH)
return 4;
/* Millicode insn with an unfilled delay slot. */
else if (GET_CODE (insn) == INSN
&& GET_CODE (pat) != SEQUENCE
&& GET_CODE (pat) != USE
&& GET_CODE (pat) != CLOBBER
&& get_attr_type (insn) == TYPE_MILLI)
return 4;
/* Block move pattern. */
else if (GET_CODE (insn) == INSN
&& GET_CODE (pat) == PARALLEL
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 1)) == MEM
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 1)) == BLKmode)
return compute_movmem_length (insn) - 4;
/* Block clear pattern. */
else if (GET_CODE (insn) == INSN
&& GET_CODE (pat) == PARALLEL
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
&& XEXP (XVECEXP (pat, 0, 0), 1) == const0_rtx
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode)
return compute_clrmem_length (insn) - 4;
/* Conditional branch with an unfilled delay slot. */
else if (GET_CODE (insn) == JUMP_INSN && ! simplejump_p (insn))
{
/* Adjust a short backwards conditional with an unfilled delay slot. */
if (GET_CODE (pat) == SET
&& length == 4
&& ! forward_branch_p (insn))
return 4;
else if (GET_CODE (pat) == PARALLEL
&& get_attr_type (insn) == TYPE_PARALLEL_BRANCH
&& length == 4)
return 4;
/* Adjust dbra insn with short backwards conditional branch with
unfilled delay slot -- only for case where counter is in a
general register register. */
else if (GET_CODE (pat) == PARALLEL
&& GET_CODE (XVECEXP (pat, 0, 1)) == SET
&& GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == REG
&& ! FP_REG_P (XEXP (XVECEXP (pat, 0, 1), 0))
&& length == 4
&& ! forward_branch_p (insn))
return 4;
else
return 0;
}
return 0;
}
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
void
print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case '#':
/* Output a 'nop' if there's nothing for the delay slot. */
if (dbr_sequence_length () == 0)
fputs ("\n\tnop", file);
return;
case '*':
/* Output a nullification completer if there's nothing for the */
/* delay slot or nullification is requested. */
if (dbr_sequence_length () == 0 ||
(final_sequence &&
INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))))
fputs (",n", file);
return;
case 'R':
/* Print out the second register name of a register pair.
I.e., R (6) => 7. */
fputs (reg_names[REGNO (x) + 1], file);
return;
case 'r':
/* A register or zero. */
if (x == const0_rtx
|| (x == CONST0_RTX (DFmode))
|| (x == CONST0_RTX (SFmode)))
{
fputs ("%r0", file);
return;
}
else
break;
case 'f':
/* A register or zero (floating point). */
if (x == const0_rtx
|| (x == CONST0_RTX (DFmode))
|| (x == CONST0_RTX (SFmode)))
{
fputs ("%fr0", file);
return;
}
else
break;
case 'A':
{
rtx xoperands[2];
xoperands[0] = XEXP (XEXP (x, 0), 0);
xoperands[1] = XVECEXP (XEXP (XEXP (x, 0), 1), 0, 0);
output_global_address (file, xoperands[1], 0);
fprintf (file, "(%s)", reg_names [REGNO (xoperands[0])]);
return;
}
case 'C': /* Plain (C)ondition */
case 'X':
switch (GET_CODE (x))
{
case EQ:
fputs ("=", file); break;
case NE:
fputs ("<>", file); break;
case GT:
fputs (">", file); break;
case GE:
fputs (">=", file); break;
case GEU:
fputs (">>=", file); break;
case GTU:
fputs (">>", file); break;
case LT:
fputs ("<", file); break;
case LE:
fputs ("<=", file); break;
case LEU:
fputs ("<<=", file); break;
case LTU:
fputs ("<<", file); break;
default:
gcc_unreachable ();
}
return;
case 'N': /* Condition, (N)egated */
switch (GET_CODE (x))
{
case EQ:
fputs ("<>", file); break;
case NE:
fputs ("=", file); break;
case GT:
fputs ("<=", file); break;
case GE:
fputs ("<", file); break;
case GEU:
fputs ("<<", file); break;
case GTU:
fputs ("<<=", file); break;
case LT:
fputs (">=", file); break;
case LE:
fputs (">", file); break;
case LEU:
fputs (">>", file); break;
case LTU:
fputs (">>=", file); break;
default:
gcc_unreachable ();
}
return;
/* For floating point comparisons. Note that the output
predicates are the complement of the desired mode. The
conditions for GT, GE, LT, LE and LTGT cause an invalid
operation exception if the result is unordered and this
exception is enabled in the floating-point status register. */
case 'Y':
switch (GET_CODE (x))
{
case EQ:
fputs ("!=", file); break;
case NE:
fputs ("=", file); break;
case GT:
fputs ("!>", file); break;
case GE:
fputs ("!>=", file); break;
case LT:
fputs ("!<", file); break;
case LE:
fputs ("!<=", file); break;
case LTGT:
fputs ("!<>", file); break;
case UNLE:
fputs ("!?<=", file); break;
case UNLT:
fputs ("!?<", file); break;
case UNGE:
fputs ("!?>=", file); break;
case UNGT:
fputs ("!?>", file); break;
case UNEQ:
fputs ("!?=", file); break;
case UNORDERED:
fputs ("!?", file); break;
case ORDERED:
fputs ("?", file); break;
default:
gcc_unreachable ();
}
return;
case 'S': /* Condition, operands are (S)wapped. */
switch (GET_CODE (x))
{
case EQ:
fputs ("=", file); break;
case NE:
fputs ("<>", file); break;
case GT:
fputs ("<", file); break;
case GE:
fputs ("<=", file); break;
case GEU:
fputs ("<<=", file); break;
case GTU:
fputs ("<<", file); break;
case LT:
fputs (">", file); break;
case LE:
fputs (">=", file); break;
case LEU:
fputs (">>=", file); break;
case LTU:
fputs (">>", file); break;
default:
gcc_unreachable ();
}
return;
case 'B': /* Condition, (B)oth swapped and negate. */
switch (GET_CODE (x))
{
case EQ:
fputs ("<>", file); break;
case NE:
fputs ("=", file); break;
case GT:
fputs (">=", file); break;
case GE:
fputs (">", file); break;
case GEU:
fputs (">>", file); break;
case GTU:
fputs (">>=", file); break;
case LT:
fputs ("<=", file); break;
case LE:
fputs ("<", file); break;
case LEU:
fputs ("<<", file); break;
case LTU:
fputs ("<<=", file); break;
default:
gcc_unreachable ();
}
return;
case 'k':
gcc_assert (GET_CODE (x) == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (x));
return;
case 'Q':
gcc_assert (GET_CODE (x) == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - (INTVAL (x) & 63));
return;
case 'L':
gcc_assert (GET_CODE (x) == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - (INTVAL (x) & 31));
return;
case 'O':
gcc_assert (GET_CODE (x) == CONST_INT && exact_log2 (INTVAL (x)) >= 0);
fprintf (file, "%d", exact_log2 (INTVAL (x)));
return;
case 'p':
gcc_assert (GET_CODE (x) == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 63 - (INTVAL (x) & 63));
return;
case 'P':
gcc_assert (GET_CODE (x) == CONST_INT);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 31 - (INTVAL (x) & 31));
return;
case 'I':
if (GET_CODE (x) == CONST_INT)
fputs ("i", file);
return;
case 'M':
case 'F':
switch (GET_CODE (XEXP (x, 0)))
{
case PRE_DEC:
case PRE_INC:
if (ASSEMBLER_DIALECT == 0)
fputs ("s,mb", file);
else
fputs (",mb", file);
break;
case POST_DEC:
case POST_INC:
if (ASSEMBLER_DIALECT == 0)
fputs ("s,ma", file);
else
fputs (",ma", file);
break;
case PLUS:
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
{
if (ASSEMBLER_DIALECT == 0)
fputs ("x", file);
}
else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
|| GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
{
if (ASSEMBLER_DIALECT == 0)
fputs ("x,s", file);
else
fputs (",s", file);
}
else if (code == 'F' && ASSEMBLER_DIALECT == 0)
fputs ("s", file);
break;
default:
if (code == 'F' && ASSEMBLER_DIALECT == 0)
fputs ("s", file);
break;
}
return;
case 'G':
output_global_address (file, x, 0);
return;
case 'H':
output_global_address (file, x, 1);
return;
case 0: /* Don't do anything special */
break;
case 'Z':
{
unsigned op[3];
compute_zdepwi_operands (INTVAL (x), op);
fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
return;
}
case 'z':
{
unsigned op[3];
compute_zdepdi_operands (INTVAL (x), op);
fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
return;
}
case 'c':
/* We can get here from a .vtable_inherit due to our
CONSTANT_ADDRESS_P rejecting perfectly good constant
addresses. */
break;
default:
gcc_unreachable ();
}
if (GET_CODE (x) == REG)
{
fputs (reg_names [REGNO (x)], file);
if (TARGET_64BIT && FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4)
{
fputs ("R", file);
return;
}
if (FP_REG_P (x)
&& GET_MODE_SIZE (GET_MODE (x)) <= 4
&& (REGNO (x) & 1) == 0)
fputs ("L", file);
}
else if (GET_CODE (x) == MEM)
{
int size = GET_MODE_SIZE (GET_MODE (x));
rtx base = NULL_RTX;
switch (GET_CODE (XEXP (x, 0)))
{
case PRE_DEC:
case POST_DEC:
base = XEXP (XEXP (x, 0), 0);
fprintf (file, "-%d(%s)", size, reg_names [REGNO (base)]);
break;
case PRE_INC:
case POST_INC:
base = XEXP (XEXP (x, 0), 0);
fprintf (file, "%d(%s)", size, reg_names [REGNO (base)]);
break;
case PLUS:
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT)
fprintf (file, "%s(%s)",
reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 0), 0))],
reg_names [REGNO (XEXP (XEXP (x, 0), 1))]);
else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
fprintf (file, "%s(%s)",
reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 1), 0))],
reg_names [REGNO (XEXP (XEXP (x, 0), 0))]);
else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
{
/* Because the REG_POINTER flag can get lost during reload,
GO_IF_LEGITIMATE_ADDRESS canonicalizes the order of the
index and base registers in the combined move patterns. */
rtx base = XEXP (XEXP (x, 0), 1);
rtx index = XEXP (XEXP (x, 0), 0);
fprintf (file, "%s(%s)",
reg_names [REGNO (index)], reg_names [REGNO (base)]);
}
else
output_address (XEXP (x, 0));
break;
default:
output_address (XEXP (x, 0));
break;
}
}
else
output_addr_const (file, x);
}
/* output a SYMBOL_REF or a CONST expression involving a SYMBOL_REF. */
void
output_global_address (FILE *file, rtx x, int round_constant)
{
/* Imagine (high (const (plus ...))). */
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
if (GET_CODE (x) == SYMBOL_REF && read_only_operand (x, VOIDmode))
output_addr_const (file, x);
else if (GET_CODE (x) == SYMBOL_REF && !flag_pic)
{
output_addr_const (file, x);
fputs ("-$global$", file);
}
else if (GET_CODE (x) == CONST)
{
const char *sep = "";
int offset = 0; /* assembler wants -$global$ at end */
rtx base = NULL_RTX;
switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
{
case SYMBOL_REF:
base = XEXP (XEXP (x, 0), 0);
output_addr_const (file, base);
break;
case CONST_INT:
offset = INTVAL (XEXP (XEXP (x, 0), 0));
break;
default:
gcc_unreachable ();
}
switch (GET_CODE (XEXP (XEXP (x, 0), 1)))
{
case SYMBOL_REF:
base = XEXP (XEXP (x, 0), 1);
output_addr_const (file, base);
break;
case CONST_INT:
offset = INTVAL (XEXP (XEXP (x, 0), 1));
break;
default:
gcc_unreachable ();
}
/* How bogus. The compiler is apparently responsible for
rounding the constant if it uses an LR field selector.
The linker and/or assembler seem a better place since
they have to do this kind of thing already.
If we fail to do this, HP's optimizing linker may eliminate
an addil, but not update the ldw/stw/ldo instruction that
uses the result of the addil. */
if (round_constant)
offset = ((offset + 0x1000) & ~0x1fff);
switch (GET_CODE (XEXP (x, 0)))
{
case PLUS:
if (offset < 0)
{
offset = -offset;
sep = "-";
}
else
sep = "+";
break;
case MINUS:
gcc_assert (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF);
sep = "-";
break;
default:
gcc_unreachable ();
}
if (!read_only_operand (base, VOIDmode) && !flag_pic)
fputs ("-$global$", file);
if (offset)
fprintf (file, "%s%d", sep, offset);
}
else
output_addr_const (file, x);
}
/* Output boilerplate text to appear at the beginning of the file.
There are several possible versions. */
#define aputs(x) fputs(x, asm_out_file)
static inline void
pa_file_start_level (void)
{
if (TARGET_64BIT)
aputs ("\t.LEVEL 2.0w\n");
else if (TARGET_PA_20)
aputs ("\t.LEVEL 2.0\n");
else if (TARGET_PA_11)
aputs ("\t.LEVEL 1.1\n");
else
aputs ("\t.LEVEL 1.0\n");
}
static inline void
pa_file_start_space (int sortspace)
{
aputs ("\t.SPACE $PRIVATE$");
if (sortspace)
aputs (",SORT=16");
aputs ("\n\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31"
"\n\t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82"
"\n\t.SPACE $TEXT$");
if (sortspace)
aputs (",SORT=8");
aputs ("\n\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44"
"\n\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n");
}
static inline void
pa_file_start_file (int want_version)
{
if (write_symbols != NO_DEBUG)
{
output_file_directive (asm_out_file, main_input_filename);
if (want_version)
aputs ("\t.version\t\"01.01\"\n");
}
}
static inline void
pa_file_start_mcount (const char *aswhat)
{
if (profile_flag)
fprintf (asm_out_file, "\t.IMPORT _mcount,%s\n", aswhat);
}
static void
pa_elf_file_start (void)
{
pa_file_start_level ();
pa_file_start_mcount ("ENTRY");
pa_file_start_file (0);
}
static void
pa_som_file_start (void)
{
pa_file_start_level ();
pa_file_start_space (0);
aputs ("\t.IMPORT $global$,DATA\n"
"\t.IMPORT $$dyncall,MILLICODE\n");
pa_file_start_mcount ("CODE");
pa_file_start_file (0);
}
static void
pa_linux_file_start (void)
{
pa_file_start_file (1);
pa_file_start_level ();
pa_file_start_mcount ("CODE");
}
static void
pa_hpux64_gas_file_start (void)
{
pa_file_start_level ();
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
if (profile_flag)
ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, "_mcount", "function");
#endif
pa_file_start_file (1);
}
static void
pa_hpux64_hpas_file_start (void)
{
pa_file_start_level ();
pa_file_start_space (1);
pa_file_start_mcount ("CODE");
pa_file_start_file (0);
}
#undef aputs
/* Search the deferred plabel list for SYMBOL and return its internal
label. If an entry for SYMBOL is not found, a new entry is created. */
rtx
get_deferred_plabel (rtx symbol)
{
const char *fname = XSTR (symbol, 0);
size_t i;
/* See if we have already put this function on the list of deferred
plabels. This list is generally small, so a liner search is not
too ugly. If it proves too slow replace it with something faster. */
for (i = 0; i < n_deferred_plabels; i++)
if (strcmp (fname, XSTR (deferred_plabels[i].symbol, 0)) == 0)
break;
/* If the deferred plabel list is empty, or this entry was not found
on the list, create a new entry on the list. */
if (deferred_plabels == NULL || i == n_deferred_plabels)
{
tree id;
if (deferred_plabels == 0)
deferred_plabels = (struct deferred_plabel *)
ggc_alloc (sizeof (struct deferred_plabel));
else
deferred_plabels = (struct deferred_plabel *)
ggc_realloc (deferred_plabels,
((n_deferred_plabels + 1)
* sizeof (struct deferred_plabel)));
i = n_deferred_plabels++;
deferred_plabels[i].internal_label = gen_label_rtx ();
deferred_plabels[i].symbol = symbol;
/* Gross. We have just implicitly taken the address of this
function. Mark it in the same manner as assemble_name. */
id = maybe_get_identifier (targetm.strip_name_encoding (fname));
if (id)
mark_referenced (id);
}
return deferred_plabels[i].internal_label;
}
static void
output_deferred_plabels (void)
{
size_t i;
/* If we have some deferred plabels, then we need to switch into the
data or readonly data section, and align it to a 4 byte boundary
before outputting the deferred plabels. */
if (n_deferred_plabels)
{
switch_to_section (flag_pic ? data_section : readonly_data_section);
ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
}
/* Now output the deferred plabels. */
for (i = 0; i < n_deferred_plabels; i++)
{
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (deferred_plabels[i].internal_label));
assemble_integer (deferred_plabels[i].symbol,
TARGET_64BIT ? 8 : 4, TARGET_64BIT ? 64 : 32, 1);
}
}
#ifdef HPUX_LONG_DOUBLE_LIBRARY
/* Initialize optabs to point to HPUX long double emulation routines. */
static void
pa_hpux_init_libfuncs (void)
{
set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
set_optab_libfunc (smin_optab, TFmode, "_U_Qmin");
set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
set_optab_libfunc (sqrt_optab, TFmode, "_U_Qfsqrt");
set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
set_optab_libfunc (unord_optab, TFmode, "_U_Qfunord");
set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
set_conv_libfunc (sfix_optab, SImode, TFmode, TARGET_64BIT
? "__U_Qfcnvfxt_quad_to_sgl"
: "_U_Qfcnvfxt_quad_to_sgl");
set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_usgl");
set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_udbl");
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
set_conv_libfunc (ufloat_optab, TFmode, SImode, "_U_Qfcnvxf_usgl_to_quad");
set_conv_libfunc (ufloat_optab, TFmode, DImode, "_U_Qfcnvxf_udbl_to_quad");
}
#endif
/* HP's millicode routines mean something special to the assembler.
