1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420
|
/* C++ Parser.
Copyright (C) 2000, 2001, 2002, 2003, 2004,
2005 Free Software Foundation, Inc.
Written by Mark Mitchell <mark@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "dyn-string.h"
#include "varray.h"
#include "cpplib.h"
#include "tree.h"
#include "cp-tree.h"
#include "c-pragma.h"
#include "decl.h"
#include "flags.h"
#include "diagnostic.h"
#include "toplev.h"
#include "output.h"
#include "target.h"
#include "cgraph.h"
#include "c-common.h"
/* The lexer. */
/* The cp_lexer_* routines mediate between the lexer proper (in libcpp
and c-lex.c) and the C++ parser. */
/* A token's value and its associated deferred access checks and
qualifying scope. */
struct tree_check GTY(())
{
/* The value associated with the token. */
tree value;
/* The checks that have been associated with value. */
VEC (deferred_access_check, gc)* checks;
/* The token's qualifying scope (used when it is a
CPP_NESTED_NAME_SPECIFIER). */
tree qualifying_scope;
};
/* A C++ token. */
typedef struct cp_token GTY (())
{
/* The kind of token. */
ENUM_BITFIELD (cpp_ttype) type : 8;
/* If this token is a keyword, this value indicates which keyword.
Otherwise, this value is RID_MAX. */
ENUM_BITFIELD (rid) keyword : 8;
/* Token flags. */
unsigned char flags;
/* Identifier for the pragma. */
ENUM_BITFIELD (pragma_kind) pragma_kind : 6;
/* True if this token is from a system header. */
BOOL_BITFIELD in_system_header : 1;
/* True if this token is from a context where it is implicitly extern "C" */
BOOL_BITFIELD implicit_extern_c : 1;
/* True for a CPP_NAME token that is not a keyword (i.e., for which
KEYWORD is RID_MAX) iff this name was looked up and found to be
ambiguous. An error has already been reported. */
BOOL_BITFIELD ambiguous_p : 1;
/* The input file stack index at which this token was found. */
unsigned input_file_stack_index : INPUT_FILE_STACK_BITS;
/* The value associated with this token, if any. */
union cp_token_value {
/* Used for CPP_NESTED_NAME_SPECIFIER and CPP_TEMPLATE_ID. */
struct tree_check* GTY((tag ("1"))) tree_check_value;
/* Use for all other tokens. */
tree GTY((tag ("0"))) value;
} GTY((desc ("(%1.type == CPP_TEMPLATE_ID) || (%1.type == CPP_NESTED_NAME_SPECIFIER)"))) u;
/* The location at which this token was found. */
location_t location;
} cp_token;
/* We use a stack of token pointer for saving token sets. */
typedef struct cp_token *cp_token_position;
DEF_VEC_P (cp_token_position);
DEF_VEC_ALLOC_P (cp_token_position,heap);
static const cp_token eof_token =
{
CPP_EOF, RID_MAX, 0, PRAGMA_NONE, 0, 0, false, 0, { NULL },
#if USE_MAPPED_LOCATION
0
#else
{0, 0}
#endif
};
/* The cp_lexer structure represents the C++ lexer. It is responsible
for managing the token stream from the preprocessor and supplying
it to the parser. Tokens are never added to the cp_lexer after
it is created. */
typedef struct cp_lexer GTY (())
{
/* The memory allocated for the buffer. NULL if this lexer does not
own the token buffer. */
cp_token * GTY ((length ("%h.buffer_length"))) buffer;
/* If the lexer owns the buffer, this is the number of tokens in the
buffer. */
size_t buffer_length;
/* A pointer just past the last available token. The tokens
in this lexer are [buffer, last_token). */
cp_token_position GTY ((skip)) last_token;
/* The next available token. If NEXT_TOKEN is &eof_token, then there are
no more available tokens. */
cp_token_position GTY ((skip)) next_token;
/* A stack indicating positions at which cp_lexer_save_tokens was
called. The top entry is the most recent position at which we
began saving tokens. If the stack is non-empty, we are saving
tokens. */
VEC(cp_token_position,heap) *GTY ((skip)) saved_tokens;
/* The next lexer in a linked list of lexers. */
struct cp_lexer *next;
/* True if we should output debugging information. */
bool debugging_p;
/* True if we're in the context of parsing a pragma, and should not
increment past the end-of-line marker. */
bool in_pragma;
} cp_lexer;
/* cp_token_cache is a range of tokens. There is no need to represent
allocate heap memory for it, since tokens are never removed from the
lexer's array. There is also no need for the GC to walk through
a cp_token_cache, since everything in here is referenced through
a lexer. */
typedef struct cp_token_cache GTY(())
{
/* The beginning of the token range. */
cp_token * GTY((skip)) first;
/* Points immediately after the last token in the range. */
cp_token * GTY ((skip)) last;
} cp_token_cache;
/* Prototypes. */
static cp_lexer *cp_lexer_new_main
(void);
static cp_lexer *cp_lexer_new_from_tokens
(cp_token_cache *tokens);
static void cp_lexer_destroy
(cp_lexer *);
static int cp_lexer_saving_tokens
(const cp_lexer *);
static cp_token_position cp_lexer_token_position
(cp_lexer *, bool);
static cp_token *cp_lexer_token_at
(cp_lexer *, cp_token_position);
static void cp_lexer_get_preprocessor_token
(cp_lexer *, cp_token *);
static inline cp_token *cp_lexer_peek_token
(cp_lexer *);
static cp_token *cp_lexer_peek_nth_token
(cp_lexer *, size_t);
static inline bool cp_lexer_next_token_is
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_not
(cp_lexer *, enum cpp_ttype);
static bool cp_lexer_next_token_is_keyword
(cp_lexer *, enum rid);
static cp_token *cp_lexer_consume_token
(cp_lexer *);
static void cp_lexer_purge_token
(cp_lexer *);
static void cp_lexer_purge_tokens_after
(cp_lexer *, cp_token_position);
static void cp_lexer_save_tokens
(cp_lexer *);
static void cp_lexer_commit_tokens
(cp_lexer *);
static void cp_lexer_rollback_tokens
(cp_lexer *);
#ifdef ENABLE_CHECKING
static void cp_lexer_print_token
(FILE *, cp_token *);
static inline bool cp_lexer_debugging_p
(cp_lexer *);
static void cp_lexer_start_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
static void cp_lexer_stop_debugging
(cp_lexer *) ATTRIBUTE_UNUSED;
#else
/* If we define cp_lexer_debug_stream to NULL it will provoke warnings
about passing NULL to functions that require non-NULL arguments
(fputs, fprintf). It will never be used, so all we need is a value
of the right type that's guaranteed not to be NULL. */
#define cp_lexer_debug_stream stdout
#define cp_lexer_print_token(str, tok) (void) 0
#define cp_lexer_debugging_p(lexer) 0
#endif /* ENABLE_CHECKING */
static cp_token_cache *cp_token_cache_new
(cp_token *, cp_token *);
static void cp_parser_initial_pragma
(cp_token *);
/* Manifest constants. */
#define CP_LEXER_BUFFER_SIZE ((256 * 1024) / sizeof (cp_token))
#define CP_SAVED_TOKEN_STACK 5
/* A token type for keywords, as opposed to ordinary identifiers. */
#define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
/* A token type for template-ids. If a template-id is processed while
parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
the value of the CPP_TEMPLATE_ID is whatever was returned by
cp_parser_template_id. */
#define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
/* A token type for nested-name-specifiers. If a
nested-name-specifier is processed while parsing tentatively, it is
replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
CPP_NESTED_NAME_SPECIFIER is whatever was returned by
cp_parser_nested_name_specifier_opt. */
#define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
/* A token type for tokens that are not tokens at all; these are used
to represent slots in the array where there used to be a token
that has now been deleted. */
#define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
/* The number of token types, including C++-specific ones. */
#define N_CP_TTYPES ((int) (CPP_PURGED + 1))
/* Variables. */
#ifdef ENABLE_CHECKING
/* The stream to which debugging output should be written. */
static FILE *cp_lexer_debug_stream;
#endif /* ENABLE_CHECKING */
/* Create a new main C++ lexer, the lexer that gets tokens from the
preprocessor. */
static cp_lexer *
cp_lexer_new_main (void)
{
cp_token first_token;
cp_lexer *lexer;
cp_token *pos;
size_t alloc;
size_t space;
cp_token *buffer;
/* It's possible that parsing the first pragma will load a PCH file,
which is a GC collection point. So we have to do that before
allocating any memory. */
cp_parser_initial_pragma (&first_token);
/* Tell c_lex_with_flags not to merge string constants. */
c_lex_return_raw_strings = true;
c_common_no_more_pch ();
/* Allocate the memory. */
lexer = GGC_CNEW (cp_lexer);
#ifdef ENABLE_CHECKING
/* Initially we are not debugging. */
lexer->debugging_p = false;
#endif /* ENABLE_CHECKING */
lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
CP_SAVED_TOKEN_STACK);
/* Create the buffer. */
alloc = CP_LEXER_BUFFER_SIZE;
buffer = GGC_NEWVEC (cp_token, alloc);
/* Put the first token in the buffer. */
space = alloc;
pos = buffer;
*pos = first_token;
/* Get the remaining tokens from the preprocessor. */
while (pos->type != CPP_EOF)
{
pos++;
if (!--space)
{
space = alloc;
alloc *= 2;
buffer = GGC_RESIZEVEC (cp_token, buffer, alloc);
pos = buffer + space;
}
cp_lexer_get_preprocessor_token (lexer, pos);
}
lexer->buffer = buffer;
lexer->buffer_length = alloc - space;
lexer->last_token = pos;
lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
/* Subsequent preprocessor diagnostics should use compiler
diagnostic functions to get the compiler source location. */
cpp_get_options (parse_in)->client_diagnostic = true;
cpp_get_callbacks (parse_in)->error = cp_cpp_error;
gcc_assert (lexer->next_token->type != CPP_PURGED);
return lexer;
}
/* Create a new lexer whose token stream is primed with the tokens in
CACHE. When these tokens are exhausted, no new tokens will be read. */
static cp_lexer *
cp_lexer_new_from_tokens (cp_token_cache *cache)
{
cp_token *first = cache->first;
cp_token *last = cache->last;
cp_lexer *lexer = GGC_CNEW (cp_lexer);
/* We do not own the buffer. */
lexer->buffer = NULL;
lexer->buffer_length = 0;
lexer->next_token = first == last ? (cp_token *)&eof_token : first;
lexer->last_token = last;
lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
CP_SAVED_TOKEN_STACK);
#ifdef ENABLE_CHECKING
/* Initially we are not debugging. */
lexer->debugging_p = false;
#endif
gcc_assert (lexer->next_token->type != CPP_PURGED);
return lexer;
}
/* Frees all resources associated with LEXER. */
static void
cp_lexer_destroy (cp_lexer *lexer)
{
if (lexer->buffer)
ggc_free (lexer->buffer);
VEC_free (cp_token_position, heap, lexer->saved_tokens);
ggc_free (lexer);
}
/* Returns nonzero if debugging information should be output. */
#ifdef ENABLE_CHECKING
static inline bool
cp_lexer_debugging_p (cp_lexer *lexer)
{
return lexer->debugging_p;
}
#endif /* ENABLE_CHECKING */
static inline cp_token_position
cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
{
gcc_assert (!previous_p || lexer->next_token != &eof_token);
return lexer->next_token - previous_p;
}
static inline cp_token *
cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
{
return pos;
}
/* nonzero if we are presently saving tokens. */
static inline int
cp_lexer_saving_tokens (const cp_lexer* lexer)
{
return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
}
/* Store the next token from the preprocessor in *TOKEN. Return true
if we reach EOF. */
static void
cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
cp_token *token)
{
static int is_extern_c = 0;
/* Get a new token from the preprocessor. */
token->type
= c_lex_with_flags (&token->u.value, &token->location, &token->flags);
token->input_file_stack_index = input_file_stack_tick;
token->keyword = RID_MAX;
token->pragma_kind = PRAGMA_NONE;
token->in_system_header = in_system_header;
/* On some systems, some header files are surrounded by an
implicit extern "C" block. Set a flag in the token if it
comes from such a header. */
is_extern_c += pending_lang_change;
pending_lang_change = 0;
token->implicit_extern_c = is_extern_c > 0;
/* Check to see if this token is a keyword. */
if (token->type == CPP_NAME)
{
if (C_IS_RESERVED_WORD (token->u.value))
{
/* Mark this token as a keyword. */
token->type = CPP_KEYWORD;
/* Record which keyword. */
token->keyword = C_RID_CODE (token->u.value);
/* Update the value. Some keywords are mapped to particular
entities, rather than simply having the value of the
corresponding IDENTIFIER_NODE. For example, `__const' is
mapped to `const'. */
token->u.value = ridpointers[token->keyword];
}
else
{
token->ambiguous_p = false;
token->keyword = RID_MAX;
}
}
/* Handle Objective-C++ keywords. */
else if (token->type == CPP_AT_NAME)
{
token->type = CPP_KEYWORD;
switch (C_RID_CODE (token->u.value))
{
/* Map 'class' to '@class', 'private' to '@private', etc. */
case RID_CLASS: token->keyword = RID_AT_CLASS; break;
case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
case RID_THROW: token->keyword = RID_AT_THROW; break;
case RID_TRY: token->keyword = RID_AT_TRY; break;
case RID_CATCH: token->keyword = RID_AT_CATCH; break;
default: token->keyword = C_RID_CODE (token->u.value);
}
}
else if (token->type == CPP_PRAGMA)
{
/* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */
token->pragma_kind = TREE_INT_CST_LOW (token->u.value);
token->u.value = NULL_TREE;
}
}
/* Update the globals input_location and in_system_header and the
input file stack from TOKEN. */
static inline void
cp_lexer_set_source_position_from_token (cp_token *token)
{
if (token->type != CPP_EOF)
{
input_location = token->location;
in_system_header = token->in_system_header;
restore_input_file_stack (token->input_file_stack_index);
}
}
/* Return a pointer to the next token in the token stream, but do not
consume it. */
static inline cp_token *
cp_lexer_peek_token (cp_lexer *lexer)
{
if (cp_lexer_debugging_p (lexer))
{
fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
putc ('\n', cp_lexer_debug_stream);
}
return lexer->next_token;
}
/* Return true if the next token has the indicated TYPE. */
static inline bool
cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
{
return cp_lexer_peek_token (lexer)->type == type;
}
/* Return true if the next token does not have the indicated TYPE. */
static inline bool
cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
{
return !cp_lexer_next_token_is (lexer, type);
}
/* Return true if the next token is the indicated KEYWORD. */
static inline bool
cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
{
return cp_lexer_peek_token (lexer)->keyword == keyword;
}
/* Return true if the next token is a keyword for a decl-specifier. */
static bool
cp_lexer_next_token_is_decl_specifier_keyword (cp_lexer *lexer)
{
cp_token *token;
token = cp_lexer_peek_token (lexer);
switch (token->keyword)
{
/* Storage classes. */
case RID_AUTO:
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
/* Elaborated type specifiers. */
case RID_ENUM:
case RID_CLASS:
case RID_STRUCT:
case RID_UNION:
case RID_TYPENAME:
/* Simple type specifiers. */
case RID_CHAR:
case RID_WCHAR:
case RID_BOOL:
case RID_SHORT:
case RID_INT:
case RID_LONG:
case RID_SIGNED:
case RID_UNSIGNED:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
/* GNU extensions. */
case RID_ATTRIBUTE:
case RID_TYPEOF:
return true;
default:
return false;
}
}
/* Return a pointer to the Nth token in the token stream. If N is 1,
then this is precisely equivalent to cp_lexer_peek_token (except
that it is not inline). One would like to disallow that case, but
there is one case (cp_parser_nth_token_starts_template_id) where
the caller passes a variable for N and it might be 1. */
static cp_token *
cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
{
cp_token *token;
/* N is 1-based, not zero-based. */
gcc_assert (n > 0);
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream,
"cp_lexer: peeking ahead %ld at token: ", (long)n);
--n;
token = lexer->next_token;
gcc_assert (!n || token != &eof_token);
while (n != 0)
{
++token;
if (token == lexer->last_token)
{
token = (cp_token *)&eof_token;
break;
}
if (token->type != CPP_PURGED)
--n;
}
if (cp_lexer_debugging_p (lexer))
{
cp_lexer_print_token (cp_lexer_debug_stream, token);
putc ('\n', cp_lexer_debug_stream);
}
return token;
}
/* Return the next token, and advance the lexer's next_token pointer
to point to the next non-purged token. */
static cp_token *
cp_lexer_consume_token (cp_lexer* lexer)
{
cp_token *token = lexer->next_token;
gcc_assert (token != &eof_token);
gcc_assert (!lexer->in_pragma || token->type != CPP_PRAGMA_EOL);
do
{
lexer->next_token++;
if (lexer->next_token == lexer->last_token)
{
lexer->next_token = (cp_token *)&eof_token;
break;
}
}
while (lexer->next_token->type == CPP_PURGED);
cp_lexer_set_source_position_from_token (token);
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
{
fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
cp_lexer_print_token (cp_lexer_debug_stream, token);
putc ('\n', cp_lexer_debug_stream);
}
return token;
}
/* Permanently remove the next token from the token stream, and
advance the next_token pointer to refer to the next non-purged
token. */
static void
cp_lexer_purge_token (cp_lexer *lexer)
{
cp_token *tok = lexer->next_token;
gcc_assert (tok != &eof_token);
tok->type = CPP_PURGED;
tok->location = UNKNOWN_LOCATION;
tok->u.value = NULL_TREE;
tok->keyword = RID_MAX;
do
{
tok++;
if (tok == lexer->last_token)
{
tok = (cp_token *)&eof_token;
break;
}
}
while (tok->type == CPP_PURGED);
lexer->next_token = tok;
}
/* Permanently remove all tokens after TOK, up to, but not
including, the token that will be returned next by
cp_lexer_peek_token. */
static void
cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
{
cp_token *peek = lexer->next_token;
if (peek == &eof_token)
peek = lexer->last_token;
gcc_assert (tok < peek);
for ( tok += 1; tok != peek; tok += 1)
{
tok->type = CPP_PURGED;
tok->location = UNKNOWN_LOCATION;
tok->u.value = NULL_TREE;
tok->keyword = RID_MAX;
}
}
/* Begin saving tokens. All tokens consumed after this point will be
preserved. */
static void
cp_lexer_save_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
VEC_safe_push (cp_token_position, heap,
lexer->saved_tokens, lexer->next_token);
}
/* Commit to the portion of the token stream most recently saved. */
static void
cp_lexer_commit_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
VEC_pop (cp_token_position, lexer->saved_tokens);
}
/* Return all tokens saved since the last call to cp_lexer_save_tokens
to the token stream. Stop saving tokens. */
static void
cp_lexer_rollback_tokens (cp_lexer* lexer)
{
/* Provide debugging output. */
if (cp_lexer_debugging_p (lexer))
fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
}
/* Print a representation of the TOKEN on the STREAM. */
#ifdef ENABLE_CHECKING
static void
cp_lexer_print_token (FILE * stream, cp_token *token)
{
/* We don't use cpp_type2name here because the parser defines
a few tokens of its own. */
static const char *const token_names[] = {
/* cpplib-defined token types */
#define OP(e, s) #e,
#define TK(e, s) #e,
TTYPE_TABLE
#undef OP
#undef TK
/* C++ parser token types - see "Manifest constants", above. */
"KEYWORD",
"TEMPLATE_ID",
"NESTED_NAME_SPECIFIER",
"PURGED"
};
/* If we have a name for the token, print it out. Otherwise, we
simply give the numeric code. */
gcc_assert (token->type < ARRAY_SIZE(token_names));
fputs (token_names[token->type], stream);
/* For some tokens, print the associated data. */
switch (token->type)
{
case CPP_KEYWORD:
/* Some keywords have a value that is not an IDENTIFIER_NODE.
