1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
|
/* Xstormy16 target functions.
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "toplev.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "target.h"
#include "target-def.h"
#include "tm_p.h"
#include "langhooks.h"
#include "tree-gimple.h"
#include "ggc.h"
static rtx emit_addhi3_postreload (rtx, rtx, rtx);
static void xstormy16_asm_out_constructor (rtx, int);
static void xstormy16_asm_out_destructor (rtx, int);
static void xstormy16_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static void xstormy16_init_builtins (void);
static rtx xstormy16_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static bool xstormy16_rtx_costs (rtx, int, int, int *);
static int xstormy16_address_cost (rtx);
static bool xstormy16_return_in_memory (tree, tree);
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. */
struct rtx_def * xstormy16_compare_op0;
struct rtx_def * xstormy16_compare_op1;
static GTY(()) section *bss100_section;
/* Compute a (partial) cost for rtx X. Return true if the complete
cost has been computed, and false if subexpressions should be
scanned. In either case, *TOTAL contains the cost result. */
static bool
xstormy16_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
int *total)
{
switch (code)
{
case CONST_INT:
if (INTVAL (x) < 16 && INTVAL (x) >= 0)
*total = COSTS_N_INSNS (1) / 2;
else if (INTVAL (x) < 256 && INTVAL (x) >= 0)
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
return true;
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
*total = COSTS_N_INSNS(2);
return true;
case MULT:
*total = COSTS_N_INSNS (35 + 6);
return true;
case DIV:
*total = COSTS_N_INSNS (51 - 6);
return true;
default:
return false;
}
}
static int
xstormy16_address_cost (rtx x)
{
return (GET_CODE (x) == CONST_INT ? 2
: GET_CODE (x) == PLUS ? 7
: 5);
}
/* Branches are handled as follows:
1. HImode compare-and-branches. The machine supports these
natively, so the appropriate pattern is emitted directly.
2. SImode EQ and NE. These are emitted as pairs of HImode
compare-and-branches.
3. SImode LT, GE, LTU and GEU. These are emitted as a sequence
of a SImode subtract followed by a branch (not a compare-and-branch),
like this:
sub
sbc
blt
4. SImode GT, LE, GTU, LEU. These are emitted as a sequence like:
sub
sbc
blt
or
bne
*/
/* Emit a branch of kind CODE to location LOC. */
void
xstormy16_emit_cbranch (enum rtx_code code, rtx loc)
{
rtx op0 = xstormy16_compare_op0;
rtx op1 = xstormy16_compare_op1;
rtx condition_rtx, loc_ref, branch, cy_clobber;
rtvec vec;
enum machine_mode mode;
mode = GET_MODE (op0);
gcc_assert (mode == HImode || mode == SImode);
if (mode == SImode
&& (code == GT || code == LE || code == GTU || code == LEU))
{
int unsigned_p = (code == GTU || code == LEU);
int gt_p = (code == GT || code == GTU);
rtx lab = NULL_RTX;
if (gt_p)
lab = gen_label_rtx ();
xstormy16_emit_cbranch (unsigned_p ? LTU : LT, gt_p ? lab : loc);
/* This should be generated as a comparison against the temporary
created by the previous insn, but reload can't handle that. */
xstormy16_emit_cbranch (gt_p ? NE : EQ, loc);
if (gt_p)
emit_label (lab);
return;
}
else if (mode == SImode
&& (code == NE || code == EQ)
&& op1 != const0_rtx)
{
rtx lab = NULL_RTX;
int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
int i;
if (code == EQ)
lab = gen_label_rtx ();
for (i = 0; i < num_words - 1; i++)
{
xstormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode,
i * UNITS_PER_WORD);
xstormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode,
i * UNITS_PER_WORD);
xstormy16_emit_cbranch (NE, code == EQ ? lab : loc);
}
xstormy16_compare_op0 = simplify_gen_subreg (word_mode, op0, mode,
i * UNITS_PER_WORD);
xstormy16_compare_op1 = simplify_gen_subreg (word_mode, op1, mode,
i * UNITS_PER_WORD);
xstormy16_emit_cbranch (code, loc);
if (code == EQ)
emit_label (lab);
return;
}
/* We can't allow reload to try to generate any reload after a branch,
so when some register must match we must make the temporary ourselves. */
if (mode != HImode)
{
rtx tmp;
tmp = gen_reg_rtx (mode);
emit_move_insn (tmp, op0);
op0 = tmp;
}
condition_rtx = gen_rtx_fmt_ee (code, mode, op0, op1);
loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
branch = gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
loc_ref, pc_rtx));
cy_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (BImode));
if (mode == HImode)
vec = gen_rtvec (2, branch, cy_clobber);
else if (code == NE || code == EQ)
vec = gen_rtvec (2, branch, gen_rtx_CLOBBER (VOIDmode, op0));
else
{
rtx sub;
#if 0
sub = gen_rtx_SET (VOIDmode, op0, gen_rtx_MINUS (SImode, op0, op1));
#else
sub = gen_rtx_CLOBBER (SImode, op0);
#endif
vec = gen_rtvec (3, branch, sub, cy_clobber);
}
emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec));
}
/* Take a SImode conditional branch, one of GT/LE/GTU/LEU, and split
the arithmetic operation. Most of the work is done by
xstormy16_expand_arith. */
void
xstormy16_split_cbranch (enum machine_mode mode, rtx label, rtx comparison,
rtx dest, rtx carry)
{
rtx op0 = XEXP (comparison, 0);
rtx op1 = XEXP (comparison, 1);
rtx seq, last_insn;
rtx compare;
start_sequence ();
xstormy16_expand_arith (mode, COMPARE, dest, op0, op1, carry);
seq = get_insns ();
end_sequence ();
gcc_assert (INSN_P (seq));
last_insn = seq;
while (NEXT_INSN (last_insn) != NULL_RTX)
last_insn = NEXT_INSN (last_insn);
compare = SET_SRC (XVECEXP (PATTERN (last_insn), 0, 0));
PUT_CODE (XEXP (compare, 0), GET_CODE (comparison));
XEXP (compare, 1) = gen_rtx_LABEL_REF (VOIDmode, label);
emit_insn (seq);
}
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label.
OP is the conditional expression, or NULL for branch-always.
REVERSED is nonzero if we should reverse the sense of the comparison.
INSN is the insn. */
char *
xstormy16_output_cbranch_hi (rtx op, const char *label, int reversed, rtx insn)
{
static char string[64];
int need_longbranch = (op != NULL_RTX
? get_attr_length (insn) == 8
: get_attr_length (insn) == 4);
int really_reversed = reversed ^ need_longbranch;
const char *ccode;
const char *template;
const char *operands;
enum rtx_code code;
if (! op)
{
if (need_longbranch)
ccode = "jmpf";
else
ccode = "br";
sprintf (string, "%s %s", ccode, label);
return string;
}
code = GET_CODE (op);
if (GET_CODE (XEXP (op, 0)) != REG)
{
code = swap_condition (code);
operands = "%3,%2";
}
else
operands = "%2,%3";
/* Work out which way this really branches. */
if (really_reversed)
code = reverse_condition (code);
switch (code)
{
case EQ: ccode = "z"; break;
case NE: ccode = "nz"; break;
case GE: ccode = "ge"; break;
case LT: ccode = "lt"; break;
case GT: ccode = "gt"; break;
case LE: ccode = "le"; break;
case GEU: ccode = "nc"; break;
case LTU: ccode = "c"; break;
case GTU: ccode = "hi"; break;
case LEU: ccode = "ls"; break;
default:
gcc_unreachable ();
}
if (need_longbranch)
template = "b%s %s,.+8 | jmpf %s";
else
template = "b%s %s,%s";
sprintf (string, template, ccode, operands, label);
return string;
}
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label, but suitable for the tail of a
SImode branch.
OP is the conditional expression (OP is never NULL_RTX).
REVERSED is nonzero if we should reverse the sense of the comparison.
INSN is the insn. */
char *
xstormy16_output_cbranch_si (rtx op, const char *label, int reversed, rtx insn)
{
static char string[64];
int need_longbranch = get_attr_length (insn) >= 8;
int really_reversed = reversed ^ need_longbranch;
const char *ccode;
const char *template;
char prevop[16];
enum rtx_code code;
code = GET_CODE (op);
/* Work out which way this really branches. */
if (really_reversed)
code = reverse_condition (code);
switch (code)
{
case EQ: ccode = "z"; break;
case NE: ccode = "nz"; break;
case GE: ccode = "ge"; break;
case LT: ccode = "lt"; break;
case GEU: ccode = "nc"; break;
case LTU: ccode = "c"; break;
/* The missing codes above should never be generated. */
default:
gcc_unreachable ();
}
switch (code)
{
case EQ: case NE:
{
int regnum;
gcc_assert (GET_CODE (XEXP (op, 0)) == REG);
regnum = REGNO (XEXP (op, 0));
sprintf (prevop, "or %s,%s", reg_names[regnum], reg_names[regnum+1]);
}
break;
case GE: case LT: case GEU: case LTU:
strcpy (prevop, "sbc %2,%3");
break;
default:
gcc_unreachable ();
}
if (need_longbranch)
template = "%s | b%s .+6 | jmpf %s";
else
template = "%s | b%s %s";
sprintf (string, template, prevop, ccode, label);
return string;
}
/* Many machines have some registers that cannot be copied directly to or from
memory or even from other types of registers. An example is the `MQ'
register, which on most machines, can only be copied to or from general
registers, but not memory. Some machines allow copying all registers to and
from memory, but require a scratch register for stores to some memory
locations (e.g., those with symbolic address on the RT, and those with
certain symbolic address on the SPARC when compiling PIC). In some cases,
both an intermediate and a scratch register are required.