Keep track of which ones we have used. */
enum millicodes { remI, remU, divI, divU, mulI, end1000 };
static void import_milli (enum millicodes);
static char imported[(int) end1000];
static const char * const milli_names[] = {"remI", "remU", "divI", "divU", "mulI"};
static const char import_string[] = ".IMPORT $$....,MILLICODE";
#define MILLI_START 10
static void
import_milli (enum millicodes code)
{
char str[sizeof (import_string)];
if (!imported[(int) code])
{
imported[(int) code] = 1;
strcpy (str, import_string);
strncpy (str + MILLI_START, milli_names[(int) code], 4);
output_asm_insn (str, 0);
}
}
/* The register constraints have put the operands and return value in
the proper registers. */
const char *
output_mul_insn (int unsignedp ATTRIBUTE_UNUSED, rtx insn)
{
import_milli (mulI);
return output_millicode_call (insn, gen_rtx_SYMBOL_REF (Pmode, "$$mulI"));
}
/* Emit the rtl for doing a division by a constant. */
/* Do magic division millicodes exist for this value? */
const int magic_milli[]= {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1};
/* We'll use an array to keep track of the magic millicodes and
whether or not we've used them already. [n][0] is signed, [n][1] is
unsigned. */
static int div_milli[16][2];
int
emit_hpdiv_const (rtx *operands, int unsignedp)
{
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) < 16
&& magic_milli[INTVAL (operands[2])])
{
rtx ret = gen_rtx_REG (SImode, TARGET_64BIT ? 2 : 31);
emit_move_insn (gen_rtx_REG (SImode, 26), operands[1]);
emit
(gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (6, gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, 29),
gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
SImode,
gen_rtx_REG (SImode, 26),
operands[2])),
gen_rtx_CLOBBER (VOIDmode, operands[4]),
gen_rtx_CLOBBER (VOIDmode, operands[3]),
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 26)),
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 25)),
gen_rtx_CLOBBER (VOIDmode, ret))));
emit_move_insn (operands[0], gen_rtx_REG (SImode, 29));
return 1;
}
return 0;
}
const char *
output_div_insn (rtx *operands, int unsignedp, rtx insn)
{
int divisor;
/* If the divisor is a constant, try to use one of the special
opcodes .*/
if (GET_CODE (operands[0]) == CONST_INT)
{
static char buf[100];
divisor = INTVAL (operands[0]);
if (!div_milli[divisor][unsignedp])
{
div_milli[divisor][unsignedp] = 1;
if (unsignedp)
output_asm_insn (".IMPORT $$divU_%0,MILLICODE", operands);
else
output_asm_insn (".IMPORT $$divI_%0,MILLICODE", operands);
}
if (unsignedp)
{
sprintf (buf, "$$divU_" HOST_WIDE_INT_PRINT_DEC,
INTVAL (operands[0]));
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, buf));
}
else
{
sprintf (buf, "$$divI_" HOST_WIDE_INT_PRINT_DEC,
INTVAL (operands[0]));
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, buf));
}
}
/* Divisor isn't a special constant. */
else
{
if (unsignedp)
{
import_milli (divU);
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, "$$divU"));
}
else
{
import_milli (divI);
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, "$$divI"));
}
}
}
/* Output a $$rem millicode to do mod. */
const char *
output_mod_insn (int unsignedp, rtx insn)
{
if (unsignedp)
{
import_milli (remU);
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, "$$remU"));
}
else
{
import_milli (remI);
return output_millicode_call (insn,
gen_rtx_SYMBOL_REF (SImode, "$$remI"));
}
}
void
output_arg_descriptor (rtx call_insn)
{
const char *arg_regs[4];
enum machine_mode arg_mode;
rtx link;
int i, output_flag = 0;
int regno;
/* We neither need nor want argument location descriptors for the
64bit runtime environment or the ELF32 environment. */
if (TARGET_64BIT || TARGET_ELF32)
return;
for (i = 0; i < 4; i++)
arg_regs[i] = 0;
/* Specify explicitly that no argument relocations should take place
if using the portable runtime calling conventions. */
if (TARGET_PORTABLE_RUNTIME)
{
fputs ("\t.CALL ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,RETVAL=NO\n",
asm_out_file);
return;
}
gcc_assert (GET_CODE (call_insn) == CALL_INSN);
for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
link; link = XEXP (link, 1))
{
rtx use = XEXP (link, 0);
if (! (GET_CODE (use) == USE
&& GET_CODE (XEXP (use, 0)) == REG
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
continue;
arg_mode = GET_MODE (XEXP (use, 0));
regno = REGNO (XEXP (use, 0));
if (regno >= 23 && regno <= 26)
{
arg_regs[26 - regno] = "GR";
if (arg_mode == DImode)
arg_regs[25 - regno] = "GR";
}
else if (regno >= 32 && regno <= 39)
{
if (arg_mode == SFmode)
arg_regs[(regno - 32) / 2] = "FR";
else
{
#ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
arg_regs[(regno - 34) / 2] = "FR";
arg_regs[(regno - 34) / 2 + 1] = "FU";
#else
arg_regs[(regno - 34) / 2] = "FU";
arg_regs[(regno - 34) / 2 + 1] = "FR";
#endif
}
}
}
fputs ("\t.CALL ", asm_out_file);
for (i = 0; i < 4; i++)
{
if (arg_regs[i])
{
if (output_flag++)
fputc (',', asm_out_file);
fprintf (asm_out_file, "ARGW%d=%s", i, arg_regs[i]);
}
}
fputc ('\n', asm_out_file);
}
static enum reg_class
pa_secondary_reload (bool in_p, rtx x, enum reg_class class,
enum machine_mode mode, secondary_reload_info *sri)
{
int is_symbolic, regno;
/* Handle the easy stuff first. */
if (class == R1_REGS)
return NO_REGS;
if (REG_P (x))
{
regno = REGNO (x);
if (class == BASE_REG_CLASS && regno < FIRST_PSEUDO_REGISTER)
return NO_REGS;
}
else
regno = -1;
/* If we have something like (mem (mem (...)), we can safely assume the
inner MEM will end up in a general register after reloading, so there's
no need for a secondary reload. */
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == MEM)
return NO_REGS;
/* Trying to load a constant into a FP register during PIC code
generation requires %r1 as a scratch register. */
if (flag_pic
&& (mode == SImode || mode == DImode)
&& FP_REG_CLASS_P (class)
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
{
sri->icode = (mode == SImode ? CODE_FOR_reload_insi_r1
: CODE_FOR_reload_indi_r1);
return NO_REGS;
}
/* Profiling showed the PA port spends about 1.3% of its compilation
time in true_regnum from calls inside pa_secondary_reload_class. */
if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG)
regno = true_regnum (x);
/* Handle out of range displacement for integer mode loads/stores of
FP registers. */
if (((regno >= FIRST_PSEUDO_REGISTER || regno == -1)
&& GET_MODE_CLASS (mode) == MODE_INT
&& FP_REG_CLASS_P (class))
|| (class == SHIFT_REGS && (regno <= 0 || regno >= 32)))
{
sri->icode = in_p ? reload_in_optab[mode] : reload_out_optab[mode];
return NO_REGS;
}
/* A SAR<->FP register copy requires a secondary register (GPR) as
well as secondary memory. */
if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
&& ((REGNO_REG_CLASS (regno) == SHIFT_REGS && FP_REG_CLASS_P (class))
|| (class == SHIFT_REGS
&& FP_REG_CLASS_P (REGNO_REG_CLASS (regno)))))
{
sri->icode = in_p ? reload_in_optab[mode] : reload_out_optab[mode];
return NO_REGS;
}
/* Secondary reloads of symbolic operands require %r1 as a scratch
register when we're generating PIC code and the operand isn't
readonly. */
if (GET_CODE (x) == HIGH)
x = XEXP (x, 0);
/* Profiling has showed GCC spends about 2.6% of its compilation
time in symbolic_operand from calls inside pa_secondary_reload_class.
So, we use an inline copy to avoid useless work. */
switch (GET_CODE (x))
{
rtx op;
case SYMBOL_REF:
is_symbolic = !SYMBOL_REF_TLS_MODEL (x);
break;
case LABEL_REF:
is_symbolic = 1;
break;
case CONST:
op = XEXP (x, 0);
is_symbolic = (((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
&& !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
break;
default:
is_symbolic = 0;
break;
}
if (is_symbolic && (flag_pic || !read_only_operand (x, VOIDmode)))
{
gcc_assert (mode == SImode || mode == DImode);
sri->icode = (mode == SImode ? CODE_FOR_reload_insi_r1
: CODE_FOR_reload_indi_r1);
}
return NO_REGS;
}
/* In the 32-bit runtime, arguments larger than eight bytes are passed
by invisible reference. As a GCC extension, we also pass anything
with a zero or variable size by reference.
The 64-bit runtime does not describe passing any types by invisible
reference. The internals of GCC can't currently handle passing
empty structures, and zero or variable length arrays when they are
not passed entirely on the stack or by reference. Thus, as a GCC
extension, we pass these types by reference. The HP compiler doesn't
support these types, so hopefully there shouldn't be any compatibility
issues. This may have to be revisited when HP releases a C99 compiler
or updates the ABI. */
static bool
pa_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
enum machine_mode mode, tree type,
bool named ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT size;
if (type)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
if (TARGET_64BIT)
return size <= 0;
else
return size <= 0 || size > 8;
}
enum direction
function_arg_padding (enum machine_mode mode, tree type)
{
if (mode == BLKmode
|| (TARGET_64BIT && type && AGGREGATE_TYPE_P (type)))
{
/* Return none if justification is not required. */
if (type
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (int_size_in_bytes (type) * BITS_PER_UNIT) % PARM_BOUNDARY == 0)
return none;
/* The directions set here are ignored when a BLKmode argument larger
than a word is placed in a register. Different code is used for
the stack and registers. This makes it difficult to have a
consistent data representation for both the stack and registers.
For both runtimes, the justification and padding for arguments on
the stack and in registers should be identical. */
if (TARGET_64BIT)
/* The 64-bit runtime specifies left justification for aggregates. */
return upward;
else
/* The 32-bit runtime architecture specifies right justification.
When the argument is passed on the stack, the argument is padded
with garbage on the left. The HP compiler pads with zeros. */
return downward;
}
if (GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
return downward;
else
return none;
}
/* Do what is necessary for `va_start'. We look at the current function
to determine if stdargs or varargs is used and fill in an initial
va_list. A pointer to this constructor is returned. */
static rtx
hppa_builtin_saveregs (void)
{
rtx offset, dest;
tree fntype = TREE_TYPE (current_function_decl);
int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node)))
? UNITS_PER_WORD : 0);
if (argadj)
offset = plus_constant (current_function_arg_offset_rtx, argadj);
else
offset = current_function_arg_offset_rtx;
if (TARGET_64BIT)
{
int i, off;
/* Adjust for varargs/stdarg differences. */
if (argadj)
offset = plus_constant (current_function_arg_offset_rtx, -argadj);
else
offset = current_function_arg_offset_rtx;
/* We need to save %r26 .. %r19 inclusive starting at offset -64
from the incoming arg pointer and growing to larger addresses. */
for (i = 26, off = -64; i >= 19; i--, off += 8)
emit_move_insn (gen_rtx_MEM (word_mode,
plus_constant (arg_pointer_rtx, off)),
gen_rtx_REG (word_mode, i));
/* The incoming args pointer points just beyond the flushback area;
normally this is not a serious concern. However, when we are doing
varargs/stdargs we want to make the arg pointer point to the start
of the incoming argument area. */
emit_move_insn (virtual_incoming_args_rtx,
plus_constant (arg_pointer_rtx, -64));
/* Now return a pointer to the first anonymous argument. */
return copy_to_reg (expand_binop (Pmode, add_optab,
virtual_incoming_args_rtx,
offset, 0, 0, OPTAB_LIB_WIDEN));
}
/* Store general registers on the stack. */
dest = gen_rtx_MEM (BLKmode,
plus_constant (current_function_internal_arg_pointer,
-16));
set_mem_alias_set (dest, get_varargs_alias_set ());
set_mem_align (dest, BITS_PER_WORD);
move_block_from_reg (23, dest, 4);
/* move_block_from_reg will emit code to store the argument registers
individually as scalar stores.
However, other insns may later load from the same addresses for
a structure load (passing a struct to a varargs routine).
The alias code assumes that such aliasing can never happen, so we
have to keep memory referencing insns from moving up beyond the
last argument register store. So we emit a blockage insn here. */
emit_insn (gen_blockage ());
return copy_to_reg (expand_binop (Pmode, add_optab,
current_function_internal_arg_pointer,
offset, 0, 0, OPTAB_LIB_WIDEN));
}
void
hppa_va_start (tree valist, rtx nextarg)
{
nextarg = expand_builtin_saveregs ();
std_expand_builtin_va_start (valist, nextarg);
}
static tree
hppa_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
{
if (TARGET_64BIT)
{
/* Args grow upward. We can use the generic routines. */
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
}
else /* !TARGET_64BIT */
{
tree ptr = build_pointer_type (type);
tree valist_type;
tree t, u;
unsigned int size, ofs;
bool indirect;
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
if (indirect)
{
type = ptr;
ptr = build_pointer_type (type);
}
size = int_size_in_bytes (type);
valist_type = TREE_TYPE (valist);
/* Args grow down. Not handled by generic routines. */
u = fold_convert (valist_type, size_in_bytes (type));
t = build2 (MINUS_EXPR, valist_type, valist, u);
/* Copied from va-pa.h, but we probably don't need to align to
word size, since we generate and preserve that invariant. */
u = build_int_cst (valist_type, (size > 4 ? -8 : -4));
t = build2 (BIT_AND_EXPR, valist_type, t, u);
t = build2 (MODIFY_EXPR, valist_type, valist, t);
ofs = (8 - size) % 4;
if (ofs != 0)
{
u = fold_convert (valist_type, size_int (ofs));
t = build2 (PLUS_EXPR, valist_type, t, u);
}
t = fold_convert (ptr, t);
t = build_va_arg_indirect_ref (t);
if (indirect)
t = build_va_arg_indirect_ref (t);
return t;
}
}
/* True if MODE is valid for the target. By "valid", we mean able to
be manipulated in non-trivial ways. In particular, this means all
the arithmetic is supported.
Currently, TImode is not valid as the HP 64-bit runtime documentation
doesn't document the alignment and calling conventions for this type.
Thus, we return false when PRECISION is 2 * BITS_PER_WORD and
2 * BITS_PER_WORD isn't equal LONG_LONG_TYPE_SIZE. */
static bool
pa_scalar_mode_supported_p (enum machine_mode mode)
{
int precision = GET_MODE_PRECISION (mode);
switch (GET_MODE_CLASS (mode))
{
case MODE_PARTIAL_INT:
case MODE_INT:
if (precision == CHAR_TYPE_SIZE)
return true;
if (precision == SHORT_TYPE_SIZE)
return true;
if (precision == INT_TYPE_SIZE)
return true;
if (precision == LONG_TYPE_SIZE)
return true;
if (precision == LONG_LONG_TYPE_SIZE)
return true;
return false;
case MODE_FLOAT:
if (precision == FLOAT_TYPE_SIZE)
return true;
if (precision == DOUBLE_TYPE_SIZE)
return true;
if (precision == LONG_DOUBLE_TYPE_SIZE)
return true;
return false;
case MODE_DECIMAL_FLOAT:
return false;
default:
gcc_unreachable ();
}
}
/* This routine handles all the normal conditional branch sequences we
might need to generate. It handles compare immediate vs compare
register, nullification of delay slots, varying length branches,
negated branches, and all combinations of the above. It returns the
output appropriate to emit the branch corresponding to all given
parameters. */
const char *
output_cbranch (rtx *operands, int negated, rtx insn)
{
static char buf[100];
int useskip = 0;
int nullify = INSN_ANNULLED_BRANCH_P (insn);
int length = get_attr_length (insn);
int xdelay;
/* A conditional branch to the following instruction (e.g. the delay slot)
is asking for a disaster. This can happen when not optimizing and
when jump optimization fails.