For example, `struct' is mapped to an INTEGER_CST. */
if (TREE_CODE (token->u.value) != IDENTIFIER_NODE)
break;
/* else fall through */
case CPP_NAME:
fputs (IDENTIFIER_POINTER (token->u.value), stream);
break;
case CPP_STRING:
case CPP_WSTRING:
fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->u.value));
break;
default:
break;
}
}
/* Start emitting debugging information. */
static void
cp_lexer_start_debugging (cp_lexer* lexer)
{
lexer->debugging_p = true;
}
/* Stop emitting debugging information. */
static void
cp_lexer_stop_debugging (cp_lexer* lexer)
{
lexer->debugging_p = false;
}
#endif /* ENABLE_CHECKING */
/* Create a new cp_token_cache, representing a range of tokens. */
static cp_token_cache *
cp_token_cache_new (cp_token *first, cp_token *last)
{
cp_token_cache *cache = GGC_NEW (cp_token_cache);
cache->first = first;
cache->last = last;
return cache;
}
/* Decl-specifiers. */
/* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
static void
clear_decl_specs (cp_decl_specifier_seq *decl_specs)
{
memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
}
/* Declarators. */
/* Nothing other than the parser should be creating declarators;
declarators are a semi-syntactic representation of C++ entities.
Other parts of the front end that need to create entities (like
VAR_DECLs or FUNCTION_DECLs) should do that directly. */
static cp_declarator *make_call_declarator
(cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
static cp_declarator *make_array_declarator
(cp_declarator *, tree);
static cp_declarator *make_pointer_declarator
(cp_cv_quals, cp_declarator *);
static cp_declarator *make_reference_declarator
(cp_cv_quals, cp_declarator *);
static cp_parameter_declarator *make_parameter_declarator
(cp_decl_specifier_seq *, cp_declarator *, tree);
static cp_declarator *make_ptrmem_declarator
(cp_cv_quals, tree, cp_declarator *);
/* An erroneous declarator. */
static cp_declarator *cp_error_declarator;
/* The obstack on which declarators and related data structures are
allocated. */
static struct obstack declarator_obstack;
/* Alloc BYTES from the declarator memory pool. */
static inline void *
alloc_declarator (size_t bytes)
{
return obstack_alloc (&declarator_obstack, bytes);
}
/* Allocate a declarator of the indicated KIND. Clear fields that are
common to all declarators. */
static cp_declarator *
make_declarator (cp_declarator_kind kind)
{
cp_declarator *declarator;
declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
declarator->kind = kind;
declarator->attributes = NULL_TREE;
declarator->declarator = NULL;
return declarator;
}
/* Make a declarator for a generalized identifier. If
QUALIFYING_SCOPE is non-NULL, the identifier is
QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is just
UNQUALIFIED_NAME. SFK indicates the kind of special function this
is, if any. */
static cp_declarator *
make_id_declarator (tree qualifying_scope, tree unqualified_name,
special_function_kind sfk)
{
cp_declarator *declarator;
/* It is valid to write:
class C { void f(); };
typedef C D;
void D::f();
The standard is not clear about whether `typedef const C D' is
legal; as of 2002-09-15 the committee is considering that
question. EDG 3.0 allows that syntax. Therefore, we do as
well. */
if (qualifying_scope && TYPE_P (qualifying_scope))
qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
gcc_assert (TREE_CODE (unqualified_name) == IDENTIFIER_NODE
|| TREE_CODE (unqualified_name) == BIT_NOT_EXPR
|| TREE_CODE (unqualified_name) == TEMPLATE_ID_EXPR);
declarator = make_declarator (cdk_id);
declarator->u.id.qualifying_scope = qualifying_scope;
declarator->u.id.unqualified_name = unqualified_name;
declarator->u.id.sfk = sfk;
return declarator;
}
/* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
of modifiers such as const or volatile to apply to the pointer
type, represented as identifiers. */
cp_declarator *
make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_pointer);
declarator->declarator = target;
declarator->u.pointer.qualifiers = cv_qualifiers;
declarator->u.pointer.class_type = NULL_TREE;
return declarator;
}
/* Like make_pointer_declarator -- but for references. */
cp_declarator *
make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_reference);
declarator->declarator = target;
declarator->u.pointer.qualifiers = cv_qualifiers;
declarator->u.pointer.class_type = NULL_TREE;
return declarator;
}
/* Like make_pointer_declarator -- but for a pointer to a non-static
member of CLASS_TYPE. */
cp_declarator *
make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
cp_declarator *pointee)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_ptrmem);
declarator->declarator = pointee;
declarator->u.pointer.qualifiers = cv_qualifiers;
declarator->u.pointer.class_type = class_type;
return declarator;
}
/* Make a declarator for the function given by TARGET, with the
indicated PARMS. The CV_QUALIFIERS aply to the function, as in
"const"-qualified member function. The EXCEPTION_SPECIFICATION
indicates what exceptions can be thrown. */
cp_declarator *
make_call_declarator (cp_declarator *target,
cp_parameter_declarator *parms,
cp_cv_quals cv_qualifiers,
tree exception_specification)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_function);
declarator->declarator = target;
declarator->u.function.parameters = parms;
declarator->u.function.qualifiers = cv_qualifiers;
declarator->u.function.exception_specification = exception_specification;
return declarator;
}
/* Make a declarator for an array of BOUNDS elements, each of which is
defined by ELEMENT. */
cp_declarator *
make_array_declarator (cp_declarator *element, tree bounds)
{
cp_declarator *declarator;
declarator = make_declarator (cdk_array);
declarator->declarator = element;
declarator->u.array.bounds = bounds;
return declarator;
}
cp_parameter_declarator *no_parameters;
/* Create a parameter declarator with the indicated DECL_SPECIFIERS,
DECLARATOR and DEFAULT_ARGUMENT. */
cp_parameter_declarator *
make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
cp_declarator *declarator,
tree default_argument)
{
cp_parameter_declarator *parameter;
parameter = ((cp_parameter_declarator *)
alloc_declarator (sizeof (cp_parameter_declarator)));
parameter->next = NULL;
if (decl_specifiers)
parameter->decl_specifiers = *decl_specifiers;
else
clear_decl_specs (¶meter->decl_specifiers);
parameter->declarator = declarator;
parameter->default_argument = default_argument;
parameter->ellipsis_p = false;
return parameter;
}
/* Returns true iff DECLARATOR is a declaration for a function. */
static bool
function_declarator_p (const cp_declarator *declarator)
{
while (declarator)
{
if (declarator->kind == cdk_function
&& declarator->declarator->kind == cdk_id)
return true;
if (declarator->kind == cdk_id
|| declarator->kind == cdk_error)
return false;
declarator = declarator->declarator;
}
return false;
}
/* The parser. */
/* Overview
--------
A cp_parser parses the token stream as specified by the C++
grammar. Its job is purely parsing, not semantic analysis. For
example, the parser breaks the token stream into declarators,
expressions, statements, and other similar syntactic constructs.
It does not check that the types of the expressions on either side
of an assignment-statement are compatible, or that a function is
not declared with a parameter of type `void'.
The parser invokes routines elsewhere in the compiler to perform
semantic analysis and to build up the abstract syntax tree for the
code processed.
The parser (and the template instantiation code, which is, in a
way, a close relative of parsing) are the only parts of the
compiler that should be calling push_scope and pop_scope, or
related functions. The parser (and template instantiation code)
keeps track of what scope is presently active; everything else
should simply honor that. (The code that generates static
initializers may also need to set the scope, in order to check
access control correctly when emitting the initializers.)
Methodology
-----------
The parser is of the standard recursive-descent variety. Upcoming
tokens in the token stream are examined in order to determine which
production to use when parsing a non-terminal. Some C++ constructs
require arbitrary look ahead to disambiguate. For example, it is
impossible, in the general case, to tell whether a statement is an
expression or declaration without scanning the entire statement.
Therefore, the parser is capable of "parsing tentatively." When the
parser is not sure what construct comes next, it enters this mode.
Then, while we attempt to parse the construct, the parser queues up
error messages, rather than issuing them immediately, and saves the
tokens it consumes. If the construct is parsed successfully, the
parser "commits", i.e., it issues any queued error messages and
the tokens that were being preserved are permanently discarded.
If, however, the construct is not parsed successfully, the parser
rolls back its state completely so that it can resume parsing using
a different alternative.
Future Improvements
-------------------
The performance of the parser could probably be improved substantially.
We could often eliminate the need to parse tentatively by looking ahead
a little bit. In some places, this approach might not entirely eliminate
the need to parse tentatively, but it might still speed up the average
case. */
/* Flags that are passed to some parsing functions. These values can
be bitwise-ored together. */
typedef enum cp_parser_flags
{
/* No flags. */
CP_PARSER_FLAGS_NONE = 0x0,
/* The construct is optional. If it is not present, then no error
should be issued. */
CP_PARSER_FLAGS_OPTIONAL = 0x1,
/* When parsing a type-specifier, do not allow user-defined types. */
CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
} cp_parser_flags;
/* The different kinds of declarators we want to parse. */
typedef enum cp_parser_declarator_kind
{
/* We want an abstract declarator. */
CP_PARSER_DECLARATOR_ABSTRACT,
/* We want a named declarator. */
CP_PARSER_DECLARATOR_NAMED,
/* We don't mind, but the name must be an unqualified-id. */
CP_PARSER_DECLARATOR_EITHER
} cp_parser_declarator_kind;
/* The precedence values used to parse binary expressions. The minimum value
of PREC must be 1, because zero is reserved to quickly discriminate
binary operators from other tokens. */
enum cp_parser_prec
{
PREC_NOT_OPERATOR,
PREC_LOGICAL_OR_EXPRESSION,
PREC_LOGICAL_AND_EXPRESSION,
PREC_INCLUSIVE_OR_EXPRESSION,
PREC_EXCLUSIVE_OR_EXPRESSION,
PREC_AND_EXPRESSION,
PREC_EQUALITY_EXPRESSION,
PREC_RELATIONAL_EXPRESSION,
PREC_SHIFT_EXPRESSION,
PREC_ADDITIVE_EXPRESSION,
PREC_MULTIPLICATIVE_EXPRESSION,
PREC_PM_EXPRESSION,
NUM_PREC_VALUES = PREC_PM_EXPRESSION
};
/* A mapping from a token type to a corresponding tree node type, with a
precedence value. */
typedef struct cp_parser_binary_operations_map_node
{
/* The token type. */
enum cpp_ttype token_type;
/* The corresponding tree code. */
enum tree_code tree_type;
/* The precedence of this operator. */
enum cp_parser_prec prec;
} cp_parser_binary_operations_map_node;
/* The status of a tentative parse. */
typedef enum cp_parser_status_kind
{
/* No errors have occurred. */
CP_PARSER_STATUS_KIND_NO_ERROR,
/* An error has occurred. */
CP_PARSER_STATUS_KIND_ERROR,
/* We are committed to this tentative parse, whether or not an error
has occurred. */
CP_PARSER_STATUS_KIND_COMMITTED
} cp_parser_status_kind;
typedef struct cp_parser_expression_stack_entry
{
tree lhs;
enum tree_code tree_type;
int prec;
} cp_parser_expression_stack_entry;
/* The stack for storing partial expressions. We only need NUM_PREC_VALUES
entries because precedence levels on the stack are monotonically
increasing. */
typedef struct cp_parser_expression_stack_entry
cp_parser_expression_stack[NUM_PREC_VALUES];
/* Context that is saved and restored when parsing tentatively. */
typedef struct cp_parser_context GTY (())
{
/* If this is a tentative parsing context, the status of the
tentative parse. */
enum cp_parser_status_kind status;
/* If non-NULL, we have just seen a `x->' or `x.' expression. Names
that are looked up in this context must be looked up both in the
scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
the context of the containing expression. */
tree object_type;
/* The next parsing context in the stack. */
struct cp_parser_context *next;
} cp_parser_context;
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser_context *cp_parser_context_new
(cp_parser_context *);
/* Class variables. */
static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
/* The operator-precedence table used by cp_parser_binary_expression.
Transformed into an associative array (binops_by_token) by
cp_parser_new. */
static const cp_parser_binary_operations_map_node binops[] = {
{ CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
{ CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
{ CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
{ CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
{ CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
{ CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
{ CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
{ CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
{ CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
{ CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
{ CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
{ CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
{ CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
{ CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
{ CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
};
/* The same as binops, but initialized by cp_parser_new so that
binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
for speed. */
static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
/* Constructors and destructors. */
/* Construct a new context. The context below this one on the stack
is given by NEXT. */
static cp_parser_context *
cp_parser_context_new (cp_parser_context* next)
{
cp_parser_context *context;
/* Allocate the storage. */
if (cp_parser_context_free_list != NULL)
{
/* Pull the first entry from the free list. */
context = cp_parser_context_free_list;
cp_parser_context_free_list = context->next;
memset (context, 0, sizeof (*context));
}
else
context = GGC_CNEW (cp_parser_context);
/* No errors have occurred yet in this context. */
context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
/* If this is not the bottomost context, copy information that we
need from the previous context. */
if (next)
{
/* If, in the NEXT context, we are parsing an `x->' or `x.'
expression, then we are parsing one in this context, too. */
context->object_type = next->object_type;
/* Thread the stack. */
context->next = next;
}
return context;
}
/* The cp_parser structure represents the C++ parser. */
typedef struct cp_parser GTY(())
{
/* The lexer from which we are obtaining tokens. */
cp_lexer *lexer;
/* The scope in which names should be looked up. If NULL_TREE, then
we look up names in the scope that is currently open in the
source program. If non-NULL, this is either a TYPE or
NAMESPACE_DECL for the scope in which we should look. It can
also be ERROR_MARK, when we've parsed a bogus scope.
This value is not cleared automatically after a name is looked
up, so we must be careful to clear it before starting a new look
up sequence. (If it is not cleared, then `X::Y' followed by `Z'
will look up `Z' in the scope of `X', rather than the current
scope.) Unfortunately, it is difficult to tell when name lookup
is complete, because we sometimes peek at a token, look it up,
and then decide not to consume it. */
tree scope;
/* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
last lookup took place. OBJECT_SCOPE is used if an expression
like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
respectively. QUALIFYING_SCOPE is used for an expression of the
form "X::Y"; it refers to X. */
tree object_scope;
tree qualifying_scope;
/* A stack of parsing contexts. All but the bottom entry on the
stack will be tentative contexts.
We parse tentatively in order to determine which construct is in
use in some situations. For example, in order to determine
whether a statement is an expression-statement or a
declaration-statement we parse it tentatively as a
declaration-statement. If that fails, we then reparse the same
token stream as an expression-statement. */
cp_parser_context *context;
/* True if we are parsing GNU C++. If this flag is not set, then
GNU extensions are not recognized. */
bool allow_gnu_extensions_p;
/* TRUE if the `>' token should be interpreted as the greater-than
operator. FALSE if it is the end of a template-id or
template-parameter-list. */
bool greater_than_is_operator_p;
/* TRUE if default arguments are allowed within a parameter list
that starts at this point. FALSE if only a gnu extension makes
them permissible. */
bool default_arg_ok_p;
/* TRUE if we are parsing an integral constant-expression. See
[expr.const] for a precise definition. */
bool integral_constant_expression_p;
/* TRUE if we are parsing an integral constant-expression -- but a
non-constant expression should be permitted as well. This flag
is used when parsing an array bound so that GNU variable-length
arrays are tolerated. */
bool allow_non_integral_constant_expression_p;
/* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
been seen that makes the expression non-constant. */
bool non_integral_constant_expression_p;
/* TRUE if local variable names and `this' are forbidden in the
current context. */
bool local_variables_forbidden_p;
/* TRUE if the declaration we are parsing is part of a
linkage-specification of the form `extern string-literal
declaration'. */
bool in_unbraced_linkage_specification_p;
/* TRUE if we are presently parsing a declarator, after the
direct-declarator. */
bool in_declarator_p;
/* TRUE if we are presently parsing a template-argument-list. */
bool in_template_argument_list_p;
/* Set to IN_ITERATION_STMT if parsing an iteration-statement,
to IN_OMP_BLOCK if parsing OpenMP structured block and
IN_OMP_FOR if parsing OpenMP loop. If parsing a switch statement,
this is bitwise ORed with IN_SWITCH_STMT, unless parsing an
iteration-statement, OpenMP block or loop within that switch. */
#define IN_SWITCH_STMT 1
#define IN_ITERATION_STMT 2
#define IN_OMP_BLOCK 4
#define IN_OMP_FOR 8
unsigned char in_statement;
/* TRUE if we are presently parsing the body of a switch statement.
