1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/* Assembly functions for the Xtensa version of libgcc1.
Copyright (C) 2001, 2002, 2003, 2005, 2006 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "xtensa-config.h"
# Define macros for the ABS and ADDX* instructions to handle cases
# where they are not included in the Xtensa processor configuration.
.macro do_abs dst, src, tmp
#if XCHAL_HAVE_ABS
abs \dst, \src
#else
neg \tmp, \src
movgez \tmp, \src, \src
mov \dst, \tmp
#endif
.endm
.macro do_addx2 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx2 \dst, \as, \at
#else
slli \tmp, \as, 1
add \dst, \tmp, \at
#endif
.endm
.macro do_addx4 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx4 \dst, \as, \at
#else
slli \tmp, \as, 2
add \dst, \tmp, \at
#endif
.endm
.macro do_addx8 dst, as, at, tmp
#if XCHAL_HAVE_ADDX
addx8 \dst, \as, \at
#else
slli \tmp, \as, 3
add \dst, \tmp, \at
#endif
.endm
# Define macros for leaf function entry and return, supporting either the
# standard register windowed ABI or the non-windowed call0 ABI. These
# macros do not allocate any extra stack space, so they only work for
# leaf functions that do not need to spill anything to the stack.
.macro leaf_entry reg, size
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
entry \reg, \size
#else
/* do nothing */
#endif
.endm
.macro leaf_return
#if XCHAL_HAVE_WINDOWED && !__XTENSA_CALL0_ABI__
retw
#else
ret
#endif
.endm
#ifdef L_mulsi3
.align 4
.global __mulsi3
.type __mulsi3,@function
__mulsi3:
leaf_entry sp, 16
#if XCHAL_HAVE_MUL16
or a4, a2, a3
srai a4, a4, 16
bnez a4, .LMUL16
mul16u a2, a2, a3
leaf_return
.LMUL16:
srai a4, a2, 16
srai a5, a3, 16
mul16u a7, a4, a3
mul16u a6, a5, a2
mul16u a4, a2, a3
add a7, a7, a6
slli a7, a7, 16
add a2, a7, a4
#elif XCHAL_HAVE_MAC16
mul.aa.hl a2, a3
mula.aa.lh a2, a3
rsr a5, ACCLO
umul.aa.ll a2, a3
rsr a4, ACCLO
slli a5, a5, 16
add a2, a4, a5
#else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
# Multiply one bit at a time, but unroll the loop 4x to better
# exploit the addx instructions and avoid overhead.
# Peel the first iteration to save a cycle on init.
# Avoid negative numbers.
xor a5, a2, a3 # top bit is 1 iff one of the inputs is negative
do_abs a3, a3, a6
do_abs a2, a2, a6
# Swap so the second argument is smaller.
sub a7, a2, a3
mov a4, a3
movgez a4, a2, a7 # a4 = max(a2, a3)
movltz a3, a2, a7 # a3 = min(a2, a3)
movi a2, 0
extui a6, a3, 0, 1
movnez a2, a4, a6
do_addx2 a7, a4, a2, a7
extui a6, a3, 1, 1
movnez a2, a7, a6
do_addx4 a7, a4, a2, a7
extui a6, a3, 2, 1
movnez a2, a7, a6
do_addx8 a7, a4, a2, a7
extui a6, a3, 3, 1
movnez a2, a7, a6
bgeui a3, 16, .Lmult_main_loop
neg a3, a2
movltz a2, a3, a5
leaf_return
.align 4
.Lmult_main_loop:
srli a3, a3, 4
slli a4, a4, 4
add a7, a4, a2
extui a6, a3, 0, 1
movnez a2, a7, a6
do_addx2 a7, a4, a2, a7
extui a6, a3, 1, 1
movnez a2, a7, a6
do_addx4 a7, a4, a2, a7
extui a6, a3, 2, 1
movnez a2, a7, a6
do_addx8 a7, a4, a2, a7
extui a6, a3, 3, 1
movnez a2, a7, a6
bgeui a3, 16, .Lmult_main_loop
neg a3, a2
movltz a2, a3, a5
#endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
leaf_return
.size __mulsi3,.-__mulsi3
#endif /* L_mulsi3 */
# Define a macro for the NSAU (unsigned normalize shift amount)
# instruction, which computes the number of leading zero bits,
# to handle cases where it is not included in the Xtensa processor
# configuration.
.macro do_nsau cnt, val, tmp, a
#if XCHAL_HAVE_NSA
nsau \cnt, \val
#else
mov \a, \val
movi \cnt, 0
extui \tmp, \a, 16, 16
bnez \tmp, 0f
movi \cnt, 16
slli \a, \a, 16
0:
extui \tmp, \a, 24, 8
bnez \tmp, 1f
addi \cnt, \cnt, 8
slli \a, \a, 8
1:
movi \tmp, __nsau_data
extui \a, \a, 24, 8
add \tmp, \tmp, \a
l8ui \tmp, \tmp, 0
add \cnt, \cnt, \tmp
#endif /* !XCHAL_HAVE_NSA */
.endm
#ifdef L_nsau
.section .rodata
.align 4
.global __nsau_data
.type __nsau_data,@object
__nsau_data:
#if !XCHAL_HAVE_NSA
.byte 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4
.byte 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* !XCHAL_HAVE_NSA */
.size __nsau_data,.-__nsau_data
.hidden __nsau_data
#endif /* L_nsau */
#ifdef L_udivsi3
.align 4
.global __udivsi3
.type __udivsi3,@function
__udivsi3:
leaf_entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor <= 1
mov a6, a2 # keep dividend in a6
do_nsau a5, a6, a2, a7 # dividend_shift = nsau(dividend)
do_nsau a4, a3, a2, a7 # divisor_shift = nsau(divisor)
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
movi a2, 0 # quotient = 0
# test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if dividend >= divisor
.Lreturn:
leaf_return
.Lle_one:
beqz a3, .Lerror # if divisor == 1, return the dividend
leaf_return
.Lspecial:
# return dividend >= divisor
bltu a6, a3, .Lreturn0
movi a2, 1
leaf_return
.Lerror:
# just return 0; could throw an exception
.Lreturn0:
movi a2, 0
leaf_return
.size __udivsi3,.-__udivsi3
#endif /* L_udivsi3 */
#ifdef L_divsi3
.align 4
.global __divsi3
.type __divsi3,@function
__divsi3:
leaf_entry sp, 16
xor a7, a2, a3 # sign = dividend ^ divisor
do_abs a6, a2, a4 # udividend = abs(dividend)
do_abs a3, a3, a4 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
do_nsau a5, a6, a2, a8 # udividend_shift = nsau(udividend)
do_nsau a4, a3, a2, a8 # udivisor_shift = nsau(udivisor)
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
movi a2, 0 # quotient = 0
# test-subtract-and-shift loop; one quotient bit on each iteration
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if udividend >= udivisor
.Lreturn:
neg a5, a2
movltz a2, a5, a7 # return (sign < 0) ? -quotient : quotient
leaf_return
.Lle_one:
beqz a3, .Lerror
neg a2, a6 # if udivisor == 1, then return...
movgez a2, a6, a7 # (sign < 0) ? -udividend : udividend
leaf_return
.Lspecial:
bltu a6, a3, .Lreturn0 # if dividend < divisor, return 0
movi a2, 1
movi a4, -1
movltz a2, a4, a7 # else return (sign < 0) ? -1 : 1
leaf_return
.Lerror:
# just return 0; could throw an exception
.Lreturn0:
movi a2, 0
leaf_return
.size __divsi3,.-__divsi3
#endif /* L_divsi3 */
#ifdef L_umodsi3
.align 4
.global __umodsi3
.type __umodsi3,@function
__umodsi3:
leaf_entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor is <= 1
do_nsau a5, a2, a6, a7 # dividend_shift = nsau(dividend)
do_nsau a4, a3, a6, a7 # divisor_shift = nsau(divisor)
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
# test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
.Lspecial:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if dividend >= divisor
.Lreturn:
leaf_return
.Lle_one:
# the divisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if the divisor is 0.
movi a2, 0
leaf_return
.size __umodsi3,.-__umodsi3
#endif /* L_umodsi3 */
#ifdef L_modsi3
.align 4
.global __modsi3
.type __modsi3,@function
__modsi3:
leaf_entry sp, 16
mov a7, a2 # save original (signed) dividend
do_abs a2, a2, a4 # udividend = abs(dividend)
do_abs a3, a3, a4 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
do_nsau a5, a2, a6, a8 # udividend_shift = nsau(udividend)
do_nsau a4, a3, a6, a8 # udivisor_shift = nsau(udivisor)
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
# test-subtract-and-shift loop
#if XCHAL_HAVE_LOOPS
loopnez a4, .Lloopend
#endif /* XCHAL_HAVE_LOOPS */
.Lloop:
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
#if !XCHAL_HAVE_LOOPS
addi a4, a4, -1
bnez a4, .Lloop
#endif /* !XCHAL_HAVE_LOOPS */
.Lloopend:
.Lspecial:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if udividend >= udivisor
.Lreturn:
bgez a7, .Lpositive
neg a2, a2 # if (dividend < 0), return -udividend
.Lpositive:
leaf_return
.Lle_one:
# udivisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if udivisor is 0.
movi a2, 0
leaf_return
.size __modsi3,.-__modsi3
#endif /* L_modsi3 */
#include "ieee754-df.S"
#include "ieee754-sf.S"
|