While it is usually safe to emit nothing, this can fail if the
preceding instruction is a nullified branch with an empty delay
slot and the same branch target as this branch. We could check
for this but jump optimization should eliminate nop jumps. It
is always safe to emit a nop. */
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
return "nop";
/* The doubleword form of the cmpib instruction doesn't have the LEU
and GTU conditions while the cmpb instruction does. Since we accept
zero for cmpb, we must ensure that we use cmpb for the comparison. */
if (GET_MODE (operands[1]) == DImode && operands[2] == const0_rtx)
operands[2] = gen_rtx_REG (DImode, 0);
if (GET_MODE (operands[2]) == DImode && operands[1] == const0_rtx)
operands[1] = gen_rtx_REG (DImode, 0);
/* If this is a long branch with its delay slot unfilled, set `nullify'
as it can nullify the delay slot and save a nop. */
if (length == 8 && dbr_sequence_length () == 0)
nullify = 1;
/* If this is a short forward conditional branch which did not get
its delay slot filled, the delay slot can still be nullified. */
if (! nullify && length == 4 && dbr_sequence_length () == 0)
nullify = forward_branch_p (insn);
/* A forward branch over a single nullified insn can be done with a
comclr instruction. This avoids a single cycle penalty due to
mis-predicted branch if we fall through (branch not taken). */
if (length == 4
&& next_real_insn (insn) != 0
&& get_attr_length (next_real_insn (insn)) == 4
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
&& nullify)
useskip = 1;
switch (length)
{
/* All short conditional branches except backwards with an unfilled
delay slot. */
case 4:
if (useskip)
strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
else
strcpy (buf, "{com%I2b,|cmp%I2b,}");
if (GET_MODE (operands[1]) == DImode)
strcat (buf, "*");
if (negated)
strcat (buf, "%B3");
else
strcat (buf, "%S3");
if (useskip)
strcat (buf, " %2,%r1,%%r0");
else if (nullify)
strcat (buf, ",n %2,%r1,%0");
else
strcat (buf, " %2,%r1,%0");
break;
/* All long conditionals. Note a short backward branch with an
unfilled delay slot is treated just like a long backward branch
with an unfilled delay slot. */
case 8:
/* Handle weird backwards branch with a filled delay slot
which is nullified. */
if (dbr_sequence_length () != 0
&& ! forward_branch_p (insn)
&& nullify)
{
strcpy (buf, "{com%I2b,|cmp%I2b,}");
if (GET_MODE (operands[1]) == DImode)
strcat (buf, "*");
if (negated)
strcat (buf, "%S3");
else
strcat (buf, "%B3");
strcat (buf, ",n %2,%r1,.+12\n\tb %0");
}
/* Handle short backwards branch with an unfilled delay slot.
Using a comb;nop rather than comiclr;bl saves 1 cycle for both
taken and untaken branches. */
else if (dbr_sequence_length () == 0
&& ! forward_branch_p (insn)
&& INSN_ADDRESSES_SET_P ()
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
{
strcpy (buf, "{com%I2b,|cmp%I2b,}");
if (GET_MODE (operands[1]) == DImode)
strcat (buf, "*");
if (negated)
strcat (buf, "%B3 %2,%r1,%0%#");
else
strcat (buf, "%S3 %2,%r1,%0%#");
}
else
{
strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
if (GET_MODE (operands[1]) == DImode)
strcat (buf, "*");
if (negated)
strcat (buf, "%S3");
else
strcat (buf, "%B3");
if (nullify)
strcat (buf, " %2,%r1,%%r0\n\tb,n %0");
else
strcat (buf, " %2,%r1,%%r0\n\tb %0");
}
break;
default:
/* The reversed conditional branch must branch over one additional
instruction if the delay slot is filled and needs to be extracted
by output_lbranch. If the delay slot is empty or this is a
nullified forward branch, the instruction after the reversed
condition branch must be nullified. */
if (dbr_sequence_length () == 0
|| (nullify && forward_branch_p (insn)))
{
nullify = 1;
xdelay = 0;
operands[4] = GEN_INT (length);
}
else
{
xdelay = 1;
operands[4] = GEN_INT (length + 4);
}
/* Create a reversed conditional branch which branches around
the following insns. */
if (GET_MODE (operands[1]) != DImode)
{
if (nullify)
{
if (negated)
strcpy (buf,
"{com%I2b,%S3,n %2,%r1,.+%4|cmp%I2b,%S3,n %2,%r1,.+%4}");
else
strcpy (buf,
"{com%I2b,%B3,n %2,%r1,.+%4|cmp%I2b,%B3,n %2,%r1,.+%4}");
}
else
{
if (negated)
strcpy (buf,
"{com%I2b,%S3 %2,%r1,.+%4|cmp%I2b,%S3 %2,%r1,.+%4}");
else
strcpy (buf,
"{com%I2b,%B3 %2,%r1,.+%4|cmp%I2b,%B3 %2,%r1,.+%4}");
}
}
else
{
if (nullify)
{
if (negated)
strcpy (buf,
"{com%I2b,*%S3,n %2,%r1,.+%4|cmp%I2b,*%S3,n %2,%r1,.+%4}");
else
strcpy (buf,
"{com%I2b,*%B3,n %2,%r1,.+%4|cmp%I2b,*%B3,n %2,%r1,.+%4}");
}
else
{
if (negated)
strcpy (buf,
"{com%I2b,*%S3 %2,%r1,.+%4|cmp%I2b,*%S3 %2,%r1,.+%4}");
else
strcpy (buf,
"{com%I2b,*%B3 %2,%r1,.+%4|cmp%I2b,*%B3 %2,%r1,.+%4}");
}
}
output_asm_insn (buf, operands);
return output_lbranch (operands[0], insn, xdelay);
}
return buf;
}
/* This routine handles output of long unconditional branches that
exceed the maximum range of a simple branch instruction. Since
we don't have a register available for the branch, we save register
%r1 in the frame marker, load the branch destination DEST into %r1,
execute the branch, and restore %r1 in the delay slot of the branch.
Since long branches may have an insn in the delay slot and the
delay slot is used to restore %r1, we in general need to extract
this insn and execute it before the branch. However, to facilitate
use of this function by conditional branches, we also provide an
option to not extract the delay insn so that it will be emitted
after the long branch. So, if there is an insn in the delay slot,
it is extracted if XDELAY is nonzero.
The lengths of the various long-branch sequences are 20, 16 and 24
bytes for the portable runtime, non-PIC and PIC cases, respectively. */
const char *
output_lbranch (rtx dest, rtx insn, int xdelay)
{
rtx xoperands[2];
xoperands[0] = dest;
/* First, free up the delay slot. */
if (xdelay && dbr_sequence_length () != 0)
{
/* We can't handle a jump in the delay slot. */
gcc_assert (GET_CODE (NEXT_INSN (insn)) != JUMP_INSN);
final_scan_insn (NEXT_INSN (insn), asm_out_file,
optimize, 0, NULL);
/* Now delete the delay insn. */
PUT_CODE (NEXT_INSN (insn), NOTE);
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
}
/* Output an insn to save %r1. The runtime documentation doesn't
specify whether the "Clean Up" slot in the callers frame can
be clobbered by the callee. It isn't copied by HP's builtin
alloca, so this suggests that it can be clobbered if necessary.
The "Static Link" location is copied by HP builtin alloca, so
we avoid using it. Using the cleanup slot might be a problem
if we have to interoperate with languages that pass cleanup
information. However, it should be possible to handle these
situations with GCC's asm feature.
The "Current RP" slot is reserved for the called procedure, so
we try to use it when we don't have a frame of our own. It's
rather unlikely that we won't have a frame when we need to emit
a very long branch.
Really the way to go long term is a register scavenger; goto
the target of the jump and find a register which we can use
as a scratch to hold the value in %r1. Then, we wouldn't have
to free up the delay slot or clobber a slot that may be needed
for other purposes. */
if (TARGET_64BIT)
{
if (actual_fsize == 0 && !regs_ever_live[2])
/* Use the return pointer slot in the frame marker. */
output_asm_insn ("std %%r1,-16(%%r30)", xoperands);
else
/* Use the slot at -40 in the frame marker since HP builtin
alloca doesn't copy it. */
output_asm_insn ("std %%r1,-40(%%r30)", xoperands);
}
else
{
if (actual_fsize == 0 && !regs_ever_live[2])
/* Use the return pointer slot in the frame marker. */
output_asm_insn ("stw %%r1,-20(%%r30)", xoperands);
else
/* Use the "Clean Up" slot in the frame marker. In GCC,
the only other use of this location is for copying a
floating point double argument from a floating-point
register to two general registers. The copy is done
as an "atomic" operation when outputting a call, so it
won't interfere with our using the location here. */
output_asm_insn ("stw %%r1,-12(%%r30)", xoperands);
}
if (TARGET_PORTABLE_RUNTIME)
{
output_asm_insn ("ldil L'%0,%%r1", xoperands);
output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
output_asm_insn ("bv %%r0(%%r1)", xoperands);
}
else if (flag_pic)
{
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
if (TARGET_SOM || !TARGET_GAS)
{
xoperands[1] = gen_label_rtx ();
output_asm_insn ("addil L'%l0-%l1,%%r1", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
output_asm_insn ("ldo R'%l0-%l1(%%r1),%%r1", xoperands);
}
else
{
output_asm_insn ("addil L'%l0-$PIC_pcrel$0+4,%%r1", xoperands);
output_asm_insn ("ldo R'%l0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
}
output_asm_insn ("bv %%r0(%%r1)", xoperands);
}
else
/* Now output a very long branch to the original target. */
output_asm_insn ("ldil L'%l0,%%r1\n\tbe R'%l0(%%sr4,%%r1)", xoperands);
/* Now restore the value of %r1 in the delay slot. */
if (TARGET_64BIT)
{
if (actual_fsize == 0 && !regs_ever_live[2])
return "ldd -16(%%r30),%%r1";
else
return "ldd -40(%%r30),%%r1";
}
else
{
if (actual_fsize == 0 && !regs_ever_live[2])
return "ldw -20(%%r30),%%r1";
else
return "ldw -12(%%r30),%%r1";
}
}
/* This routine handles all the branch-on-bit conditional branch sequences we
might need to generate. It handles nullification of delay slots,
varying length branches, negated branches and all combinations of the
above. it returns the appropriate output template to emit the branch. */
const char *
output_bb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx insn, int which)
{
static char buf[100];
int useskip = 0;
int nullify = INSN_ANNULLED_BRANCH_P (insn);
int length = get_attr_length (insn);
int xdelay;
/* A conditional branch to the following instruction (e.g. the delay slot) is
asking for a disaster. I do not think this can happen as this pattern
is only used when optimizing; jump optimization should eliminate the
jump. But be prepared just in case. */
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
return "nop";
/* If this is a long branch with its delay slot unfilled, set `nullify'
as it can nullify the delay slot and save a nop. */
if (length == 8 && dbr_sequence_length () == 0)
nullify = 1;
/* If this is a short forward conditional branch which did not get
its delay slot filled, the delay slot can still be nullified. */
if (! nullify && length == 4 && dbr_sequence_length () == 0)
nullify = forward_branch_p (insn);
/* A forward branch over a single nullified insn can be done with a
extrs instruction. This avoids a single cycle penalty due to
mis-predicted branch if we fall through (branch not taken). */
if (length == 4
&& next_real_insn (insn) != 0
&& get_attr_length (next_real_insn (insn)) == 4
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
&& nullify)
useskip = 1;
switch (length)
{
/* All short conditional branches except backwards with an unfilled
delay slot. */
case 4:
if (useskip)
strcpy (buf, "{extrs,|extrw,s,}");
else
strcpy (buf, "bb,");
if (useskip && GET_MODE (operands[0]) == DImode)
strcpy (buf, "extrd,s,*");
else if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "bb,*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, ">=");
else
strcat (buf, "<");
if (useskip)
strcat (buf, " %0,%1,1,%%r0");
else if (nullify && negated)
strcat (buf, ",n %0,%1,%3");
else if (nullify && ! negated)
strcat (buf, ",n %0,%1,%2");
else if (! nullify && negated)
strcat (buf, "%0,%1,%3");
else if (! nullify && ! negated)
strcat (buf, " %0,%1,%2");
break;
/* All long conditionals. Note a short backward branch with an
unfilled delay slot is treated just like a long backward branch
with an unfilled delay slot. */
case 8:
/* Handle weird backwards branch with a filled delay slot
which is nullified. */
if (dbr_sequence_length () != 0
&& ! forward_branch_p (insn)
&& nullify)
{
strcpy (buf, "bb,");
if (GET_MODE (operands[0]) == DImode)
strcat (buf, "*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (negated)
strcat (buf, ",n %0,%1,.+12\n\tb %3");
else
strcat (buf, ",n %0,%1,.+12\n\tb %2");
}
/* Handle short backwards branch with an unfilled delay slot.
Using a bb;nop rather than extrs;bl saves 1 cycle for both
taken and untaken branches. */
else if (dbr_sequence_length () == 0
&& ! forward_branch_p (insn)
&& INSN_ADDRESSES_SET_P ()
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
{
strcpy (buf, "bb,");
if (GET_MODE (operands[0]) == DImode)
strcat (buf, "*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, ">=");
else
strcat (buf, "<");
if (negated)
strcat (buf, " %0,%1,%3%#");
else
strcat (buf, " %0,%1,%2%#");
}
else
{
if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "extrd,s,*");
else
strcpy (buf, "{extrs,|extrw,s,}");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (nullify && negated)
strcat (buf, " %0,%1,1,%%r0\n\tb,n %3");
else if (nullify && ! negated)
strcat (buf, " %0,%1,1,%%r0\n\tb,n %2");
else if (negated)
strcat (buf, " %0,%1,1,%%r0\n\tb %3");
else
strcat (buf, " %0,%1,1,%%r0\n\tb %2");
}
break;
default:
/* The reversed conditional branch must branch over one additional
instruction if the delay slot is filled and needs to be extracted
by output_lbranch. If the delay slot is empty or this is a
nullified forward branch, the instruction after the reversed
condition branch must be nullified. */
if (dbr_sequence_length () == 0
|| (nullify && forward_branch_p (insn)))
{
nullify = 1;
xdelay = 0;
operands[4] = GEN_INT (length);
}
else
{
xdelay = 1;
operands[4] = GEN_INT (length + 4);
}
if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "bb,*");
else
strcpy (buf, "bb,");
if ((which == 0 && negated)
|| (which == 1 && !negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (nullify)
strcat (buf, ",n %0,%1,.+%4");
else
strcat (buf, " %0,%1,.+%4");
output_asm_insn (buf, operands);
return output_lbranch (negated ? operands[3] : operands[2],
insn, xdelay);
}
return buf;
}
/* This routine handles all the branch-on-variable-bit conditional branch
sequences we might need to generate. It handles nullification of delay
slots, varying length branches, negated branches and all combinations
of the above. it returns the appropriate output template to emit the
branch. */
const char *
output_bvb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx insn, int which)
{
static char buf[100];
int useskip = 0;
int nullify = INSN_ANNULLED_BRANCH_P (insn);
int length = get_attr_length (insn);
int xdelay;
/* A conditional branch to the following instruction (e.g. the delay slot) is
asking for a disaster. I do not think this can happen as this pattern
is only used when optimizing; jump optimization should eliminate the
jump. But be prepared just in case. */
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
return "nop";
/* If this is a long branch with its delay slot unfilled, set `nullify'
as it can nullify the delay slot and save a nop. */
if (length == 8 && dbr_sequence_length () == 0)
nullify = 1;
/* If this is a short forward conditional branch which did not get
its delay slot filled, the delay slot can still be nullified. */
if (! nullify && length == 4 && dbr_sequence_length () == 0)
nullify = forward_branch_p (insn);
/* A forward branch over a single nullified insn can be done with a
extrs instruction. This avoids a single cycle penalty due to
mis-predicted branch if we fall through (branch not taken). */
if (length == 4
&& next_real_insn (insn) != 0
&& get_attr_length (next_real_insn (insn)) == 4
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
&& nullify)
useskip = 1;
switch (length)
{
/* All short conditional branches except backwards with an unfilled
delay slot. */
case 4:
if (useskip)
strcpy (buf, "{vextrs,|extrw,s,}");
else
strcpy (buf, "{bvb,|bb,}");
if (useskip && GET_MODE (operands[0]) == DImode)
strcpy (buf, "extrd,s,*");
else if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "bb,*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, ">=");
else
strcat (buf, "<");
if (useskip)
strcat (buf, "{ %0,1,%%r0| %0,%%sar,1,%%r0}");
else if (nullify && negated)
strcat (buf, "{,n %0,%3|,n %0,%%sar,%3}");
else if (nullify && ! negated)
strcat (buf, "{,n %0,%2|,n %0,%%sar,%2}");
else if (! nullify && negated)
strcat (buf, "{%0,%3|%0,%%sar,%3}");
else if (! nullify && ! negated)
strcat (buf, "{ %0,%2| %0,%%sar,%2}");
break;
/* All long conditionals. Note a short backward branch with an
unfilled delay slot is treated just like a long backward branch
with an unfilled delay slot. */
case 8:
/* Handle weird backwards branch with a filled delay slot
which is nullified. */
if (dbr_sequence_length () != 0
&& ! forward_branch_p (insn)
&& nullify)
{
strcpy (buf, "{bvb,|bb,}");
if (GET_MODE (operands[0]) == DImode)
strcat (buf, "*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (negated)
strcat (buf, "{,n %0,.+12\n\tb %3|,n %0,%%sar,.+12\n\tb %3}");
else
strcat (buf, "{,n %0,.+12\n\tb %2|,n %0,%%sar,.+12\n\tb %2}");
}
/* Handle short backwards branch with an unfilled delay slot.