Note that this doesn't quite overlap with in_statement above.
The difference relates to giving the right sets of error messages:
"case not in switch" vs "break statement used with OpenMP...". */
bool in_switch_statement_p;
/* TRUE if we are parsing a type-id in an expression context. In
such a situation, both "type (expr)" and "type (type)" are valid
alternatives. */
bool in_type_id_in_expr_p;
/* TRUE if we are currently in a header file where declarations are
implicitly extern "C". */
bool implicit_extern_c;
/* TRUE if strings in expressions should be translated to the execution
character set. */
bool translate_strings_p;
/* TRUE if we are presently parsing the body of a function, but not
a local class. */
bool in_function_body;
/* If non-NULL, then we are parsing a construct where new type
definitions are not permitted. The string stored here will be
issued as an error message if a type is defined. */
const char *type_definition_forbidden_message;
/* A list of lists. The outer list is a stack, used for member
functions of local classes. At each level there are two sub-list,
one on TREE_VALUE and one on TREE_PURPOSE. Each of those
sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
TREE_VALUE's. The functions are chained in reverse declaration
order.
The TREE_PURPOSE sublist contains those functions with default
arguments that need post processing, and the TREE_VALUE sublist
contains those functions with definitions that need post
processing.
These lists can only be processed once the outermost class being
defined is complete. */
tree unparsed_functions_queues;
/* The number of classes whose definitions are currently in
progress. */
unsigned num_classes_being_defined;
/* The number of template parameter lists that apply directly to the
current declaration. */
unsigned num_template_parameter_lists;
} cp_parser;
/* Prototypes. */
/* Constructors and destructors. */
static cp_parser *cp_parser_new
(void);
/* Routines to parse various constructs.
Those that return `tree' will return the error_mark_node (rather
than NULL_TREE) if a parse error occurs, unless otherwise noted.
Sometimes, they will return an ordinary node if error-recovery was
attempted, even though a parse error occurred. So, to check
whether or not a parse error occurred, you should always use
cp_parser_error_occurred. If the construct is optional (indicated
either by an `_opt' in the name of the function that does the
parsing or via a FLAGS parameter), then NULL_TREE is returned if
the construct is not present. */
/* Lexical conventions [gram.lex] */
static tree cp_parser_identifier
(cp_parser *);
static tree cp_parser_string_literal
(cp_parser *, bool, bool);
/* Basic concepts [gram.basic] */
static bool cp_parser_translation_unit
(cp_parser *);
/* Expressions [gram.expr] */
static tree cp_parser_primary_expression
(cp_parser *, bool, bool, bool, cp_id_kind *);
static tree cp_parser_id_expression
(cp_parser *, bool, bool, bool *, bool, bool);
static tree cp_parser_unqualified_id
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_nested_name_specifier_opt
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_nested_name_specifier
(cp_parser *, bool, bool, bool, bool);
static tree cp_parser_class_or_namespace_name
(cp_parser *, bool, bool, bool, bool, bool);
static tree cp_parser_postfix_expression
(cp_parser *, bool, bool);
static tree cp_parser_postfix_open_square_expression
(cp_parser *, tree, bool);
static tree cp_parser_postfix_dot_deref_expression
(cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
static tree cp_parser_parenthesized_expression_list
(cp_parser *, bool, bool, bool *);
static void cp_parser_pseudo_destructor_name
(cp_parser *, tree *, tree *);
static tree cp_parser_unary_expression
(cp_parser *, bool, bool);
static enum tree_code cp_parser_unary_operator
(cp_token *);
static tree cp_parser_new_expression
(cp_parser *);
static tree cp_parser_new_placement
(cp_parser *);
static tree cp_parser_new_type_id
(cp_parser *, tree *);
static cp_declarator *cp_parser_new_declarator_opt
(cp_parser *);
static cp_declarator *cp_parser_direct_new_declarator
(cp_parser *);
static tree cp_parser_new_initializer
(cp_parser *);
static tree cp_parser_delete_expression
(cp_parser *);
static tree cp_parser_cast_expression
(cp_parser *, bool, bool);
static tree cp_parser_binary_expression
(cp_parser *, bool);
static tree cp_parser_question_colon_clause
(cp_parser *, tree);
static tree cp_parser_assignment_expression
(cp_parser *, bool);
static enum tree_code cp_parser_assignment_operator_opt
(cp_parser *);
static tree cp_parser_expression
(cp_parser *, bool);
static tree cp_parser_constant_expression
(cp_parser *, bool, bool *);
static tree cp_parser_builtin_offsetof
(cp_parser *);
/* Statements [gram.stmt.stmt] */
static void cp_parser_statement
(cp_parser *, tree, bool);
static void cp_parser_label_for_labeled_statement
(cp_parser *);
static tree cp_parser_expression_statement
(cp_parser *, tree);
static tree cp_parser_compound_statement
(cp_parser *, tree, bool);
static void cp_parser_statement_seq_opt
(cp_parser *, tree);
static tree cp_parser_selection_statement
(cp_parser *);
static tree cp_parser_condition
(cp_parser *);
static tree cp_parser_iteration_statement
(cp_parser *);
static void cp_parser_for_init_statement
(cp_parser *);
static tree cp_parser_jump_statement
(cp_parser *);
static void cp_parser_declaration_statement
(cp_parser *);
static tree cp_parser_implicitly_scoped_statement
(cp_parser *);
static void cp_parser_already_scoped_statement
(cp_parser *);
/* Declarations [gram.dcl.dcl] */
static void cp_parser_declaration_seq_opt
(cp_parser *);
static void cp_parser_declaration
(cp_parser *);
static void cp_parser_block_declaration
(cp_parser *, bool);
static void cp_parser_simple_declaration
(cp_parser *, bool);
static void cp_parser_decl_specifier_seq
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
static tree cp_parser_storage_class_specifier_opt
(cp_parser *);
static tree cp_parser_function_specifier_opt
(cp_parser *, cp_decl_specifier_seq *);
static tree cp_parser_type_specifier
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
int *, bool *);
static tree cp_parser_simple_type_specifier
(cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
static tree cp_parser_type_name
(cp_parser *);
static tree cp_parser_elaborated_type_specifier
(cp_parser *, bool, bool);
static tree cp_parser_enum_specifier
(cp_parser *);
static void cp_parser_enumerator_list
(cp_parser *, tree);
static void cp_parser_enumerator_definition
(cp_parser *, tree);
static tree cp_parser_namespace_name
(cp_parser *);
static void cp_parser_namespace_definition
(cp_parser *);
static void cp_parser_namespace_body
(cp_parser *);
static tree cp_parser_qualified_namespace_specifier
(cp_parser *);
static void cp_parser_namespace_alias_definition
(cp_parser *);
static bool cp_parser_using_declaration
(cp_parser *, bool);
static void cp_parser_using_directive
(cp_parser *);
static void cp_parser_asm_definition
(cp_parser *);
static void cp_parser_linkage_specification
(cp_parser *);
/* Declarators [gram.dcl.decl] */
static tree cp_parser_init_declarator
(cp_parser *, cp_decl_specifier_seq *, VEC (deferred_access_check,gc)*, bool, bool, int, bool *);
static cp_declarator *cp_parser_declarator
(cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
static cp_declarator *cp_parser_direct_declarator
(cp_parser *, cp_parser_declarator_kind, int *, bool);
static enum tree_code cp_parser_ptr_operator
(cp_parser *, tree *, cp_cv_quals *);
static cp_cv_quals cp_parser_cv_qualifier_seq_opt
(cp_parser *);
static tree cp_parser_declarator_id
(cp_parser *, bool);
static tree cp_parser_type_id
(cp_parser *);
static void cp_parser_type_specifier_seq
(cp_parser *, bool, cp_decl_specifier_seq *);
static cp_parameter_declarator *cp_parser_parameter_declaration_clause
(cp_parser *);
static cp_parameter_declarator *cp_parser_parameter_declaration_list
(cp_parser *, bool *);
static cp_parameter_declarator *cp_parser_parameter_declaration
(cp_parser *, bool, bool *);
static void cp_parser_function_body
(cp_parser *);
static tree cp_parser_initializer
(cp_parser *, bool *, bool *);
static tree cp_parser_initializer_clause
(cp_parser *, bool *);
static VEC(constructor_elt,gc) *cp_parser_initializer_list
(cp_parser *, bool *);
static bool cp_parser_ctor_initializer_opt_and_function_body
(cp_parser *);
/* Classes [gram.class] */
static tree cp_parser_class_name
(cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
static tree cp_parser_class_specifier
(cp_parser *);
static tree cp_parser_class_head
(cp_parser *, bool *, tree *, tree *);
static enum tag_types cp_parser_class_key
(cp_parser *);
static void cp_parser_member_specification_opt
(cp_parser *);
static void cp_parser_member_declaration
(cp_parser *);
static tree cp_parser_pure_specifier
(cp_parser *);
static tree cp_parser_constant_initializer
(cp_parser *);
/* Derived classes [gram.class.derived] */
static tree cp_parser_base_clause
(cp_parser *);
static tree cp_parser_base_specifier
(cp_parser *);
/* Special member functions [gram.special] */
static tree cp_parser_conversion_function_id
(cp_parser *);
static tree cp_parser_conversion_type_id
(cp_parser *);
static cp_declarator *cp_parser_conversion_declarator_opt
(cp_parser *);
static bool cp_parser_ctor_initializer_opt
(cp_parser *);
static void cp_parser_mem_initializer_list
(cp_parser *);
static tree cp_parser_mem_initializer
(cp_parser *);
static tree cp_parser_mem_initializer_id
(cp_parser *);
/* Overloading [gram.over] */
static tree cp_parser_operator_function_id
(cp_parser *);
static tree cp_parser_operator
(cp_parser *);
/* Templates [gram.temp] */
static void cp_parser_template_declaration
(cp_parser *, bool);
static tree cp_parser_template_parameter_list
(cp_parser *);
static tree cp_parser_template_parameter
(cp_parser *, bool *);
static tree cp_parser_type_parameter
(cp_parser *);
static tree cp_parser_template_id
(cp_parser *, bool, bool, bool);
static tree cp_parser_template_name
(cp_parser *, bool, bool, bool, bool *);
static tree cp_parser_template_argument_list
(cp_parser *);
static tree cp_parser_template_argument
(cp_parser *);
static void cp_parser_explicit_instantiation
(cp_parser *);
static void cp_parser_explicit_specialization
(cp_parser *);
/* Exception handling [gram.exception] */
static tree cp_parser_try_block
(cp_parser *);
static bool cp_parser_function_try_block
(cp_parser *);
static void cp_parser_handler_seq
(cp_parser *);
static void cp_parser_handler
(cp_parser *);
static tree cp_parser_exception_declaration
(cp_parser *);
static tree cp_parser_throw_expression
(cp_parser *);
static tree cp_parser_exception_specification_opt
(cp_parser *);
static tree cp_parser_type_id_list
(cp_parser *);
/* GNU Extensions */
static tree cp_parser_asm_specification_opt
(cp_parser *);
static tree cp_parser_asm_operand_list
(cp_parser *);
static tree cp_parser_asm_clobber_list
(cp_parser *);
static tree cp_parser_attributes_opt
(cp_parser *);
static tree cp_parser_attribute_list
(cp_parser *);
static bool cp_parser_extension_opt
(cp_parser *, int *);
static void cp_parser_label_declaration
(cp_parser *);
enum pragma_context { pragma_external, pragma_stmt, pragma_compound };
static bool cp_parser_pragma
(cp_parser *, enum pragma_context);
/* Objective-C++ Productions */
static tree cp_parser_objc_message_receiver
(cp_parser *);
static tree cp_parser_objc_message_args
(cp_parser *);
static tree cp_parser_objc_message_expression
(cp_parser *);
static tree cp_parser_objc_encode_expression
(cp_parser *);
static tree cp_parser_objc_defs_expression
(cp_parser *);
static tree cp_parser_objc_protocol_expression
(cp_parser *);
static tree cp_parser_objc_selector_expression
(cp_parser *);
static tree cp_parser_objc_expression
(cp_parser *);
static bool cp_parser_objc_selector_p
(enum cpp_ttype);
static tree cp_parser_objc_selector
(cp_parser *);
static tree cp_parser_objc_protocol_refs_opt
(cp_parser *);
static void cp_parser_objc_declaration
(cp_parser *);
static tree cp_parser_objc_statement
(cp_parser *);
/* Utility Routines */
static tree cp_parser_lookup_name
(cp_parser *, tree, enum tag_types, bool, bool, bool, tree *);
static tree cp_parser_lookup_name_simple
(cp_parser *, tree);
static tree cp_parser_maybe_treat_template_as_class
(tree, bool);
static bool cp_parser_check_declarator_template_parameters
(cp_parser *, cp_declarator *);
static bool cp_parser_check_template_parameters
(cp_parser *, unsigned);
static tree cp_parser_simple_cast_expression
(cp_parser *);
static tree cp_parser_global_scope_opt
(cp_parser *, bool);
static bool cp_parser_constructor_declarator_p
(cp_parser *, bool);
static tree cp_parser_function_definition_from_specifiers_and_declarator
(cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
static tree cp_parser_function_definition_after_declarator
(cp_parser *, bool);
static void cp_parser_template_declaration_after_export
(cp_parser *, bool);
static void cp_parser_perform_template_parameter_access_checks
(VEC (deferred_access_check,gc)*);
static tree cp_parser_single_declaration
(cp_parser *, VEC (deferred_access_check,gc)*, bool, bool *);
static tree cp_parser_functional_cast
(cp_parser *, tree);
static tree cp_parser_save_member_function_body
(cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
static tree cp_parser_enclosed_template_argument_list
(cp_parser *);
static void cp_parser_save_default_args
(cp_parser *, tree);
static void cp_parser_late_parsing_for_member
(cp_parser *, tree);
static void cp_parser_late_parsing_default_args
(cp_parser *, tree);
static tree cp_parser_sizeof_operand
(cp_parser *, enum rid);
static bool cp_parser_declares_only_class_p
(cp_parser *);
static void cp_parser_set_storage_class
(cp_parser *, cp_decl_specifier_seq *, enum rid);
static void cp_parser_set_decl_spec_type
(cp_decl_specifier_seq *, tree, bool);
static bool cp_parser_friend_p
(const cp_decl_specifier_seq *);
static cp_token *cp_parser_require
(cp_parser *, enum cpp_ttype, const char *);
static cp_token *cp_parser_require_keyword
(cp_parser *, enum rid, const char *);
static bool cp_parser_token_starts_function_definition_p
(cp_token *);
static bool cp_parser_next_token_starts_class_definition_p
(cp_parser *);
static bool cp_parser_next_token_ends_template_argument_p
(cp_parser *);
static bool cp_parser_nth_token_starts_template_argument_list_p
(cp_parser *, size_t);
static enum tag_types cp_parser_token_is_class_key
(cp_token *);
static void cp_parser_check_class_key
(enum tag_types, tree type);
static void cp_parser_check_access_in_redeclaration
(tree type);
static bool cp_parser_optional_template_keyword
(cp_parser *);
static void cp_parser_pre_parsed_nested_name_specifier
(cp_parser *);
static void cp_parser_cache_group
(cp_parser *, enum cpp_ttype, unsigned);
static void cp_parser_parse_tentatively
(cp_parser *);
static void cp_parser_commit_to_tentative_parse
(cp_parser *);
static void cp_parser_abort_tentative_parse
(cp_parser *);
static bool cp_parser_parse_definitely
(cp_parser *);
static inline bool cp_parser_parsing_tentatively
(cp_parser *);
static bool cp_parser_uncommitted_to_tentative_parse_p
(cp_parser *);
static void cp_parser_error
(cp_parser *, const char *);
static void cp_parser_name_lookup_error
(cp_parser *, tree, tree, const char *);
static bool cp_parser_simulate_error
(cp_parser *);
static bool cp_parser_check_type_definition
(cp_parser *);
static void cp_parser_check_for_definition_in_return_type
(cp_declarator *, tree);
static void cp_parser_check_for_invalid_template_id
(cp_parser *, tree);
static bool cp_parser_non_integral_constant_expression
(cp_parser *, const char *);
static void cp_parser_diagnose_invalid_type_name
(cp_parser *, tree, tree);
static bool cp_parser_parse_and_diagnose_invalid_type_name
(cp_parser *);
static int cp_parser_skip_to_closing_parenthesis
(cp_parser *, bool, bool, bool);
static void cp_parser_skip_to_end_of_statement
(cp_parser *);
static void cp_parser_consume_semicolon_at_end_of_statement
(cp_parser *);
static void cp_parser_skip_to_end_of_block_or_statement
(cp_parser *);
static void cp_parser_skip_to_closing_brace
(cp_parser *);
static void cp_parser_skip_to_end_of_template_parameter_list
(cp_parser *);
static void cp_parser_skip_to_pragma_eol
(cp_parser*, cp_token *);
static bool cp_parser_error_occurred
(cp_parser *);
static bool cp_parser_allow_gnu_extensions_p
(cp_parser *);
static bool cp_parser_is_string_literal
(cp_token *);
static bool cp_parser_is_keyword
(cp_token *, enum rid);
static tree cp_parser_make_typename_type
(cp_parser *, tree, tree);
/* Returns nonzero if we are parsing tentatively. */
static inline bool
cp_parser_parsing_tentatively (cp_parser* parser)
{
return parser->context->next != NULL;
}
/* Returns nonzero if TOKEN is a string literal. */
static bool
cp_parser_is_string_literal (cp_token* token)
{
return (token->type == CPP_STRING || token->type == CPP_WSTRING);
}
/* Returns nonzero if TOKEN is the indicated KEYWORD. */
static bool
cp_parser_is_keyword (cp_token* token, enum rid keyword)
{
return token->keyword == keyword;
}
/* If not parsing tentatively, issue a diagnostic of the form
FILE:LINE: MESSAGE before TOKEN
where TOKEN is the next token in the input stream. MESSAGE
(specified by the caller) is usually of the form "expected
OTHER-TOKEN". */
static void
cp_parser_error (cp_parser* parser, const char* message)
{
if (!cp_parser_simulate_error (parser))
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* This diagnostic makes more sense if it is tagged to the line
of the token we just peeked at. */
cp_lexer_set_source_position_from_token (token);
if (token->type == CPP_PRAGMA)
{
error ("%<#pragma%> is not allowed here");
cp_parser_skip_to_pragma_eol (parser, token);
return;
}
c_parse_error (message,
/* Because c_parser_error does not understand
CPP_KEYWORD, keywords are treated like
identifiers. */
(token->type == CPP_KEYWORD ? CPP_NAME : token->type),
token->u.value);
}
}
/* Issue an error about name-lookup failing. NAME is the
IDENTIFIER_NODE DECL is the result of
the lookup (as returned from cp_parser_lookup_name). DESIRED is
the thing that we hoped to find. */
static void
cp_parser_name_lookup_error (cp_parser* parser,
tree name,
tree decl,
const char* desired)
{
/* If name lookup completely failed, tell the user that NAME was not
declared. */
if (decl == error_mark_node)
{
if (parser->scope && parser->scope != global_namespace)
error ("%<%D::%D%> has not been declared",
parser->scope, name);
else if (parser->scope == global_namespace)
error ("%<::%D%> has not been declared", name);
else if (parser->object_scope
&& !CLASS_TYPE_P (parser->object_scope))
error ("request for member %qD in non-class type %qT",
name, parser->object_scope);
else if (parser->object_scope)
error ("%<%T::%D%> has not been declared",
parser->object_scope, name);
else
error ("%qD has not been declared", name);
}
else if (parser->scope && parser->scope != global_namespace)
error ("%<%D::%D%> %s", parser->scope, name, desired);
else if (parser->scope == global_namespace)
error ("%<::%D%> %s", name, desired);
else
error ("%qD %s", name, desired);
}
/* If we are parsing tentatively, remember that an error has occurred
during this tentative parse. Returns true if the error was
simulated; false if a message should be issued by the caller. */
static bool
cp_parser_simulate_error (cp_parser* parser)
{
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
{
parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
return true;
}
return false;
}
/* Check for repeated decl-specifiers. */
static void
cp_parser_check_decl_spec (cp_decl_specifier_seq *decl_specs)
{
cp_decl_spec ds;
for (ds = ds_first; ds != ds_last; ++ds)
{
unsigned count = decl_specs->specs[(int)ds];
if (count < 2)
continue;
/* The "long" specifier is a special case because of "long long". */
if (ds == ds_long)
{
if (count > 2)
error ("%<long long long%> is too long for GCC");
else if (pedantic && !in_system_header && warn_long_long)
pedwarn ("ISO C++ does not support %<long long%>");
}
else if (count > 1)
{
static const char *const decl_spec_names[] = {
"signed",
"unsigned",
"short",
"long",
"const",
"volatile",
"restrict",
"inline",
"virtual",
"explicit",
"friend",
"typedef",
"__complex",
"__thread"
};
error ("duplicate %qs", decl_spec_names[(int)ds]);
}
}
}
/* This function is called when a type is defined. If type
definitions are forbidden at this point, an error message is
issued. */
static bool
cp_parser_check_type_definition (cp_parser* parser)
{
/* If types are forbidden here, issue a message. */
if (parser->type_definition_forbidden_message)
{
/* Use `%s' to print the string in case there are any escape
characters in the message. */
error ("%s", parser->type_definition_forbidden_message);
return false;
}
return true;
}
/* This function is called when the DECLARATOR is processed. The TYPE
was a type defined in the decl-specifiers. If it is invalid to
define a type in the decl-specifiers for DECLARATOR, an error is
issued. */
static void
cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
tree type)
{
/* [dcl.fct] forbids type definitions in return types.