You should define these macros to indicate to the reload phase that it may
need to allocate at least one register for a reload in addition to the
register to contain the data. Specifically, if copying X to a register
CLASS in MODE requires an intermediate register, you should define
`SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
whose registers can be used as intermediate registers or scratch registers.
If copying a register CLASS in MODE to X requires an intermediate or scratch
register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
largest register class required. If the requirements for input and output
reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
instead of defining both macros identically.
The values returned by these macros are often `GENERAL_REGS'. Return
`NO_REGS' if no spare register is needed; i.e., if X can be directly copied
to or from a register of CLASS in MODE without requiring a scratch register.
Do not define this macro if it would always return `NO_REGS'.
If a scratch register is required (either with or without an intermediate
register), you should define patterns for `reload_inM' or `reload_outM', as
required.. These patterns, which will normally be implemented with a
`define_expand', should be similar to the `movM' patterns, except that
operand 2 is the scratch register.
Define constraints for the reload register and scratch register that contain
a single register class. If the original reload register (whose class is
CLASS) can meet the constraint given in the pattern, the value returned by
these macros is used for the class of the scratch register. Otherwise, two
additional reload registers are required. Their classes are obtained from
the constraints in the insn pattern.
X might be a pseudo-register or a `subreg' of a pseudo-register, which could
either be in a hard register or in memory. Use `true_regnum' to find out;
it will return -1 if the pseudo is in memory and the hard register number if
it is in a register.
These macros should not be used in the case where a particular class of
registers can only be copied to memory and not to another class of
registers. In that case, secondary reload registers are not needed and
would not be helpful. Instead, a stack location must be used to perform the
copy and the `movM' pattern should use memory as an intermediate storage.
This case often occurs between floating-point and general registers. */
enum reg_class
xstormy16_secondary_reload_class (enum reg_class class,
enum machine_mode mode,
rtx x)
{
/* This chip has the interesting property that only the first eight
registers can be moved to/from memory. */
if ((GET_CODE (x) == MEM
|| ((GET_CODE (x) == SUBREG || GET_CODE (x) == REG)
&& (true_regnum (x) == -1
|| true_regnum (x) >= FIRST_PSEUDO_REGISTER)))
&& ! reg_class_subset_p (class, EIGHT_REGS))
return EIGHT_REGS;
/* When reloading a PLUS, the carry register will be required
unless the inc or dec instructions can be used. */
if (xstormy16_carry_plus_operand (x, mode))
return CARRY_REGS;
return NO_REGS;
}
/* Recognize a PLUS that needs the carry register. */
int
xstormy16_carry_plus_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) < -4 || INTVAL (XEXP (x, 1)) > 4));
}
/* Detect and error out on out-of-range constants for movhi. */
int
xs_hi_general_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if ((GET_CODE (x) == CONST_INT)
&& ((INTVAL (x) >= 32768) || (INTVAL (x) < -32768)))
error ("constant halfword load operand out of range");
return general_operand (x, mode);
}
/* Detect and error out on out-of-range constants for addhi and subhi. */
int
xs_hi_nonmemory_operand (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if ((GET_CODE (x) == CONST_INT)
&& ((INTVAL (x) >= 32768) || (INTVAL (x) < -32768)))
error ("constant arithmetic operand out of range");
return nonmemory_operand (x, mode);
}
enum reg_class
xstormy16_preferred_reload_class (rtx x, enum reg_class class)
{
if (class == GENERAL_REGS
&& GET_CODE (x) == MEM)
return EIGHT_REGS;
return class;
}
/* Predicate for symbols and addresses that reflect special 8-bit
addressing. */
int
xstormy16_below100_symbol (rtx x,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
x = XEXP (x, 0);
if (GET_CODE (x) == SYMBOL_REF)
return (SYMBOL_REF_FLAGS (x) & SYMBOL_FLAG_XSTORMY16_BELOW100) != 0;
if (GET_CODE (x) == CONST_INT)
{
HOST_WIDE_INT i = INTVAL (x);
if ((i >= 0x0000 && i <= 0x00ff)
|| (i >= 0x7f00 && i <= 0x7fff))
return 1;
}
return 0;
}
/* Likewise, but only for non-volatile MEMs, for patterns where the
MEM will get split into smaller sized accesses. */
int
xstormy16_splittable_below100_operand (rtx x, enum machine_mode mode)
{
if (GET_CODE (x) == MEM && MEM_VOLATILE_P (x))
return 0;
return xstormy16_below100_operand (x, mode);
}
/* Expand an 8-bit IOR. This either detects the one case we can
actually do, or uses a 16-bit IOR. */
void
xstormy16_expand_iorqi3 (rtx *operands)
{
rtx in, out, outsub, val;
out = operands[0];
in = operands[1];
val = operands[2];
if (xstormy16_onebit_set_operand (val, QImode))
{
if (!xstormy16_below100_or_register (in, QImode))
in = copy_to_mode_reg (QImode, in);
if (!xstormy16_below100_or_register (out, QImode))
out = gen_reg_rtx (QImode);
emit_insn (gen_iorqi3_internal (out, in, val));
if (out != operands[0])
emit_move_insn (operands[0], out);
return;
}
if (GET_CODE (in) != REG)
in = copy_to_mode_reg (QImode, in);
if (GET_CODE (val) != REG
&& GET_CODE (val) != CONST_INT)
val = copy_to_mode_reg (QImode, val);
if (GET_CODE (out) != REG)
out = gen_reg_rtx (QImode);
in = simplify_gen_subreg (HImode, in, QImode, 0);
outsub = simplify_gen_subreg (HImode, out, QImode, 0);
if (GET_CODE (val) != CONST_INT)
val = simplify_gen_subreg (HImode, val, QImode, 0);
emit_insn (gen_iorhi3 (outsub, in, val));
if (out != operands[0])
emit_move_insn (operands[0], out);
}
/* Likewise, for AND. */
void
xstormy16_expand_andqi3 (rtx *operands)
{
rtx in, out, outsub, val;
out = operands[0];
in = operands[1];
val = operands[2];
if (xstormy16_onebit_clr_operand (val, QImode))
{
if (!xstormy16_below100_or_register (in, QImode))
in = copy_to_mode_reg (QImode, in);
if (!xstormy16_below100_or_register (out, QImode))
out = gen_reg_rtx (QImode);
emit_insn (gen_andqi3_internal (out, in, val));
if (out != operands[0])
emit_move_insn (operands[0], out);
return;
}
if (GET_CODE (in) != REG)
in = copy_to_mode_reg (QImode, in);
if (GET_CODE (val) != REG
&& GET_CODE (val) != CONST_INT)
val = copy_to_mode_reg (QImode, val);
if (GET_CODE (out) != REG)
out = gen_reg_rtx (QImode);
in = simplify_gen_subreg (HImode, in, QImode, 0);
outsub = simplify_gen_subreg (HImode, out, QImode, 0);
if (GET_CODE (val) != CONST_INT)
val = simplify_gen_subreg (HImode, val, QImode, 0);
emit_insn (gen_andhi3 (outsub, in, val));
if (out != operands[0])
emit_move_insn (operands[0], out);
}
#define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
(GET_CODE (X) == CONST_INT \
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 2048) < 4096)
#define LEGITIMATE_ADDRESS_CONST_INT_P(X, OFFSET) \
(GET_CODE (X) == CONST_INT \
&& INTVAL (X) + (OFFSET) >= 0 \
&& INTVAL (X) + (OFFSET) < 0x8000 \
&& (INTVAL (X) + (OFFSET) < 0x100 || INTVAL (X) + (OFFSET) >= 0x7F00))
int
xstormy16_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
rtx x, int strict)
{
if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0))
return 1;
if (GET_CODE (x) == PLUS
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0))
x = XEXP (x, 0);
if ((GET_CODE (x) == PRE_MODIFY
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT)
|| GET_CODE (x) == POST_INC
|| GET_CODE (x) == PRE_DEC)
x = XEXP (x, 0);
if (GET_CODE (x) == REG && REGNO_OK_FOR_BASE_P (REGNO (x))
&& (! strict || REGNO (x) < FIRST_PSEUDO_REGISTER))
return 1;
if (xstormy16_below100_symbol(x, mode))
return 1;
return 0;
}
/* Return nonzero if memory address X (an RTX) can have different
meanings depending on the machine mode of the memory reference it
is used for or if the address is valid for some modes but not
others.
Autoincrement and autodecrement addresses typically have mode-dependent
effects because the amount of the increment or decrement is the size of the
operand being addressed. Some machines have other mode-dependent addresses.
Many RISC machines have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine.
On this chip, this is true if the address is valid with an offset
of 0 but not of 6, because in that case it cannot be used as an
address for DImode or DFmode, or if the address is a post-increment
or pre-decrement address. */
int
xstormy16_mode_dependent_address_p (rtx x)
{
if (LEGITIMATE_ADDRESS_CONST_INT_P (x, 0)
&& ! LEGITIMATE_ADDRESS_CONST_INT_P (x, 6))
return 1;
if (GET_CODE (x) == PLUS
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 0)
&& ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (x, 1), 6))
return 1;
if (GET_CODE (x) == PLUS)
x = XEXP (x, 0);
if (GET_CODE (x) == POST_INC
|| GET_CODE (x) == PRE_DEC)
return 1;
return 0;
}
/* A C expression that defines the optional machine-dependent constraint
letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
types of operands, usually memory references, for the target machine.