Using a bb;nop rather than extrs;bl saves 1 cycle for both
taken and untaken branches. */
else if (dbr_sequence_length () == 0
&& ! forward_branch_p (insn)
&& INSN_ADDRESSES_SET_P ()
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
{
strcpy (buf, "{bvb,|bb,}");
if (GET_MODE (operands[0]) == DImode)
strcat (buf, "*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, ">=");
else
strcat (buf, "<");
if (negated)
strcat (buf, "{ %0,%3%#| %0,%%sar,%3%#}");
else
strcat (buf, "{ %0,%2%#| %0,%%sar,%2%#}");
}
else
{
strcpy (buf, "{vextrs,|extrw,s,}");
if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "extrd,s,*");
if ((which == 0 && negated)
|| (which == 1 && ! negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (nullify && negated)
strcat (buf, "{ %0,1,%%r0\n\tb,n %3| %0,%%sar,1,%%r0\n\tb,n %3}");
else if (nullify && ! negated)
strcat (buf, "{ %0,1,%%r0\n\tb,n %2| %0,%%sar,1,%%r0\n\tb,n %2}");
else if (negated)
strcat (buf, "{ %0,1,%%r0\n\tb %3| %0,%%sar,1,%%r0\n\tb %3}");
else
strcat (buf, "{ %0,1,%%r0\n\tb %2| %0,%%sar,1,%%r0\n\tb %2}");
}
break;
default:
/* The reversed conditional branch must branch over one additional
instruction if the delay slot is filled and needs to be extracted
by output_lbranch. If the delay slot is empty or this is a
nullified forward branch, the instruction after the reversed
condition branch must be nullified. */
if (dbr_sequence_length () == 0
|| (nullify && forward_branch_p (insn)))
{
nullify = 1;
xdelay = 0;
operands[4] = GEN_INT (length);
}
else
{
xdelay = 1;
operands[4] = GEN_INT (length + 4);
}
if (GET_MODE (operands[0]) == DImode)
strcpy (buf, "bb,*");
else
strcpy (buf, "{bvb,|bb,}");
if ((which == 0 && negated)
|| (which == 1 && !negated))
strcat (buf, "<");
else
strcat (buf, ">=");
if (nullify)
strcat (buf, ",n {%0,.+%4|%0,%%sar,.+%4}");
else
strcat (buf, " {%0,.+%4|%0,%%sar,.+%4}");
output_asm_insn (buf, operands);
return output_lbranch (negated ? operands[3] : operands[2],
insn, xdelay);
}
return buf;
}
/* Return the output template for emitting a dbra type insn.
Note it may perform some output operations on its own before
returning the final output string. */
const char *
output_dbra (rtx *operands, rtx insn, int which_alternative)
{
int length = get_attr_length (insn);
/* A conditional branch to the following instruction (e.g. the delay slot) is
asking for a disaster. Be prepared! */
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
{
if (which_alternative == 0)
return "ldo %1(%0),%0";
else if (which_alternative == 1)
{
output_asm_insn ("{fstws|fstw} %0,-16(%%r30)", operands);
output_asm_insn ("ldw -16(%%r30),%4", operands);
output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
return "{fldws|fldw} -16(%%r30),%0";
}
else
{
output_asm_insn ("ldw %0,%4", operands);
return "ldo %1(%4),%4\n\tstw %4,%0";
}
}
if (which_alternative == 0)
{
int nullify = INSN_ANNULLED_BRANCH_P (insn);
int xdelay;
/* If this is a long branch with its delay slot unfilled, set `nullify'
as it can nullify the delay slot and save a nop. */
if (length == 8 && dbr_sequence_length () == 0)
nullify = 1;
/* If this is a short forward conditional branch which did not get
its delay slot filled, the delay slot can still be nullified. */
if (! nullify && length == 4 && dbr_sequence_length () == 0)
nullify = forward_branch_p (insn);
switch (length)
{
case 4:
if (nullify)
return "addib,%C2,n %1,%0,%3";
else
return "addib,%C2 %1,%0,%3";
case 8:
/* Handle weird backwards branch with a fulled delay slot
which is nullified. */
if (dbr_sequence_length () != 0
&& ! forward_branch_p (insn)
&& nullify)
return "addib,%N2,n %1,%0,.+12\n\tb %3";
/* Handle short backwards branch with an unfilled delay slot.
Using a addb;nop rather than addi;bl saves 1 cycle for both
taken and untaken branches. */
else if (dbr_sequence_length () == 0
&& ! forward_branch_p (insn)
&& INSN_ADDRESSES_SET_P ()
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
return "addib,%C2 %1,%0,%3%#";
/* Handle normal cases. */
if (nullify)
return "addi,%N2 %1,%0,%0\n\tb,n %3";
else
return "addi,%N2 %1,%0,%0\n\tb %3";
default:
/* The reversed conditional branch must branch over one additional
instruction if the delay slot is filled and needs to be extracted
by output_lbranch. If the delay slot is empty or this is a
nullified forward branch, the instruction after the reversed
condition branch must be nullified. */
if (dbr_sequence_length () == 0
|| (nullify && forward_branch_p (insn)))
{
nullify = 1;
xdelay = 0;
operands[4] = GEN_INT (length);
}
else
{
xdelay = 1;
operands[4] = GEN_INT (length + 4);
}
if (nullify)
output_asm_insn ("addib,%N2,n %1,%0,.+%4", operands);
else
output_asm_insn ("addib,%N2 %1,%0,.+%4", operands);
return output_lbranch (operands[3], insn, xdelay);
}
}
/* Deal with gross reload from FP register case. */
else if (which_alternative == 1)
{
/* Move loop counter from FP register to MEM then into a GR,
increment the GR, store the GR into MEM, and finally reload
the FP register from MEM from within the branch's delay slot. */
output_asm_insn ("{fstws|fstw} %0,-16(%%r30)\n\tldw -16(%%r30),%4",
operands);
output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
if (length == 24)
return "{comb|cmpb},%S2 %%r0,%4,%3\n\t{fldws|fldw} -16(%%r30),%0";
else if (length == 28)
return "{comclr|cmpclr},%B2 %%r0,%4,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
else
{
operands[5] = GEN_INT (length - 16);
output_asm_insn ("{comb|cmpb},%B2 %%r0,%4,.+%5", operands);
output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
return output_lbranch (operands[3], insn, 0);
}
}
/* Deal with gross reload from memory case. */
else
{
/* Reload loop counter from memory, the store back to memory
happens in the branch's delay slot. */
output_asm_insn ("ldw %0,%4", operands);
if (length == 12)
return "addib,%C2 %1,%4,%3\n\tstw %4,%0";
else if (length == 16)
return "addi,%N2 %1,%4,%4\n\tb %3\n\tstw %4,%0";
else
{
operands[5] = GEN_INT (length - 4);
output_asm_insn ("addib,%N2 %1,%4,.+%5\n\tstw %4,%0", operands);
return output_lbranch (operands[3], insn, 0);
}
}
}
/* Return the output template for emitting a movb type insn.
Note it may perform some output operations on its own before
returning the final output string. */
const char *
output_movb (rtx *operands, rtx insn, int which_alternative,
int reverse_comparison)
{
int length = get_attr_length (insn);
/* A conditional branch to the following instruction (e.g. the delay slot) is
asking for a disaster. Be prepared! */
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
{
if (which_alternative == 0)
return "copy %1,%0";
else if (which_alternative == 1)
{
output_asm_insn ("stw %1,-16(%%r30)", operands);
return "{fldws|fldw} -16(%%r30),%0";
}
else if (which_alternative == 2)
return "stw %1,%0";
else
return "mtsar %r1";
}
/* Support the second variant. */
if (reverse_comparison)
PUT_CODE (operands[2], reverse_condition (GET_CODE (operands[2])));
if (which_alternative == 0)
{
int nullify = INSN_ANNULLED_BRANCH_P (insn);
int xdelay;
/* If this is a long branch with its delay slot unfilled, set `nullify'
as it can nullify the delay slot and save a nop. */
if (length == 8 && dbr_sequence_length () == 0)
nullify = 1;
/* If this is a short forward conditional branch which did not get
its delay slot filled, the delay slot can still be nullified. */
if (! nullify && length == 4 && dbr_sequence_length () == 0)
nullify = forward_branch_p (insn);
switch (length)
{
case 4:
if (nullify)
return "movb,%C2,n %1,%0,%3";
else
return "movb,%C2 %1,%0,%3";
case 8:
/* Handle weird backwards branch with a filled delay slot
which is nullified. */
if (dbr_sequence_length () != 0
&& ! forward_branch_p (insn)
&& nullify)
return "movb,%N2,n %1,%0,.+12\n\tb %3";
/* Handle short backwards branch with an unfilled delay slot.
Using a movb;nop rather than or;bl saves 1 cycle for both
taken and untaken branches. */
else if (dbr_sequence_length () == 0
&& ! forward_branch_p (insn)
&& INSN_ADDRESSES_SET_P ()
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
return "movb,%C2 %1,%0,%3%#";
/* Handle normal cases. */
if (nullify)
return "or,%N2 %1,%%r0,%0\n\tb,n %3";
else
return "or,%N2 %1,%%r0,%0\n\tb %3";
default:
/* The reversed conditional branch must branch over one additional
instruction if the delay slot is filled and needs to be extracted
by output_lbranch. If the delay slot is empty or this is a
nullified forward branch, the instruction after the reversed
condition branch must be nullified. */
if (dbr_sequence_length () == 0
|| (nullify && forward_branch_p (insn)))
{
nullify = 1;
xdelay = 0;
operands[4] = GEN_INT (length);
}
else
{
xdelay = 1;
operands[4] = GEN_INT (length + 4);
}
if (nullify)
output_asm_insn ("movb,%N2,n %1,%0,.+%4", operands);
else
output_asm_insn ("movb,%N2 %1,%0,.+%4", operands);
return output_lbranch (operands[3], insn, xdelay);
}
}
/* Deal with gross reload for FP destination register case. */
else if (which_alternative == 1)
{
/* Move source register to MEM, perform the branch test, then
finally load the FP register from MEM from within the branch's
delay slot. */
output_asm_insn ("stw %1,-16(%%r30)", operands);
if (length == 12)
return "{comb|cmpb},%S2 %%r0,%1,%3\n\t{fldws|fldw} -16(%%r30),%0";
else if (length == 16)
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
else
{
operands[4] = GEN_INT (length - 4);
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4", operands);
output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
return output_lbranch (operands[3], insn, 0);
}
}
/* Deal with gross reload from memory case. */
else if (which_alternative == 2)
{
/* Reload loop counter from memory, the store back to memory
happens in the branch's delay slot. */
if (length == 8)
return "{comb|cmpb},%S2 %%r0,%1,%3\n\tstw %1,%0";
else if (length == 12)
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tstw %1,%0";
else
{
operands[4] = GEN_INT (length);
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tstw %1,%0",
operands);
return output_lbranch (operands[3], insn, 0);
}
}
/* Handle SAR as a destination. */
else
{
if (length == 8)
return "{comb|cmpb},%S2 %%r0,%1,%3\n\tmtsar %r1";
else if (length == 12)
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tmtsar %r1";
else
{
operands[4] = GEN_INT (length);
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tmtsar %r1",
operands);
return output_lbranch (operands[3], insn, 0);
}
}
}
/* Copy any FP arguments in INSN into integer registers. */
static void
copy_fp_args (rtx insn)
{
rtx link;
rtx xoperands[2];
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
int arg_mode, regno;
rtx use = XEXP (link, 0);
if (! (GET_CODE (use) == USE
&& GET_CODE (XEXP (use, 0)) == REG
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
continue;
arg_mode = GET_MODE (XEXP (use, 0));
regno = REGNO (XEXP (use, 0));
/* Is it a floating point register? */
if (regno >= 32 && regno <= 39)
{
/* Copy the FP register into an integer register via memory. */
if (arg_mode == SFmode)
{
xoperands[0] = XEXP (use, 0);
xoperands[1] = gen_rtx_REG (SImode, 26 - (regno - 32) / 2);
output_asm_insn ("{fstws|fstw} %0,-16(%%sr0,%%r30)", xoperands);
output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
}
else
{
xoperands[0] = XEXP (use, 0);
xoperands[1] = gen_rtx_REG (DImode, 25 - (regno - 34) / 2);
output_asm_insn ("{fstds|fstd} %0,-16(%%sr0,%%r30)", xoperands);
output_asm_insn ("ldw -12(%%sr0,%%r30),%R1", xoperands);
output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
}
}
}
}
/* Compute length of the FP argument copy sequence for INSN. */
static int
length_fp_args (rtx insn)
{
int length = 0;
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
int arg_mode, regno;
rtx use = XEXP (link, 0);
if (! (GET_CODE (use) == USE
&& GET_CODE (XEXP (use, 0)) == REG
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
continue;
arg_mode = GET_MODE (XEXP (use, 0));
regno = REGNO (XEXP (use, 0));
/* Is it a floating point register? */
if (regno >= 32 && regno <= 39)
{
if (arg_mode == SFmode)
length += 8;
else
length += 12;
}
}
return length;
}
/* Return the attribute length for the millicode call instruction INSN.
The length must match the code generated by output_millicode_call.
We include the delay slot in the returned length as it is better to
over estimate the length than to under estimate it. */
int
attr_length_millicode_call (rtx insn)
{
unsigned long distance = -1;
unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
if (INSN_ADDRESSES_SET_P ())
{
distance = (total + insn_current_reference_address (insn));
if (distance < total)
distance = -1;
}
if (TARGET_64BIT)
{
if (!TARGET_LONG_CALLS && distance < 7600000)
return 8;
return 20;
}
else if (TARGET_PORTABLE_RUNTIME)
return 24;
else
{
if (!TARGET_LONG_CALLS && distance < 240000)
return 8;
if (TARGET_LONG_ABS_CALL && !flag_pic)
return 12;
return 24;
}
}
/* INSN is a function call. It may have an unconditional jump
in its delay slot.