Unfortunately, it's not easy to know whether or not we are
processing a return type until after the fact. */
while (declarator
&& (declarator->kind == cdk_pointer
|| declarator->kind == cdk_reference
|| declarator->kind == cdk_ptrmem))
declarator = declarator->declarator;
if (declarator
&& declarator->kind == cdk_function)
{
error ("new types may not be defined in a return type");
inform ("(perhaps a semicolon is missing after the definition of %qT)",
type);
}
}
/* A type-specifier (TYPE) has been parsed which cannot be followed by
"<" in any valid C++ program. If the next token is indeed "<",
issue a message warning the user about what appears to be an
invalid attempt to form a template-id. */
static void
cp_parser_check_for_invalid_template_id (cp_parser* parser,
tree type)
{
cp_token_position start = 0;
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
{
if (TYPE_P (type))
error ("%qT is not a template", type);
else if (TREE_CODE (type) == IDENTIFIER_NODE)
error ("%qE is not a template", type);
else
error ("invalid template-id");
/* Remember the location of the invalid "<". */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
start = cp_lexer_token_position (parser->lexer, true);
/* Consume the "<". */
cp_lexer_consume_token (parser->lexer);
/* Parse the template arguments. */
cp_parser_enclosed_template_argument_list (parser);
/* Permanently remove the invalid template arguments so that
this error message is not issued again. */
if (start)
cp_lexer_purge_tokens_after (parser->lexer, start);
}
}
/* If parsing an integral constant-expression, issue an error message
about the fact that THING appeared and return true. Otherwise,
return false. In either case, set
PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
static bool
cp_parser_non_integral_constant_expression (cp_parser *parser,
const char *thing)
{
parser->non_integral_constant_expression_p = true;
if (parser->integral_constant_expression_p)
{
if (!parser->allow_non_integral_constant_expression_p)
{
error ("%s cannot appear in a constant-expression", thing);
return true;
}
}
return false;
}
/* Emit a diagnostic for an invalid type name. SCOPE is the
qualifying scope (or NULL, if none) for ID. This function commits
to the current active tentative parse, if any. (Otherwise, the
problematic construct might be encountered again later, resulting
in duplicate error messages.) */
static void
cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
{
tree decl, old_scope;
/* Try to lookup the identifier. */
old_scope = parser->scope;
parser->scope = scope;
decl = cp_parser_lookup_name_simple (parser, id);
parser->scope = old_scope;
/* If the lookup found a template-name, it means that the user forgot
to specify an argument list. Emit a useful error message. */
if (TREE_CODE (decl) == TEMPLATE_DECL)
error ("invalid use of template-name %qE without an argument list", decl);
else if (TREE_CODE (id) == BIT_NOT_EXPR)
error ("invalid use of destructor %qD as a type", id);
else if (TREE_CODE (decl) == TYPE_DECL)
/* Something like 'unsigned A a;' */
error ("invalid combination of multiple type-specifiers");
else if (!parser->scope)
{
/* Issue an error message. */
error ("%qE does not name a type", id);
/* If we're in a template class, it's possible that the user was
referring to a type from a base class. For example:
template <typename T> struct A { typedef T X; };
template <typename T> struct B : public A<T> { X x; };
The user should have said "typename A<T>::X". */
if (processing_template_decl && current_class_type
&& TYPE_BINFO (current_class_type))
{
tree b;
for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
b;
b = TREE_CHAIN (b))
{
tree base_type = BINFO_TYPE (b);
if (CLASS_TYPE_P (base_type)
&& dependent_type_p (base_type))
{
tree field;
/* Go from a particular instantiation of the
template (which will have an empty TYPE_FIELDs),
to the main version. */
base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
for (field = TYPE_FIELDS (base_type);
field;
field = TREE_CHAIN (field))
if (TREE_CODE (field) == TYPE_DECL
&& DECL_NAME (field) == id)
{
inform ("(perhaps %<typename %T::%E%> was intended)",
BINFO_TYPE (b), id);
break;
}
if (field)
break;
}
}
}
}
/* Here we diagnose qualified-ids where the scope is actually correct,
but the identifier does not resolve to a valid type name. */
else if (parser->scope != error_mark_node)
{
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
error ("%qE in namespace %qE does not name a type",
id, parser->scope);
else if (TYPE_P (parser->scope))
error ("%qE in class %qT does not name a type", id, parser->scope);
else
gcc_unreachable ();
}
cp_parser_commit_to_tentative_parse (parser);
}
/* Check for a common situation where a type-name should be present,
but is not, and issue a sensible error message. Returns true if an
invalid type-name was detected.
The situation handled by this function are variable declarations of the
form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
Usually, `ID' should name a type, but if we got here it means that it
does not. We try to emit the best possible error message depending on
how exactly the id-expression looks like. */
static bool
cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
{
tree id;
cp_parser_parse_tentatively (parser);
id = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/true,
/*optional_p=*/false);
/* After the id-expression, there should be a plain identifier,
otherwise this is not a simple variable declaration. Also, if
the scope is dependent, we cannot do much. */
if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
|| (parser->scope && TYPE_P (parser->scope)
&& dependent_type_p (parser->scope))
|| TREE_CODE (id) == TYPE_DECL)
{
cp_parser_abort_tentative_parse (parser);
return false;
}
if (!cp_parser_parse_definitely (parser))
return false;
/* Emit a diagnostic for the invalid type. */
cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
/* Skip to the end of the declaration; there's no point in
trying to process it. */
cp_parser_skip_to_end_of_block_or_statement (parser);
return true;
}
/* Consume tokens up to, and including, the next non-nested closing `)'.
Returns 1 iff we found a closing `)'. RECOVERING is true, if we
are doing error recovery. Returns -1 if OR_COMMA is true and we
found an unnested comma. */
static int
cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
bool recovering,
bool or_comma,
bool consume_paren)
{
unsigned paren_depth = 0;
unsigned brace_depth = 0;
if (recovering && !or_comma
&& cp_parser_uncommitted_to_tentative_parse_p (parser))
return 0;
while (true)
{
cp_token * token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EOF:
case CPP_PRAGMA_EOL:
/* If we've run out of tokens, then there is no closing `)'. */
return 0;
case CPP_SEMICOLON:
/* This matches the processing in skip_to_end_of_statement. */
if (!brace_depth)
return 0;
break;
case CPP_OPEN_BRACE:
++brace_depth;
break;
case CPP_CLOSE_BRACE:
if (!brace_depth--)
return 0;
break;
case CPP_COMMA:
if (recovering && or_comma && !brace_depth && !paren_depth)
return -1;
break;
case CPP_OPEN_PAREN:
if (!brace_depth)
++paren_depth;
break;
case CPP_CLOSE_PAREN:
if (!brace_depth && !paren_depth--)
{
if (consume_paren)
cp_lexer_consume_token (parser->lexer);
return 1;
}
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Consume tokens until we reach the end of the current statement.
Normally, that will be just before consuming a `;'. However, if a
non-nested `}' comes first, then we stop before consuming that. */
static void
cp_parser_skip_to_end_of_statement (cp_parser* parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EOF:
case CPP_PRAGMA_EOL:
/* If we've run out of tokens, stop. */
return;
case CPP_SEMICOLON:
/* If the next token is a `;', we have reached the end of the
statement. */
if (!nesting_depth)
return;
break;
case CPP_CLOSE_BRACE:
/* If this is a non-nested '}', stop before consuming it.
That way, when confronted with something like:
{ 3 + }
we stop before consuming the closing '}', even though we
have not yet reached a `;'. */
if (nesting_depth == 0)
return;
/* If it is the closing '}' for a block that we have
scanned, stop -- but only after consuming the token.
That way given:
void f g () { ... }
typedef int I;
we will stop after the body of the erroneously declared
function, but before consuming the following `typedef'
declaration. */
if (--nesting_depth == 0)
{
cp_lexer_consume_token (parser->lexer);
return;
}
case CPP_OPEN_BRACE:
++nesting_depth;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* This function is called at the end of a statement or declaration.
If the next token is a semicolon, it is consumed; otherwise, error
recovery is attempted. */
static void
cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
{
/* Look for the trailing `;'. */
if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
{
/* If there is additional (erroneous) input, skip to the end of
the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
}
/* Skip tokens until we have consumed an entire block, or until we
have consumed a non-nested `;'. */
static void
cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
{
int nesting_depth = 0;
while (nesting_depth >= 0)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EOF:
case CPP_PRAGMA_EOL:
/* If we've run out of tokens, stop. */
return;
case CPP_SEMICOLON:
/* Stop if this is an unnested ';'. */
if (!nesting_depth)
nesting_depth = -1;
break;
case CPP_CLOSE_BRACE:
/* Stop if this is an unnested '}', or closes the outermost
nesting level. */
nesting_depth--;
if (!nesting_depth)
nesting_depth = -1;
break;
case CPP_OPEN_BRACE:
/* Nest. */
nesting_depth++;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Skip tokens until a non-nested closing curly brace is the next
token. */
static void
cp_parser_skip_to_closing_brace (cp_parser *parser)
{
unsigned nesting_depth = 0;
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EOF:
case CPP_PRAGMA_EOL:
/* If we've run out of tokens, stop. */
return;
case CPP_CLOSE_BRACE:
/* If the next token is a non-nested `}', then we have reached
the end of the current block. */
if (nesting_depth-- == 0)
return;
break;
case CPP_OPEN_BRACE:
/* If it the next token is a `{', then we are entering a new
block. Consume the entire block. */
++nesting_depth;
break;
default:
break;
}
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Consume tokens until we reach the end of the pragma. The PRAGMA_TOK
parameter is the PRAGMA token, allowing us to purge the entire pragma
sequence. */
static void
cp_parser_skip_to_pragma_eol (cp_parser* parser, cp_token *pragma_tok)
{
cp_token *token;
parser->lexer->in_pragma = false;
do
token = cp_lexer_consume_token (parser->lexer);
while (token->type != CPP_PRAGMA_EOL && token->type != CPP_EOF);
/* Ensure that the pragma is not parsed again. */
cp_lexer_purge_tokens_after (parser->lexer, pragma_tok);
}
/* Require pragma end of line, resyncing with it as necessary. The
arguments are as for cp_parser_skip_to_pragma_eol. */
static void
cp_parser_require_pragma_eol (cp_parser *parser, cp_token *pragma_tok)
{
parser->lexer->in_pragma = false;
if (!cp_parser_require (parser, CPP_PRAGMA_EOL, "end of line"))
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
}
/* This is a simple wrapper around make_typename_type. When the id is
an unresolved identifier node, we can provide a superior diagnostic
using cp_parser_diagnose_invalid_type_name. */
static tree
cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
{
tree result;
if (TREE_CODE (id) == IDENTIFIER_NODE)
{
result = make_typename_type (scope, id, typename_type,
/*complain=*/tf_none);
if (result == error_mark_node)
cp_parser_diagnose_invalid_type_name (parser, scope, id);
return result;
}
return make_typename_type (scope, id, typename_type, tf_error);
}
/* Create a new C++ parser. */
static cp_parser *
cp_parser_new (void)
{
cp_parser *parser;
cp_lexer *lexer;
unsigned i;
/* cp_lexer_new_main is called before calling ggc_alloc because
cp_lexer_new_main might load a PCH file. */
lexer = cp_lexer_new_main ();
/* Initialize the binops_by_token so that we can get the tree
directly from the token. */
for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
binops_by_token[binops[i].token_type] = binops[i];
parser = GGC_CNEW (cp_parser);
parser->lexer = lexer;
parser->context = cp_parser_context_new (NULL);
/* For now, we always accept GNU extensions. */
parser->allow_gnu_extensions_p = 1;
/* The `>' token is a greater-than operator, not the end of a
template-id. */
parser->greater_than_is_operator_p = true;
parser->default_arg_ok_p = true;
/* We are not parsing a constant-expression. */
parser->integral_constant_expression_p = false;
parser->allow_non_integral_constant_expression_p = false;
parser->non_integral_constant_expression_p = false;
/* Local variable names are not forbidden. */
parser->local_variables_forbidden_p = false;
/* We are not processing an `extern "C"' declaration. */
parser->in_unbraced_linkage_specification_p = false;
/* We are not processing a declarator. */
parser->in_declarator_p = false;
/* We are not processing a template-argument-list. */
parser->in_template_argument_list_p = false;
/* We are not in an iteration statement. */
parser->in_statement = 0;
/* We are not in a switch statement. */
parser->in_switch_statement_p = false;
/* We are not parsing a type-id inside an expression. */
parser->in_type_id_in_expr_p = false;
/* Declarations aren't implicitly extern "C". */
parser->implicit_extern_c = false;
/* String literals should be translated to the execution character set. */
parser->translate_strings_p = true;
/* We are not parsing a function body. */
parser->in_function_body = false;
/* The unparsed function queue is empty. */
parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
/* There are no classes being defined. */
parser->num_classes_being_defined = 0;
/* No template parameters apply. */
parser->num_template_parameter_lists = 0;
return parser;
}
/* Create a cp_lexer structure which will emit the tokens in CACHE
and push it onto the parser's lexer stack. This is used for delayed
parsing of in-class method bodies and default arguments, and should
not be confused with tentative parsing. */
static void
cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
{
cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
lexer->next = parser->lexer;
parser->lexer = lexer;
/* Move the current source position to that of the first token in the
new lexer. */
cp_lexer_set_source_position_from_token (lexer->next_token);
}
/* Pop the top lexer off the parser stack. This is never used for the
"main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
static void
cp_parser_pop_lexer (cp_parser *parser)
{
cp_lexer *lexer = parser->lexer;
parser->lexer = lexer->next;
cp_lexer_destroy (lexer);
/* Put the current source position back where it was before this
lexer was pushed. */
cp_lexer_set_source_position_from_token (parser->lexer->next_token);
}
/* Lexical conventions [gram.lex] */
/* Parse an identifier. Returns an IDENTIFIER_NODE representing the
identifier. */
static tree
cp_parser_identifier (cp_parser* parser)
{
cp_token *token;
/* Look for the identifier. */
token = cp_parser_require (parser, CPP_NAME, "identifier");
/* Return the value. */
return token ? token->u.value : error_mark_node;
}
/* Parse a sequence of adjacent string constants. Returns a
TREE_STRING representing the combined, nul-terminated string
constant. If TRANSLATE is true, translate the string to the
execution character set. If WIDE_OK is true, a wide string is
invalid here.
