1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
|
/* Definitions of target machine for GNU compiler. NEC V850 series
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Jeff Law (law@cygnus.com).
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#ifndef GCC_V850_H
#define GCC_V850_H
/* These are defined in svr4.h but we want to override them. */
#undef LIB_SPEC
#undef ENDFILE_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
#undef ASM_SPEC
#define TARGET_CPU_generic 1
#define TARGET_CPU_v850e 2
#define TARGET_CPU_v850e1 3
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT TARGET_CPU_generic
#endif
#define MASK_DEFAULT MASK_V850
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
#define TARGET_VERSION fprintf (stderr, " (NEC V850)");
/* Choose which processor will be the default.
We must pass a -mv850xx option to the assembler if no explicit -mv* option
is given, because the assembler's processor default may not be correct. */
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
#undef MASK_DEFAULT
#define MASK_DEFAULT MASK_V850E
#undef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
#undef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
#undef TARGET_VERSION
#define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
#endif
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
#undef MASK_DEFAULT
#define MASK_DEFAULT MASK_V850E /* No practical difference. */
#undef SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
#undef SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
#undef TARGET_VERSION
#define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
#endif
#define ASM_SPEC "%{mv*:-mv%*}"
#define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
#define EXTRA_SPECS \
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
/* Names to predefine in the preprocessor for this target machine. */
#define TARGET_CPU_CPP_BUILTINS() do { \
builtin_define( "__v851__" ); \
builtin_define( "__v850" ); \
builtin_assert( "machine=v850" ); \
builtin_assert( "cpu=v850" ); \
if (TARGET_EP) \
builtin_define ("__EP__"); \
} while(0)
#define MASK_CPU (MASK_V850 | MASK_V850E)
/* Information about the various small memory areas. */
struct small_memory_info {
const char *name;
long max;
long physical_max;
};
enum small_memory_type {
/* tiny data area, using EP as base register */
SMALL_MEMORY_TDA = 0,
/* small data area using dp as base register */
SMALL_MEMORY_SDA,
/* zero data area using r0 as base register */
SMALL_MEMORY_ZDA,
SMALL_MEMORY_max
};
extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* Some machines may desire to change what optimizations are
performed for various optimization levels. This macro, if
defined, is executed once just after the optimization level is
determined and before the remainder of the command options have
been parsed. Values set in this macro are used as the default
values for the other command line options.
LEVEL is the optimization level specified; 2 if `-O2' is
specified, 1 if `-O' is specified, and 0 if neither is specified.
SIZE is nonzero if `-Os' is specified, 0 otherwise.
You should not use this macro to change options that are not
machine-specific. These should uniformly selected by the same
optimization level on all supported machines. Use this macro to
enable machine-specific optimizations.
*Do not examine `write_symbols' in this macro!* The debugging
options are not supposed to alter the generated code. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
{ \
target_flags |= MASK_STRICT_ALIGN; \
if (LEVEL) \
/* Note - we no longer enable MASK_EP when optimizing. This is \
because of a hardware bug which stops the SLD and SST instructions\
from correctly detecting some hazards. If the user is sure that \
their hardware is fixed or that their program will not encounter \
the conditions that trigger the bug then they can enable -mep by \
hand. */ \
target_flags |= MASK_PROLOG_FUNCTION; \
}
/* Target machine storage layout */
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields.
This is not true on the NEC V850. */
#define BITS_BIG_ENDIAN 0
/* Define this if most significant byte of a word is the lowest numbered. */
/* This is not true on the NEC V850. */
#define BYTES_BIG_ENDIAN 0
/* Define this if most significant word of a multiword number is lowest
numbered.
This is not true on the NEC V850. */
#define WORDS_BIG_ENDIAN 0
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD 4
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type.
Some simple experiments have shown that leaving UNSIGNEDP alone
generates the best overall code. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < 4) \
{ (MODE) = SImode; }
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY 32
/* The stack goes in 32 bit lumps. */
#define STACK_BOUNDARY 32
/* Allocation boundary (in *bits*) for the code of a function.