CALL_DEST is the routine we are calling. */
const char *
output_millicode_call (rtx insn, rtx call_dest)
{
int attr_length = get_attr_length (insn);
int seq_length = dbr_sequence_length ();
int distance;
rtx seq_insn;
rtx xoperands[3];
xoperands[0] = call_dest;
xoperands[2] = gen_rtx_REG (Pmode, TARGET_64BIT ? 2 : 31);
/* Handle the common case where we are sure that the branch will
reach the beginning of the $CODE$ subspace. The within reach
form of the $$sh_func_adrs call has a length of 28. Because
it has an attribute type of multi, it never has a nonzero
sequence length. The length of the $$sh_func_adrs is the same
as certain out of reach PIC calls to other routines. */
if (!TARGET_LONG_CALLS
&& ((seq_length == 0
&& (attr_length == 12
|| (attr_length == 28 && get_attr_type (insn) == TYPE_MULTI)))
|| (seq_length != 0 && attr_length == 8)))
{
output_asm_insn ("{bl|b,l} %0,%2", xoperands);
}
else
{
if (TARGET_64BIT)
{
/* It might seem that one insn could be saved by accessing
the millicode function using the linkage table. However,
this doesn't work in shared libraries and other dynamically
loaded objects. Using a pc-relative sequence also avoids
problems related to the implicit use of the gp register. */
output_asm_insn ("b,l .+8,%%r1", xoperands);
if (TARGET_GAS)
{
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
}
else
{
xoperands[1] = gen_label_rtx ();
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
}
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
}
else if (TARGET_PORTABLE_RUNTIME)
{
/* Pure portable runtime doesn't allow be/ble; we also don't
have PIC support in the assembler/linker, so this sequence
is needed. */
/* Get the address of our target into %r1. */
output_asm_insn ("ldil L'%0,%%r1", xoperands);
output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
/* Get our return address into %r31. */
output_asm_insn ("{bl|b,l} .+8,%%r31", xoperands);
output_asm_insn ("addi 8,%%r31,%%r31", xoperands);
/* Jump to our target address in %r1. */
output_asm_insn ("bv %%r0(%%r1)", xoperands);
}
else if (!flag_pic)
{
output_asm_insn ("ldil L'%0,%%r1", xoperands);
if (TARGET_PA_20)
output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31", xoperands);
else
output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
}
else
{
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
output_asm_insn ("addi 16,%%r1,%%r31", xoperands);
if (TARGET_SOM || !TARGET_GAS)
{
/* The HP assembler can generate relocations for the
difference of two symbols. GAS can do this for a
millicode symbol but not an arbitrary external
symbol when generating SOM output. */
xoperands[1] = gen_label_rtx ();
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
}
else
{
output_asm_insn ("addil L'%0-$PIC_pcrel$0+8,%%r1", xoperands);
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+12(%%r1),%%r1",
xoperands);
}
/* Jump to our target address in %r1. */
output_asm_insn ("bv %%r0(%%r1)", xoperands);
}
}
if (seq_length == 0)
output_asm_insn ("nop", xoperands);
/* We are done if there isn't a jump in the delay slot. */
if (seq_length == 0 || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN)
return "";
/* This call has an unconditional jump in its delay slot. */
xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1);
/* See if the return address can be adjusted. Use the containing
sequence insn's address. */
if (INSN_ADDRESSES_SET_P ())
{
seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0)));
distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn))))
- INSN_ADDRESSES (INSN_UID (seq_insn)) - 8);
if (VAL_14_BITS_P (distance))
{
xoperands[1] = gen_label_rtx ();
output_asm_insn ("ldo %0-%1(%2),%2", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
}
else
/* ??? This branch may not reach its target. */
output_asm_insn ("nop\n\tb,n %0", xoperands);
}
else
/* ??? This branch may not reach its target. */
output_asm_insn ("nop\n\tb,n %0", xoperands);
/* Delete the jump. */
PUT_CODE (NEXT_INSN (insn), NOTE);
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
return "";
}
/* Return the attribute length of the call instruction INSN. The SIBCALL
flag indicates whether INSN is a regular call or a sibling call. The
length returned must be longer than the code actually generated by
output_call. Since branch shortening is done before delay branch
sequencing, there is no way to determine whether or not the delay
slot will be filled during branch shortening. Even when the delay
slot is filled, we may have to add a nop if the delay slot contains
a branch that can't reach its target. Thus, we always have to include
the delay slot in the length estimate. This used to be done in
pa_adjust_insn_length but we do it here now as some sequences always
fill the delay slot and we can save four bytes in the estimate for
these sequences. */
int
attr_length_call (rtx insn, int sibcall)
{
int local_call;
rtx call_dest;
tree call_decl;
int length = 0;
rtx pat = PATTERN (insn);
unsigned long distance = -1;
if (INSN_ADDRESSES_SET_P ())
{
unsigned long total;
total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
distance = (total + insn_current_reference_address (insn));
if (distance < total)
distance = -1;
}
/* Determine if this is a local call. */
if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL)
call_dest = XEXP (XEXP (XVECEXP (pat, 0, 0), 0), 0);
else
call_dest = XEXP (XEXP (XEXP (XVECEXP (pat, 0, 0), 1), 0), 0);
call_decl = SYMBOL_REF_DECL (call_dest);
local_call = call_decl && (*targetm.binds_local_p) (call_decl);
/* pc-relative branch. */
if (!TARGET_LONG_CALLS
&& ((TARGET_PA_20 && !sibcall && distance < 7600000)
|| distance < 240000))
length += 8;
/* 64-bit plabel sequence. */
else if (TARGET_64BIT && !local_call)
length += sibcall ? 28 : 24;
/* non-pic long absolute branch sequence. */
else if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
length += 12;
/* long pc-relative branch sequence. */
else if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
|| (TARGET_64BIT && !TARGET_GAS)
|| (TARGET_GAS && !TARGET_SOM
&& (TARGET_LONG_PIC_PCREL_CALL || local_call)))
{
length += 20;
if (!TARGET_PA_20 && !TARGET_NO_SPACE_REGS)
length += 8;
}
/* 32-bit plabel sequence. */
else
{
length += 32;
if (TARGET_SOM)
length += length_fp_args (insn);
if (flag_pic)
length += 4;
if (!TARGET_PA_20)
{
if (!sibcall)
length += 8;
if (!TARGET_NO_SPACE_REGS)
length += 8;
}
}
return length;
}
/* INSN is a function call. It may have an unconditional jump
in its delay slot.
CALL_DEST is the routine we are calling. */
const char *
output_call (rtx insn, rtx call_dest, int sibcall)
{
int delay_insn_deleted = 0;
int delay_slot_filled = 0;
int seq_length = dbr_sequence_length ();
tree call_decl = SYMBOL_REF_DECL (call_dest);
int local_call = call_decl && (*targetm.binds_local_p) (call_decl);
rtx xoperands[2];
xoperands[0] = call_dest;
/* Handle the common case where we're sure that the branch will reach
the beginning of the "$CODE$" subspace. This is the beginning of
the current function if we are in a named section. */
if (!TARGET_LONG_CALLS && attr_length_call (insn, sibcall) == 8)
{
xoperands[1] = gen_rtx_REG (word_mode, sibcall ? 0 : 2);
output_asm_insn ("{bl|b,l} %0,%1", xoperands);
}
else
{
if (TARGET_64BIT && !local_call)
{
/* ??? As far as I can tell, the HP linker doesn't support the
long pc-relative sequence described in the 64-bit runtime
architecture. So, we use a slightly longer indirect call. */
xoperands[0] = get_deferred_plabel (call_dest);
xoperands[1] = gen_label_rtx ();
/* If this isn't a sibcall, we put the load of %r27 into the
delay slot. We can't do this in a sibcall as we don't
have a second call-clobbered scratch register available. */
if (seq_length != 0
&& GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
&& !sibcall)
{
final_scan_insn (NEXT_INSN (insn), asm_out_file,
optimize, 0, NULL);
/* Now delete the delay insn. */
PUT_CODE (NEXT_INSN (insn), NOTE);
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
delay_insn_deleted = 1;
}
output_asm_insn ("addil LT'%0,%%r27", xoperands);
output_asm_insn ("ldd RT'%0(%%r1),%%r1", xoperands);
output_asm_insn ("ldd 0(%%r1),%%r1", xoperands);
if (sibcall)
{
output_asm_insn ("ldd 24(%%r1),%%r27", xoperands);
output_asm_insn ("ldd 16(%%r1),%%r1", xoperands);
output_asm_insn ("bve (%%r1)", xoperands);
}
else
{
output_asm_insn ("ldd 16(%%r1),%%r2", xoperands);
output_asm_insn ("bve,l (%%r2),%%r2", xoperands);
output_asm_insn ("ldd 24(%%r1),%%r27", xoperands);
delay_slot_filled = 1;
}
}
else
{
int indirect_call = 0;
/* Emit a long call. There are several different sequences
of increasing length and complexity. In most cases,
they don't allow an instruction in the delay slot. */
if (!((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
&& !(TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
&& !(TARGET_GAS && !TARGET_SOM
&& (TARGET_LONG_PIC_PCREL_CALL || local_call))
&& !TARGET_64BIT)
indirect_call = 1;
if (seq_length != 0
&& GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
&& !sibcall
&& (!TARGET_PA_20 || indirect_call))
{
/* A non-jump insn in the delay slot. By definition we can
emit this insn before the call (and in fact before argument
relocating. */
final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0,
NULL);
/* Now delete the delay insn. */
PUT_CODE (NEXT_INSN (insn), NOTE);
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
delay_insn_deleted = 1;
}
if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
{
/* This is the best sequence for making long calls in
non-pic code. Unfortunately, GNU ld doesn't provide
the stub needed for external calls, and GAS's support
for this with the SOM linker is buggy. It is safe
to use this for local calls. */
output_asm_insn ("ldil L'%0,%%r1", xoperands);
if (sibcall)
output_asm_insn ("be R'%0(%%sr4,%%r1)", xoperands);
else
{
if (TARGET_PA_20)
output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31",
xoperands);
else
output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
output_asm_insn ("copy %%r31,%%r2", xoperands);
delay_slot_filled = 1;
}
}
else
{
if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
|| (TARGET_64BIT && !TARGET_GAS))
{
/* The HP assembler and linker can handle relocations
for the difference of two symbols. GAS and the HP
linker can't do this when one of the symbols is
external. */
xoperands[1] = gen_label_rtx ();
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
}
else if (TARGET_GAS && !TARGET_SOM
&& (TARGET_LONG_PIC_PCREL_CALL || local_call))
{
/* GAS currently can't generate the relocations that
are needed for the SOM linker under HP-UX using this
sequence. The GNU linker doesn't generate the stubs
that are needed for external calls on TARGET_ELF32
with this sequence. For now, we have to use a
longer plabel sequence when using GAS. */
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1",
xoperands);
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1",
xoperands);
}
else
{
/* Emit a long plabel-based call sequence. This is
essentially an inline implementation of $$dyncall.
We don't actually try to call $$dyncall as this is
as difficult as calling the function itself. */
xoperands[0] = get_deferred_plabel (call_dest);
xoperands[1] = gen_label_rtx ();
/* Since the call is indirect, FP arguments in registers
need to be copied to the general registers. Then, the
argument relocation stub will copy them back. */
if (TARGET_SOM)
copy_fp_args (insn);
if (flag_pic)
{
output_asm_insn ("addil LT'%0,%%r19", xoperands);
output_asm_insn ("ldw RT'%0(%%r1),%%r1", xoperands);
output_asm_insn ("ldw 0(%%r1),%%r1", xoperands);
}
else
{
output_asm_insn ("addil LR'%0-$global$,%%r27",
xoperands);
output_asm_insn ("ldw RR'%0-$global$(%%r1),%%r1",
xoperands);
}
output_asm_insn ("bb,>=,n %%r1,30,.+16", xoperands);
output_asm_insn ("depi 0,31,2,%%r1", xoperands);
output_asm_insn ("ldw 4(%%sr0,%%r1),%%r19", xoperands);
output_asm_insn ("ldw 0(%%sr0,%%r1),%%r1", xoperands);
if (!sibcall && !TARGET_PA_20)
{
output_asm_insn ("{bl|b,l} .+8,%%r2", xoperands);
if (TARGET_NO_SPACE_REGS)
output_asm_insn ("addi 8,%%r2,%%r2", xoperands);
else
output_asm_insn ("addi 16,%%r2,%%r2", xoperands);
}
}
if (TARGET_PA_20)
{
if (sibcall)
output_asm_insn ("bve (%%r1)", xoperands);
else
{
if (indirect_call)
{
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
output_asm_insn ("stw %%r2,-24(%%sp)", xoperands);
delay_slot_filled = 1;
}
else
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
}
}
else
{
if (!TARGET_NO_SPACE_REGS)
output_asm_insn ("ldsid (%%r1),%%r31\n\tmtsp %%r31,%%sr0",
xoperands);
if (sibcall)
{
if (TARGET_NO_SPACE_REGS)
output_asm_insn ("be 0(%%sr4,%%r1)", xoperands);
else
output_asm_insn ("be 0(%%sr0,%%r1)", xoperands);
}
else
{
if (TARGET_NO_SPACE_REGS)
output_asm_insn ("ble 0(%%sr4,%%r1)", xoperands);
else
output_asm_insn ("ble 0(%%sr0,%%r1)", xoperands);
if (indirect_call)
output_asm_insn ("stw %%r31,-24(%%sp)", xoperands);
else
output_asm_insn ("copy %%r31,%%r2", xoperands);
delay_slot_filled = 1;
}
}
}
}
}
if (!delay_slot_filled && (seq_length == 0 || delay_insn_deleted))
output_asm_insn ("nop", xoperands);
/* We are done if there isn't a jump in the delay slot. */
if (seq_length == 0
|| delay_insn_deleted
|| GET_CODE (NEXT_INSN (insn)) != JUMP_INSN)
return "";
/* A sibcall should never have a branch in the delay slot. */
gcc_assert (!sibcall);
/* This call has an unconditional jump in its delay slot. */
xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1);
if (!delay_slot_filled && INSN_ADDRESSES_SET_P ())
{
/* See if the return address can be adjusted. Use the containing
sequence insn's address. */
rtx seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0)));
int distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn))))
- INSN_ADDRESSES (INSN_UID (seq_insn)) - 8);
if (VAL_14_BITS_P (distance))
{
xoperands[1] = gen_label_rtx ();
output_asm_insn ("ldo %0-%1(%%r2),%%r2", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[1]));
}
else
output_asm_insn ("nop\n\tb,n %0", xoperands);
}
else
output_asm_insn ("b,n %0", xoperands);
/* Delete the jump. */
PUT_CODE (NEXT_INSN (insn), NOTE);
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
return "";
}
/* Return the attribute length of the indirect call instruction INSN.
The length must match the code generated by output_indirect call.
The returned length includes the delay slot. Currently, the delay
slot of an indirect call sequence is not exposed and it is used by
the sequence itself. */
int
attr_length_indirect_call (rtx insn)
{
unsigned long distance = -1;
unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
if (INSN_ADDRESSES_SET_P ())
{
distance = (total + insn_current_reference_address (insn));
if (distance < total)
distance = -1;
}
if (TARGET_64BIT)
return 12;
if (TARGET_FAST_INDIRECT_CALLS
|| (!TARGET_PORTABLE_RUNTIME
&& ((TARGET_PA_20 && !TARGET_SOM && distance < 7600000)
|| distance < 240000)))
return 8;
if (flag_pic)
return 24;
if (TARGET_PORTABLE_RUNTIME)
return 20;
/* Out of reach, can use ble. */
return 12;
}
const char *
output_indirect_call (rtx insn, rtx call_dest)
{
rtx xoperands[1];
if (TARGET_64BIT)
{
xoperands[0] = call_dest;
output_asm_insn ("ldd 16(%0),%%r2", xoperands);
output_asm_insn ("bve,l (%%r2),%%r2\n\tldd 24(%0),%%r27", xoperands);
return "";
}
/* First the special case for kernels, level 0 systems, etc. */
if (TARGET_FAST_INDIRECT_CALLS)
return "ble 0(%%sr4,%%r22)\n\tcopy %%r31,%%r2";
/* Now the normal case -- we can reach $$dyncall directly or
we're sure that we can get there via a long-branch stub.
No need to check target flags as the length uniquely identifies
the remaining cases. */
if (attr_length_indirect_call (insn) == 8)
{
/* The HP linker sometimes substitutes a BLE for BL/B,L calls to
$$dyncall. Since BLE uses %r31 as the link register, the 22-bit
variant of the B,L instruction can't be used on the SOM target. */
if (TARGET_PA_20 && !TARGET_SOM)
return ".CALL\tARGW0=GR\n\tb,l $$dyncall,%%r2\n\tcopy %%r2,%%r31";
else
return ".CALL\tARGW0=GR\n\tbl $$dyncall,%%r31\n\tcopy %%r31,%%r2";
}
/* Long millicode call, but we are not generating PIC or portable runtime
code. */
if (attr_length_indirect_call (insn) == 12)
return ".CALL\tARGW0=GR\n\tldil L'$$dyncall,%%r2\n\tble R'$$dyncall(%%sr4,%%r2)\n\tcopy %%r31,%%r2";
/* Long millicode call for portable runtime. */
if (attr_length_indirect_call (insn) == 20)
return "ldil L'$$dyncall,%%r31\n\tldo R'$$dyncall(%%r31),%%r31\n\tblr %%r0,%%r2\n\tbv,n %%r0(%%r31)\n\tnop";
/* We need a long PIC call to $$dyncall. */
xoperands[0] = NULL_RTX;
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
if (TARGET_SOM || !TARGET_GAS)
{
xoperands[0] = gen_label_rtx ();
output_asm_insn ("addil L'$$dyncall-%0,%%r1", xoperands);
(*targetm.asm_out.internal_label) (asm_out_file, "L",
CODE_LABEL_NUMBER (xoperands[0]));
output_asm_insn ("ldo R'$$dyncall-%0(%%r1),%%r1", xoperands);
}
else
{
output_asm_insn ("addil L'$$dyncall-$PIC_pcrel$0+4,%%r1", xoperands);
output_asm_insn ("ldo R'$$dyncall-$PIC_pcrel$0+8(%%r1),%%r1",
xoperands);
}
output_asm_insn ("blr %%r0,%%r2", xoperands);
output_asm_insn ("bv,n %%r0(%%r1)\n\tnop", xoperands);
return "";
}
/* Return the total length of the save and restore instructions needed for
the data linkage table pointer (i.e., the PIC register) across the call
instruction INSN. No-return calls do not require a save and restore.