C++98 [lex.string] says that if a narrow string literal token is
adjacent to a wide string literal token, the behavior is undefined.
However, C99 6.4.5p4 says that this results in a wide string literal.
We follow C99 here, for consistency with the C front end.
This code is largely lifted from lex_string() in c-lex.c.
FUTURE: ObjC++ will need to handle @-strings here. */
static tree
cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
{
tree value;
bool wide = false;
size_t count;
struct obstack str_ob;
cpp_string str, istr, *strs;
cp_token *tok;
tok = cp_lexer_peek_token (parser->lexer);
if (!cp_parser_is_string_literal (tok))
{
cp_parser_error (parser, "expected string-literal");
return error_mark_node;
}
/* Try to avoid the overhead of creating and destroying an obstack
for the common case of just one string. */
if (!cp_parser_is_string_literal
(cp_lexer_peek_nth_token (parser->lexer, 2)))
{
cp_lexer_consume_token (parser->lexer);
str.text = (const unsigned char *)TREE_STRING_POINTER (tok->u.value);
str.len = TREE_STRING_LENGTH (tok->u.value);
count = 1;
if (tok->type == CPP_WSTRING)
wide = true;
strs = &str;
}
else
{
gcc_obstack_init (&str_ob);
count = 0;
do
{
cp_lexer_consume_token (parser->lexer);
count++;
str.text = (unsigned char *)TREE_STRING_POINTER (tok->u.value);
str.len = TREE_STRING_LENGTH (tok->u.value);
if (tok->type == CPP_WSTRING)
wide = true;
obstack_grow (&str_ob, &str, sizeof (cpp_string));
tok = cp_lexer_peek_token (parser->lexer);
}
while (cp_parser_is_string_literal (tok));
strs = (cpp_string *) obstack_finish (&str_ob);
}
if (wide && !wide_ok)
{
cp_parser_error (parser, "a wide string is invalid in this context");
wide = false;
}
if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
(parse_in, strs, count, &istr, wide))
{
value = build_string (istr.len, (char *)istr.text);
free ((void *)istr.text);
TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
value = fix_string_type (value);
}
else
/* cpp_interpret_string has issued an error. */
value = error_mark_node;
if (count > 1)
obstack_free (&str_ob, 0);
return value;
}
/* Basic concepts [gram.basic] */
/* Parse a translation-unit.
translation-unit:
declaration-seq [opt]
Returns TRUE if all went well. */
static bool
cp_parser_translation_unit (cp_parser* parser)
{
/* The address of the first non-permanent object on the declarator
obstack. */
static void *declarator_obstack_base;
bool success;
/* Create the declarator obstack, if necessary. */
if (!cp_error_declarator)
{
gcc_obstack_init (&declarator_obstack);
/* Create the error declarator. */
cp_error_declarator = make_declarator (cdk_error);
/* Create the empty parameter list. */
no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
/* Remember where the base of the declarator obstack lies. */
declarator_obstack_base = obstack_next_free (&declarator_obstack);
}
cp_parser_declaration_seq_opt (parser);
/* If there are no tokens left then all went well. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
{
/* Get rid of the token array; we don't need it any more. */
cp_lexer_destroy (parser->lexer);
parser->lexer = NULL;
/* This file might have been a context that's implicitly extern
"C". If so, pop the lang context. (Only relevant for PCH.) */
if (parser->implicit_extern_c)
{
pop_lang_context ();
parser->implicit_extern_c = false;
}
/* Finish up. */
finish_translation_unit ();
success = true;
}
else
{
cp_parser_error (parser, "expected declaration");
success = false;
}
/* Make sure the declarator obstack was fully cleaned up. */
gcc_assert (obstack_next_free (&declarator_obstack)
== declarator_obstack_base);
/* All went well. */
return success;
}
/* Expressions [gram.expr] */
/* Parse a primary-expression.
primary-expression:
literal
this
( expression )
id-expression
GNU Extensions:
primary-expression:
( compound-statement )
__builtin_va_arg ( assignment-expression , type-id )
__builtin_offsetof ( type-id , offsetof-expression )
Objective-C++ Extension:
primary-expression:
objc-expression
literal:
__null
ADDRESS_P is true iff this expression was immediately preceded by
"&" and therefore might denote a pointer-to-member. CAST_P is true
iff this expression is the target of a cast. TEMPLATE_ARG_P is
true iff this expression is a template argument.
Returns a representation of the expression. Upon return, *IDK
indicates what kind of id-expression (if any) was present. */
static tree
cp_parser_primary_expression (cp_parser *parser,
bool address_p,
bool cast_p,
bool template_arg_p,
cp_id_kind *idk)
{
cp_token *token;
/* Assume the primary expression is not an id-expression. */
*idk = CP_ID_KIND_NONE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
/* literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal */
case CPP_CHAR:
case CPP_WCHAR:
case CPP_NUMBER:
token = cp_lexer_consume_token (parser->lexer);
/* Floating-point literals are only allowed in an integral
constant expression if they are cast to an integral or
enumeration type. */
if (TREE_CODE (token->u.value) == REAL_CST
&& parser->integral_constant_expression_p
&& pedantic)
{
/* CAST_P will be set even in invalid code like "int(2.7 +
...)". Therefore, we have to check that the next token
is sure to end the cast. */
if (cast_p)
{
cp_token *next_token;
next_token = cp_lexer_peek_token (parser->lexer);
if (/* The comma at the end of an
enumerator-definition. */
next_token->type != CPP_COMMA
/* The curly brace at the end of an enum-specifier. */
&& next_token->type != CPP_CLOSE_BRACE
/* The end of a statement. */
&& next_token->type != CPP_SEMICOLON
/* The end of the cast-expression. */
&& next_token->type != CPP_CLOSE_PAREN
/* The end of an array bound. */
&& next_token->type != CPP_CLOSE_SQUARE
/* The closing ">" in a template-argument-list. */
&& (next_token->type != CPP_GREATER
|| parser->greater_than_is_operator_p))
cast_p = false;
}
/* If we are within a cast, then the constraint that the
cast is to an integral or enumeration type will be
checked at that point. If we are not within a cast, then
this code is invalid. */
if (!cast_p)
cp_parser_non_integral_constant_expression
(parser, "floating-point literal");
}
return token->u.value;
case CPP_STRING:
case CPP_WSTRING:
/* ??? Should wide strings be allowed when parser->translate_strings_p
is false (i.e. in attributes)? If not, we can kill the third
argument to cp_parser_string_literal. */
return cp_parser_string_literal (parser,
parser->translate_strings_p,
true);
case CPP_OPEN_PAREN:
{
tree expr;
bool saved_greater_than_is_operator_p;
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Within a parenthesized expression, a `>' token is always
the greater-than operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = true;
/* If we see `( { ' then we are looking at the beginning of
a GNU statement-expression. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
/* Statement-expressions are not allowed by the standard. */
if (pedantic)
pedwarn ("ISO C++ forbids braced-groups within expressions");
/* And they're not allowed outside of a function-body; you
cannot, for example, write:
int i = ({ int j = 3; j + 1; });
at class or namespace scope. */
if (!parser->in_function_body)
error ("statement-expressions are allowed only inside functions");
/* Start the statement-expression. */
expr = begin_stmt_expr ();
/* Parse the compound-statement. */
cp_parser_compound_statement (parser, expr, false);
/* Finish up. */
expr = finish_stmt_expr (expr, false);
}
else
{
/* Parse the parenthesized expression. */
expr = cp_parser_expression (parser, cast_p);
/* Let the front end know that this expression was
enclosed in parentheses. This matters in case, for
example, the expression is of the form `A::B', since
`&A::B' might be a pointer-to-member, but `&(A::B)' is
not. */
finish_parenthesized_expr (expr);
}
/* The `>' token might be the end of a template-id or
template-parameter-list now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Consume the `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_end_of_statement (parser);
return expr;
}
case CPP_KEYWORD:
switch (token->keyword)
{
/* These two are the boolean literals. */
case RID_TRUE:
cp_lexer_consume_token (parser->lexer);
return boolean_true_node;
case RID_FALSE:
cp_lexer_consume_token (parser->lexer);
return boolean_false_node;
/* The `__null' literal. */
case RID_NULL:
cp_lexer_consume_token (parser->lexer);
return null_node;
/* Recognize the `this' keyword. */
case RID_THIS:
cp_lexer_consume_token (parser->lexer);
if (parser->local_variables_forbidden_p)
{
error ("%<this%> may not be used in this context");
return error_mark_node;
}
/* Pointers cannot appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser,
"`this'"))
return error_mark_node;
return finish_this_expr ();
/* The `operator' keyword can be the beginning of an
id-expression. */
case RID_OPERATOR:
goto id_expression;
case RID_FUNCTION_NAME:
case RID_PRETTY_FUNCTION_NAME:
case RID_C99_FUNCTION_NAME:
/* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
__func__ are the names of variables -- but they are
treated specially. Therefore, they are handled here,
rather than relying on the generic id-expression logic
below. Grammatically, these names are id-expressions.
Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
/* Look up the name. */
return finish_fname (token->u.value);
case RID_VA_ARG:
{
tree expression;
tree type;
/* The `__builtin_va_arg' construct is used to handle
`va_arg'. Consume the `__builtin_va_arg' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the opening `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Now, parse the assignment-expression. */
expression = cp_parser_assignment_expression (parser,
/*cast_p=*/false);
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, "`,'");
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Using `va_arg' in a constant-expression is not
allowed. */
if (cp_parser_non_integral_constant_expression (parser,
"`va_arg'"))
return error_mark_node;
return build_x_va_arg (expression, type);
}
case RID_OFFSETOF:
return cp_parser_builtin_offsetof (parser);
/* Objective-C++ expressions. */
case RID_AT_ENCODE:
case RID_AT_PROTOCOL:
case RID_AT_SELECTOR:
return cp_parser_objc_expression (parser);
default:
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
/* An id-expression can start with either an identifier, a
`::' as the beginning of a qualified-id, or the "operator"
keyword. */
case CPP_NAME:
case CPP_SCOPE:
case CPP_TEMPLATE_ID:
case CPP_NESTED_NAME_SPECIFIER:
{
tree id_expression;
tree decl;
const char *error_msg;
bool template_p;
bool done;
id_expression:
/* Parse the id-expression. */
id_expression
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false,
/*optional_p=*/false);
if (id_expression == error_mark_node)
return error_mark_node;
token = cp_lexer_peek_token (parser->lexer);
done = (token->type != CPP_OPEN_SQUARE
&& token->type != CPP_OPEN_PAREN
&& token->type != CPP_DOT
&& token->type != CPP_DEREF
&& token->type != CPP_PLUS_PLUS
&& token->type != CPP_MINUS_MINUS);
/* If we have a template-id, then no further lookup is
required. If the template-id was for a template-class, we
will sometimes have a TYPE_DECL at this point. */
if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
|| TREE_CODE (id_expression) == TYPE_DECL)
decl = id_expression;
/* Look up the name. */
else
{
tree ambiguous_decls;
decl = cp_parser_lookup_name (parser, id_expression,
none_type,
template_p,
/*is_namespace=*/false,
/*check_dependency=*/true,
&ambiguous_decls);
/* If the lookup was ambiguous, an error will already have
been issued. */
if (ambiguous_decls)
return error_mark_node;
/* In Objective-C++, an instance variable (ivar) may be preferred
to whatever cp_parser_lookup_name() found. */
decl = objc_lookup_ivar (decl, id_expression);
/* If name lookup gives us a SCOPE_REF, then the
qualifying scope was dependent. */
if (TREE_CODE (decl) == SCOPE_REF)
{
/* At this point, we do not know if DECL is a valid
integral constant expression. We assume that it is
in fact such an expression, so that code like:
template <int N> struct A {
int a[B<N>::i];
};
is accepted. At template-instantiation time, we
will check that B<N>::i is actually a constant. */
return decl;
}
/* Check to see if DECL is a local variable in a context
where that is forbidden. */
if (parser->local_variables_forbidden_p
&& local_variable_p (decl))
{
/* It might be that we only found DECL because we are
trying to be generous with pre-ISO scoping rules.
For example, consider:
int i;
void g() {
for (int i = 0; i < 10; ++i) {}
extern void f(int j = i);
}
Here, name look up will originally find the out
of scope `i'. We need to issue a warning message,
but then use the global `i'. */
decl = check_for_out_of_scope_variable (decl);
if (local_variable_p (decl))
{
error ("local variable %qD may not appear in this context",
decl);
return error_mark_node;
}
}
}
decl = (finish_id_expression
(id_expression, decl, parser->scope,
idk,
parser->integral_constant_expression_p,
parser->allow_non_integral_constant_expression_p,
&parser->non_integral_constant_expression_p,
template_p, done, address_p,
template_arg_p,
&error_msg));
if (error_msg)
cp_parser_error (parser, error_msg);
return decl;
}
/* Anything else is an error. */
default:
/* ...unless we have an Objective-C++ message or string literal, that is. */
if (c_dialect_objc ()
&& (token->type == CPP_OPEN_SQUARE || token->type == CPP_OBJC_STRING))
return cp_parser_objc_expression (parser);
cp_parser_error (parser, "expected primary-expression");
return error_mark_node;
}
}
/* Parse an id-expression.
id-expression:
unqualified-id
qualified-id
qualified-id:
:: [opt] nested-name-specifier template [opt] unqualified-id
:: identifier
:: operator-function-id
:: template-id
Return a representation of the unqualified portion of the
identifier. Sets PARSER->SCOPE to the qualifying scope if there is
a `::' or nested-name-specifier.
Often, if the id-expression was a qualified-id, the caller will
want to make a SCOPE_REF to represent the qualified-id. This
function does not do this in order to avoid wastefully creating
SCOPE_REFs when they are not required.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword.
If CHECK_DEPENDENCY_P is false, then names are looked up inside
uninstantiated templates.
If *TEMPLATE_P is non-NULL, it is set to true iff the
`template' keyword is used to explicitly indicate that the entity
named is a template.
If DECLARATOR_P is true, the id-expression is appearing as part of
a declarator, rather than as part of an expression. */
static tree
cp_parser_id_expression (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p,
bool *template_p,
bool declarator_p,
bool optional_p)
{
bool global_scope_p;
bool nested_name_specifier_p;
/* Assume the `template' keyword was not used. */
if (template_p)
*template_p = template_keyword_p;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
check_dependency_p,
/*type_p=*/false,
declarator_p)
!= NULL_TREE);
/* If there is a nested-name-specifier, then we are looking at
the first qualified-id production. */
if (nested_name_specifier_p)
{
tree saved_scope;
tree saved_object_scope;
tree saved_qualifying_scope;
tree unqualified_id;
bool is_template;
/* See if the next token is the `template' keyword. */
if (!template_p)
template_p = &is_template;
*template_p = cp_parser_optional_template_keyword (parser);
/* Name lookup we do during the processing of the
unqualified-id might obliterate SCOPE. */
saved_scope = parser->scope;
saved_object_scope = parser->object_scope;
saved_qualifying_scope = parser->qualifying_scope;
/* Process the final unqualified-id. */
unqualified_id = cp_parser_unqualified_id (parser, *template_p,
check_dependency_p,
declarator_p,
/*optional_p=*/false);
/* Restore the SAVED_SCOPE for our caller. */
parser->scope = saved_scope;
parser->object_scope = saved_object_scope;
parser->qualifying_scope = saved_qualifying_scope;
return unqualified_id;
}
/* Otherwise, if we are in global scope, then we are looking at one
of the other qualified-id productions. */
else if (global_scope_p)
{
cp_token *token;
tree id;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an identifier, and the next token is not a "<", then
we can avoid the template-id case. This is an optimization
for this common case. */
if (token->type == CPP_NAME
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2))
return cp_parser_identifier (parser);
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
declarator_p);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Peek at the next token. (Changes in the token buffer may
have invalidated the pointer obtained above.) */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_NAME:
return cp_parser_identifier (parser);
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
return cp_parser_operator_function_id (parser);
/* Fall through. */
default:
cp_parser_error (parser, "expected id-expression");
return error_mark_node;
}
}
else
return cp_parser_unqualified_id (parser, template_keyword_p,
/*check_dependency_p=*/true,
declarator_p,
optional_p);
}
/* Parse an unqualified-id.
unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id
If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
keyword, in a construct like `A::template ...'.
Returns a representation of unqualified-id. For the `identifier'
production, an IDENTIFIER_NODE is returned. For the `~ class-name'
production a BIT_NOT_EXPR is returned; the operand of the
BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
other productions, see the documentation accompanying the
corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
names are looked up in uninstantiated templates. If DECLARATOR_P
is true, the unqualified-id is appearing as part of a declarator,
rather than as part of an expression. */
static tree
cp_parser_unqualified_id (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p,
bool declarator_p,
bool optional_p)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_NAME:
{
tree id;
/* We don't know yet whether or not this will be a
template-id. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
check_dependency_p,
declarator_p);
/* If it worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, it's an ordinary identifier. */
return cp_parser_identifier (parser);
}
case CPP_TEMPLATE_ID:
return cp_parser_template_id (parser, template_keyword_p,
check_dependency_p,
declarator_p);
case CPP_COMPL:
{
tree type_decl;
tree qualifying_scope;
tree object_scope;
tree scope;
bool done;
/* Consume the `~' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the class-name. The standard, as written, seems to
say that:
template <typename T> struct S { ~S (); };
template <typename T> S<T>::~S() {}
is invalid, since `~' must be followed by a class-name, but
`S<T>' is dependent, and so not known to be a class.