16 is the minimum boundary; 32 would give better performance. */
#define FUNCTION_BOUNDARY 16
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 32
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* No structure field wants to be aligned rounder than this. */
#define BIGGEST_FIELD_ALIGNMENT 32
/* Define this if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
/* Define this as 1 if `char' should by default be signed; else as 0.
On the NEC V850, loads do sign extension, so make this default. */
#define DEFAULT_SIGNED_CHAR 1
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers. */
#define FIRST_PSEUDO_REGISTER 34
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator. */
#define FIXED_REGISTERS \
{ 1, 1, 0, 1, 1, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 0, \
1, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you
like. */
#define CALL_USED_REGISTERS \
{ 1, 1, 0, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 1, 1, \
1, 1}
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
On the 850, we make the return registers first, then all of the volatile
registers, then the saved registers in reverse order to better save the
registers with an out of line function, and finally the fixed
registers. */
#define REG_ALLOC_ORDER \
{ \
10, 11, /* return registers */ \
12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
6, 7, 8, 9, 31, /* argument registers */ \
29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
21, 20, 2, \
0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
}
/* If TARGET_APP_REGS is not defined then add r2 and r5 to
the pool of fixed registers. See PR 14505. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (!TARGET_APP_REGS) \
{ \
fixed_regs[2] = 1; call_used_regs[2] = 1; \
fixed_regs[5] = 1; call_used_regs[5] = 1; \
} \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Value is 1 if hard register REGNO can hold a value of machine-mode
MODE. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
enum reg_class
{
NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000 }, /* NO_REGS */ \
{ 0xffffffff }, /* GENERAL_REGS */ \
{ 0xffffffff }, /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) GENERAL_REGS
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS GENERAL_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) (NO_REGS)
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_BASE_P(regno) \
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
#define REGNO_OK_FOR_INDEX_P(regno) 0
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* The letters I, J, K, L, M, N, O, P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C. */
#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
/* zero */
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
/* 5 bit signed immediate */
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
/* 16 bit signed immediate */
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
/* valid constant for movhi instruction. */
#define CONST_OK_FOR_L(VALUE) \
(((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
&& CONST_OK_FOR_I ((VALUE & 0xffff)))
/* 16 bit unsigned immediate */
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
/* 5 bit unsigned immediate in shift instructions */
#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
/* 9 bit signed immediate for word multiply instruction. */
#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
#define CONST_OK_FOR_P(VALUE) 0
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
(C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
(C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
(C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
(C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
(C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
(C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
(C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
`G' is a zero of some form. */
#define CONST_DOUBLE_OK_FOR_G(VALUE) \
((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
&& (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|| (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
&& CONST_DOUBLE_LOW (VALUE) == 0 \
&& CONST_DOUBLE_HIGH (VALUE) == 0))
#define CONST_DOUBLE_OK_FOR_H(VALUE) 0
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
: (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
: 0)
/* Stack layout; function entry, exit and calling. */
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this to nonzero if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame. */
#define FRAME_GROWS_DOWNWARD 1
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated. */
#define STARTING_FRAME_OFFSET 0
/* Offset of first parameter from the argument pointer register value. */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
saved since the value is used before we know. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 3
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 32
/* Register containing return address from latest function call. */
#define LINK_POINTER_REGNUM 31
/* On some machines the offset between the frame pointer and starting
offset of the automatic variables is not known until after register
allocation has been done (for example, because the saved registers
are between these two locations). On those machines, define
`FRAME_POINTER_REGNUM' the number of a special, fixed register to
be used internally until the offset is known, and define
`HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
used for the frame pointer.