Normally this macro will not be defined. If it is required for a particular
target machine, it should return 1 if VALUE corresponds to the operand type
represented by the constraint letter C. If C is not defined as an extra
constraint, the value returned should be 0 regardless of VALUE. */
int
xstormy16_extra_constraint_p (rtx x, int c)
{
switch (c)
{
/* 'Q' is for pushes. */
case 'Q':
return (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == POST_INC
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);
/* 'R' is for pops. */
case 'R':
return (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PRE_DEC
&& XEXP (XEXP (x, 0), 0) == stack_pointer_rtx);
/* 'S' is for immediate memory addresses. */
case 'S':
return (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == CONST_INT
&& xstormy16_legitimate_address_p (VOIDmode, XEXP (x, 0), 0));
/* 'T' is for Rx. */
case 'T':
/* Not implemented yet. */
return 0;
/* 'U' is for CONST_INT values not between 2 and 15 inclusive,
for allocating a scratch register for 32-bit shifts. */
case 'U':
return (GET_CODE (x) == CONST_INT
&& (INTVAL (x) < 2 || INTVAL (x) > 15));
/* 'Z' is for CONST_INT value zero. This is for adding zero to
a register in addhi3, which would otherwise require a carry. */
case 'Z':
return (GET_CODE (x) == CONST_INT
&& (INTVAL (x) == 0));
case 'W':
return xstormy16_below100_operand(x, GET_MODE(x));
default:
return 0;
}
}
int
short_memory_operand (rtx x, enum machine_mode mode)
{
if (! memory_operand (x, mode))
return 0;
return (GET_CODE (XEXP (x, 0)) != PLUS);
}
/* Splitter for the 'move' patterns, for modes not directly implemented
by hardware. Emit insns to copy a value of mode MODE from SRC to
DEST.
This function is only called when reload_completed.
*/
void
xstormy16_split_move (enum machine_mode mode, rtx dest, rtx src)
{
int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
int direction, end, i;
int src_modifies = 0;
int dest_modifies = 0;
int src_volatile = 0;
int dest_volatile = 0;
rtx mem_operand;
rtx auto_inc_reg_rtx = NULL_RTX;
/* Check initial conditions. */
gcc_assert (reload_completed
&& mode != QImode && mode != HImode
&& nonimmediate_operand (dest, mode)
&& general_operand (src, mode));
/* This case is not supported below, and shouldn't be generated. */
gcc_assert (GET_CODE (dest) != MEM || GET_CODE (src) != MEM);
/* This case is very very bad after reload, so trap it now. */
gcc_assert (GET_CODE (dest) != SUBREG && GET_CODE (src) != SUBREG);
/* The general idea is to copy by words, offsetting the source and
destination. Normally the least-significant word will be copied
first, but for pre-dec operations it's better to copy the
most-significant word first. Only one operand can be a pre-dec
or post-inc operand.
It's also possible that the copy overlaps so that the direction
must be reversed. */
direction = 1;
if (GET_CODE (dest) == MEM)
{
mem_operand = XEXP (dest, 0);
dest_modifies = side_effects_p (mem_operand);
if (auto_inc_p (mem_operand))
auto_inc_reg_rtx = XEXP (mem_operand, 0);
dest_volatile = MEM_VOLATILE_P (dest);
if (dest_volatile)
{
dest = copy_rtx (dest);
MEM_VOLATILE_P (dest) = 0;
}
}
else if (GET_CODE (src) == MEM)
{
mem_operand = XEXP (src, 0);
src_modifies = side_effects_p (mem_operand);
if (auto_inc_p (mem_operand))
auto_inc_reg_rtx = XEXP (mem_operand, 0);
src_volatile = MEM_VOLATILE_P (src);
if (src_volatile)
{
src = copy_rtx (src);
MEM_VOLATILE_P (src) = 0;
}
}
else
mem_operand = NULL_RTX;
if (mem_operand == NULL_RTX)
{
if (GET_CODE (src) == REG
&& GET_CODE (dest) == REG
&& reg_overlap_mentioned_p (dest, src)
&& REGNO (dest) > REGNO (src))
direction = -1;
}
else if (GET_CODE (mem_operand) == PRE_DEC
|| (GET_CODE (mem_operand) == PLUS
&& GET_CODE (XEXP (mem_operand, 0)) == PRE_DEC))
direction = -1;
else if (GET_CODE (src) == MEM
&& reg_overlap_mentioned_p (dest, src))
{
int regno;
gcc_assert (GET_CODE (dest) == REG);
regno = REGNO (dest);
gcc_assert (refers_to_regno_p (regno, regno + num_words,
mem_operand, 0));
if (refers_to_regno_p (regno, regno + 1, mem_operand, 0))
direction = -1;
else if (refers_to_regno_p (regno + num_words - 1, regno + num_words,
mem_operand, 0))
direction = 1;
else
/* This means something like
(set (reg:DI r0) (mem:DI (reg:HI r1)))
which we'd need to support by doing the set of the second word
last. */
gcc_unreachable ();
}
end = direction < 0 ? -1 : num_words;
for (i = direction < 0 ? num_words - 1 : 0; i != end; i += direction)
{
rtx w_src, w_dest, insn;
if (src_modifies)
w_src = gen_rtx_MEM (word_mode, mem_operand);
else
w_src = simplify_gen_subreg (word_mode, src, mode, i * UNITS_PER_WORD);
if (src_volatile)
MEM_VOLATILE_P (w_src) = 1;
if (dest_modifies)
w_dest = gen_rtx_MEM (word_mode, mem_operand);
else
w_dest = simplify_gen_subreg (word_mode, dest, mode,
i * UNITS_PER_WORD);
if (dest_volatile)
MEM_VOLATILE_P (w_dest) = 1;
/* The simplify_subreg calls must always be able to simplify. */
gcc_assert (GET_CODE (w_src) != SUBREG
&& GET_CODE (w_dest) != SUBREG);
insn = emit_insn (gen_rtx_SET (VOIDmode, w_dest, w_src));
if (auto_inc_reg_rtx)
REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC,
auto_inc_reg_rtx,
REG_NOTES (insn));
}
}
/* Expander for the 'move' patterns. Emit insns to copy a value of
mode MODE from SRC to DEST. */
void
xstormy16_expand_move (enum machine_mode mode, rtx dest, rtx src)
{
if ((GET_CODE (dest) == MEM) && (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY))
{
rtx pmv = XEXP (dest, 0);
rtx dest_reg = XEXP (pmv, 0);
rtx dest_mod = XEXP (pmv, 1);
rtx set = gen_rtx_SET (Pmode, dest_reg, dest_mod);
rtx clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
dest = gen_rtx_MEM (mode, dest_reg);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
}
else if ((GET_CODE (src) == MEM) && (GET_CODE (XEXP (src, 0)) == PRE_MODIFY))
{
rtx pmv = XEXP (src, 0);
rtx src_reg = XEXP (pmv, 0);
rtx src_mod = XEXP (pmv, 1);
rtx set = gen_rtx_SET (Pmode, src_reg, src_mod);
rtx clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
src = gen_rtx_MEM (mode, src_reg);
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
}
/* There are only limited immediate-to-memory move instructions. */
if (! reload_in_progress
&& ! reload_completed
&& GET_CODE (dest) == MEM
&& (GET_CODE (XEXP (dest, 0)) != CONST_INT
|| ! xstormy16_legitimate_address_p (mode, XEXP (dest, 0), 0))
&& ! xstormy16_below100_operand (dest, mode)
&& GET_CODE (src) != REG
&& GET_CODE (src) != SUBREG)
src = copy_to_mode_reg (mode, src);
/* Don't emit something we would immediately split. */
if (reload_completed
&& mode != HImode && mode != QImode)
{
xstormy16_split_move (mode, dest, src);
return;
}
emit_insn (gen_rtx_SET (VOIDmode, dest, src));
}
/* Stack Layout:
The stack is laid out as follows:
SP->
FP-> Local variables
Register save area (up to 4 words)
Argument register save area for stdarg (NUM_ARGUMENT_REGISTERS words)
AP-> Return address (two words)
9th procedure parameter word
10th procedure parameter word
...