That's not right; we need to look in uninstantiated
templates. A further complication arises from:
template <typename T> void f(T t) {
t.T::~T();
}
Here, it is not possible to look up `T' in the scope of `T'
itself. We must look in both the current scope, and the
scope of the containing complete expression.
Yet another issue is:
struct S {
int S;
~S();
};
S::~S() {}
The standard does not seem to say that the `S' in `~S'
should refer to the type `S' and not the data member
`S::S'. */
/* DR 244 says that we look up the name after the "~" in the
same scope as we looked up the qualifying name. That idea
isn't fully worked out; it's more complicated than that. */
scope = parser->scope;
object_scope = parser->object_scope;
qualifying_scope = parser->qualifying_scope;
/* Check for invalid scopes. */
if (scope == error_mark_node)
{
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
cp_lexer_consume_token (parser->lexer);
return error_mark_node;
}
if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
error ("scope %qT before %<~%> is not a class-name", scope);
cp_parser_simulate_error (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
cp_lexer_consume_token (parser->lexer);
return error_mark_node;
}
gcc_assert (!scope || TYPE_P (scope));
/* If the name is of the form "X::~X" it's OK. */
token = cp_lexer_peek_token (parser->lexer);
if (scope
&& token->type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_OPEN_PAREN)
&& constructor_name_p (token->u.value, scope))
{
cp_lexer_consume_token (parser->lexer);
return build_nt (BIT_NOT_EXPR, scope);
}
/* If there was an explicit qualification (S::~T), first look
in the scope given by the qualification (i.e., S). */
done = false;
type_decl = NULL_TREE;
if (scope)
{
cp_parser_parse_tentatively (parser);
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* In "N::S::~S", look in "N" as well. */
if (!done && scope && qualifying_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = qualifying_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* In "p->S::~T", look in the scope given by "*p" as well. */
else if (!done && object_scope)
{
cp_parser_parse_tentatively (parser);
parser->scope = object_scope;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
if (cp_parser_parse_definitely (parser))
done = true;
}
/* Look in the surrounding context. */
if (!done)
{
parser->scope = NULL_TREE;
parser->object_scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
type_decl
= cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency=*/false,
/*class_head_p=*/false,
declarator_p);
}
/* If an error occurred, assume that the name of the
destructor is the same as the name of the qualifying
class. That allows us to keep parsing after running
into ill-formed destructor names. */
if (type_decl == error_mark_node && scope)
return build_nt (BIT_NOT_EXPR, scope);
else if (type_decl == error_mark_node)
return error_mark_node;
/* Check that destructor name and scope match. */
if (declarator_p && scope && !check_dtor_name (scope, type_decl))
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
error ("declaration of %<~%T%> as member of %qT",
type_decl, scope);
cp_parser_simulate_error (parser);
return error_mark_node;
}
/* [class.dtor]
A typedef-name that names a class shall not be used as the
identifier in the declarator for a destructor declaration. */
if (declarator_p
&& !DECL_IMPLICIT_TYPEDEF_P (type_decl)
&& !DECL_SELF_REFERENCE_P (type_decl)
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
error ("typedef-name %qD used as destructor declarator",
type_decl);
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
}
case CPP_KEYWORD:
if (token->keyword == RID_OPERATOR)
{
tree id;
/* This could be a template-id, so we try that first. */
cp_parser_parse_tentatively (parser);
/* Try a template-id. */
id = cp_parser_template_id (parser, template_keyword_p,
/*check_dependency_p=*/true,
declarator_p);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* We still don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
id = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
id = cp_parser_conversion_function_id (parser);
return id;
}
/* Fall through. */
default:
if (optional_p)
return NULL_TREE;
cp_parser_error (parser, "expected unqualified-id");
return error_mark_node;
}
}
/* Parse an (optional) nested-name-specifier.
nested-name-specifier:
class-or-namespace-name :: nested-name-specifier [opt]
class-or-namespace-name :: template nested-name-specifier [opt]
PARSER->SCOPE should be set appropriately before this function is
called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
effect. TYPE_P is TRUE if we non-type bindings should be ignored
in name lookups.
Sets PARSER->SCOPE to the class (TYPE) or namespace
(NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
it unchanged if there is no nested-name-specifier. Returns the new
scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
part of a declaration and/or decl-specifier. */
static tree
cp_parser_nested_name_specifier_opt (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration)
{
bool success = false;
cp_token_position start = 0;
cp_token *token;
/* Remember where the nested-name-specifier starts. */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
{
start = cp_lexer_token_position (parser->lexer, false);
push_deferring_access_checks (dk_deferred);
}
while (true)
{
tree new_scope;
tree old_scope;
tree saved_qualifying_scope;
bool template_keyword_p;
/* Spot cases that cannot be the beginning of a
nested-name-specifier. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
the already parsed nested-name-specifier. */
if (token->type == CPP_NESTED_NAME_SPECIFIER)
{
/* Grab the nested-name-specifier and continue the loop. */
cp_parser_pre_parsed_nested_name_specifier (parser);
/* If we originally encountered this nested-name-specifier
with IS_DECLARATION set to false, we will not have
resolved TYPENAME_TYPEs, so we must do so here. */
if (is_declaration
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
{
new_scope = resolve_typename_type (parser->scope,
/*only_current_p=*/false);
if (new_scope != error_mark_node)
parser->scope = new_scope;
}
success = true;
continue;
}
/* Spot cases that cannot be the beginning of a
nested-name-specifier. On the second and subsequent times
through the loop, we look for the `template' keyword. */
if (success && token->keyword == RID_TEMPLATE)
;
/* A template-id can start a nested-name-specifier. */
else if (token->type == CPP_TEMPLATE_ID)
;
else
{
/* If the next token is not an identifier, then it is
definitely not a class-or-namespace-name. */
if (token->type != CPP_NAME)
break;
/* If the following token is neither a `<' (to begin a
template-id), nor a `::', then we are not looking at a
nested-name-specifier. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type != CPP_SCOPE
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2))
break;
}
/* The nested-name-specifier is optional, so we parse
tentatively. */
cp_parser_parse_tentatively (parser);
/* Look for the optional `template' keyword, if this isn't the
first time through the loop. */
if (success)
template_keyword_p = cp_parser_optional_template_keyword (parser);
else
template_keyword_p = false;
/* Save the old scope since the name lookup we are about to do
might destroy it. */
old_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
/* In a declarator-id like "X<T>::I::Y<T>" we must be able to
look up names in "X<T>::I" in order to determine that "Y" is
a template. So, if we have a typename at this point, we make
an effort to look through it. */
if (is_declaration
&& !typename_keyword_p
&& parser->scope
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
parser->scope = resolve_typename_type (parser->scope,
/*only_current_p=*/false);
/* Parse the qualifying entity. */
new_scope
= cp_parser_class_or_namespace_name (parser,
typename_keyword_p,
template_keyword_p,
check_dependency_p,
type_p,
is_declaration);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
/* If we found what we wanted, we keep going; otherwise, we're
done. */
if (!cp_parser_parse_definitely (parser))
{
bool error_p = false;
/* Restore the OLD_SCOPE since it was valid before the
failed attempt at finding the last
class-or-namespace-name. */
parser->scope = old_scope;
parser->qualifying_scope = saved_qualifying_scope;
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
break;
/* If the next token is an identifier, and the one after
that is a `::', then any valid interpretation would have
found a class-or-namespace-name. */
while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_SCOPE)
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
!= CPP_COMPL))
{
token = cp_lexer_consume_token (parser->lexer);
if (!error_p)
{
if (!token->ambiguous_p)
{
tree decl;
tree ambiguous_decls;
decl = cp_parser_lookup_name (parser, token->u.value,
none_type,
/*is_template=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true,
&ambiguous_decls);
if (TREE_CODE (decl) == TEMPLATE_DECL)
error ("%qD used without template parameters", decl);
else if (ambiguous_decls)
{
error ("reference to %qD is ambiguous",
token->u.value);
print_candidates (ambiguous_decls);
decl = error_mark_node;
}
else
cp_parser_name_lookup_error
(parser, token->u.value, decl,
"is not a class or namespace");
}
parser->scope = error_mark_node;
error_p = true;
/* Treat this as a successful nested-name-specifier
due to:
[basic.lookup.qual]
If the name found is not a class-name (clause
_class_) or namespace-name (_namespace.def_), the
program is ill-formed. */
success = true;
}
cp_lexer_consume_token (parser->lexer);
}
break;
}
/* We've found one valid nested-name-specifier. */
success = true;
/* Name lookup always gives us a DECL. */
if (TREE_CODE (new_scope) == TYPE_DECL)
new_scope = TREE_TYPE (new_scope);
/* Uses of "template" must be followed by actual templates. */
if (template_keyword_p
&& !(CLASS_TYPE_P (new_scope)
&& ((CLASSTYPE_USE_TEMPLATE (new_scope)
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (new_scope)))
|| CLASSTYPE_IS_TEMPLATE (new_scope)))
&& !(TREE_CODE (new_scope) == TYPENAME_TYPE
&& (TREE_CODE (TYPENAME_TYPE_FULLNAME (new_scope))
== TEMPLATE_ID_EXPR)))
pedwarn (TYPE_P (new_scope)
? "%qT is not a template"
: "%qD is not a template",
new_scope);
/* If it is a class scope, try to complete it; we are about to
be looking up names inside the class. */
if (TYPE_P (new_scope)
/* Since checking types for dependency can be expensive,
avoid doing it if the type is already complete. */
&& !COMPLETE_TYPE_P (new_scope)
/* Do not try to complete dependent types. */
&& !dependent_type_p (new_scope))
new_scope = complete_type (new_scope);
/* Make sure we look in the right scope the next time through
the loop. */
parser->scope = new_scope;
}
/* If parsing tentatively, replace the sequence of tokens that makes
up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
token. That way, should we re-parse the token stream, we will
not have to repeat the effort required to do the parse, nor will
we issue duplicate error messages. */
if (success && start)
{
cp_token *token;
token = cp_lexer_token_at (parser->lexer, start);
/* Reset the contents of the START token. */
token->type = CPP_NESTED_NAME_SPECIFIER;
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
token->u.tree_check_value = GGC_CNEW (struct tree_check);
token->u.tree_check_value->value = parser->scope;
token->u.tree_check_value->checks = get_deferred_access_checks ();
token->u.tree_check_value->qualifying_scope =
parser->qualifying_scope;
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, start);
}
if (start)
pop_to_parent_deferring_access_checks ();
return success ? parser->scope : NULL_TREE;
}
/* Parse a nested-name-specifier. See
cp_parser_nested_name_specifier_opt for details. This function
behaves identically, except that it will an issue an error if no
nested-name-specifier is present. */
static tree
cp_parser_nested_name_specifier (cp_parser *parser,
bool typename_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration)
{
tree scope;
/* Look for the nested-name-specifier. */
scope = cp_parser_nested_name_specifier_opt (parser,
typename_keyword_p,
check_dependency_p,
type_p,
is_declaration);
/* If it was not present, issue an error message. */
if (!scope)
{
cp_parser_error (parser, "expected nested-name-specifier");
parser->scope = NULL_TREE;
}
return scope;
}
/* Parse a class-or-namespace-name.
class-or-namespace-name:
class-name
namespace-name
TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
TYPE_P is TRUE iff the next name should be taken as a class-name,
even the same name is declared to be another entity in the same
scope.
Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
specified by the class-or-namespace-name. If neither is found the
ERROR_MARK_NODE is returned. */
static tree
cp_parser_class_or_namespace_name (cp_parser *parser,
bool typename_keyword_p,
bool template_keyword_p,
bool check_dependency_p,
bool type_p,
bool is_declaration)
{
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree scope;
bool only_class_p;
/* Before we try to parse the class-name, we must save away the
current PARSER->SCOPE since cp_parser_class_name will destroy
it. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* Try for a class-name first. If the SAVED_SCOPE is a type, then
there is no need to look for a namespace-name. */
only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
if (!only_class_p)
cp_parser_parse_tentatively (parser);
scope = cp_parser_class_name (parser,
typename_keyword_p,
template_keyword_p,
type_p ? class_type : none_type,
check_dependency_p,
/*class_head_p=*/false,
is_declaration);
/* If that didn't work, try for a namespace-name. */
if (!only_class_p && !cp_parser_parse_definitely (parser))
{
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If we are not looking at an identifier followed by the scope
resolution operator, then this is not part of a
nested-name-specifier. (Note that this function is only used
to parse the components of a nested-name-specifier.) */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
return error_mark_node;
scope = cp_parser_namespace_name (parser);
}
return scope;
}
/* Parse a postfix-expression.
postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( expression-list [opt] )
simple-type-specifier ( expression-list [opt] )
typename :: [opt] nested-name-specifier identifier
( expression-list [opt] )
typename :: [opt] nested-name-specifier template [opt] template-id
( expression-list [opt] )
postfix-expression . template [opt] id-expression
postfix-expression -> template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > ( expression )
static_cast < type-id > ( expression )
reinterpret_cast < type-id > ( expression )
const_cast < type-id > ( expression )
typeid ( expression )
typeid ( type-id )
GNU Extension:
postfix-expression:
( type-id ) { initializer-list , [opt] }
This extension is a GNU version of the C99 compound-literal
construct. (The C99 grammar uses `type-name' instead of `type-id',
but they are essentially the same concept.)
If ADDRESS_P is true, the postfix expression is the operand of the
`&' operator. CAST_P is true if this expression is the target of a
cast.
Returns a representation of the expression. */
static tree
cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p)
{
cp_token *token;
enum rid keyword;
cp_id_kind idk = CP_ID_KIND_NONE;
tree postfix_expression = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Some of the productions are determined by keywords. */
keyword = token->keyword;
switch (keyword)
{
case RID_DYNCAST:
case RID_STATCAST:
case RID_REINTCAST:
case RID_CONSTCAST:
{
tree type;
tree expression;
const char *saved_message;
/* All of these can be handled in the same way from the point
of view of parsing. Begin by consuming the token
identifying the cast. */
cp_lexer_consume_token (parser->lexer);
/* New types cannot be defined in the cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in casts";
/* Look for the opening `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Parse the type to which we are casting. */
type = cp_parser_type_id (parser);
/* Look for the closing `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
/* And the expression which is being cast. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
expression = cp_parser_expression (parser, /*cast_p=*/true);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (!cast_valid_in_integral_constant_expression_p (type)
&& (cp_parser_non_integral_constant_expression
(parser,
"a cast to a type other than an integral or "
"enumeration type")))
return error_mark_node;
switch (keyword)
{
case RID_DYNCAST:
postfix_expression
= build_dynamic_cast (type, expression);
break;
case RID_STATCAST:
postfix_expression
= build_static_cast (type, expression);
break;
case RID_REINTCAST:
postfix_expression
= build_reinterpret_cast (type, expression);
break;
case RID_CONSTCAST:
postfix_expression
= build_const_cast (type, expression);
break;
default:
gcc_unreachable ();
}
}
break;
case RID_TYPEID:
{
tree type;
const char *saved_message;
bool saved_in_type_id_in_expr_p;
/* Consume the `typeid' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `(' token. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Types cannot be defined in a `typeid' expression. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in a `typeid\' expression";
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
/* Try a type-id first. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
/* Look for the `)' token. Otherwise, we can't be sure that
we're not looking at an expression: consider `typeid (int
(3))', for example. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* If all went well, simply lookup the type-id. */
if (cp_parser_parse_definitely (parser))
postfix_expression = get_typeid (type);
/* Otherwise, fall back to the expression variant. */
else
{
tree expression;
/* Look for an expression. */
expression = cp_parser_expression (parser, /*cast_p=*/false);
/* Compute its typeid. */
postfix_expression = build_typeid (expression);
/* Look for the `)' token. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* `typeid' may not appear in an integral constant expression. */
if (cp_parser_non_integral_constant_expression(parser,
"`typeid' operator"))
return error_mark_node;
}
break;
case RID_TYPENAME:
{
tree type;
/* The syntax permitted here is the same permitted for an
elaborated-type-specifier. */
type = cp_parser_elaborated_type_specifier (parser,
/*is_friend=*/false,
/*is_declaration=*/false);
postfix_expression = cp_parser_functional_cast (parser, type);
}
break;
default:
{
tree type;
/* If the next thing is a simple-type-specifier, we may be
looking at a functional cast. We could also be looking at
an id-expression. So, we try the functional cast, and if
that doesn't work we fall back to the primary-expression. */
cp_parser_parse_tentatively (parser);
/* Look for the simple-type-specifier. */
type = cp_parser_simple_type_specifier (parser,
/*decl_specs=*/NULL,
CP_PARSER_FLAGS_NONE);
/* Parse the cast itself. */
if (!cp_parser_error_occurred (parser))
postfix_expression
= cp_parser_functional_cast (parser, type);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
break;
/* If the functional-cast didn't work out, try a
compound-literal. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
VEC(constructor_elt,gc) *initializer_list = NULL;
bool saved_in_type_id_in_expr_p;
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Look for the `{'. */
cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
/* If things aren't going well, there's no need to
keep going. */
if (!cp_parser_error_occurred (parser))
{
bool non_constant_p;
/* Parse the initializer-list. */
initializer_list
= cp_parser_initializer_list (parser, &non_constant_p);
/* Allow a trailing `,'. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
/* Look for the final `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* If that worked, we're definitely looking at a
compound-literal expression. */
if (cp_parser_parse_definitely (parser))
{
/* Warn the user that a compound literal is not
allowed in standard C++. */
if (pedantic)
pedwarn ("ISO C++ forbids compound-literals");
/* For simplicitly, we disallow compound literals in
constant-expressions for simpliicitly. We could
allow compound literals of integer type, whose
initializer was a constant, in constant
expressions. Permitting that usage, as a further
extension, would not change the meaning of any
currently accepted programs. (Of course, as
compound literals are not part of ISO C++, the
standard has nothing to say.) */
if (cp_parser_non_integral_constant_expression
(parser, "non-constant compound literals"))
{
postfix_expression = error_mark_node;
break;
}
/* Form the representation of the compound-literal. */
postfix_expression
= finish_compound_literal (type, initializer_list);
break;
}
}
/* It must be a primary-expression. */
postfix_expression
= cp_parser_primary_expression (parser, address_p, cast_p,
/*template_arg_p=*/false,
&idk);
}
break;
}
/* Keep looping until the postfix-expression is complete. */
while (true)
{
if (idk == CP_ID_KIND_UNQUALIFIED
&& TREE_CODE (postfix_expression) == IDENTIFIER_NODE
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
/* It is not a Koenig lookup function call. */
postfix_expression
= unqualified_name_lookup_error (postfix_expression);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_OPEN_SQUARE:
postfix_expression
= cp_parser_postfix_open_square_expression (parser,
postfix_expression,
false);
idk = CP_ID_KIND_NONE;
break;
case CPP_OPEN_PAREN:
/* postfix-expression ( expression-list [opt] ) */
{
bool koenig_p;
bool is_builtin_constant_p;
bool saved_integral_constant_expression_p = false;
bool saved_non_integral_constant_expression_p = false;
tree args;
is_builtin_constant_p
= DECL_IS_BUILTIN_CONSTANT_P (postfix_expression);
if (is_builtin_constant_p)
{
/* The whole point of __builtin_constant_p is to allow
non-constant expressions to appear as arguments. */
saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
}
args = (cp_parser_parenthesized_expression_list
(parser, /*is_attribute_list=*/false,
/*cast_p=*/false,
/*non_constant_p=*/NULL));
if (is_builtin_constant_p)
{
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
}
if (args == error_mark_node)
{
postfix_expression = error_mark_node;
break;
}
/* Function calls are not permitted in
constant-expressions. */
if (! builtin_valid_in_constant_expr_p (postfix_expression)
&& cp_parser_non_integral_constant_expression (parser,
"a function call"))
{
postfix_expression = error_mark_node;
break;
}
koenig_p = false;
if (idk == CP_ID_KIND_UNQUALIFIED)
{
if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
{
if (args)
{
koenig_p = true;
postfix_expression
= perform_koenig_lookup (postfix_expression, args);
}
else
postfix_expression
= unqualified_fn_lookup_error (postfix_expression);
}
/* We do not perform argument-dependent lookup if
normal lookup finds a non-function, in accordance
with the expected resolution of DR 218. */
else if (args && is_overloaded_fn (postfix_expression))
{
tree fn = get_first_fn (postfix_expression);
if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
/* Only do argument dependent lookup if regular
lookup does not find a set of member functions.