You should define this macro only in the very rare circumstances
when it is not possible to calculate the offset between the frame
pointer and the automatic variables until after register
allocation has been completed. When this macro is defined, you
must also indicate in your definition of `ELIMINABLE_REGS' how to
eliminate `FRAME_POINTER_REGNUM' into either
`HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
Do not define this macro if it would be the same as
`FRAME_POINTER_REGNUM'. */
#undef HARD_FRAME_POINTER_REGNUM
#define HARD_FRAME_POINTER_REGNUM 29
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 33
/* Register in which static-chain is passed to a function. */
#define STATIC_CHAIN_REGNUM 20
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* If defined, this macro specifies a table of register pairs used to
eliminate unneeded registers that point into the stack frame. If
it is not defined, the only elimination attempted by the compiler
is to replace references to the frame pointer with references to
the stack pointer.
The definition of this macro is a list of structure
initializations, each of which specifies an original and
replacement register.
On some machines, the position of the argument pointer is not
known until the compilation is completed. In such a case, a
separate hard register must be used for the argument pointer.
This register can be eliminated by replacing it with either the
frame pointer or the argument pointer, depending on whether or not
the frame pointer has been eliminated.
In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
Note that the elimination of the argument pointer with the stack
pointer is specified first since that is the preferred elimination. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
/* A C expression that returns nonzero if the compiler is allowed to
try to replace register number FROM-REG with register number
TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
defined, and will usually be the constant 1, since most of the
cases preventing register elimination are things that the compiler
already knows about. */
#define CAN_ELIMINATE(FROM, TO) \
((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
specifies the initial difference between the specified pair of
registers. This macro must be defined if `ELIMINABLE_REGS' is
defined. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
if ((FROM) == FRAME_POINTER_REGNUM) \
(OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
else if ((FROM) == ARG_POINTER_REGNUM) \
(OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
else \
gcc_unreachable (); \
}
/* Keep the stack pointer constant throughout the function. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go. */
#define CUMULATIVE_ARGS struct cum_arg
struct cum_arg { int nbytes; int anonymous_args; };
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, NAMED)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
((CUM).nbytes = 0, (CUM).anonymous_args = 0)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM).nbytes += ((MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
: (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
/* When a parameter is passed in a register, stack space is still
allocated for it. */
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, 10)
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
#define DEFAULT_PCC_STRUCT_RETURN 0
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. The value is tested only in
functions that have frame pointers.
No definition is equivalent to always zero. */
#define EXIT_IGNORE_STACK 1
/* Define this macro as a C expression that is nonzero for registers
used by the epilogue or the `return' pattern. */
#define EPILOGUE_USES(REGNO) \
(reload_completed && (REGNO) == LINK_POINTER_REGNUM)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) ;
#define TRAMPOLINE_TEMPLATE(FILE) \
do { \
fprintf (FILE, "\tjarl .+4,r12\n"); \
fprintf (FILE, "\tld.w 12[r12],r20\n"); \
fprintf (FILE, "\tld.w 16[r12],r12\n"); \
fprintf (FILE, "\tjmp [r12]\n"); \
fprintf (FILE, "\tnop\n"); \
fprintf (FILE, "\t.long 0\n"); \
fprintf (FILE, "\t.long 0\n"); \
} while (0)
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 24
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
(CXT)); \
emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
(FNADDR)); \
}
/* Addressing modes, and classification of registers for them. */
/* 1 if X is an rtx for a constant that is a valid address. */
/* ??? This seems too exclusive. May get better code by accepting more
possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == CONST_INT \
&& CONST_OK_FOR_K (INTVAL (X)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 1
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) 1
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 0
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 1
#endif
/* A C expression that defines the optional machine-dependent
constraint letters that can be used to segregate specific types of
operands, usually memory references, for the target machine.
Normally this macro will not be defined. If it is required for a
particular target machine, it should return 1 if VALUE corresponds
to the operand type represented by the constraint letter C. If C
is not defined as an extra constraint, the value returned should
be 0 regardless of VALUE.
For example, on the ROMP, load instructions cannot have their
output in r0 if the memory reference contains a symbolic address.
