1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
/* 128-bit long double support routines for Darwin.
Copyright (C) 1993, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* Implementations of floating-point long double basic arithmetic
functions called by the IBM C compiler when generating code for
PowerPC platforms. In particular, the following functions are
implemented: __gcc_qadd, __gcc_qsub, __gcc_qmul, and __gcc_qdiv.
Double-double algorithms are based on the paper "Doubled-Precision
IEEE Standard 754 Floating-Point Arithmetic" by W. Kahan, February 26,
1987. An alternative published reference is "Software for
Doubled-Precision Floating-Point Computations", by Seppo Linnainmaa,
ACM TOMS vol 7 no 3, September 1981, pages 272-283. */
/* Each long double is made up of two IEEE doubles. The value of the
long double is the sum of the values of the two parts. The most
significant part is required to be the value of the long double
rounded to the nearest double, as specified by IEEE. For Inf
values, the least significant part is required to be one of +0.0 or
-0.0. No other requirements are made; so, for example, 1.0 may be
represented as (1.0, +0.0) or (1.0, -0.0), and the low part of a
NaN is don't-care.
This code currently assumes big-endian. */
#if ((!defined (__NO_FPRS__) || defined (_SOFT_FLOAT)) \
&& !defined (__LITTLE_ENDIAN__) \
&& (defined (__MACH__) || defined (__powerpc__) || defined (_AIX)))
#define fabs(x) __builtin_fabs(x)
#define isless(x, y) __builtin_isless (x, y)
#define inf() __builtin_inf()
#define unlikely(x) __builtin_expect ((x), 0)
#define nonfinite(a) unlikely (! isless (fabs (a), inf ()))
/* Define ALIASNAME as a strong alias for NAME. */
# define strong_alias(name, aliasname) _strong_alias(name, aliasname)
# define _strong_alias(name, aliasname) \
extern __typeof (name) aliasname __attribute__ ((alias (#name)));
/* All these routines actually take two long doubles as parameters,
but GCC currently generates poor code when a union is used to turn
a long double into a pair of doubles. */
long double __gcc_qadd (double, double, double, double);
long double __gcc_qsub (double, double, double, double);
long double __gcc_qmul (double, double, double, double);
long double __gcc_qdiv (double, double, double, double);
#if defined __ELF__ && defined SHARED \
&& (defined __powerpc64__ || !(defined __linux__ || defined __gnu_hurd__))
/* Provide definitions of the old symbol names to satisfy apps and
shared libs built against an older libgcc. To access the _xlq
symbols an explicit version reference is needed, so these won't
satisfy an unadorned reference like _xlqadd. If dot symbols are
not needed, the assembler will remove the aliases from the symbol
table. */
__asm__ (".symver __gcc_qadd,_xlqadd@GCC_3.4\n\t"
".symver __gcc_qsub,_xlqsub@GCC_3.4\n\t"
".symver __gcc_qmul,_xlqmul@GCC_3.4\n\t"
".symver __gcc_qdiv,_xlqdiv@GCC_3.4\n\t"
".symver .__gcc_qadd,._xlqadd@GCC_3.4\n\t"
".symver .__gcc_qsub,._xlqsub@GCC_3.4\n\t"
".symver .__gcc_qmul,._xlqmul@GCC_3.4\n\t"
".symver .__gcc_qdiv,._xlqdiv@GCC_3.4");
#endif
typedef union
{
long double ldval;
double dval[2];
} longDblUnion;