[basic.lookup.koenig]/2a */
if (!DECL_FUNCTION_MEMBER_P (fn))
{
koenig_p = true;
postfix_expression
= perform_koenig_lookup (postfix_expression, args);
}
}
}
if (TREE_CODE (postfix_expression) == COMPONENT_REF)
{
tree instance = TREE_OPERAND (postfix_expression, 0);
tree fn = TREE_OPERAND (postfix_expression, 1);
if (processing_template_decl
&& (type_dependent_expression_p (instance)
|| (!BASELINK_P (fn)
&& TREE_CODE (fn) != FIELD_DECL)
|| type_dependent_expression_p (fn)
|| any_type_dependent_arguments_p (args)))
{
postfix_expression
= build_min_nt (CALL_EXPR, postfix_expression,
args, NULL_TREE);
break;
}
if (BASELINK_P (fn))
postfix_expression
= (build_new_method_call
(instance, fn, args, NULL_TREE,
(idk == CP_ID_KIND_QUALIFIED
? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL),
/*fn_p=*/NULL));
else
postfix_expression
= finish_call_expr (postfix_expression, args,
/*disallow_virtual=*/false,
/*koenig_p=*/false);
}
else if (TREE_CODE (postfix_expression) == OFFSET_REF
|| TREE_CODE (postfix_expression) == MEMBER_REF
|| TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
postfix_expression = (build_offset_ref_call_from_tree
(postfix_expression, args));
else if (idk == CP_ID_KIND_QUALIFIED)
/* A call to a static class member, or a namespace-scope
function. */
postfix_expression
= finish_call_expr (postfix_expression, args,
/*disallow_virtual=*/true,
koenig_p);
else
/* All other function calls. */
postfix_expression
= finish_call_expr (postfix_expression, args,
/*disallow_virtual=*/false,
koenig_p);
/* The POSTFIX_EXPRESSION is certainly no longer an id. */
idk = CP_ID_KIND_NONE;
}
break;
case CPP_DOT:
case CPP_DEREF:
/* postfix-expression . template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> template [opt] id-expression
postfix-expression -> pseudo-destructor-name */
/* Consume the `.' or `->' operator. */
cp_lexer_consume_token (parser->lexer);
postfix_expression
= cp_parser_postfix_dot_deref_expression (parser, token->type,
postfix_expression,
false, &idk);
break;
case CPP_PLUS_PLUS:
/* postfix-expression ++ */
/* Consume the `++' token. */
cp_lexer_consume_token (parser->lexer);
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTINCREMENT_EXPR);
/* Increments may not appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser,
"an increment"))
postfix_expression = error_mark_node;
idk = CP_ID_KIND_NONE;
break;
case CPP_MINUS_MINUS:
/* postfix-expression -- */
/* Consume the `--' token. */
cp_lexer_consume_token (parser->lexer);
/* Generate a representation for the complete expression. */
postfix_expression
= finish_increment_expr (postfix_expression,
POSTDECREMENT_EXPR);
/* Decrements may not appear in constant-expressions. */
if (cp_parser_non_integral_constant_expression (parser,
"a decrement"))
postfix_expression = error_mark_node;
idk = CP_ID_KIND_NONE;
break;
default:
return postfix_expression;
}
}
/* We should never get here. */
gcc_unreachable ();
return error_mark_node;
}
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
by cp_parser_builtin_offsetof. We're looking for
postfix-expression [ expression ]
FOR_OFFSETOF is set if we're being called in that context, which
changes how we deal with integer constant expressions. */
static tree
cp_parser_postfix_open_square_expression (cp_parser *parser,
tree postfix_expression,
bool for_offsetof)
{
tree index;
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the index expression. */
/* ??? For offsetof, there is a question of what to allow here. If
offsetof is not being used in an integral constant expression context,
then we *could* get the right answer by computing the value at runtime.
If we are in an integral constant expression context, then we might
could accept any constant expression; hard to say without analysis.
Rather than open the barn door too wide right away, allow only integer
constant expressions here. */
if (for_offsetof)
index = cp_parser_constant_expression (parser, false, NULL);
else
index = cp_parser_expression (parser, /*cast_p=*/false);
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Build the ARRAY_REF. */
postfix_expression = grok_array_decl (postfix_expression, index);
/* When not doing offsetof, array references are not permitted in
constant-expressions. */
if (!for_offsetof
&& (cp_parser_non_integral_constant_expression
(parser, "an array reference")))
postfix_expression = error_mark_node;
return postfix_expression;
}
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
by cp_parser_builtin_offsetof. We're looking for
postfix-expression . template [opt] id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> template [opt] id-expression
postfix-expression -> pseudo-destructor-name
FOR_OFFSETOF is set if we're being called in that context. That sorta
limits what of the above we'll actually accept, but nevermind.
TOKEN_TYPE is the "." or "->" token, which will already have been
removed from the stream. */
static tree
cp_parser_postfix_dot_deref_expression (cp_parser *parser,
enum cpp_ttype token_type,
tree postfix_expression,
bool for_offsetof, cp_id_kind *idk)
{
tree name;
bool dependent_p;
bool pseudo_destructor_p;
tree scope = NULL_TREE;
/* If this is a `->' operator, dereference the pointer. */
if (token_type == CPP_DEREF)
postfix_expression = build_x_arrow (postfix_expression);
/* Check to see whether or not the expression is type-dependent. */
dependent_p = type_dependent_expression_p (postfix_expression);
/* The identifier following the `->' or `.' is not qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
*idk = CP_ID_KIND_NONE;
/* Enter the scope corresponding to the type of the object
given by the POSTFIX_EXPRESSION. */
if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
{
scope = TREE_TYPE (postfix_expression);
/* According to the standard, no expression should ever have
reference type. Unfortunately, we do not currently match
the standard in this respect in that our internal representation
of an expression may have reference type even when the standard
says it does not. Therefore, we have to manually obtain the
underlying type here. */
scope = non_reference (scope);
/* The type of the POSTFIX_EXPRESSION must be complete. */
if (scope == unknown_type_node)
{
error ("%qE does not have class type", postfix_expression);
scope = NULL_TREE;
}
else
scope = complete_type_or_else (scope, NULL_TREE);
/* Let the name lookup machinery know that we are processing a
class member access expression. */
parser->context->object_type = scope;
/* If something went wrong, we want to be able to discern that case,
as opposed to the case where there was no SCOPE due to the type
of expression being dependent. */
if (!scope)
scope = error_mark_node;
/* If the SCOPE was erroneous, make the various semantic analysis
functions exit quickly -- and without issuing additional error
messages. */
if (scope == error_mark_node)
postfix_expression = error_mark_node;
}
/* Assume this expression is not a pseudo-destructor access. */
pseudo_destructor_p = false;
/* If the SCOPE is a scalar type, then, if this is a valid program,
we must be looking at a pseudo-destructor-name. */
if (scope && SCALAR_TYPE_P (scope))
{
tree s;
tree type;
cp_parser_parse_tentatively (parser);
/* Parse the pseudo-destructor-name. */
s = NULL_TREE;
cp_parser_pseudo_destructor_name (parser, &s, &type);
if (cp_parser_parse_definitely (parser))
{
pseudo_destructor_p = true;
postfix_expression
= finish_pseudo_destructor_expr (postfix_expression,
s, TREE_TYPE (type));
}
}
if (!pseudo_destructor_p)
{
/* If the SCOPE is not a scalar type, we are looking at an
ordinary class member access expression, rather than a
pseudo-destructor-name. */
bool template_p;
/* Parse the id-expression. */
name = (cp_parser_id_expression
(parser,
cp_parser_optional_template_keyword (parser),
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false,
/*optional_p=*/false));
/* In general, build a SCOPE_REF if the member name is qualified.
However, if the name was not dependent and has already been
resolved; there is no need to build the SCOPE_REF. For example;
struct X { void f(); };
template <typename T> void f(T* t) { t->X::f(); }
Even though "t" is dependent, "X::f" is not and has been resolved
to a BASELINK; there is no need to include scope information. */
/* But we do need to remember that there was an explicit scope for
virtual function calls. */
if (parser->scope)
*idk = CP_ID_KIND_QUALIFIED;
/* If the name is a template-id that names a type, we will get a
TYPE_DECL here. That is invalid code. */
if (TREE_CODE (name) == TYPE_DECL)
{
error ("invalid use of %qD", name);
postfix_expression = error_mark_node;
}
else
{
if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
{
name = build_qualified_name (/*type=*/NULL_TREE,
parser->scope,
name,
template_p);
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
if (scope && name && BASELINK_P (name))
adjust_result_of_qualified_name_lookup
(name, BINFO_TYPE (BASELINK_ACCESS_BINFO (name)), scope);
postfix_expression
= finish_class_member_access_expr (postfix_expression, name,
template_p);
}
}
/* We no longer need to look up names in the scope of the object on
the left-hand side of the `.' or `->' operator. */
parser->context->object_type = NULL_TREE;
/* Outside of offsetof, these operators may not appear in
constant-expressions. */
if (!for_offsetof
&& (cp_parser_non_integral_constant_expression
(parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
postfix_expression = error_mark_node;
return postfix_expression;
}
/* Parse a parenthesized expression-list.
expression-list:
assignment-expression
expression-list, assignment-expression
attribute-list:
expression-list
identifier
identifier, expression-list
CAST_P is true if this expression is the target of a cast.
Returns a TREE_LIST. The TREE_VALUE of each node is a
representation of an assignment-expression. Note that a TREE_LIST
is returned even if there is only a single expression in the list.
error_mark_node is returned if the ( and or ) are
missing. NULL_TREE is returned on no expressions. The parentheses
are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
indicates whether or not all of the expressions in the list were
constant. */
static tree
cp_parser_parenthesized_expression_list (cp_parser* parser,
bool is_attribute_list,
bool cast_p,
bool *non_constant_p)
{
tree expression_list = NULL_TREE;
bool fold_expr_p = is_attribute_list;
tree identifier = NULL_TREE;
/* Assume all the expressions will be constant. */
if (non_constant_p)
*non_constant_p = false;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return error_mark_node;
/* Consume expressions until there are no more. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
while (true)
{
tree expr;
/* At the beginning of attribute lists, check to see if the
next token is an identifier. */
if (is_attribute_list
&& cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
{
cp_token *token;
/* Consume the identifier. */
token = cp_lexer_consume_token (parser->lexer);
/* Save the identifier. */
identifier = token->u.value;
}
else
{
/* Parse the next assignment-expression. */
if (non_constant_p)
{
bool expr_non_constant_p;
expr = (cp_parser_constant_expression
(parser, /*allow_non_constant_p=*/true,
&expr_non_constant_p));
if (expr_non_constant_p)
*non_constant_p = true;
}
else
expr = cp_parser_assignment_expression (parser, cast_p);
if (fold_expr_p)
expr = fold_non_dependent_expr (expr);
/* Add it to the list. We add error_mark_node
expressions to the list, so that we can still tell if
the correct form for a parenthesized expression-list
is found. That gives better errors. */
expression_list = tree_cons (NULL_TREE, expr, expression_list);
if (expr == error_mark_node)
goto skip_comma;
}
/* After the first item, attribute lists look the same as
expression lists. */
is_attribute_list = false;
get_comma:;
/* If the next token isn't a `,', then we are done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' and keep going. */
cp_lexer_consume_token (parser->lexer);
}
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
{
int ending;
skip_comma:;
/* We try and resync to an unnested comma, as that will give the
user better diagnostics. */
ending = cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/true);
if (ending < 0)
goto get_comma;
if (!ending)
return error_mark_node;
}
/* We built up the list in reverse order so we must reverse it now. */
expression_list = nreverse (expression_list);
if (identifier)
expression_list = tree_cons (NULL_TREE, identifier, expression_list);
return expression_list;
}
/* Parse a pseudo-destructor-name.
pseudo-destructor-name:
:: [opt] nested-name-specifier [opt] type-name :: ~ type-name
:: [opt] nested-name-specifier template template-id :: ~ type-name
:: [opt] nested-name-specifier [opt] ~ type-name
If either of the first two productions is used, sets *SCOPE to the
TYPE specified before the final `::'. Otherwise, *SCOPE is set to
NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
or ERROR_MARK_NODE if the parse fails. */
static void
cp_parser_pseudo_destructor_name (cp_parser* parser,
tree* scope,
tree* type)
{
bool nested_name_specifier_p;
/* Assume that things will not work out. */
*type = error_mark_node;
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
/* Look for the optional nested-name-specifier. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/true)
!= NULL_TREE);
/* Now, if we saw a nested-name-specifier, we might be doing the
second production. */
if (nested_name_specifier_p
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* Consume the `template' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Parse the template-id. */
cp_parser_template_id (parser,
/*template_keyword_p=*/true,
/*check_dependency_p=*/false,
/*is_declaration=*/true);
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
}
/* If the next token is not a `~', then there might be some
additional qualification. */
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
{
/* Look for the type-name. */
*scope = TREE_TYPE (cp_parser_type_name (parser));
if (*scope == error_mark_node)
return;
/* If we don't have ::~, then something has gone wrong. Since
the only caller of this function is looking for something
after `.' or `->' after a scalar type, most likely the
program is trying to get a member of a non-aggregate
type. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
{
cp_parser_error (parser, "request for member of non-aggregate type");
return;
}
/* Look for the `::' token. */
cp_parser_require (parser, CPP_SCOPE, "`::'");
}
else
*scope = NULL_TREE;
/* Look for the `~'. */
cp_parser_require (parser, CPP_COMPL, "`~'");
/* Look for the type-name again. We are not responsible for
checking that it matches the first type-name. */
*type = cp_parser_type_name (parser);
}
/* Parse a unary-expression.
unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-id )
new-expression
delete-expression
GNU Extensions:
unary-expression:
__extension__ cast-expression
__alignof__ unary-expression
__alignof__ ( type-id )
__real__ cast-expression
__imag__ cast-expression
&& identifier
ADDRESS_P is true iff the unary-expression is appearing as the
operand of the `&' operator. CAST_P is true if this expression is
the target of a cast.