In addition, we may be able to avoid the save and restore for calls
within the same translation unit. */
int
attr_length_save_restore_dltp (rtx insn)
{
if (find_reg_note (insn, REG_NORETURN, NULL_RTX))
return 0;
return 8;
}
/* In HPUX 8.0's shared library scheme, special relocations are needed
for function labels if they might be passed to a function
in a shared library (because shared libraries don't live in code
space), and special magic is needed to construct their address. */
void
hppa_encode_label (rtx sym)
{
const char *str = XSTR (sym, 0);
int len = strlen (str) + 1;
char *newstr, *p;
p = newstr = alloca (len + 1);
*p++ = '@';
strcpy (p, str);
XSTR (sym, 0) = ggc_alloc_string (newstr, len);
}
static void
pa_encode_section_info (tree decl, rtx rtl, int first)
{
default_encode_section_info (decl, rtl, first);
if (first && TEXT_SPACE_P (decl))
{
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
if (TREE_CODE (decl) == FUNCTION_DECL)
hppa_encode_label (XEXP (rtl, 0));
}
}
/* This is sort of inverse to pa_encode_section_info. */
static const char *
pa_strip_name_encoding (const char *str)
{
str += (*str == '@');
str += (*str == '*');
return str;
}
int
function_label_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return GET_CODE (op) == SYMBOL_REF && FUNCTION_NAME_P (XSTR (op, 0));
}
/* Returns 1 if OP is a function label involved in a simple addition
with a constant. Used to keep certain patterns from matching
during instruction combination. */
int
is_function_label_plus_const (rtx op)
{
/* Strip off any CONST. */
if (GET_CODE (op) == CONST)
op = XEXP (op, 0);
return (GET_CODE (op) == PLUS
&& function_label_operand (XEXP (op, 0), Pmode)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
}
/* Output assembly code for a thunk to FUNCTION. */
static void
pa_asm_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
static unsigned int current_thunk_number;
int val_14 = VAL_14_BITS_P (delta);
int nbytes = 0;
char label[16];
rtx xoperands[4];
xoperands[0] = XEXP (DECL_RTL (function), 0);
xoperands[1] = XEXP (DECL_RTL (thunk_fndecl), 0);
xoperands[2] = GEN_INT (delta);
ASM_OUTPUT_LABEL (file, XSTR (xoperands[1], 0));
fprintf (file, "\t.PROC\n\t.CALLINFO FRAME=0,NO_CALLS\n\t.ENTRY\n");
/* Output the thunk. We know that the function is in the same
translation unit (i.e., the same space) as the thunk, and that
thunks are output after their method. Thus, we don't need an
external branch to reach the function. With SOM and GAS,
functions and thunks are effectively in different sections.
Thus, we can always use a IA-relative branch and the linker
will add a long branch stub if necessary.
However, we have to be careful when generating PIC code on the
SOM port to ensure that the sequence does not transfer to an
import stub for the target function as this could clobber the
return value saved at SP-24. This would also apply to the
32-bit linux port if the multi-space model is implemented. */
if ((!TARGET_LONG_CALLS && TARGET_SOM && !TARGET_PORTABLE_RUNTIME
&& !(flag_pic && TREE_PUBLIC (function))
&& (TARGET_GAS || last_address < 262132))
|| (!TARGET_LONG_CALLS && !TARGET_SOM && !TARGET_PORTABLE_RUNTIME
&& ((targetm.have_named_sections
&& DECL_SECTION_NAME (thunk_fndecl) != NULL
/* The GNU 64-bit linker has rather poor stub management.
So, we use a long branch from thunks that aren't in
the same section as the target function. */
&& ((!TARGET_64BIT
&& (DECL_SECTION_NAME (thunk_fndecl)
!= DECL_SECTION_NAME (function)))
|| ((DECL_SECTION_NAME (thunk_fndecl)
== DECL_SECTION_NAME (function))
&& last_address < 262132)))
|| (!targetm.have_named_sections && last_address < 262132))))
{
if (!val_14)
output_asm_insn ("addil L'%2,%%r26", xoperands);
output_asm_insn ("b %0", xoperands);
if (val_14)
{
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
nbytes += 8;
}
else
{
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
nbytes += 12;
}
}
else if (TARGET_64BIT)
{
/* We only have one call-clobbered scratch register, so we can't
make use of the delay slot if delta doesn't fit in 14 bits. */
if (!val_14)
{
output_asm_insn ("addil L'%2,%%r26", xoperands);
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
}
output_asm_insn ("b,l .+8,%%r1", xoperands);
if (TARGET_GAS)
{
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
}
else
{
xoperands[3] = GEN_INT (val_14 ? 8 : 16);
output_asm_insn ("addil L'%0-%1-%3,%%r1", xoperands);
}
if (val_14)
{
output_asm_insn ("bv %%r0(%%r1)", xoperands);
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
nbytes += 20;
}
else
{
output_asm_insn ("bv,n %%r0(%%r1)", xoperands);
nbytes += 24;
}
}
else if (TARGET_PORTABLE_RUNTIME)
{
output_asm_insn ("ldil L'%0,%%r1", xoperands);
output_asm_insn ("ldo R'%0(%%r1),%%r22", xoperands);
if (!val_14)
output_asm_insn ("addil L'%2,%%r26", xoperands);
output_asm_insn ("bv %%r0(%%r22)", xoperands);
if (val_14)
{
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
nbytes += 16;
}
else
{
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
nbytes += 20;
}
}
else if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
{
/* The function is accessible from outside this module. The only
way to avoid an import stub between the thunk and function is to
call the function directly with an indirect sequence similar to
that used by $$dyncall. This is possible because $$dyncall acts
as the import stub in an indirect call. */
ASM_GENERATE_INTERNAL_LABEL (label, "LTHN", current_thunk_number);
xoperands[3] = gen_rtx_SYMBOL_REF (Pmode, label);
output_asm_insn ("addil LT'%3,%%r19", xoperands);
output_asm_insn ("ldw RT'%3(%%r1),%%r22", xoperands);
output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
output_asm_insn ("bb,>=,n %%r22,30,.+16", xoperands);
output_asm_insn ("depi 0,31,2,%%r22", xoperands);
output_asm_insn ("ldw 4(%%sr0,%%r22),%%r19", xoperands);
output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
if (!val_14)
{
output_asm_insn ("addil L'%2,%%r26", xoperands);
nbytes += 4;
}
if (TARGET_PA_20)
{
output_asm_insn ("bve (%%r22)", xoperands);
nbytes += 36;
}
else if (TARGET_NO_SPACE_REGS)
{
output_asm_insn ("be 0(%%sr4,%%r22)", xoperands);
nbytes += 36;
}
else
{
output_asm_insn ("ldsid (%%sr0,%%r22),%%r21", xoperands);
output_asm_insn ("mtsp %%r21,%%sr0", xoperands);
output_asm_insn ("be 0(%%sr0,%%r22)", xoperands);
nbytes += 44;
}
if (val_14)
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
else
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
}
else if (flag_pic)
{
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
if (TARGET_SOM || !TARGET_GAS)
{
output_asm_insn ("addil L'%0-%1-8,%%r1", xoperands);
output_asm_insn ("ldo R'%0-%1-8(%%r1),%%r22", xoperands);
}
else
{
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r22", xoperands);
}
if (!val_14)
output_asm_insn ("addil L'%2,%%r26", xoperands);
output_asm_insn ("bv %%r0(%%r22)", xoperands);
if (val_14)
{
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
nbytes += 20;
}
else
{
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
nbytes += 24;
}
}
else
{
if (!val_14)
output_asm_insn ("addil L'%2,%%r26", xoperands);
output_asm_insn ("ldil L'%0,%%r22", xoperands);
output_asm_insn ("be R'%0(%%sr4,%%r22)", xoperands);
if (val_14)
{
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
nbytes += 12;
}
else
{
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
nbytes += 16;
}
}
fprintf (file, "\t.EXIT\n\t.PROCEND\n");
if (TARGET_SOM && TARGET_GAS)
{
/* We done with this subspace except possibly for some additional
debug information. Forget that we are in this subspace to ensure
that the next function is output in its own subspace. */
in_section = NULL;
cfun->machine->in_nsubspa = 2;
}
if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
{
switch_to_section (data_section);
output_asm_insn (".align 4", xoperands);
ASM_OUTPUT_LABEL (file, label);
output_asm_insn (".word P'%0", xoperands);
}
current_thunk_number++;
nbytes = ((nbytes + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
& ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
last_address += nbytes;
update_total_code_bytes (nbytes);
}
/* Only direct calls to static functions are allowed to be sibling (tail)
call optimized.
This restriction is necessary because some linker generated stubs will
store return pointers into rp' in some cases which might clobber a
live value already in rp'.
In a sibcall the current function and the target function share stack
space. Thus if the path to the current function and the path to the
target function save a value in rp', they save the value into the
same stack slot, which has undesirable consequences.
Because of the deferred binding nature of shared libraries any function
with external scope could be in a different load module and thus require
rp' to be saved when calling that function. So sibcall optimizations
can only be safe for static function.
Note that GCC never needs return value relocations, so we don't have to
worry about static calls with return value relocations (which require
saving rp').
It is safe to perform a sibcall optimization when the target function
will never return. */
static bool
pa_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
if (TARGET_PORTABLE_RUNTIME)
return false;
/* Sibcalls are ok for TARGET_ELF32 as along as the linker is used in
single subspace mode and the call is not indirect. As far as I know,
there is no operating system support for the multiple subspace mode.
It might be possible to support indirect calls if we didn't use
$$dyncall (see the indirect sequence generated in output_call). */
if (TARGET_ELF32)
return (decl != NULL_TREE);
/* Sibcalls are not ok because the arg pointer register is not a fixed
register. This prevents the sibcall optimization from occurring. In
addition, there are problems with stub placement using GNU ld. This
is because a normal sibcall branch uses a 17-bit relocation while
a regular call branch uses a 22-bit relocation. As a result, more
care needs to be taken in the placement of long-branch stubs. */
if (TARGET_64BIT)
return false;
/* Sibcalls are only ok within a translation unit. */
return (decl && !TREE_PUBLIC (decl));
}
/* ??? Addition is not commutative on the PA due to the weird implicit
space register selection rules for memory addresses. Therefore, we
don't consider a + b == b + a, as this might be inside a MEM. */
static bool
pa_commutative_p (rtx x, int outer_code)
{
return (COMMUTATIVE_P (x)
&& (TARGET_NO_SPACE_REGS
|| (outer_code != UNKNOWN && outer_code != MEM)
|| GET_CODE (x) != PLUS));
}
/* Returns 1 if the 6 operands specified in OPERANDS are suitable for
use in fmpyadd instructions. */
int
fmpyaddoperands (rtx *operands)
{
enum machine_mode mode = GET_MODE (operands[0]);
/* Must be a floating point mode. */
if (mode != SFmode && mode != DFmode)
return 0;
/* All modes must be the same. */
if (! (mode == GET_MODE (operands[1])
&& mode == GET_MODE (operands[2])
&& mode == GET_MODE (operands[3])
&& mode == GET_MODE (operands[4])
&& mode == GET_MODE (operands[5])))
return 0;
/* All operands must be registers. */
if (! (GET_CODE (operands[1]) == REG
&& GET_CODE (operands[2]) == REG
&& GET_CODE (operands[3]) == REG
&& GET_CODE (operands[4]) == REG
&& GET_CODE (operands[5]) == REG))
return 0;
/* Only 2 real operands to the addition. One of the input operands must
be the same as the output operand. */
if (! rtx_equal_p (operands[3], operands[4])
&& ! rtx_equal_p (operands[3], operands[5]))
return 0;
/* Inout operand of add cannot conflict with any operands from multiply. */
if (rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1])
|| rtx_equal_p (operands[3], operands[2]))
return 0;
/* multiply cannot feed into addition operands. */
if (rtx_equal_p (operands[4], operands[0])
|| rtx_equal_p (operands[5], operands[0]))
return 0;
/* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
if (mode == SFmode
&& (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
return 0;
/* Passed. Operands are suitable for fmpyadd. */
return 1;
}
#if !defined(USE_COLLECT2)
static void
pa_asm_out_constructor (rtx symbol, int priority)
{
if (!function_label_operand (symbol, VOIDmode))
hppa_encode_label (symbol);
#ifdef CTORS_SECTION_ASM_OP
default_ctor_section_asm_out_constructor (symbol, priority);
#else
# ifdef TARGET_ASM_NAMED_SECTION
default_named_section_asm_out_constructor (symbol, priority);
# else
default_stabs_asm_out_constructor (symbol, priority);
# endif
#endif
}
static void
pa_asm_out_destructor (rtx symbol, int priority)
{
if (!function_label_operand (symbol, VOIDmode))
hppa_encode_label (symbol);
#ifdef DTORS_SECTION_ASM_OP
default_dtor_section_asm_out_destructor (symbol, priority);
#else
# ifdef TARGET_ASM_NAMED_SECTION
default_named_section_asm_out_destructor (symbol, priority);
# else
default_stabs_asm_out_destructor (symbol, priority);
# endif
#endif
}
#endif
/* This function places uninitialized global data in the bss section.
The ASM_OUTPUT_ALIGNED_BSS macro needs to be defined to call this
function on the SOM port to prevent uninitialized global data from
being placed in the data section. */
void
pa_asm_output_aligned_bss (FILE *stream,
const char *name,
unsigned HOST_WIDE_INT size,
unsigned int align)
{
switch_to_section (bss_section);
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
#endif
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
#endif
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
ASM_OUTPUT_LABEL (stream, name);
fprintf (stream, "\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
}
/* Both the HP and GNU assemblers under HP-UX provide a .comm directive
that doesn't allow the alignment of global common storage to be directly
specified. The SOM linker aligns common storage based on the rounded
value of the NUM_BYTES parameter in the .comm directive. It's not
possible to use the .align directive as it doesn't affect the alignment
of the label associated with a .comm directive. */
void
pa_asm_output_aligned_common (FILE *stream,
const char *name,
unsigned HOST_WIDE_INT size,
unsigned int align)
{
unsigned int max_common_align;
max_common_align = TARGET_64BIT ? 128 : (size >= 4096 ? 256 : 64);
if (align > max_common_align)
{
warning (0, "alignment (%u) for %s exceeds maximum alignment "
"for global common data. Using %u",
align / BITS_PER_UNIT, name, max_common_align / BITS_PER_UNIT);
align = max_common_align;
}
switch_to_section (bss_section);
assemble_name (stream, name);
fprintf (stream, "\t.comm "HOST_WIDE_INT_PRINT_UNSIGNED"\n",
MAX (size, align / BITS_PER_UNIT));
}
/* We can't use .comm for local common storage as the SOM linker effectively
treats the symbol as universal and uses the same storage for local symbols
with the same name in different object files. The .block directive
reserves an uninitialized block of storage. However, it's not common
storage. Fortunately, GCC never requests common storage with the same
name in any given translation unit. */
void
pa_asm_output_aligned_local (FILE *stream,
const char *name,
unsigned HOST_WIDE_INT size,
unsigned int align)
{
switch_to_section (bss_section);
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
#ifdef LOCAL_ASM_OP
fprintf (stream, "%s", LOCAL_ASM_OP);
assemble_name (stream, name);
fprintf (stream, "\n");
#endif
ASM_OUTPUT_LABEL (stream, name);
fprintf (stream, "\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
}
/* Returns 1 if the 6 operands specified in OPERANDS are suitable for
use in fmpysub instructions. */
int
fmpysuboperands (rtx *operands)
{
enum machine_mode mode = GET_MODE (operands[0]);
/* Must be a floating point mode. */
if (mode != SFmode && mode != DFmode)
return 0;
/* All modes must be the same. */
if (! (mode == GET_MODE (operands[1])
&& mode == GET_MODE (operands[2])
&& mode == GET_MODE (operands[3])
&& mode == GET_MODE (operands[4])
&& mode == GET_MODE (operands[5])))
return 0;
/* All operands must be registers. */
if (! (GET_CODE (operands[1]) == REG
&& GET_CODE (operands[2]) == REG
&& GET_CODE (operands[3]) == REG
&& GET_CODE (operands[4]) == REG
&& GET_CODE (operands[5]) == REG))
return 0;
/* Only 2 real operands to the subtraction. Subtraction is not a commutative
operation, so operands[4] must be the same as operand[3]. */
if (! rtx_equal_p (operands[3], operands[4]))
return 0;
/* multiply cannot feed into subtraction. */
if (rtx_equal_p (operands[5], operands[0]))
return 0;
/* Inout operand of sub cannot conflict with any operands from multiply. */
if (rtx_equal_p (operands[3], operands[0])
|| rtx_equal_p (operands[3], operands[1])
|| rtx_equal_p (operands[3], operands[2]))
return 0;
/* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
if (mode == SFmode
&& (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
|| REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
return 0;
/* Passed. Operands are suitable for fmpysub. */
return 1;
}
/* Return 1 if the given constant is 2, 4, or 8. These are the valid
constants for shadd instructions. */
int
shadd_constant_p (int val)
{
if (val == 2 || val == 4 || val == 8)
return 1;
else
return 0;
}
/* Return 1 if OP is valid as a base or index register in a
REG+REG address. */
int
borx_reg_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) != REG)
return 0;
/* We must reject virtual registers as the only expressions that
can be instantiated are REG and REG+CONST. */
if (op == virtual_incoming_args_rtx
|| op == virtual_stack_vars_rtx
|| op == virtual_stack_dynamic_rtx
|| op == virtual_outgoing_args_rtx
|| op == virtual_cfa_rtx)
return 0;
/* While it's always safe to index off the frame pointer, it's not
profitable to do so when the frame pointer is being eliminated. */
if (!reload_completed
&& flag_omit_frame_pointer
&& !current_function_calls_alloca
&& op == frame_pointer_rtx)
return 0;
return register_operand (op, mode);
}
/* Return 1 if this operand is anything other than a hard register. */
int
non_hard_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return ! (GET_CODE (op) == REG && REGNO (op) < FIRST_PSEUDO_REGISTER);
}
/* Return 1 if INSN branches forward. Should be using insn_addresses
to avoid walking through all the insns... */
static int
forward_branch_p (rtx insn)
{
rtx label = JUMP_LABEL (insn);
while (insn)
{
if (insn == label)
break;
else
insn = NEXT_INSN (insn);
}
return (insn == label);
}
/* Return 1 if OP is an equality comparison, else return 0. */
int
eq_neq_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* Return 1 if INSN is in the delay slot of a call instruction. */
int
jump_in_call_delay (rtx insn)
{
if (GET_CODE (insn) != JUMP_INSN)
return 0;
if (PREV_INSN (insn)
&& PREV_INSN (PREV_INSN (insn))
&& GET_CODE (next_real_insn (PREV_INSN (PREV_INSN (insn)))) == INSN)
{
rtx test_insn = next_real_insn (PREV_INSN (PREV_INSN (insn)));
return (GET_CODE (PATTERN (test_insn)) == SEQUENCE
&& XVECEXP (PATTERN (test_insn), 0, 1) == insn);
}
else
return 0;
}
/* Output an unconditional move and branch insn. */
const char *
output_parallel_movb (rtx *operands, rtx insn)
{
int length = get_attr_length (insn);
/* These are the cases in which we win. */
if (length == 4)
return "mov%I1b,tr %1,%0,%2";
/* None of the following cases win, but they don't lose either. */
if (length == 8)
{
if (dbr_sequence_length () == 0)
{
/* Nothing in the delay slot, fake it by putting the combined
insn (the copy or add) in the delay slot of a bl. */
if (GET_CODE (operands[1]) == CONST_INT)
return "b %2\n\tldi %1,%0";
else
return "b %2\n\tcopy %1,%0";
}
else
{
/* Something in the delay slot, but we've got a long branch. */
if (GET_CODE (operands[1]) == CONST_INT)
return "ldi %1,%0\n\tb %2";
else
return "copy %1,%0\n\tb %2";
}
}
if (GET_CODE (operands[1]) == CONST_INT)
output_asm_insn ("ldi %1,%0", operands);
else
output_asm_insn ("copy %1,%0", operands);
return output_lbranch (operands[2], insn, 1);
}
/* Output an unconditional add and branch insn. */
const char *
output_parallel_addb (rtx *operands, rtx insn)
{
int length = get_attr_length (insn);
/* To make life easy we want operand0 to be the shared input/output
operand and operand1 to be the readonly operand. */
if (operands[0] == operands[1])
operands[1] = operands[2];
/* These are the cases in which we win. */
if (length == 4)
return "add%I1b,tr %1,%0,%3";
/* None of the following cases win, but they don't lose either. */
if (length == 8)
{
if (dbr_sequence_length () == 0)
/* Nothing in the delay slot, fake it by putting the combined
insn (the copy or add) in the delay slot of a bl. */
return "b %3\n\tadd%I1 %1,%0,%0";
else
/* Something in the delay slot, but we've got a long branch. */
return "add%I1 %1,%0,%0\n\tb %3";
}
output_asm_insn ("add%I1 %1,%0,%0", operands);
return output_lbranch (operands[3], insn, 1);
}
/* Return nonzero if INSN (a jump insn) immediately follows a call
to a named function. This is used to avoid filling the delay slot
of the jump since it can usually be eliminated by modifying RP in
the delay slot of the call. */
int
following_call (rtx insn)
{
if (! TARGET_JUMP_IN_DELAY)
return 0;
/* Find the previous real insn, skipping NOTEs. */
insn = PREV_INSN (insn);
while (insn && GET_CODE (insn) == NOTE)
insn = PREV_INSN (insn);
/* Check for CALL_INSNs and millicode calls. */
if (insn
&& ((GET_CODE (insn) == CALL_INSN
&& get_attr_type (insn) != TYPE_DYNCALL)
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) != SEQUENCE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& get_attr_type (insn) == TYPE_MILLI)))
return 1;
return 0;
}
/* We use this hook to perform a PA specific optimization which is difficult
to do in earlier passes.