/* Add two 'long double' values and return the result. */
long double
__gcc_qadd (double a, double aa, double c, double cc)
{
longDblUnion x;
double z, q, zz, xh;
z = a + c;
if (nonfinite (z))
{
z = cc + aa + c + a;
if (nonfinite (z))
return z;
x.dval[0] = z; /* Will always be DBL_MAX. */
zz = aa + cc;
if (fabs(a) > fabs(c))
x.dval[1] = a - z + c + zz;
else
x.dval[1] = c - z + a + zz;
}
else
{
q = a - z;
zz = q + c + (a - (q + z)) + aa + cc;
/* Keep -0 result. */
if (zz == 0.0)
return z;
xh = z + zz;
if (nonfinite (xh))
return xh;
x.dval[0] = xh;
x.dval[1] = z - xh + zz;
}
return x.ldval;
}
long double
__gcc_qsub (double a, double b, double c, double d)
{
return __gcc_qadd (a, b, -c, -d);
}
#ifdef _SOFT_FLOAT
static double fmsub (double, double, double);
#endif
long double
__gcc_qmul (double a, double b, double c, double d)
{
longDblUnion z;
double t, tau, u, v, w;
t = a * c; /* Highest order double term. */
if (unlikely (t == 0) /* Preserve -0. */
|| nonfinite (t))
return t;
/* Sum terms of two highest orders. */
/* Use fused multiply-add to get low part of a * c. */
#ifndef _SOFT_FLOAT
asm ("fmsub %0,%1,%2,%3" : "=f"(tau) : "f"(a), "f"(c), "f"(t));
#else
tau = fmsub (a, c, t);
#endif
v = a*d;
w = b*c;
tau += v + w; /* Add in other second-order terms. */
u = t + tau;
/* Construct long double result. */
if (nonfinite (u))
return u;
z.dval[0] = u;
z.dval[1] = (t - u) + tau;
return z.ldval;
}
long double
__gcc_qdiv (double a, double b, double c, double d)
{
longDblUnion z;
double s, sigma, t, tau, u, v, w;
t = a / c; /* highest order double term */
if (unlikely (t == 0) /* Preserve -0. */
|| nonfinite (t))
return t;
/* Finite nonzero result requires corrections to the highest order term. */
s = c * t; /* (s,sigma) = c*t exactly. */
w = -(-b + d * t); /* Written to get fnmsub for speed, but not
numerically necessary. */
/* Use fused multiply-add to get low part of c * t. */
#ifndef _SOFT_FLOAT
asm ("fmsub %0,%1,%2,%3" : "=f"(sigma) : "f"(c), "f"(t), "f"(s));
#else
sigma = fmsub (c, t, s);
#endif
v = a - s;
tau = ((v-sigma)+w)/c; /* Correction to t. */
u = t + tau;
/* Construct long double result. */
if (nonfinite (u))
return u;
z.dval[0] = u;
z.dval[1] = (t - u) + tau;
return z.ldval;
}
#if defined (_SOFT_FLOAT) && defined (__LONG_DOUBLE_128__)
long double __gcc_qneg (double, double);
int __gcc_qeq (double, double, double, double);
int __gcc_qne (double, double, double, double);
int __gcc_qge (double, double, double, double);
int __gcc_qle (double, double, double, double);
int __gcc_qunord (double, double, double, double);
long double __gcc_stoq (float);
long double __gcc_dtoq (double);
float __gcc_qtos (double, double);
double __gcc_qtod (double, double);
int __gcc_qtoi (double, double);
unsigned int __gcc_qtou (double, double);
long double __gcc_itoq (int);
long double __gcc_utoq (unsigned int);
extern int __eqdf2 (double, double);
extern int __ledf2 (double, double);
extern int __gedf2 (double, double);
extern int __unorddf2 (double, double);
/* Negate 'long double' value and return the result. */
long double
__gcc_qneg (double a, double aa)
{
longDblUnion x;
x.dval[0] = -a;
x.dval[1] = -aa;
return x.ldval;
}