last procedure parameter word
The frame pointer location is tuned to make it most likely that all
parameters and local variables can be accessed using a load-indexed
instruction. */
/* A structure to describe the layout. */
struct xstormy16_stack_layout
{
/* Size of the topmost three items on the stack. */
int locals_size;
int register_save_size;
int stdarg_save_size;
/* Sum of the above items. */
int frame_size;
/* Various offsets. */
int first_local_minus_ap;
int sp_minus_fp;
int fp_minus_ap;
};
/* Does REGNO need to be saved? */
#define REG_NEEDS_SAVE(REGNUM, IFUN) \
((regs_ever_live[REGNUM] && ! call_used_regs[REGNUM]) \
|| (IFUN && ! fixed_regs[REGNUM] && call_used_regs[REGNUM] \
&& (REGNO_REG_CLASS (REGNUM) != CARRY_REGS) \
&& (regs_ever_live[REGNUM] || ! current_function_is_leaf)))
/* Compute the stack layout. */
struct xstormy16_stack_layout
xstormy16_compute_stack_layout (void)
{
struct xstormy16_stack_layout layout;
int regno;
const int ifun = xstormy16_interrupt_function_p ();
layout.locals_size = get_frame_size ();
layout.register_save_size = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (REG_NEEDS_SAVE (regno, ifun))
layout.register_save_size += UNITS_PER_WORD;
if (current_function_stdarg)
layout.stdarg_save_size = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD;
else
layout.stdarg_save_size = 0;
layout.frame_size = (layout.locals_size
+ layout.register_save_size
+ layout.stdarg_save_size);
if (current_function_args_size <= 2048 && current_function_args_size != -1)
{
if (layout.frame_size + INCOMING_FRAME_SP_OFFSET
+ current_function_args_size <= 2048)
layout.fp_minus_ap = layout.frame_size + INCOMING_FRAME_SP_OFFSET;
else
layout.fp_minus_ap = 2048 - current_function_args_size;
}
else
layout.fp_minus_ap = (layout.stdarg_save_size
+ layout.register_save_size
+ INCOMING_FRAME_SP_OFFSET);
layout.sp_minus_fp = (layout.frame_size + INCOMING_FRAME_SP_OFFSET
- layout.fp_minus_ap);
layout.first_local_minus_ap = layout.sp_minus_fp - layout.locals_size;
return layout;
}
/* Determine how all the special registers get eliminated. */
int
xstormy16_initial_elimination_offset (int from, int to)
{
struct xstormy16_stack_layout layout;
int result;
layout = xstormy16_compute_stack_layout ();
if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
result = layout.sp_minus_fp - layout.locals_size;
else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
result = -layout.locals_size;
else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
result = -layout.fp_minus_ap;
else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
result = -(layout.sp_minus_fp + layout.fp_minus_ap);
else
gcc_unreachable ();
return result;
}
static rtx
emit_addhi3_postreload (rtx dest, rtx src0, rtx src1)
{
rtx set, clobber, insn;
set = gen_rtx_SET (VOIDmode, dest, gen_rtx_PLUS (HImode, src0, src1));
clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (BImode, 16));
insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
return insn;
}
/* Called after register allocation to add any instructions needed for
the prologue. Using a prologue insn is favored compared to putting
all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
since it allows the scheduler to intermix instructions with the
saves of the caller saved registers. In some cases, it might be
necessary to emit a barrier instruction as the last insn to prevent
such scheduling.
Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
so that the debug info generation code can handle them properly. */
void
xstormy16_expand_prologue (void)
{
struct xstormy16_stack_layout layout;
int regno;
rtx insn;
rtx mem_push_rtx;
const int ifun = xstormy16_interrupt_function_p ();
mem_push_rtx = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
mem_push_rtx = gen_rtx_MEM (HImode, mem_push_rtx);
layout = xstormy16_compute_stack_layout ();
if (layout.locals_size >= 32768)
error ("local variable memory requirements exceed capacity");
/* Save the argument registers if necessary. */
if (layout.stdarg_save_size)
for (regno = FIRST_ARGUMENT_REGISTER;
regno < FIRST_ARGUMENT_REGISTER + NUM_ARGUMENT_REGISTERS;
regno++)
{
rtx dwarf;
rtx reg = gen_rtx_REG (HImode, regno);
insn = emit_move_insn (mem_push_rtx, reg);
RTX_FRAME_RELATED_P (insn) = 1;
dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2));
XVECEXP (dwarf, 0, 0) = gen_rtx_SET (VOIDmode,
gen_rtx_MEM (Pmode, stack_pointer_rtx),
reg);
XVECEXP (dwarf, 0, 1) = gen_rtx_SET (Pmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
GET_MODE_SIZE (Pmode)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf,
REG_NOTES (insn));
RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 0)) = 1;
RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 1)) = 1;
}
/* Push each of the registers to save. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (REG_NEEDS_SAVE (regno, ifun))
{
rtx dwarf;
rtx reg = gen_rtx_REG (HImode, regno);
insn = emit_move_insn (mem_push_rtx, reg);
RTX_FRAME_RELATED_P (insn) = 1;
dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2));
XVECEXP (dwarf, 0, 0) = gen_rtx_SET (VOIDmode,
gen_rtx_MEM (Pmode, stack_pointer_rtx),
reg);
XVECEXP (dwarf, 0, 1) = gen_rtx_SET (Pmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
GET_MODE_SIZE (Pmode)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf,
REG_NOTES (insn));
RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 0)) = 1;
RTX_FRAME_RELATED_P (XVECEXP (dwarf, 0, 1)) = 1;
}
/* It's just possible that the SP here might be what we need for
the new FP... */
if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
/* Allocate space for local variables. */
if (layout.locals_size)
{
insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (layout.locals_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Set up the frame pointer, if required. */
if (frame_pointer_needed && layout.sp_minus_fp != layout.locals_size)
{
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
if (layout.sp_minus_fp)
emit_addhi3_postreload (hard_frame_pointer_rtx,
hard_frame_pointer_rtx,
GEN_INT (-layout.sp_minus_fp));
}
}
/* Do we need an epilogue at all? */
int
direct_return (void)
{
return (reload_completed
&& xstormy16_compute_stack_layout ().frame_size == 0);
}
/* Called after register allocation to add any instructions needed for
the epilogue. Using an epilogue insn is favored compared to putting
all of the instructions in the TARGET_ASM_FUNCTION_PROLOGUE macro,
since it allows the scheduler to intermix instructions with the
saves of the caller saved registers. In some cases, it might be
necessary to emit a barrier instruction as the last insn to prevent
such scheduling. */
void
xstormy16_expand_epilogue (void)
{
struct xstormy16_stack_layout layout;
rtx mem_pop_rtx, insn;
int regno;
const int ifun = xstormy16_interrupt_function_p ();
mem_pop_rtx = gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx);
mem_pop_rtx = gen_rtx_MEM (HImode, mem_pop_rtx);
layout = xstormy16_compute_stack_layout ();
/* Pop the stack for the locals. */
if (layout.locals_size)
{
if (frame_pointer_needed && layout.sp_minus_fp == layout.locals_size)
emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
else
{
insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (- layout.locals_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Restore any call-saved registers. */
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
if (REG_NEEDS_SAVE (regno, ifun))
{
rtx dwarf;
insn = emit_move_insn (gen_rtx_REG (HImode, regno), mem_pop_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
dwarf = gen_rtx_SET (Pmode, stack_pointer_rtx,
plus_constant (stack_pointer_rtx,
-GET_MODE_SIZE (Pmode)));
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
dwarf,
REG_NOTES (insn));
}
/* Pop the stack for the stdarg save area. */
if (layout.stdarg_save_size)
{
insn = emit_addhi3_postreload (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (- layout.stdarg_save_size));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Return. */
if (ifun)
emit_jump_insn (gen_return_internal_interrupt ());
else
emit_jump_insn (gen_return_internal ());
}
int
xstormy16_epilogue_uses (int regno)
{
if (reload_completed && call_used_regs[regno])
{
const int ifun = xstormy16_interrupt_function_p ();
return REG_NEEDS_SAVE (regno, ifun);
}
return 0;
}
void
xstormy16_function_profiler (void)
{
sorry ("function_profiler support");
}
/* Return an updated summarizer variable CUM to advance past an
argument in the argument list. The values MODE, TYPE and NAMED
describe that argument. Once this is done, the variable CUM is
suitable for analyzing the *following* argument with
`FUNCTION_ARG', etc.
This function need not do anything if the argument in question was
passed on the stack. The compiler knows how to track the amount of
stack space used for arguments without any special help. However,
it makes life easier for xstormy16_build_va_list if it does update
the word count. */
CUMULATIVE_ARGS
xstormy16_function_arg_advance (CUMULATIVE_ARGS cum, enum machine_mode mode,
tree type, int named ATTRIBUTE_UNUSED)
{
/* If an argument would otherwise be passed partially in registers,
and partially on the stack, the whole of it is passed on the
stack. */
if (cum < NUM_ARGUMENT_REGISTERS
&& cum + XSTORMY16_WORD_SIZE (type, mode) > NUM_ARGUMENT_REGISTERS)
cum = NUM_ARGUMENT_REGISTERS;
cum += XSTORMY16_WORD_SIZE (type, mode);
return cum;
}
rtx
xstormy16_function_arg (CUMULATIVE_ARGS cum, enum machine_mode mode,
tree type, int named ATTRIBUTE_UNUSED)
{
if (mode == VOIDmode)
return const0_rtx;
if (targetm.calls.must_pass_in_stack (mode, type)
|| cum + XSTORMY16_WORD_SIZE (type, mode) > NUM_ARGUMENT_REGISTERS)
return 0;
return gen_rtx_REG (mode, cum + 2);
}
/* Build the va_list type.
For this chip, va_list is a record containing a counter and a pointer.
The counter is of type 'int' and indicates how many bytes
have been used to date. The pointer indicates the stack position
for arguments that have not been passed in registers.