We want the delay slots of branches within jump tables to be filled.
None of the compiler passes at the moment even has the notion that a
PA jump table doesn't contain addresses, but instead contains actual
instructions!
Because we actually jump into the table, the addresses of each entry
must stay constant in relation to the beginning of the table (which
itself must stay constant relative to the instruction to jump into
it). I don't believe we can guarantee earlier passes of the compiler
will adhere to those rules.
So, late in the compilation process we find all the jump tables, and
expand them into real code -- e.g. each entry in the jump table vector
will get an appropriate label followed by a jump to the final target.
Reorg and the final jump pass can then optimize these branches and
fill their delay slots. We end up with smaller, more efficient code.
The jump instructions within the table are special; we must be able
to identify them during assembly output (if the jumps don't get filled
we need to emit a nop rather than nullifying the delay slot)). We
identify jumps in switch tables by using insns with the attribute
type TYPE_BTABLE_BRANCH.
We also surround the jump table itself with BEGIN_BRTAB and END_BRTAB
insns. This serves two purposes, first it prevents jump.c from
noticing that the last N entries in the table jump to the instruction
immediately after the table and deleting the jumps. Second, those
insns mark where we should emit .begin_brtab and .end_brtab directives
when using GAS (allows for better link time optimizations). */
static void
pa_reorg (void)
{
rtx insn;
remove_useless_addtr_insns (1);
if (pa_cpu < PROCESSOR_8000)
pa_combine_instructions ();
/* This is fairly cheap, so always run it if optimizing. */
if (optimize > 0 && !TARGET_BIG_SWITCH)
{
/* Find and explode all ADDR_VEC or ADDR_DIFF_VEC insns. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
rtx pattern, tmp, location, label;
unsigned int length, i;
/* Find an ADDR_VEC or ADDR_DIFF_VEC insn to explode. */
if (GET_CODE (insn) != JUMP_INSN
|| (GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC))
continue;
/* Emit marker for the beginning of the branch table. */
emit_insn_before (gen_begin_brtab (), insn);
pattern = PATTERN (insn);
location = PREV_INSN (insn);
length = XVECLEN (pattern, GET_CODE (pattern) == ADDR_DIFF_VEC);
for (i = 0; i < length; i++)
{
/* Emit a label before each jump to keep jump.c from
removing this code. */
tmp = gen_label_rtx ();
LABEL_NUSES (tmp) = 1;
emit_label_after (tmp, location);
location = NEXT_INSN (location);
if (GET_CODE (pattern) == ADDR_VEC)
label = XEXP (XVECEXP (pattern, 0, i), 0);
else
label = XEXP (XVECEXP (pattern, 1, i), 0);
tmp = gen_short_jump (label);
/* Emit the jump itself. */
tmp = emit_jump_insn_after (tmp, location);
JUMP_LABEL (tmp) = label;
LABEL_NUSES (label)++;
location = NEXT_INSN (location);
/* Emit a BARRIER after the jump. */
emit_barrier_after (location);
location = NEXT_INSN (location);
}
/* Emit marker for the end of the branch table. */
emit_insn_before (gen_end_brtab (), location);
location = NEXT_INSN (location);
emit_barrier_after (location);
/* Delete the ADDR_VEC or ADDR_DIFF_VEC. */
delete_insn (insn);
}
}
else
{
/* Still need brtab marker insns. FIXME: the presence of these
markers disables output of the branch table to readonly memory,
and any alignment directives that might be needed. Possibly,
the begin_brtab insn should be output before the label for the
table. This doesn't matter at the moment since the tables are
always output in the text section. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
/* Find an ADDR_VEC insn. */
if (GET_CODE (insn) != JUMP_INSN
|| (GET_CODE (PATTERN (insn)) != ADDR_VEC
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC))
continue;
/* Now generate markers for the beginning and end of the
branch table. */
emit_insn_before (gen_begin_brtab (), insn);
emit_insn_after (gen_end_brtab (), insn);
}
}
}
/* The PA has a number of odd instructions which can perform multiple
tasks at once. On first generation PA machines (PA1.0 and PA1.1)
it may be profitable to combine two instructions into one instruction
with two outputs. It's not profitable PA2.0 machines because the
two outputs would take two slots in the reorder buffers.
This routine finds instructions which can be combined and combines
them. We only support some of the potential combinations, and we
only try common ways to find suitable instructions.
* addb can add two registers or a register and a small integer
and jump to a nearby (+-8k) location. Normally the jump to the
nearby location is conditional on the result of the add, but by
using the "true" condition we can make the jump unconditional.
Thus addb can perform two independent operations in one insn.
* movb is similar to addb in that it can perform a reg->reg
or small immediate->reg copy and jump to a nearby (+-8k location).
* fmpyadd and fmpysub can perform a FP multiply and either an
FP add or FP sub if the operands of the multiply and add/sub are
independent (there are other minor restrictions). Note both
the fmpy and fadd/fsub can in theory move to better spots according
to data dependencies, but for now we require the fmpy stay at a
fixed location.
* Many of the memory operations can perform pre & post updates
of index registers. GCC's pre/post increment/decrement addressing
is far too simple to take advantage of all the possibilities. This
pass may not be suitable since those insns may not be independent.
* comclr can compare two ints or an int and a register, nullify
the following instruction and zero some other register. This
is more difficult to use as it's harder to find an insn which
will generate a comclr than finding something like an unconditional
branch. (conditional moves & long branches create comclr insns).
* Most arithmetic operations can conditionally skip the next
instruction. They can be viewed as "perform this operation
and conditionally jump to this nearby location" (where nearby
is an insns away). These are difficult to use due to the
branch length restrictions. */
static void
pa_combine_instructions (void)
{
rtx anchor, new;
/* This can get expensive since the basic algorithm is on the
order of O(n^2) (or worse). Only do it for -O2 or higher
levels of optimization. */
if (optimize < 2)
return;
/* Walk down the list of insns looking for "anchor" insns which
may be combined with "floating" insns. As the name implies,
"anchor" instructions don't move, while "floating" insns may
move around. */
new = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, NULL_RTX, NULL_RTX));
new = make_insn_raw (new);
for (anchor = get_insns (); anchor; anchor = NEXT_INSN (anchor))
{
enum attr_pa_combine_type anchor_attr;
enum attr_pa_combine_type floater_attr;
/* We only care about INSNs, JUMP_INSNs, and CALL_INSNs.
Also ignore any special USE insns. */
if ((GET_CODE (anchor) != INSN
&& GET_CODE (anchor) != JUMP_INSN
&& GET_CODE (anchor) != CALL_INSN)
|| GET_CODE (PATTERN (anchor)) == USE
|| GET_CODE (PATTERN (anchor)) == CLOBBER
|| GET_CODE (PATTERN (anchor)) == ADDR_VEC
|| GET_CODE (PATTERN (anchor)) == ADDR_DIFF_VEC)
continue;
anchor_attr = get_attr_pa_combine_type (anchor);
/* See if anchor is an insn suitable for combination. */
if (anchor_attr == PA_COMBINE_TYPE_FMPY
|| anchor_attr == PA_COMBINE_TYPE_FADDSUB
|| (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
&& ! forward_branch_p (anchor)))
{
rtx floater;
for (floater = PREV_INSN (anchor);
floater;
floater = PREV_INSN (floater))
{
if (GET_CODE (floater) == NOTE
|| (GET_CODE (floater) == INSN
&& (GET_CODE (PATTERN (floater)) == USE
|| GET_CODE (PATTERN (floater)) == CLOBBER)))
continue;
/* Anything except a regular INSN will stop our search. */
if (GET_CODE (floater) != INSN
|| GET_CODE (PATTERN (floater)) == ADDR_VEC
|| GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC)
{
floater = NULL_RTX;
break;
}
/* See if FLOATER is suitable for combination with the
anchor. */
floater_attr = get_attr_pa_combine_type (floater);
if ((anchor_attr == PA_COMBINE_TYPE_FMPY
&& floater_attr == PA_COMBINE_TYPE_FADDSUB)
|| (anchor_attr == PA_COMBINE_TYPE_FADDSUB
&& floater_attr == PA_COMBINE_TYPE_FMPY))
{
/* If ANCHOR and FLOATER can be combined, then we're
done with this pass. */
if (pa_can_combine_p (new, anchor, floater, 0,
SET_DEST (PATTERN (floater)),
XEXP (SET_SRC (PATTERN (floater)), 0),
XEXP (SET_SRC (PATTERN (floater)), 1)))
break;
}
else if (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
&& floater_attr == PA_COMBINE_TYPE_ADDMOVE)
{
if (GET_CODE (SET_SRC (PATTERN (floater))) == PLUS)
{
if (pa_can_combine_p (new, anchor, floater, 0,
SET_DEST (PATTERN (floater)),
XEXP (SET_SRC (PATTERN (floater)), 0),
XEXP (SET_SRC (PATTERN (floater)), 1)))
break;
}
else
{
if (pa_can_combine_p (new, anchor, floater, 0,
SET_DEST (PATTERN (floater)),
SET_SRC (PATTERN (floater)),
SET_SRC (PATTERN (floater))))
break;
}
}
}
/* If we didn't find anything on the backwards scan try forwards. */
if (!floater
&& (anchor_attr == PA_COMBINE_TYPE_FMPY
|| anchor_attr == PA_COMBINE_TYPE_FADDSUB))
{
for (floater = anchor; floater; floater = NEXT_INSN (floater))
{
if (GET_CODE (floater) == NOTE
|| (GET_CODE (floater) == INSN
&& (GET_CODE (PATTERN (floater)) == USE
|| GET_CODE (PATTERN (floater)) == CLOBBER)))
continue;
/* Anything except a regular INSN will stop our search. */
if (GET_CODE (floater) != INSN
|| GET_CODE (PATTERN (floater)) == ADDR_VEC
|| GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC)
{
floater = NULL_RTX;
break;
}
/* See if FLOATER is suitable for combination with the
anchor. */
floater_attr = get_attr_pa_combine_type (floater);
if ((anchor_attr == PA_COMBINE_TYPE_FMPY
&& floater_attr == PA_COMBINE_TYPE_FADDSUB)
|| (anchor_attr == PA_COMBINE_TYPE_FADDSUB
&& floater_attr == PA_COMBINE_TYPE_FMPY))
{
/* If ANCHOR and FLOATER can be combined, then we're
done with this pass. */
if (pa_can_combine_p (new, anchor, floater, 1,
SET_DEST (PATTERN (floater)),
XEXP (SET_SRC (PATTERN (floater)),
0),
XEXP (SET_SRC (PATTERN (floater)),
1)))
break;
}
}
}
/* FLOATER will be nonzero if we found a suitable floating
insn for combination with ANCHOR. */
if (floater
&& (anchor_attr == PA_COMBINE_TYPE_FADDSUB
|| anchor_attr == PA_COMBINE_TYPE_FMPY))
{
/* Emit the new instruction and delete the old anchor. */
emit_insn_before (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2, PATTERN (anchor),
PATTERN (floater))),
anchor);
PUT_CODE (anchor, NOTE);
NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (anchor) = 0;
/* Emit a special USE insn for FLOATER, then delete
the floating insn. */
emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater);
delete_insn (floater);
continue;
}
else if (floater
&& anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH)
{
rtx temp;
/* Emit the new_jump instruction and delete the old anchor. */
temp
= emit_jump_insn_before (gen_rtx_PARALLEL
(VOIDmode,
gen_rtvec (2, PATTERN (anchor),
PATTERN (floater))),
anchor);
JUMP_LABEL (temp) = JUMP_LABEL (anchor);
PUT_CODE (anchor, NOTE);
NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (anchor) = 0;
/* Emit a special USE insn for FLOATER, then delete
the floating insn. */
emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater);
delete_insn (floater);
continue;
}
}
}
}
static int
pa_can_combine_p (rtx new, rtx anchor, rtx floater, int reversed, rtx dest,
rtx src1, rtx src2)
{
int insn_code_number;
rtx start, end;
/* Create a PARALLEL with the patterns of ANCHOR and
FLOATER, try to recognize it, then test constraints
for the resulting pattern.
If the pattern doesn't match or the constraints
aren't met keep searching for a suitable floater
insn. */
XVECEXP (PATTERN (new), 0, 0) = PATTERN (anchor);
XVECEXP (PATTERN (new), 0, 1) = PATTERN (floater);
INSN_CODE (new) = -1;
insn_code_number = recog_memoized (new);
if (insn_code_number < 0
|| (extract_insn (new), ! constrain_operands (1)))
return 0;
if (reversed)
{
start = anchor;
end = floater;
}
else
{
start = floater;
end = anchor;
}
/* There's up to three operands to consider. One
output and two inputs.
The output must not be used between FLOATER & ANCHOR
exclusive. The inputs must not be set between
FLOATER and ANCHOR exclusive. */
if (reg_used_between_p (dest, start, end))
return 0;
if (reg_set_between_p (src1, start, end))
return 0;
if (reg_set_between_p (src2, start, end))
return 0;
/* If we get here, then everything is good. */
return 1;
}
/* Return nonzero if references for INSN are delayed.