/* Compare two 'long double' values for equality. */
int
__gcc_qeq (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __eqdf2 (aa, cc);
return 1;
}
strong_alias (__gcc_qeq, __gcc_qne);
/* Compare two 'long double' values for less than or equal. */
int
__gcc_qle (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __ledf2 (aa, cc);
return __ledf2 (a, c);
}
strong_alias (__gcc_qle, __gcc_qlt);
/* Compare two 'long double' values for greater than or equal. */
int
__gcc_qge (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __gedf2 (aa, cc);
return __gedf2 (a, c);
}
strong_alias (__gcc_qge, __gcc_qgt);
/* Compare two 'long double' values for unordered. */
int
__gcc_qunord (double a, double aa, double c, double cc)
{
if (__eqdf2 (a, c) == 0)
return __unorddf2 (aa, cc);
return __unorddf2 (a, c);
}
/* Convert single to long double. */
long double
__gcc_stoq (float a)
{
longDblUnion x;
x.dval[0] = (double) a;
x.dval[1] = 0.0;
return x.ldval;
}
/* Convert double to long double. */
long double
__gcc_dtoq (double a)
{
longDblUnion x;
x.dval[0] = a;
x.dval[1] = 0.0;
return x.ldval;
}
/* Convert long double to single. */
float
__gcc_qtos (double a, double aa __attribute__ ((__unused__)))
{
return (float) a;
}
/* Convert long double to double. */
double
__gcc_qtod (double a, double aa __attribute__ ((__unused__)))
{
return a;
}
/* Convert long double to int. */
int
__gcc_qtoi (double a, double aa)
{
double z = a + aa;
return (int) z;
}
/* Convert long double to unsigned int. */
unsigned int
__gcc_qtou (double a, double aa)
{
double z = a + aa;
return (unsigned int) z;
}
/* Convert int to long double. */
long double
__gcc_itoq (int a)
{
return __gcc_dtoq ((double) a);
}
/* Convert unsigned int to long double. */
long double
__gcc_utoq (unsigned int a)
{
return __gcc_dtoq ((double) a);
}
#include "config/soft-fp/soft-fp.h"
#include "config/soft-fp/double.h"
#include "config/soft-fp/quad.h"
/* Compute floating point multiply-subtract with higher (quad) precision. */
static double
fmsub (double a, double b, double c)
{
FP_DECL_EX;
FP_DECL_D(A);
FP_DECL_D(B);
FP_DECL_D(C);
FP_DECL_Q(X);
FP_DECL_Q(Y);
FP_DECL_Q(Z);
FP_DECL_Q(U);
FP_DECL_Q(V);
FP_DECL_D(R);
double r;
long double u, v, x, y, z;
FP_INIT_ROUNDMODE;
FP_UNPACK_RAW_D (A, a);
FP_UNPACK_RAW_D (B, b);
FP_UNPACK_RAW_D (C, c);
/* Extend double to quad. */
#if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q
FP_EXTEND(Q,D,4,2,X,A);
FP_EXTEND(Q,D,4,2,Y,B);
FP_EXTEND(Q,D,4,2,Z,C);
#else
FP_EXTEND(Q,D,2,1,X,A);
FP_EXTEND(Q,D,2,1,Y,B);
FP_EXTEND(Q,D,2,1,Z,C);
#endif
FP_PACK_RAW_Q(x,X);
FP_PACK_RAW_Q(y,Y);
FP_PACK_RAW_Q(z,Z);
FP_HANDLE_EXCEPTIONS;
/* Multiply. */
FP_INIT_ROUNDMODE;
FP_UNPACK_Q(X,x);
FP_UNPACK_Q(Y,y);
FP_MUL_Q(U,X,Y);
FP_PACK_Q(u,U);
FP_HANDLE_EXCEPTIONS;
/* Subtract. */
FP_INIT_ROUNDMODE;
FP_UNPACK_SEMIRAW_Q(U,u);
FP_UNPACK_SEMIRAW_Q(Z,z);
FP_SUB_Q(V,U,Z);
FP_PACK_SEMIRAW_Q(v,V);
FP_HANDLE_EXCEPTIONS;
/* Truncate quad to double. */
FP_INIT_ROUNDMODE;
FP_UNPACK_SEMIRAW_Q(V,v);
#if (2 * _FP_W_TYPE_SIZE) < _FP_FRACBITS_Q
FP_TRUNC(D,Q,2,4,R,V);
#else
FP_TRUNC(D,Q,1,2,R,V);
#endif
FP_PACK_SEMIRAW_D(r,R);
FP_HANDLE_EXCEPTIONS;
return r;
}
#endif
#endif
|