Constraint letter `Q' is defined as representing a memory address
that does *not* contain a symbolic address. An alternative is
specified with a `Q' constraint on the input and `r' on the
output. The next alternative specifies `m' on the input and a
register class that does not include r0 on the output. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
: (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
: (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
&& !SYMBOL_REF_ZDA_P (OP)) \
: (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
: (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
&& SYMBOL_REF_ZDA_P (OP)) \
|| (GET_CODE (OP) == CONST \
&& GET_CODE (XEXP (OP, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
&& SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
: 0)
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
except for CONSTANT_ADDRESS_P which is actually
machine-independent. */
/* Accept either REG or SUBREG where a register is valid. */
#define RTX_OK_FOR_BASE_P(X) \
((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|| (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
do { \
if (RTX_OK_FOR_BASE_P (X)) \
goto ADDR; \
if (CONSTANT_ADDRESS_P (X) \
&& (MODE == QImode || INTVAL (X) % 2 == 0) \
&& (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
goto ADDR; \
if (GET_CODE (X) == LO_SUM \
&& REG_P (XEXP (X, 0)) \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_P (XEXP (X, 1)) \
&& (GET_CODE (XEXP (X, 1)) != CONST_INT \
|| ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
&& CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
&& GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
goto ADDR; \
if (special_symbolref_operand (X, MODE) \
&& (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
goto ADDR; \
if (GET_CODE (X) == PLUS \
&& RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_ADDRESS_P (XEXP (X, 1)) \
&& ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
&& CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
+ (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
goto ADDR; \
} while (0)
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) == CONST_DOUBLE \
|| !(GET_CODE (X) == CONST \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
/* Tell final.c how to eliminate redundant test instructions. */
/* Here we define machine-dependent flags and fields in cc_status
(see `conditions.h'). No extra ones are needed for the VAX. */
/* Store in cc_status the expressions
that the condition codes will describe
after execution of an instruction whose pattern is EXP.
Do not alter them if the instruction would not alter the cc's. */
#define CC_OVERFLOW_UNUSABLE 0x200
#define CC_NO_CARRY CC_NO_OVERFLOW
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
/* Nonzero if access to memory by bytes or half words is no faster
than accessing full words. */
#define SLOW_BYTE_ACCESS 1
/* According expr.c, a value of around 6 should minimize code size, and
for the V850 series, that's our primary concern. */
#define MOVE_RATIO 6
/* Indirect calls are expensive, never turn a direct call
into an indirect call. */
#define NO_FUNCTION_CSE
/* The four different data regions on the v850. */
typedef enum
{
DATA_AREA_NORMAL,
DATA_AREA_SDA,
DATA_AREA_TDA,
DATA_AREA_ZDA
} v850_data_area;
#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#define BSS_SECTION_ASM_OP "\t.section .bss"
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
#define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
#define SCOMMON_ASM_OP "\t.scomm\t"
#define ZCOMMON_ASM_OP "\t.zcomm\t"
#define TCOMMON_ASM_OP "\t.tcomm\t"
#define ASM_COMMENT_START "#"
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON "#APP\n"
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF "#NO_APP\n"
#undef USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"
#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
if (! v850_output_addr_const_extra (FILE, X)) \
goto FAIL
/* This says how to output the assembler to define a global
uninitialized but not common symbol. */
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
#undef ASM_OUTPUT_ALIGNED_BSS
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
/* This says how to output the assembler to define a global
uninitialized, common symbol. */
#undef ASM_OUTPUT_ALIGNED_COMMON
#undef ASM_OUTPUT_COMMON
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
/* This says how to output the assembler to define a local
uninitialized symbol. */
#undef ASM_OUTPUT_ALIGNED_LOCAL
#undef ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP "\t.global "
#define ASM_PN_FORMAT "%s___%lu"
/* This is how we tell the assembler that two symbols have the same value. */
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
do { assemble_name(FILE, NAME1); \
fputs(" = ", FILE); \
assemble_name(FILE, NAME2); \
fputc('\n', FILE); } while (0)
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
".fp", ".ap"}
#define ADDITIONAL_REGISTER_NAMES \
{ { "zero", 0 }, \
{ "hp", 2 }, \
{ "r3", 3 }, \
{ "r4", 4 }, \
{ "tp", 5 }, \
{ "fp", 29 }, \
{ "r30", 30 }, \
{ "lp", 31} }
/* Print an instruction operand X on file FILE.
look in v850.c for details */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '.')