To keep the layout nice, the pointer is first in the structure. */
static tree
xstormy16_build_builtin_va_list (void)
{
tree f_1, f_2, record, type_decl;
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_1 = build_decl (FIELD_DECL, get_identifier ("base"),
ptr_type_node);
f_2 = build_decl (FIELD_DECL, get_identifier ("count"),
unsigned_type_node);
DECL_FIELD_CONTEXT (f_1) = record;
DECL_FIELD_CONTEXT (f_2) = record;
TREE_CHAIN (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_1;
TREE_CHAIN (f_1) = f_2;
layout_type (record);
return record;
}
/* Implement the stdarg/varargs va_start macro. STDARG_P is nonzero if this
is stdarg.h instead of varargs.h. VALIST is the tree of the va_list
variable to initialize. NEXTARG is the machine independent notion of the
'next' argument after the variable arguments. */
void
xstormy16_expand_builtin_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
tree f_base, f_count;
tree base, count;
tree t;
if (xstormy16_interrupt_function_p ())
error ("cannot use va_start in interrupt function");
f_base = TYPE_FIELDS (va_list_type_node);
f_count = TREE_CHAIN (f_base);
base = build3 (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base, NULL_TREE);
count = build3 (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count,
NULL_TREE);
t = make_tree (TREE_TYPE (base), virtual_incoming_args_rtx);
t = build2 (PLUS_EXPR, TREE_TYPE (base), t,
build_int_cst (NULL_TREE, INCOMING_FRAME_SP_OFFSET));
t = build2 (MODIFY_EXPR, TREE_TYPE (base), base, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = build2 (MODIFY_EXPR, TREE_TYPE (count), count,
build_int_cst (NULL_TREE,
current_function_args_info * UNITS_PER_WORD));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Implement the stdarg/varargs va_arg macro. VALIST is the variable
of type va_list as a tree, TYPE is the type passed to va_arg.
Note: This algorithm is documented in stormy-abi. */
static tree
xstormy16_expand_builtin_va_arg (tree valist, tree type, tree *pre_p,
tree *post_p ATTRIBUTE_UNUSED)
{
tree f_base, f_count;
tree base, count;
tree count_tmp, addr, t;
tree lab_gotaddr, lab_fromstack;
int size, size_of_reg_args, must_stack;
tree size_tree;
f_base = TYPE_FIELDS (va_list_type_node);
f_count = TREE_CHAIN (f_base);
base = build3 (COMPONENT_REF, TREE_TYPE (f_base), valist, f_base, NULL_TREE);
count = build3 (COMPONENT_REF, TREE_TYPE (f_count), valist, f_count,
NULL_TREE);
must_stack = targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
size_tree = round_up (size_in_bytes (type), UNITS_PER_WORD);
gimplify_expr (&size_tree, pre_p, NULL, is_gimple_val, fb_rvalue);
size_of_reg_args = NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD;
count_tmp = get_initialized_tmp_var (count, pre_p, NULL);
lab_gotaddr = create_artificial_label ();
lab_fromstack = create_artificial_label ();
addr = create_tmp_var (ptr_type_node, NULL);
if (!must_stack)
{
tree r;
t = fold_convert (TREE_TYPE (count), size_tree);
t = build2 (PLUS_EXPR, TREE_TYPE (count), count_tmp, t);
r = fold_convert (TREE_TYPE (count), size_int (size_of_reg_args));
t = build2 (GT_EXPR, boolean_type_node, t, r);
t = build3 (COND_EXPR, void_type_node, t,
build1 (GOTO_EXPR, void_type_node, lab_fromstack),
NULL_TREE);
gimplify_and_add (t, pre_p);
t = fold_convert (ptr_type_node, count_tmp);
t = build2 (PLUS_EXPR, ptr_type_node, base, t);
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
gimplify_and_add (t, pre_p);
t = build1 (GOTO_EXPR, void_type_node, lab_gotaddr);
gimplify_and_add (t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, lab_fromstack);
gimplify_and_add (t, pre_p);
}
/* Arguments larger than a word might need to skip over some
registers, since arguments are either passed entirely in
registers or entirely on the stack. */
size = PUSH_ROUNDING (int_size_in_bytes (type));
if (size > 2 || size < 0 || must_stack)
{
tree r, u;
r = size_int (NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD);
u = build2 (MODIFY_EXPR, void_type_node, count_tmp, r);
t = fold_convert (TREE_TYPE (count), r);
t = build2 (GE_EXPR, boolean_type_node, count_tmp, t);
t = build3 (COND_EXPR, void_type_node, t, NULL_TREE, u);
gimplify_and_add (t, pre_p);
}
t = size_int (NUM_ARGUMENT_REGISTERS * UNITS_PER_WORD
- INCOMING_FRAME_SP_OFFSET);
t = fold_convert (TREE_TYPE (count), t);
t = build2 (MINUS_EXPR, TREE_TYPE (count), count_tmp, t);
t = build2 (PLUS_EXPR, TREE_TYPE (count), t,
fold_convert (TREE_TYPE (count), size_tree));
t = fold_convert (TREE_TYPE (base), fold (t));
t = build2 (MINUS_EXPR, TREE_TYPE (base), base, t);
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
gimplify_and_add (t, pre_p);
t = build1 (LABEL_EXPR, void_type_node, lab_gotaddr);
gimplify_and_add (t, pre_p);
t = fold_convert (TREE_TYPE (count), size_tree);
t = build2 (PLUS_EXPR, TREE_TYPE (count), count_tmp, t);
t = build2 (MODIFY_EXPR, TREE_TYPE (count), count, t);
gimplify_and_add (t, pre_p);
addr = fold_convert (build_pointer_type (type), addr);
return build_va_arg_indirect_ref (addr);
}
/* Initialize the variable parts of a trampoline. ADDR is an RTX for
the address of the trampoline; FNADDR is an RTX for the address of
the nested function; STATIC_CHAIN is an RTX for the static chain
value that should be passed to the function when it is called. */
void
xstormy16_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain)
{
rtx reg_addr = gen_reg_rtx (Pmode);
rtx temp = gen_reg_rtx (HImode);
rtx reg_fnaddr = gen_reg_rtx (HImode);
rtx reg_addr_mem;
reg_addr_mem = gen_rtx_MEM (HImode, reg_addr);
emit_move_insn (reg_addr, addr);
emit_move_insn (temp, GEN_INT (0x3130 | STATIC_CHAIN_REGNUM));
emit_move_insn (reg_addr_mem, temp);
emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
emit_move_insn (temp, static_chain);
emit_move_insn (reg_addr_mem, temp);
emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
emit_move_insn (reg_fnaddr, fnaddr);
emit_move_insn (temp, reg_fnaddr);
emit_insn (gen_andhi3 (temp, temp, GEN_INT (0xFF)));
emit_insn (gen_iorhi3 (temp, temp, GEN_INT (0x0200)));
emit_move_insn (reg_addr_mem, temp);
emit_insn (gen_addhi3 (reg_addr, reg_addr, const2_rtx));
emit_insn (gen_lshrhi3 (reg_fnaddr, reg_fnaddr, GEN_INT (8)));
emit_move_insn (reg_addr_mem, reg_fnaddr);
}
/* Worker function for FUNCTION_VALUE. */
rtx
xstormy16_function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
{
enum machine_mode mode;
mode = TYPE_MODE (valtype);
PROMOTE_MODE (mode, 0, valtype);
return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
}
/* A C compound statement that outputs the assembler code for a thunk function,
used to implement C++ virtual function calls with multiple inheritance. The
thunk acts as a wrapper around a virtual function, adjusting the implicit
object parameter before handing control off to the real function.
First, emit code to add the integer DELTA to the location that contains the
incoming first argument. Assume that this argument contains a pointer, and
is the one used to pass the `this' pointer in C++. This is the incoming
argument *before* the function prologue, e.g. `%o0' on a sparc. The
addition must preserve the values of all other incoming arguments.
After the addition, emit code to jump to FUNCTION, which is a
`FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
the return address. Hence returning from FUNCTION will return to whoever
called the current `thunk'.
The effect must be as if @var{function} had been called directly
with the adjusted first argument. This macro is responsible for
emitting all of the code for a thunk function;
TARGET_ASM_FUNCTION_PROLOGUE and TARGET_ASM_FUNCTION_EPILOGUE are
not invoked.