Millicode insns are actually function calls with some special
constraints on arguments and register usage.
Millicode calls always expect their arguments in the integer argument
registers, and always return their result in %r29 (ret1). They
are expected to clobber their arguments, %r1, %r29, and the return
pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
This function tells reorg that the references to arguments and
millicode calls do not appear to happen until after the millicode call.
This allows reorg to put insns which set the argument registers into the
delay slot of the millicode call -- thus they act more like traditional
CALL_INSNs.
Note we cannot consider side effects of the insn to be delayed because
the branch and link insn will clobber the return pointer. If we happened
to use the return pointer in the delay slot of the call, then we lose.
get_attr_type will try to recognize the given insn, so make sure to
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
in particular. */
int
insn_refs_are_delayed (rtx insn)
{
return ((GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) != SEQUENCE
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& get_attr_type (insn) == TYPE_MILLI));
}
/* On the HP-PA the value is found in register(s) 28(-29), unless
the mode is SF or DF. Then the value is returned in fr4 (32).
This must perform the same promotions as PROMOTE_MODE, else
TARGET_PROMOTE_FUNCTION_RETURN will not work correctly.
Small structures must be returned in a PARALLEL on PA64 in order
to match the HP Compiler ABI. */
rtx
function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
enum machine_mode valmode;
if (AGGREGATE_TYPE_P (valtype)
|| TREE_CODE (valtype) == COMPLEX_TYPE
|| TREE_CODE (valtype) == VECTOR_TYPE)
{
if (TARGET_64BIT)
{
/* Aggregates with a size less than or equal to 128 bits are
returned in GR 28(-29). They are left justified. The pad
bits are undefined. Larger aggregates are returned in
memory. */
rtx loc[2];
int i, offset = 0;
int ub = int_size_in_bytes (valtype) <= UNITS_PER_WORD ? 1 : 2;
for (i = 0; i < ub; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, 28 + i),
GEN_INT (offset));
offset += 8;
}
return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (ub, loc));
}
else if (int_size_in_bytes (valtype) > UNITS_PER_WORD)
{
/* Aggregates 5 to 8 bytes in size are returned in general
registers r28-r29 in the same manner as other non
floating-point objects. The data is right-justified and
zero-extended to 64 bits. This is opposite to the normal
justification used on big endian targets and requires
special treatment. */
rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, 28), const0_rtx);
return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
}
}
if ((INTEGRAL_TYPE_P (valtype)
&& TYPE_PRECISION (valtype) < BITS_PER_WORD)
|| POINTER_TYPE_P (valtype))
valmode = word_mode;
else
valmode = TYPE_MODE (valtype);
if (TREE_CODE (valtype) == REAL_TYPE
&& !AGGREGATE_TYPE_P (valtype)
&& TYPE_MODE (valtype) != TFmode
&& !TARGET_SOFT_FLOAT)
return gen_rtx_REG (valmode, 32);
return gen_rtx_REG (valmode, 28);
}
/* Return the location of a parameter that is passed in a register or NULL
if the parameter has any component that is passed in memory.
This is new code and will be pushed to into the net sources after
further testing.
??? We might want to restructure this so that it looks more like other
ports. */
rtx
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
int named ATTRIBUTE_UNUSED)
{
int max_arg_words = (TARGET_64BIT ? 8 : 4);
int alignment = 0;
int arg_size;
int fpr_reg_base;
int gpr_reg_base;
rtx retval;
if (mode == VOIDmode)
return NULL_RTX;
arg_size = FUNCTION_ARG_SIZE (mode, type);
/* If this arg would be passed partially or totally on the stack, then
this routine should return zero. pa_arg_partial_bytes will
handle arguments which are split between regs and stack slots if
the ABI mandates split arguments. */
if (!TARGET_64BIT)
{
/* The 32-bit ABI does not split arguments. */
if (cum->words + arg_size > max_arg_words)
return NULL_RTX;
}
else
{
if (arg_size > 1)
alignment = cum->words & 1;
if (cum->words + alignment >= max_arg_words)
return NULL_RTX;
}
/* The 32bit ABIs and the 64bit ABIs are rather different,
particularly in their handling of FP registers. We might
be able to cleverly share code between them, but I'm not
going to bother in the hope that splitting them up results
in code that is more easily understood. */
if (TARGET_64BIT)
{
/* Advance the base registers to their current locations.
Remember, gprs grow towards smaller register numbers while
fprs grow to higher register numbers. Also remember that
although FP regs are 32-bit addressable, we pretend that
the registers are 64-bits wide. */
gpr_reg_base = 26 - cum->words;
fpr_reg_base = 32 + cum->words;
/* Arguments wider than one word and small aggregates need special
treatment. */
if (arg_size > 1
|| mode == BLKmode
|| (type && (AGGREGATE_TYPE_P (type)
|| TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE)))
{
/* Double-extended precision (80-bit), quad-precision (128-bit)
and aggregates including complex numbers are aligned on
128-bit boundaries. The first eight 64-bit argument slots
are associated one-to-one, with general registers r26
through r19, and also with floating-point registers fr4
through fr11. Arguments larger than one word are always
passed in general registers.
Using a PARALLEL with a word mode register results in left
justified data on a big-endian target. */
rtx loc[8];
int i, offset = 0, ub = arg_size;
/* Align the base register. */
gpr_reg_base -= alignment;
ub = MIN (ub, max_arg_words - cum->words - alignment);
for (i = 0; i < ub; i++)
{
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, gpr_reg_base),
GEN_INT (offset));
gpr_reg_base -= 1;
offset += 8;
}
return gen_rtx_PARALLEL (mode, gen_rtvec_v (ub, loc));
}
}
else
{
/* If the argument is larger than a word, then we know precisely
which registers we must use. */
if (arg_size > 1)
{
if (cum->words)
{
gpr_reg_base = 23;
fpr_reg_base = 38;
}
else
{
gpr_reg_base = 25;
fpr_reg_base = 34;
}
/* Structures 5 to 8 bytes in size are passed in the general
registers in the same manner as other non floating-point
objects. The data is right-justified and zero-extended
to 64 bits. This is opposite to the normal justification
used on big endian targets and requires special treatment.
We now define BLOCK_REG_PADDING to pad these objects.
Aggregates, complex and vector types are passed in the same
manner as structures. */
if (mode == BLKmode
|| (type && (AGGREGATE_TYPE_P (type)
|| TREE_CODE (type) == COMPLEX_TYPE
|| TREE_CODE (type) == VECTOR_TYPE)))
{
rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DImode, gpr_reg_base),
const0_rtx);
return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
}
}
else
{
/* We have a single word (32 bits). A simple computation
will get us the register #s we need. */
gpr_reg_base = 26 - cum->words;
fpr_reg_base = 32 + 2 * cum->words;
}
}
/* Determine if the argument needs to be passed in both general and
floating point registers. */
if (((TARGET_PORTABLE_RUNTIME || TARGET_64BIT || TARGET_ELF32)
/* If we are doing soft-float with portable runtime, then there
is no need to worry about FP regs. */
&& !TARGET_SOFT_FLOAT
/* The parameter must be some kind of scalar float, else we just
pass it in integer registers. */
&& GET_MODE_CLASS (mode) == MODE_FLOAT
/* The target function must not have a prototype. */
&& cum->nargs_prototype <= 0
/* libcalls do not need to pass items in both FP and general
registers. */
&& type != NULL_TREE
/* All this hair applies to "outgoing" args only. This includes
sibcall arguments setup with FUNCTION_INCOMING_ARG. */
&& !cum->incoming)
/* Also pass outgoing floating arguments in both registers in indirect
calls with the 32 bit ABI and the HP assembler since there is no
way to the specify argument locations in static functions. */
|| (!TARGET_64BIT
&& !TARGET_GAS
&& !cum->incoming
&& cum->indirect
&& GET_MODE_CLASS (mode) == MODE_FLOAT))
{
retval
= gen_rtx_PARALLEL
(mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, fpr_reg_base),
const0_rtx),
gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (mode, gpr_reg_base),
const0_rtx)));
}
else
{
/* See if we should pass this parameter in a general register. */
if (TARGET_SOFT_FLOAT
/* Indirect calls in the normal 32bit ABI require all arguments
to be passed in general registers. */
|| (!TARGET_PORTABLE_RUNTIME
&& !TARGET_64BIT
&& !TARGET_ELF32
&& cum->indirect)
/* If the parameter is not a scalar floating-point parameter,
then it belongs in GPRs. */
|| GET_MODE_CLASS (mode) != MODE_FLOAT
/* Structure with single SFmode field belongs in GPR. */
|| (type && AGGREGATE_TYPE_P (type)))
retval = gen_rtx_REG (mode, gpr_reg_base);
else
retval = gen_rtx_REG (mode, fpr_reg_base);
}
return retval;
}
/* If this arg would be passed totally in registers or totally on the stack,
then this routine should return zero. */
static int
pa_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
unsigned int max_arg_words = 8;
unsigned int offset = 0;
if (!TARGET_64BIT)
return 0;
if (FUNCTION_ARG_SIZE (mode, type) > 1 && (cum->words & 1))
offset = 1;
if (cum->words + offset + FUNCTION_ARG_SIZE (mode, type) <= max_arg_words)
/* Arg fits fully into registers. */
return 0;
else if (cum->words + offset >= max_arg_words)
/* Arg fully on the stack. */
return 0;
else
/* Arg is split. */
return (max_arg_words - cum->words - offset) * UNITS_PER_WORD;
}
/* A get_unnamed_section callback for switching to the text section.
This function is only used with SOM. Because we don't support
named subspaces, we can only create a new subspace or switch back
to the default text subspace. */
static void
som_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED)
{
gcc_assert (TARGET_SOM);
if (TARGET_GAS)
{
if (cfun && cfun->machine && !cfun->machine->in_nsubspa)
{
/* We only want to emit a .nsubspa directive once at the
start of the function. */
cfun->machine->in_nsubspa = 1;
/* Create a new subspace for the text. This provides
better stub placement and one-only functions. */
if (cfun->decl
&& DECL_ONE_ONLY (cfun->decl)
&& !DECL_WEAK (cfun->decl))
{
output_section_asm_op ("\t.SPACE $TEXT$\n"
"\t.NSUBSPA $CODE$,QUAD=0,ALIGN=8,"
"ACCESS=44,SORT=24,COMDAT");
return;
}
}
else
{
/* There isn't a current function or the body of the current
function has been completed. So, we are changing to the
text section to output debugging information. Thus, we
need to forget that we are in the text section so that
varasm.c will call us when text_section is selected again. */
gcc_assert (!cfun || !cfun->machine
|| cfun->machine->in_nsubspa == 2);
in_section = NULL;
}
output_section_asm_op ("\t.SPACE $TEXT$\n\t.NSUBSPA $CODE$");
return;
}
output_section_asm_op ("\t.SPACE $TEXT$\n\t.SUBSPA $CODE$");
}
/* A get_unnamed_section callback for switching to comdat data
sections. This function is only used with SOM. */
static void
som_output_comdat_data_section_asm_op (const void *data)
{
in_section = NULL;
output_section_asm_op (data);
}
/* Implement TARGET_ASM_INITIALIZE_SECTIONS */
static void
pa_som_asm_init_sections (void)
{
text_section
= get_unnamed_section (0, som_output_text_section_asm_op, NULL);
/* SOM puts readonly data in the default $LIT$ subspace when PIC code
is not being generated. */
som_readonly_data_section
= get_unnamed_section (0, output_section_asm_op,
"\t.SPACE $TEXT$\n\t.SUBSPA $LIT$");
/* When secondary definitions are not supported, SOM makes readonly
data one-only by creating a new $LIT$ subspace in $TEXT$ with
the comdat flag. */
som_one_only_readonly_data_section
= get_unnamed_section (0, som_output_comdat_data_section_asm_op,
"\t.SPACE $TEXT$\n"
"\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,"
"ACCESS=0x2c,SORT=16,COMDAT");
/* When secondary definitions are not supported, SOM makes data one-only
by creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag. */
som_one_only_data_section
= get_unnamed_section (SECTION_WRITE,
som_output_comdat_data_section_asm_op,
"\t.SPACE $PRIVATE$\n"
"\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,"
"ACCESS=31,SORT=24,COMDAT");
/* FIXME: HPUX ld generates incorrect GOT entries for "T" fixups
which reference data within the $TEXT$ space (for example constant
strings in the $LIT$ subspace).
The assemblers (GAS and HP as) both have problems with handling
the difference of two symbols which is the other correct way to
reference constant data during PIC code generation.
So, there's no way to reference constant data which is in the
$TEXT$ space during PIC generation. Instead place all constant
data into the $PRIVATE$ subspace (this reduces sharing, but it
works correctly). */
readonly_data_section = flag_pic ? data_section : som_readonly_data_section;
/* We must not have a reference to an external symbol defined in a
shared library in a readonly section, else the SOM linker will
complain.
So, we force exception information into the data section. */
exception_section = data_section;
}
/* On hpux10, the linker will give an error if we have a reference
in the read-only data section to a symbol defined in a shared
library. Therefore, expressions that might require a reloc can
not be placed in the read-only data section. */
static section *
pa_select_section (tree exp, int reloc,
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
if (TREE_CODE (exp) == VAR_DECL
&& TREE_READONLY (exp)
&& !TREE_THIS_VOLATILE (exp)
&& DECL_INITIAL (exp)
&& (DECL_INITIAL (exp) == error_mark_node
|| TREE_CONSTANT (DECL_INITIAL (exp)))
&& !reloc)
{
if (TARGET_SOM
&& DECL_ONE_ONLY (exp)
&& !DECL_WEAK (exp))
return som_one_only_readonly_data_section;
else
return readonly_data_section;
}
else if (CONSTANT_CLASS_P (exp) && !reloc)
return readonly_data_section;
else if (TARGET_SOM
&& TREE_CODE (exp) == VAR_DECL
&& DECL_ONE_ONLY (exp)
&& !DECL_WEAK (exp))
return som_one_only_data_section;
else
return data_section;
}
static void
pa_globalize_label (FILE *stream, const char *name)
{
/* We only handle DATA objects here, functions are globalized in
ASM_DECLARE_FUNCTION_NAME. */
if (! FUNCTION_NAME_P (name))
{
fputs ("\t.EXPORT ", stream);
assemble_name (stream, name);
fputs (",DATA\n", stream);
}
}
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
static rtx
pa_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, PA_STRUCT_VALUE_REGNUM);
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
bool
pa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
{
/* SOM ABI says that objects larger than 64 bits are returned in memory.
PA64 ABI says that objects larger than 128 bits are returned in memory.
Note, int_size_in_bytes can return -1 if the size of the object is
variable or larger than the maximum value that can be expressed as
a HOST_WIDE_INT. It can also return zero for an empty type. The
simplest way to handle variable and empty types is to pass them in
memory. This avoids problems in defining the boundaries of argument
slots, allocating registers, etc. */
return (int_size_in_bytes (type) > (TARGET_64BIT ? 16 : 8)
|| int_size_in_bytes (type) <= 0);
}
/* Structure to hold declaration and name of external symbols that are
emitted by GCC. We generate a vector of these symbols and output them
at the end of the file if and only if SYMBOL_REF_REFERENCED_P is true.
This avoids putting out names that are never really used. */
typedef struct extern_symbol GTY(())
{
tree decl;
const char *name;
} extern_symbol;
/* Define gc'd vector type for extern_symbol. */
DEF_VEC_O(extern_symbol);
DEF_VEC_ALLOC_O(extern_symbol,gc);
/* Vector of extern_symbol pointers. */
static GTY(()) VEC(extern_symbol,gc) *extern_symbols;
#ifdef ASM_OUTPUT_EXTERNAL_REAL
/* Mark DECL (name NAME) as an external reference (assembler output
file FILE). This saves the names to output at the end of the file
if actually referenced. */
void
pa_hpux_asm_output_external (FILE *file, tree decl, const char *name)
{
extern_symbol * p = VEC_safe_push (extern_symbol, gc, extern_symbols, NULL);
gcc_assert (file == asm_out_file);
p->decl = decl;
p->name = name;
}
/* Output text required at the end of an assembler file.
This includes deferred plabels and .import directives for
all external symbols that were actually referenced. */
static void
pa_hpux_file_end (void)
{
unsigned int i;
extern_symbol *p;
if (!NO_DEFERRED_PROFILE_COUNTERS)
output_deferred_profile_counters ();
output_deferred_plabels ();
for (i = 0; VEC_iterate (extern_symbol, extern_symbols, i, p); i++)
{
tree decl = p->decl;
if (!TREE_ASM_WRITTEN (decl)
&& SYMBOL_REF_REFERENCED_P (XEXP (DECL_RTL (decl), 0)))
ASM_OUTPUT_EXTERNAL_REAL (asm_out_file, decl, p->name);
}
VEC_free (extern_symbol, gc, extern_symbols);
}
#endif
#include "gt-pa.h"
|