/* Print a memory operand whose address is X, on file FILE.
This uses a function in output-vax.c. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)
/* This is how to output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
fprintf (FILE, "\t%s .L%d\n", \
(TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
/* This is how to output an element of a case-vector that is relative. */
/* Disable the shift, which is for the currently disabled "switch"
opcode. Se casesi in v850.md. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
(TARGET_BIG_SWITCH ? ".long" : ".short"), \
(0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
VALUE, REL, \
(0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
/* We don't have to worry about dbx compatibility for the v850. */
#define DEFAULT_GDB_EXTENSIONS 1
/* Use stabs debugging info by default. */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* The switch instruction requires that the jump table immediately follow
it. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
/* svr4.h defines this assuming that 4 byte alignment is required. */
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
#define WORD_REGISTER_OPERATIONS
/* Byte and short loads sign extend the value to a word. */
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX 4
/* Define if shifts truncate the shift count
which implies one can omit a sign-extension or zero-extension
of a shift count. */
#define SHIFT_COUNT_TRUNCATED 1
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode SImode
/* A function address in a call instruction
is a byte address (for indexing purposes)
so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* Tell compiler we want to support GHS pragmas */
#define REGISTER_TARGET_PRAGMAS() do { \
c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
c_register_pragma ("ghs", "section", ghs_pragma_section); \
c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
} while (0)
/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
can appear in the "ghs section" pragma. These names are used to index
into the GHS_default_section_names[] and GHS_current_section_names[]
that are defined in v850.c, and so the ordering of each must remain
consistent.
These arrays give the default and current names for each kind of
section defined by the GHS pragmas. The current names can be changed
by the "ghs section" pragma. If the current names are null, use
the default names. Note that the two arrays have different types.
For the *normal* section kinds (like .data, .text, etc.) we do not
want to explicitly force the name of these sections, but would rather
let the linker (or at least the back end) choose the name of the
section, UNLESS the user has force a specific name for these section
kinds. To accomplish this set the name in ghs_default_section_names
to null. */
enum GHS_section_kind
{
GHS_SECTION_KIND_DEFAULT,
GHS_SECTION_KIND_TEXT,
GHS_SECTION_KIND_DATA,
GHS_SECTION_KIND_RODATA,
GHS_SECTION_KIND_BSS,
GHS_SECTION_KIND_SDATA,
GHS_SECTION_KIND_ROSDATA,
GHS_SECTION_KIND_TDATA,
GHS_SECTION_KIND_ZDATA,
GHS_SECTION_KIND_ROZDATA,
COUNT_OF_GHS_SECTION_KINDS /* must be last */
};
/* The following code is for handling pragmas supported by the
v850 compiler produced by Green Hills Software. This is at
the specific request of a customer. */
typedef struct data_area_stack_element
{
struct data_area_stack_element * prev;
v850_data_area data_area; /* Current default data area. */
} data_area_stack_element;
/* Track the current data area set by the
data area pragma (which can be nested). */
extern data_area_stack_element * data_area_stack;
/* Names of the various data areas used on the v850. */
extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
/* The assembler op to start the file. */
#define FILE_ASM_OP "\t.file\n"
/* Enable the register move pass to improve code. */
#define ENABLE_REGMOVE_PASS
/* Implement ZDA, TDA, and SDA */
#define EP_REGNUM 30 /* ep register number */
#define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
#define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
#define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
#define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
#define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
#define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
#define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
#endif /* ! GCC_V850_H */
|