The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
extracted from it.) It might possibly be useful on some targets, but
probably not. */
static void
xstormy16_asm_output_mi_thunk (FILE *file,
tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
int regnum = FIRST_ARGUMENT_REGISTER;
/* There might be a hidden first argument for a returned structure. */
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
regnum += 1;
fprintf (file, "\tadd %s,#0x%x\n", reg_names[regnum], (int) delta & 0xFFFF);
fputs ("\tjmpf ", file);
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
putc ('\n', file);
}
/* The purpose of this function is to override the default behavior of
BSS objects. Normally, they go into .bss or .sbss via ".common"
directives, but we need to override that and put them in
.bss_below100. We can't just use a section override (like we do
for .data_below100), because that makes them initialized rather
than uninitialized. */
void
xstormy16_asm_output_aligned_common (FILE *stream,
tree decl,
const char *name,
int size,
int align,
int global)
{
rtx mem = DECL_RTL (decl);
rtx symbol;
if (mem != NULL_RTX
&& GET_CODE (mem) == MEM
&& GET_CODE (symbol = XEXP (mem, 0)) == SYMBOL_REF
&& SYMBOL_REF_FLAGS (symbol) & SYMBOL_FLAG_XSTORMY16_BELOW100)
{
const char *name2;
int p2align = 0;
switch_to_section (bss100_section);
while (align > 8)
{
align /= 2;
p2align ++;
}
name2 = default_strip_name_encoding (name);
if (global)
fprintf (stream, "\t.globl\t%s\n", name2);
if (p2align)
fprintf (stream, "\t.p2align %d\n", p2align);
fprintf (stream, "\t.type\t%s, @object\n", name2);
fprintf (stream, "\t.size\t%s, %d\n", name2, size);
fprintf (stream, "%s:\n\t.space\t%d\n", name2, size);
return;
}
if (!global)
{
fprintf (stream, "\t.local\t");
assemble_name (stream, name);
fprintf (stream, "\n");
}
fprintf (stream, "\t.comm\t");
assemble_name (stream, name);
fprintf (stream, ",%u,%u\n", size, align / BITS_PER_UNIT);
}
/* Implement TARGET_ASM_INIT_SECTIONS. */
static void
xstormy16_asm_init_sections (void)
{
bss100_section
= get_unnamed_section (SECTION_WRITE | SECTION_BSS,
output_section_asm_op,
"\t.section \".bss_below100\",\"aw\",@nobits");
}
/* Mark symbols with the "below100" attribute so that we can use the
special addressing modes for them. */
static void
xstormy16_encode_section_info (tree decl, rtx r, int first)
{
default_encode_section_info (decl, r, first);
if (TREE_CODE (decl) == VAR_DECL
&& (lookup_attribute ("below100", DECL_ATTRIBUTES (decl))
|| lookup_attribute ("BELOW100", DECL_ATTRIBUTES (decl))))
{
rtx symbol = XEXP (r, 0);
gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_XSTORMY16_BELOW100;
}
}
/* Output constructors and destructors. Just like
default_named_section_asm_out_* but don't set the sections writable. */
#undef TARGET_ASM_CONSTRUCTOR
#define TARGET_ASM_CONSTRUCTOR xstormy16_asm_out_constructor
#undef TARGET_ASM_DESTRUCTOR
#define TARGET_ASM_DESTRUCTOR xstormy16_asm_out_destructor
static void
xstormy16_asm_out_destructor (rtx symbol, int priority)
{
const char *section = ".dtors";
char buf[16];
/* ??? This only works reliably with the GNU linker. */
if (priority != DEFAULT_INIT_PRIORITY)
{
sprintf (buf, ".dtors.%.5u",
/* Invert the numbering so the linker puts us in the proper
order; constructors are run from right to left, and the
linker sorts in increasing order. */
MAX_INIT_PRIORITY - priority);
section = buf;
}
switch_to_section (get_section (section, 0, NULL));
assemble_align (POINTER_SIZE);
assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}
static void
xstormy16_asm_out_constructor (rtx symbol, int priority)
{
const char *section = ".ctors";
char buf[16];
/* ??? This only works reliably with the GNU linker. */
if (priority != DEFAULT_INIT_PRIORITY)
{
sprintf (buf, ".ctors.%.5u",
/* Invert the numbering so the linker puts us in the proper
order; constructors are run from right to left, and the
linker sorts in increasing order. */
MAX_INIT_PRIORITY - priority);
section = buf;
}
switch_to_section (get_section (section, 0, NULL));
assemble_align (POINTER_SIZE);
assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}
/* Print a memory address as an operand to reference that memory location. */
void
xstormy16_print_operand_address (FILE *file, rtx address)
{
HOST_WIDE_INT offset;
int pre_dec, post_inc;
/* There are a few easy cases. */
if (GET_CODE (address) == CONST_INT)
{
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (address) & 0xFFFF);
return;
}
if (CONSTANT_P (address) || GET_CODE (address) == CODE_LABEL)
{
output_addr_const (file, address);
return;
}
/* Otherwise, it's hopefully something of the form
(plus:HI (pre_dec:HI (reg:HI ...)) (const_int ...))
*/
if (GET_CODE (address) == PLUS)
{
gcc_assert (GET_CODE (XEXP (address, 1)) == CONST_INT);
offset = INTVAL (XEXP (address, 1));
address = XEXP (address, 0);
}
else
offset = 0;
pre_dec = (GET_CODE (address) == PRE_DEC);
post_inc = (GET_CODE (address) == POST_INC);
if (pre_dec || post_inc)
address = XEXP (address, 0);
gcc_assert (GET_CODE (address) == REG);
fputc ('(', file);
if (pre_dec)
fputs ("--", file);
fputs (reg_names [REGNO (address)], file);
if (post_inc)
fputs ("++", file);
if (offset != 0)
fprintf (file, "," HOST_WIDE_INT_PRINT_DEC, offset);
fputc (')', file);
}
/* Print an operand to an assembler instruction. */
void
xstormy16_print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case 'B':
/* There is either one bit set, or one bit clear, in X.
Print it preceded by '#'. */
{
static int bits_set[8] = { 0, 1, 1, 2, 1, 2, 2, 3 };
HOST_WIDE_INT xx = 1;
HOST_WIDE_INT l;
if (GET_CODE (x) == CONST_INT)
xx = INTVAL (x);
else
output_operand_lossage ("'B' operand is not constant");
/* GCC sign-extends masks with the MSB set, so we have to
detect all the cases that differ only in sign extension
beyond the bits we care about. Normally, the predicates
and constraints ensure that we have the right values. This
works correctly for valid masks. */
if (bits_set[xx & 7] <= 1)
{
/* Remove sign extension bits. */
if ((~xx & ~(HOST_WIDE_INT)0xff) == 0)
xx &= 0xff;
else if ((~xx & ~(HOST_WIDE_INT)0xffff) == 0)
xx &= 0xffff;
l = exact_log2 (xx);
}
else
{
/* Add sign extension bits. */
if ((xx & ~(HOST_WIDE_INT)0xff) == 0)
xx |= ~(HOST_WIDE_INT)0xff;
else if ((xx & ~(HOST_WIDE_INT)0xffff) == 0)
xx |= ~(HOST_WIDE_INT)0xffff;
l = exact_log2 (~xx);
}
if (l == -1)
output_operand_lossage ("'B' operand has multiple bits set");
fprintf (file, IMMEDIATE_PREFIX HOST_WIDE_INT_PRINT_DEC, l);
return;
}
case 'C':
/* Print the symbol without a surrounding @fptr(). */
if (GET_CODE (x) == SYMBOL_REF)
assemble_name (file, XSTR (x, 0));
else if (GET_CODE (x) == LABEL_REF)
output_asm_label (x);
else
xstormy16_print_operand_address (file, x);
return;
case 'o':
case 'O':
/* Print the immediate operand less one, preceded by '#'.
For 'O', negate it first. */
{
HOST_WIDE_INT xx = 0;
if (GET_CODE (x) == CONST_INT)
xx = INTVAL (x);
else
output_operand_lossage ("'o' operand is not constant");
if (code == 'O')
xx = -xx;
fprintf (file, IMMEDIATE_PREFIX HOST_WIDE_INT_PRINT_DEC, xx - 1);
return;
}
case 'b':
/* Print the shift mask for bp/bn. */
{
HOST_WIDE_INT xx = 1;
HOST_WIDE_INT l;
if (GET_CODE (x) == CONST_INT)
xx = INTVAL (x);
else
output_operand_lossage ("'B' operand is not constant");
l = 7 - xx;
fputs (IMMEDIATE_PREFIX, file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, l);
return;
}
case 0:
/* Handled below. */
break;
default:
output_operand_lossage ("xstormy16_print_operand: unknown code");
return;
}
switch (GET_CODE (x))
{
case REG:
fputs (reg_names [REGNO (x)], file);
break;
case MEM:
xstormy16_print_operand_address (file, XEXP (x, 0));
break;
default:
/* Some kind of constant or label; an immediate operand,
so prefix it with '#' for the assembler. */
fputs (IMMEDIATE_PREFIX, file);
output_addr_const (file, x);
break;
}
return;
}
/* Expander for the `casesi' pattern.
INDEX is the index of the switch statement.
LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
to the first table entry.
RANGE is the number of table entries.
TABLE is an ADDR_VEC that is the jump table.
DEFAULT_LABEL is the address to branch to if INDEX is outside the
range LOWER_BOUND to LOWER_BOUND+RANGE-1.
*/
void
xstormy16_expand_casesi (rtx index, rtx lower_bound, rtx range,
rtx table, rtx default_label)
{
HOST_WIDE_INT range_i = INTVAL (range);
rtx int_index;
/* This code uses 'br', so it can deal only with tables of size up to
8192 entries. */
if (range_i >= 8192)
sorry ("switch statement of size %lu entries too large",
(unsigned long) range_i);
index = expand_binop (SImode, sub_optab, index, lower_bound, NULL_RTX, 0,
OPTAB_LIB_WIDEN);
emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, SImode, 1,
default_label);
int_index = gen_lowpart_common (HImode, index);
emit_insn (gen_ashlhi3 (int_index, int_index, const2_rtx));
emit_jump_insn (gen_tablejump_pcrel (int_index, table));
}
/* Output an ADDR_VEC. It is output as a sequence of 'jmpf'
instructions, without label or alignment or any other special
constructs. We know that the previous instruction will be the
`tablejump_pcrel' output above.
TODO: it might be nice to output 'br' instructions if they could
all reach. */
void
xstormy16_output_addr_vec (FILE *file, rtx label ATTRIBUTE_UNUSED, rtx table)
{
int vlen, idx;
switch_to_section (current_function_section ());
vlen = XVECLEN (table, 0);
for (idx = 0; idx < vlen; idx++)
{
fputs ("\tjmpf ", file);
output_asm_label (XEXP (XVECEXP (table, 0, idx), 0));
fputc ('\n', file);
}
}
/* Expander for the `call' patterns.
INDEX is the index of the switch statement.
LOWER_BOUND is a CONST_INT that is the value of INDEX corresponding
to the first table entry.
RANGE is the number of table entries.
TABLE is an ADDR_VEC that is the jump table.
DEFAULT_LABEL is the address to branch to if INDEX is outside the
range LOWER_BOUND to LOWER_BOUND+RANGE-1.
*/
void
xstormy16_expand_call (rtx retval, rtx dest, rtx counter)
{
rtx call, temp;
enum machine_mode mode;
gcc_assert (GET_CODE (dest) == MEM);
dest = XEXP (dest, 0);
if (! CONSTANT_P (dest)
&& GET_CODE (dest) != REG)
dest = force_reg (Pmode, dest);
if (retval == NULL)
mode = VOIDmode;
else
mode = GET_MODE (retval);
call = gen_rtx_CALL (mode, gen_rtx_MEM (FUNCTION_MODE, dest),
counter);
if (retval)
call = gen_rtx_SET (VOIDmode, retval, call);
if (! CONSTANT_P (dest))
{
temp = gen_reg_rtx (HImode);
emit_move_insn (temp, const0_rtx);
}
else
temp = const0_rtx;
call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call,
gen_rtx_USE (VOIDmode, temp)));
emit_call_insn (call);
}
/* Expanders for multiword computational operations. */
/* Expander for arithmetic operations; emit insns to compute
(set DEST (CODE:MODE SRC0 SRC1))
using CARRY as a temporary. When CODE is COMPARE, a branch
template is generated (this saves duplicating code in
xstormy16_split_cbranch). */
void
xstormy16_expand_arith (enum machine_mode mode, enum rtx_code code,
rtx dest, rtx src0, rtx src1, rtx carry)
{
int num_words = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
int i;
int firstloop = 1;
if (code == NEG)
emit_move_insn (src0, const0_rtx);
for (i = 0; i < num_words; i++)
{
rtx w_src0, w_src1, w_dest;
rtx insn;
w_src0 = simplify_gen_subreg (word_mode, src0, mode,
i * UNITS_PER_WORD);
w_src1 = simplify_gen_subreg (word_mode, src1, mode, i * UNITS_PER_WORD);
w_dest = simplify_gen_subreg (word_mode, dest, mode, i * UNITS_PER_WORD);
switch (code)
{
case PLUS:
if (firstloop
&& GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
continue;
if (firstloop)
insn = gen_addchi4 (w_dest, w_src0, w_src1, carry);
else
insn = gen_addchi5 (w_dest, w_src0, w_src1, carry, carry);
break;
case NEG:
case MINUS:
case COMPARE:
if (code == COMPARE && i == num_words - 1)
{
rtx branch, sub, clobber, sub_1;
sub_1 = gen_rtx_MINUS (HImode, w_src0,
gen_rtx_ZERO_EXTEND (HImode, carry));
sub = gen_rtx_SET (VOIDmode, w_dest,
gen_rtx_MINUS (HImode, sub_1, w_src1));
clobber = gen_rtx_CLOBBER (VOIDmode, carry);
branch = gen_rtx_SET (VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx_EQ (HImode,
sub_1,
w_src1),
pc_rtx,
pc_rtx));
insn = gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (3, branch, sub, clobber));
}
else if (firstloop
&& code != COMPARE
&& GET_CODE (w_src1) == CONST_INT && INTVAL (w_src1) == 0)
continue;
else if (firstloop)
insn = gen_subchi4 (w_dest, w_src0, w_src1, carry);
else
insn = gen_subchi5 (w_dest, w_src0, w_src1, carry, carry);
break;
case IOR:
case XOR:
case AND:
if (GET_CODE (w_src1) == CONST_INT
&& INTVAL (w_src1) == -(code == AND))
continue;
insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx_fmt_ee (code, mode,
w_src0, w_src1));
break;
case NOT:
insn = gen_rtx_SET (VOIDmode, w_dest, gen_rtx_NOT (mode, w_src0));
break;
default:
gcc_unreachable ();
}
firstloop = 0;
emit (insn);
}
/* If we emit nothing, try_split() will think we failed. So emit
something that does nothing and can be optimized away. */
if (firstloop)
emit (gen_nop ());
}
/* The shift operations are split at output time for constant values;
variable-width shifts get handed off to a library routine.
Generate an output string to do (set X (CODE:MODE X SIZE_R))
SIZE_R will be a CONST_INT, X will be a hard register. */
const char *
xstormy16_output_shift (enum machine_mode mode, enum rtx_code code,
rtx x, rtx size_r, rtx temp)
{
HOST_WIDE_INT size;
const char *r0, *r1, *rt;
static char r[64];
gcc_assert (GET_CODE (size_r) == CONST_INT
&& GET_CODE (x) == REG && mode == SImode);
size = INTVAL (size_r) & (GET_MODE_BITSIZE (mode) - 1);
if (size == 0)
return "";
r0 = reg_names [REGNO (x)];
r1 = reg_names [REGNO (x) + 1];
/* For shifts of size 1, we can use the rotate instructions. */
if (size == 1)
{
switch (code)
{
case ASHIFT:
sprintf (r, "shl %s,#1 | rlc %s,#1", r0, r1);
break;
case ASHIFTRT:
sprintf (r, "asr %s,#1 | rrc %s,#1", r1, r0);
break;
case LSHIFTRT:
sprintf (r, "shr %s,#1 | rrc %s,#1", r1, r0);
break;
default:
gcc_unreachable ();
}
return r;
}
/* For large shifts, there are easy special cases. */
if (size == 16)
{
switch (code)
{
case ASHIFT:
sprintf (r, "mov %s,%s | mov %s,#0", r1, r0, r0);
break;
case ASHIFTRT:
sprintf (r, "mov %s,%s | asr %s,#15", r0, r1, r1);
break;
case LSHIFTRT:
sprintf (r, "mov %s,%s | mov %s,#0", r0, r1, r1);
break;
default:
gcc_unreachable ();
}
return r;
}
if (size > 16)
{
switch (code)
{
case ASHIFT:
sprintf (r, "mov %s,%s | mov %s,#0 | shl %s,#%d",
r1, r0, r0, r1, (int) size - 16);
break;
case ASHIFTRT:
sprintf (r, "mov %s,%s | asr %s,#15 | asr %s,#%d",
r0, r1, r1, r0, (int) size - 16);
break;
case LSHIFTRT:
sprintf (r, "mov %s,%s | mov %s,#0 | shr %s,#%d",
r0, r1, r1, r0, (int) size - 16);
break;
default:
gcc_unreachable ();
}
return r;
}
/* For the rest, we have to do more work. In particular, we
need a temporary. */
rt = reg_names [REGNO (temp)];
switch (code)
{
case ASHIFT:
sprintf (r,
"mov %s,%s | shl %s,#%d | shl %s,#%d | shr %s,#%d | or %s,%s",
rt, r0, r0, (int) size, r1, (int) size, rt, (int) (16-size),
r1, rt);
break;
case ASHIFTRT:
sprintf (r,
"mov %s,%s | asr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s",
rt, r1, r1, (int) size, r0, (int) size, rt, (int) (16-size),
r0, rt);
break;
case LSHIFTRT:
sprintf (r,
"mov %s,%s | shr %s,#%d | shr %s,#%d | shl %s,#%d | or %s,%s",
rt, r1, r1, (int) size, r0, (int) size, rt, (int) (16-size),
r0, rt);
break;
default:
gcc_unreachable ();
}
return r;
}
/* Attribute handling. */
/* Return nonzero if the function is an interrupt function. */
int
xstormy16_interrupt_function_p (void)
{
tree attributes;
/* The dwarf2 mechanism asks for INCOMING_FRAME_SP_OFFSET before
any functions are declared, which is demonstrably wrong, but
it is worked around here. FIXME. */
if (!cfun)
return 0;
attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
return lookup_attribute ("interrupt", attributes) != NULL_TREE;
}
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE xstormy16_attribute_table
static tree xstormy16_handle_interrupt_attribute
(tree *, tree, tree, int, bool *);
static tree xstormy16_handle_below100_attribute
(tree *, tree, tree, int, bool *);
static const struct attribute_spec xstormy16_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "interrupt", 0, 0, false, true, true, xstormy16_handle_interrupt_attribute },
{ "BELOW100", 0, 0, false, false, false, xstormy16_handle_below100_attribute },
{ "below100", 0, 0, false, false, false, xstormy16_handle_below100_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Handle an "interrupt" attribute;
arguments as in struct attribute_spec.handler. */
static tree
xstormy16_handle_interrupt_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) != FUNCTION_TYPE)
{
warning (OPT_Wattributes, "%qs attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle an "below" attribute;
arguments as in struct attribute_spec.handler. */
static tree
xstormy16_handle_below100_attribute (tree *node,
tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) != VAR_DECL
&& TREE_CODE (*node) != POINTER_TYPE
&& TREE_CODE (*node) != TYPE_DECL)
{
warning (OPT_Wattributes,
"%<__BELOW100__%> attribute only applies to variables");
*no_add_attrs = true;
}
else if (args == NULL_TREE && TREE_CODE (*node) == VAR_DECL)
{
if (! (TREE_PUBLIC (*node) || TREE_STATIC (*node)))
{
warning (OPT_Wattributes, "__BELOW100__ attribute not allowed "
"with auto storage class");
*no_add_attrs = true;
}
}
return NULL_TREE;
}
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS xstormy16_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN xstormy16_expand_builtin
static struct {
const char *name;
int md_code;
const char *arg_ops; /* 0..9, t for temp register, r for return value */
const char *arg_types; /* s=short,l=long, upper case for unsigned */
} s16builtins[] = {
{ "__sdivlh", CODE_FOR_sdivlh, "rt01", "sls" },
{ "__smodlh", CODE_FOR_sdivlh, "tr01", "sls" },
{ "__udivlh", CODE_FOR_udivlh, "rt01", "SLS" },
{ "__umodlh", CODE_FOR_udivlh, "tr01", "SLS" },
{ 0, 0, 0, 0 }
};
static void
xstormy16_init_builtins (void)
{
tree args, ret_type, arg;
int i, a;
ret_type = void_type_node;
for (i=0; s16builtins[i].name; i++)
{
args = void_list_node;
for (a=strlen (s16builtins[i].arg_types)-1; a>=0; a--)
{
switch (s16builtins[i].arg_types[a])
{
case 's': arg = short_integer_type_node; break;
case 'S': arg = short_unsigned_type_node; break;
case 'l': arg = long_integer_type_node; break;
case 'L': arg = long_unsigned_type_node; break;
default: gcc_unreachable ();
}
if (a == 0)
ret_type = arg;
else
args = tree_cons (NULL_TREE, arg, args);
}
lang_hooks.builtin_function (s16builtins[i].name,
build_function_type (ret_type, args),
i, BUILT_IN_MD, NULL, NULL);
}
}
static rtx
xstormy16_expand_builtin(tree exp, rtx target,
rtx subtarget ATTRIBUTE_UNUSED,
enum machine_mode mode ATTRIBUTE_UNUSED,
int ignore ATTRIBUTE_UNUSED)
{
rtx op[10], args[10], pat, copyto[10], retval = 0;
tree fndecl, argtree;
int i, a, o, code;
fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
argtree = TREE_OPERAND (exp, 1);
i = DECL_FUNCTION_CODE (fndecl);
code = s16builtins[i].md_code;
for (a = 0; a < 10 && argtree; a++)
{
args[a] = expand_expr (TREE_VALUE (argtree), NULL_RTX, VOIDmode, 0);
argtree = TREE_CHAIN (argtree);
}
for (o = 0; s16builtins[i].arg_ops[o]; o++)
{
char ao = s16builtins[i].arg_ops[o];
char c = insn_data[code].operand[o].constraint[0];
int omode;
copyto[o] = 0;
omode = insn_data[code].operand[o].mode;
if (ao == 'r')
op[o] = target ? target : gen_reg_rtx (omode);
else if (ao == 't')
op[o] = gen_reg_rtx (omode);
else
op[o] = args[(int) hex_value (ao)];
if (! (*insn_data[code].operand[o].predicate) (op[o], GET_MODE (op[o])))
{
if (c == '+' || c == '=')
{
copyto[o] = op[o];
op[o] = gen_reg_rtx (omode);
}
else
op[o] = copy_to_mode_reg (omode, op[o]);
}
if (ao == 'r')
retval = op[o];
}
pat = GEN_FCN (code) (op[0], op[1], op[2], op[3], op[4],
op[5], op[6], op[7], op[8], op[9]);
emit_insn (pat);
for (o = 0; s16builtins[i].arg_ops[o]; o++)
if (copyto[o])
{
emit_move_insn (copyto[o], op[o]);
if (op[o] == retval)
retval = copyto[o];
}
return retval;
}
/* Look for combinations of insns that can be converted to BN or BP
opcodes. This is, unfortunately, too complex to do with MD
patterns. */
static void
combine_bnp (rtx insn)
{
int insn_code, regno, need_extend;
unsigned int mask;
rtx cond, reg, and, load, qireg, mem;
enum machine_mode load_mode = QImode;
enum machine_mode and_mode = QImode;
rtx shift = NULL_RTX;
insn_code = recog_memoized (insn);
if (insn_code != CODE_FOR_cbranchhi
&& insn_code != CODE_FOR_cbranchhi_neg)
return;
cond = XVECEXP (PATTERN (insn), 0, 0); /* set */
cond = XEXP (cond, 1); /* if */
cond = XEXP (cond, 0); /* cond */
switch (GET_CODE (cond))
{
case NE:
case EQ:
need_extend = 0;
break;
case LT:
case GE:
need_extend = 1;
break;
default:
return;
}
reg = XEXP (cond, 0);
if (GET_CODE (reg) != REG)
return;
regno = REGNO (reg);
if (XEXP (cond, 1) != const0_rtx)
return;
if (! find_regno_note (insn, REG_DEAD, regno))
return;
qireg = gen_rtx_REG (QImode, regno);
if (need_extend)
{
/* LT and GE conditionals should have a sign extend before
them. */
for (and = prev_real_insn (insn); and; and = prev_real_insn (and))
{
int and_code = recog_memoized (and);
if (and_code == CODE_FOR_extendqihi2
&& rtx_equal_p (SET_DEST (PATTERN (and)), reg)
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (and)), 0), qireg))
break;
if (and_code == CODE_FOR_movhi_internal
&& rtx_equal_p (SET_DEST (PATTERN (and)), reg))
{
/* This is for testing bit 15. */
and = insn;
break;
}
if (reg_mentioned_p (reg, and))
return;
if (GET_CODE (and) != NOTE
&& GET_CODE (and) != INSN)
return;
}
}
else
{
/* EQ and NE conditionals have an AND before them. */
for (and = prev_real_insn (insn); and; and = prev_real_insn (and))
{
if (recog_memoized (and) == CODE_FOR_andhi3
&& rtx_equal_p (SET_DEST (PATTERN (and)), reg)
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (and)), 0), reg))
break;
if (reg_mentioned_p (reg, and))
return;
if (GET_CODE (and) != NOTE
&& GET_CODE (and) != INSN)
return;
}
if (and)
{
/* Some mis-optimizations by GCC can generate a RIGHT-SHIFT
followed by an AND like this:
(parallel [(set (reg:HI r7) (lshiftrt:HI (reg:HI r7) (const_int 3)))
(clobber (reg:BI carry))]
(set (reg:HI r7) (and:HI (reg:HI r7) (const_int 1)))
Attempt to detect this here. */
for (shift = prev_real_insn (and); shift; shift = prev_real_insn (shift))
{
if (recog_memoized (shift) == CODE_FOR_lshrhi3
&& rtx_equal_p (SET_DEST (XVECEXP (PATTERN (shift), 0, 0)), reg)
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (shift), 0, 0)), 0), reg))
break;
if (reg_mentioned_p (reg, shift)
|| (GET_CODE (shift) != NOTE
&& GET_CODE (shift) != INSN))
{
shift = NULL_RTX;
break;
}
}
}
}
if (!and)
return;
for (load = shift ? prev_real_insn (shift) : prev_real_insn (and);
load;
load = prev_real_insn (load))
{
int load_code = recog_memoized (load);
if (load_code == CODE_FOR_movhi_internal
&& rtx_equal_p (SET_DEST (PATTERN (load)), reg)
&& xstormy16_below100_operand (SET_SRC (PATTERN (load)), HImode)
&& ! MEM_VOLATILE_P (SET_SRC (PATTERN (load))))
{
load_mode = HImode;
break;
}
if (load_code == CODE_FOR_movqi_internal
&& rtx_equal_p (SET_DEST (PATTERN (load)), qireg)
&& xstormy16_below100_operand (SET_SRC (PATTERN (load)), QImode))
{
load_mode = QImode;
break;
}
if (load_code == CODE_FOR_zero_extendqihi2
&& rtx_equal_p (SET_DEST (PATTERN (load)), reg)
&& xstormy16_below100_operand (XEXP (SET_SRC (PATTERN (load)), 0), QImode))
{
load_mode = QImode;
and_mode = HImode;
break;
}
if (reg_mentioned_p (reg, load))
return;
if (GET_CODE (load) != NOTE
&& GET_CODE (load) != INSN)
return;
}
if (!load)
return;
mem = SET_SRC (PATTERN (load));
if (need_extend)
{
mask = (load_mode == HImode) ? 0x8000 : 0x80;
/* If the mem includes a zero-extend operation and we are
going to generate a sign-extend operation then move the
mem inside the zero-extend. */
if (GET_CODE (mem) == ZERO_EXTEND)
mem = XEXP (mem, 0);
}
else
{
if (!xstormy16_onebit_set_operand (XEXP (SET_SRC (PATTERN (and)), 1), load_mode))
return;
mask = (int) INTVAL (XEXP (SET_SRC (PATTERN (and)), 1));
if (shift)
mask <<= INTVAL (XEXP (SET_SRC (XVECEXP (PATTERN (shift), 0, 0)), 1));
}
if (load_mode == HImode)
{
rtx addr = XEXP (mem, 0);
if (! (mask & 0xff))
{
addr = plus_constant (addr, 1);
mask >>= 8;
}
mem = gen_rtx_MEM (QImode, addr);
}
if (need_extend)
XEXP (cond, 0) = gen_rtx_SIGN_EXTEND (HImode, mem);
else
XEXP (cond, 0) = gen_rtx_AND (and_mode, mem, GEN_INT (mask));
INSN_CODE (insn) = -1;
delete_insn (load);
if (and != insn)
delete_insn (and);
if (shift != NULL_RTX)
delete_insn (shift);
}
static void
xstormy16_reorg (void)
{
rtx insn;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (! JUMP_P (insn))
continue;
combine_bnp (insn);
}
}
/* Worker function for TARGET_RETURN_IN_MEMORY. */
static bool
xstormy16_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
return (size == -1 || size > UNITS_PER_WORD * NUM_ARGUMENT_REGISTERS);
}
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO xstormy16_encode_section_info
/* select_section doesn't handle .bss_below100. */
#undef TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK xstormy16_asm_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS xstormy16_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST xstormy16_address_cost
#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST xstormy16_build_builtin_va_list
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR xstormy16_expand_builtin_va_arg
#undef TARGET_PROMOTE_FUNCTION_ARGS
#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
#undef TARGET_PROMOTE_FUNCTION_RETURN
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY xstormy16_return_in_memory
#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG xstormy16_reorg
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-stormy16.h"
|