Returns a representation of the expression. */
static tree
cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p)
{
cp_token *token;
enum tree_code unary_operator;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Some keywords give away the kind of expression. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_ALIGNOF:
case RID_SIZEOF:
{
tree operand;
enum tree_code op;
op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the operand. */
operand = cp_parser_sizeof_operand (parser, keyword);
if (TYPE_P (operand))
return cxx_sizeof_or_alignof_type (operand, op, true);
else
return cxx_sizeof_or_alignof_expr (operand, op);
}
case RID_NEW:
return cp_parser_new_expression (parser);
case RID_DELETE:
return cp_parser_delete_expression (parser);
case RID_EXTENSION:
{
/* The saved value of the PEDANTIC flag. */
int saved_pedantic;
tree expr;
/* Save away the PEDANTIC flag. */
cp_parser_extension_opt (parser, &saved_pedantic);
/* Parse the cast-expression. */
expr = cp_parser_simple_cast_expression (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return expr;
}
case RID_REALPART:
case RID_IMAGPART:
{
tree expression;
/* Consume the `__real__' or `__imag__' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
/* Create the complete representation. */
return build_x_unary_op ((keyword == RID_REALPART
? REALPART_EXPR : IMAGPART_EXPR),
expression);
}
break;
default:
break;
}
}
/* Look for the `:: new' and `:: delete', which also signal the
beginning of a new-expression, or delete-expression,
respectively. If the next token is `::', then it might be one of
these. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
{
enum rid keyword;
/* See if the token after the `::' is one of the keywords in
which we're interested. */
keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
/* If it's `new', we have a new-expression. */
if (keyword == RID_NEW)
return cp_parser_new_expression (parser);
/* Similarly, for `delete'. */
else if (keyword == RID_DELETE)
return cp_parser_delete_expression (parser);
}
/* Look for a unary operator. */
unary_operator = cp_parser_unary_operator (token);
/* The `++' and `--' operators can be handled similarly, even though
they are not technically unary-operators in the grammar. */
if (unary_operator == ERROR_MARK)
{
if (token->type == CPP_PLUS_PLUS)
unary_operator = PREINCREMENT_EXPR;
else if (token->type == CPP_MINUS_MINUS)
unary_operator = PREDECREMENT_EXPR;
/* Handle the GNU address-of-label extension. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& token->type == CPP_AND_AND)
{
tree identifier;
/* Consume the '&&' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
/* Create an expression representing the address. */
return finish_label_address_expr (identifier);
}
}
if (unary_operator != ERROR_MARK)
{
tree cast_expression;
tree expression = error_mark_node;
const char *non_constant_p = NULL;
/* Consume the operator token. */
token = cp_lexer_consume_token (parser->lexer);
/* Parse the cast-expression. */
cast_expression
= cp_parser_cast_expression (parser,
unary_operator == ADDR_EXPR,
/*cast_p=*/false);
/* Now, build an appropriate representation. */
switch (unary_operator)
{
case INDIRECT_REF:
non_constant_p = "`*'";
expression = build_x_indirect_ref (cast_expression, "unary *");
break;
case ADDR_EXPR:
non_constant_p = "`&'";
/* Fall through. */
case BIT_NOT_EXPR:
expression = build_x_unary_op (unary_operator, cast_expression);
break;
case PREINCREMENT_EXPR:
case PREDECREMENT_EXPR:
non_constant_p = (unary_operator == PREINCREMENT_EXPR
? "`++'" : "`--'");
/* Fall through. */
case UNARY_PLUS_EXPR:
case NEGATE_EXPR:
case TRUTH_NOT_EXPR:
expression = finish_unary_op_expr (unary_operator, cast_expression);
break;
default:
gcc_unreachable ();
}
if (non_constant_p
&& cp_parser_non_integral_constant_expression (parser,
non_constant_p))
expression = error_mark_node;
return expression;
}
return cp_parser_postfix_expression (parser, address_p, cast_p);
}
/* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
unary-operator, the corresponding tree code is returned. */
static enum tree_code
cp_parser_unary_operator (cp_token* token)
{
switch (token->type)
{
case CPP_MULT:
return INDIRECT_REF;
case CPP_AND:
return ADDR_EXPR;
case CPP_PLUS:
return UNARY_PLUS_EXPR;
case CPP_MINUS:
return NEGATE_EXPR;
case CPP_NOT:
return TRUTH_NOT_EXPR;
case CPP_COMPL:
return BIT_NOT_EXPR;
default:
return ERROR_MARK;
}
}
/* Parse a new-expression.
new-expression:
:: [opt] new new-placement [opt] new-type-id new-initializer [opt]
:: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
Returns a representation of the expression. */
static tree
cp_parser_new_expression (cp_parser* parser)
{
bool global_scope_p;
tree placement;
tree type;
tree initializer;
tree nelts;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `new' operator. */
cp_parser_require_keyword (parser, RID_NEW, "`new'");
/* There's no easy way to tell a new-placement from the
`( type-id )' construct. */
cp_parser_parse_tentatively (parser);
/* Look for a new-placement. */
placement = cp_parser_new_placement (parser);
/* If that didn't work out, there's no new-placement. */
if (!cp_parser_parse_definitely (parser))
placement = NULL_TREE;
/* If the next token is a `(', then we have a parenthesized
type-id. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* There should not be a direct-new-declarator in this production,
but GCC used to allowed this, so we check and emit a sensible error
message for this case. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
error ("array bound forbidden after parenthesized type-id");
inform ("try removing the parentheses around the type-id");
cp_parser_direct_new_declarator (parser);
}
nelts = NULL_TREE;
}
/* Otherwise, there must be a new-type-id. */
else
type = cp_parser_new_type_id (parser, &nelts);
/* If the next token is a `(', then we have a new-initializer. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
initializer = cp_parser_new_initializer (parser);
else
initializer = NULL_TREE;
/* A new-expression may not appear in an integral constant
expression. */
if (cp_parser_non_integral_constant_expression (parser, "`new'"))
return error_mark_node;
/* Create a representation of the new-expression. */
return build_new (placement, type, nelts, initializer, global_scope_p);
}
/* Parse a new-placement.
new-placement:
( expression-list )
Returns the same representation as for an expression-list. */
static tree
cp_parser_new_placement (cp_parser* parser)
{
tree expression_list;
/* Parse the expression-list. */
expression_list = (cp_parser_parenthesized_expression_list
(parser, false, /*cast_p=*/false,
/*non_constant_p=*/NULL));
return expression_list;
}
/* Parse a new-type-id.
new-type-id:
type-specifier-seq new-declarator [opt]
Returns the TYPE allocated. If the new-type-id indicates an array
type, *NELTS is set to the number of elements in the last array
bound; the TYPE will not include the last array bound. */
static tree
cp_parser_new_type_id (cp_parser* parser, tree *nelts)
{
cp_decl_specifier_seq type_specifier_seq;
cp_declarator *new_declarator;
cp_declarator *declarator;
cp_declarator *outer_declarator;
const char *saved_message;
tree type;
/* The type-specifier sequence must not contain type definitions.
(It cannot contain declarations of new types either, but if they
are not definitions we will catch that because they are not
complete.) */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in a new-type-id";
/* Parse the type-specifier-seq. */
cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
&type_specifier_seq);
/* Restore the old message. */
parser->type_definition_forbidden_message = saved_message;
/* Parse the new-declarator. */
new_declarator = cp_parser_new_declarator_opt (parser);
/* Determine the number of elements in the last array dimension, if
any. */
*nelts = NULL_TREE;
/* Skip down to the last array dimension. */
declarator = new_declarator;
outer_declarator = NULL;
while (declarator && (declarator->kind == cdk_pointer
|| declarator->kind == cdk_ptrmem))
{
outer_declarator = declarator;
declarator = declarator->declarator;
}
while (declarator
&& declarator->kind == cdk_array
&& declarator->declarator
&& declarator->declarator->kind == cdk_array)
{
outer_declarator = declarator;
declarator = declarator->declarator;
}
if (declarator && declarator->kind == cdk_array)
{
*nelts = declarator->u.array.bounds;
if (*nelts == error_mark_node)
*nelts = integer_one_node;
if (outer_declarator)
outer_declarator->declarator = declarator->declarator;
else
new_declarator = NULL;
}
type = groktypename (&type_specifier_seq, new_declarator);
if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
{
*nelts = array_type_nelts_top (type);
type = TREE_TYPE (type);
}
return type;
}
/* Parse an (optional) new-declarator.
new-declarator:
ptr-operator new-declarator [opt]
direct-new-declarator
Returns the declarator. */
static cp_declarator *
cp_parser_new_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree type;
cp_cv_quals cv_quals;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Look for a ptr-operator. */
code = cp_parser_ptr_operator (parser, &type, &cv_quals);
/* If that worked, look for more new-declarators. */
if (cp_parser_parse_definitely (parser))
{
cp_declarator *declarator;
/* Parse another optional declarator. */
declarator = cp_parser_new_declarator_opt (parser);
/* Create the representation of the declarator. */
if (type)
declarator = make_ptrmem_declarator (cv_quals, type, declarator);
else if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_quals, declarator);
else
declarator = make_reference_declarator (cv_quals, declarator);
return declarator;
}
/* If the next token is a `[', there is a direct-new-declarator. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
return cp_parser_direct_new_declarator (parser);
return NULL;
}
/* Parse a direct-new-declarator.
direct-new-declarator:
[ expression ]
direct-new-declarator [constant-expression]
*/
static cp_declarator *
cp_parser_direct_new_declarator (cp_parser* parser)
{
cp_declarator *declarator = NULL;
while (true)
{
tree expression;
/* Look for the opening `['. */
cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
/* The first expression is not required to be constant. */
if (!declarator)
{
expression = cp_parser_expression (parser, /*cast_p=*/false);
/* The standard requires that the expression have integral
type. DR 74 adds enumeration types. We believe that the
real intent is that these expressions be handled like the
expression in a `switch' condition, which also allows
classes with a single conversion to integral or
enumeration type. */
if (!processing_template_decl)
{
expression
= build_expr_type_conversion (WANT_INT | WANT_ENUM,
expression,
/*complain=*/true);
if (!expression)
{
error ("expression in new-declarator must have integral "
"or enumeration type");
expression = error_mark_node;
}
}
}
/* But all the other expressions must be. */
else
expression
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Add this bound to the declarator. */
declarator = make_array_declarator (declarator, expression);
/* If the next token is not a `[', then there are no more
bounds. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
break;
}
return declarator;
}
/* Parse a new-initializer.
new-initializer:
( expression-list [opt] )
Returns a representation of the expression-list. If there is no
expression-list, VOID_ZERO_NODE is returned. */
static tree
cp_parser_new_initializer (cp_parser* parser)
{
tree expression_list;
expression_list = (cp_parser_parenthesized_expression_list
(parser, false, /*cast_p=*/false,
/*non_constant_p=*/NULL));
if (!expression_list)
expression_list = void_zero_node;
return expression_list;
}
/* Parse a delete-expression.
delete-expression:
:: [opt] delete cast-expression
:: [opt] delete [ ] cast-expression
Returns a representation of the expression. */
static tree
cp_parser_delete_expression (cp_parser* parser)
{
bool global_scope_p;
bool array_p;
tree expression;
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the `delete' keyword. */
cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
/* See if the array syntax is in use. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
/* Remember that this is the `[]' construct. */
array_p = true;
}
else
array_p = false;
/* Parse the cast-expression. */
expression = cp_parser_simple_cast_expression (parser);
/* A delete-expression may not appear in an integral constant
expression. */
if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
return error_mark_node;
return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
}
/* Parse a cast-expression.
cast-expression:
unary-expression
( type-id ) cast-expression
ADDRESS_P is true iff the unary-expression is appearing as the
operand of the `&' operator. CAST_P is true if this expression is
the target of a cast.
Returns a representation of the expression. */
static tree
cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p)
{
/* If it's a `(', then we might be looking at a cast. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree type = NULL_TREE;
tree expr = NULL_TREE;
bool compound_literal_p;
const char *saved_message;
/* There's no way to know yet whether or not this is a cast.
For example, `(int (3))' is a unary-expression, while `(int)
3' is a cast. So, we resort to parsing tentatively. */
cp_parser_parse_tentatively (parser);
/* Types may not be defined in a cast. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in casts";
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* A very tricky bit is that `(struct S) { 3 }' is a
compound-literal (which we permit in C++ as an extension).
But, that construct is not a cast-expression -- it is a
postfix-expression. (The reason is that `(struct S) { 3 }.i'
is legal; if the compound-literal were a cast-expression,
you'd need an extra set of parentheses.) But, if we parse
the type-id, and it happens to be a class-specifier, then we
will commit to the parse at that point, because we cannot
undo the action that is done when creating a new class. So,
then we cannot back up and do a postfix-expression.
Therefore, we scan ahead to the closing `)', and check to see
if the token after the `)' is a `{'. If so, we are not
looking at a cast-expression.
Save tokens so that we can put them back. */
cp_lexer_save_tokens (parser->lexer);
/* Skip tokens until the next token is a closing parenthesis.
If we find the closing `)', and the next token is a `{', then
we are looking at a compound-literal. */
compound_literal_p
= (cp_parser_skip_to_closing_parenthesis (parser, false, false,
/*consume_paren=*/true)
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
/* Roll back the tokens we skipped. */
cp_lexer_rollback_tokens (parser->lexer);
/* If we were looking at a compound-literal, simulate an error
so that the call to cp_parser_parse_definitely below will
fail. */
if (compound_literal_p)
cp_parser_simulate_error (parser);
else
{
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
/* Look for the type-id. */
type = cp_parser_type_id (parser);
/* Look for the closing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
}
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* If ok so far, parse the dependent expression. We cannot be
sure it is a cast. Consider `(T ())'. It is a parenthesized
ctor of T, but looks like a cast to function returning T
without a dependent expression. */
if (!cp_parser_error_occurred (parser))
expr = cp_parser_cast_expression (parser,
/*address_p=*/false,
/*cast_p=*/true);
if (cp_parser_parse_definitely (parser))
{
/* Warn about old-style casts, if so requested. */
if (warn_old_style_cast
&& !in_system_header
&& !VOID_TYPE_P (type)
&& current_lang_name != lang_name_c)
warning (OPT_Wold_style_cast, "use of old-style cast");
/* Only type conversions to integral or enumeration types
can be used in constant-expressions. */
if (!cast_valid_in_integral_constant_expression_p (type)
&& (cp_parser_non_integral_constant_expression
(parser,
"a cast to a type other than an integral or "
"enumeration type")))
return error_mark_node;
/* Perform the cast. */
expr = build_c_cast (type, expr);
return expr;
}
}
/* If we get here, then it's not a cast, so it must be a
unary-expression. */
return cp_parser_unary_expression (parser, address_p, cast_p);
}
/* Parse a binary expression of the general form:
pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression
multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
GNU Extension:
relational-expression:
relational-expression <? shift-expression
relational-expression >? shift-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
and-expression:
equality-expression
and-expression & equality-expression
exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression
inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression
logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression
logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
All these are implemented with a single function like:
binary-expression:
simple-cast-expression
binary-expression <token> binary-expression
CAST_P is true if this expression is the target of a cast.
The binops_by_token map is used to get the tree codes for each <token> type.
binary-expressions are associated according to a precedence table. */
#define TOKEN_PRECEDENCE(token) \
((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
? PREC_NOT_OPERATOR \
: binops_by_token[token->type].prec)
static tree
cp_parser_binary_expression (cp_parser* parser, bool cast_p)
{
cp_parser_expression_stack stack;
cp_parser_expression_stack_entry *sp = &stack[0];
tree lhs, rhs;
cp_token *token;
enum tree_code tree_type;
enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
bool overloaded_p;
/* Parse the first expression. */
lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p);
for (;;)
{
/* Get an operator token. */
token = cp_lexer_peek_token (parser->lexer);
new_prec = TOKEN_PRECEDENCE (token);
/* Popping an entry off the stack means we completed a subexpression:
- either we found a token which is not an operator (`>' where it is not
an operator, or prec == PREC_NOT_OPERATOR), in which case popping
will happen repeatedly;
- or, we found an operator which has lower priority. This is the case
where the recursive descent *ascends*, as in `3 * 4 + 5' after
parsing `3 * 4'. */
if (new_prec <= prec)
{
if (sp == stack)
break;
else
goto pop;
}
get_rhs:
tree_type = binops_by_token[token->type].tree_type;
/* We used the operator token. */
cp_lexer_consume_token (parser->lexer);
/* Extract another operand. It may be the RHS of this expression
or the LHS of a new, higher priority expression. */
rhs = cp_parser_simple_cast_expression (parser);
/* Get another operator token. Look up its precedence to avoid
building a useless (immediately popped) stack entry for common
cases such as 3 + 4 + 5 or 3 * 4 + 5. */
token = cp_lexer_peek_token (parser->lexer);
lookahead_prec = TOKEN_PRECEDENCE (token);
if (lookahead_prec > new_prec)
{
/* ... and prepare to parse the RHS of the new, higher priority
expression. Since precedence levels on the stack are
monotonically increasing, we do not have to care about
stack overflows. */
sp->prec = prec;
sp->tree_type = tree_type;
sp->lhs = lhs;
sp++;
lhs = rhs;
prec = new_prec;
new_prec = lookahead_prec;
goto get_rhs;
pop:
/* If the stack is not empty, we have parsed into LHS the right side
(`4' in the example above) of an expression we had suspended.
We can use the information on the stack to recover the LHS (`3')
from the stack together with the tree code (`MULT_EXPR'), and
the precedence of the higher level subexpression
(`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
which will be used to actually build the additive expression. */
--sp;
prec = sp->prec;
tree_type = sp->tree_type;
rhs = lhs;
lhs = sp->lhs;
}
overloaded_p = false;
lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
/* If the binary operator required the use of an overloaded operator,
then this expression cannot be an integral constant-expression.
An overloaded operator can be used even if both operands are
otherwise permissible in an integral constant-expression if at
least one of the operands is of enumeration type. */
if (overloaded_p
&& (cp_parser_non_integral_constant_expression
(parser, "calls to overloaded operators")))
return error_mark_node;
}
return lhs;
}
/* Parse the `? expression : assignment-expression' part of a
conditional-expression. The LOGICAL_OR_EXPR is the
logical-or-expression that started the conditional-expression.
Returns a representation of the entire conditional-expression.
This routine is used by cp_parser_assignment_expression.
? expression : assignment-expression
GNU Extensions:
? : assignment-expression */
static tree
cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
{
tree expr;
tree assignment_expr;
/* Consume the `?' token. */
cp_lexer_consume_token (parser->lexer);
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_COLON))
/* Implicit true clause. */
expr = NULL_TREE;
else
/* Parse the expression. */
expr = cp_parser_expression (parser, /*cast_p=*/false);
/* The next token should be a `:'. */
cp_parser_require (parser, CPP_COLON, "`:'");
/* Parse the assignment-expression. */
assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false);
/* Build the conditional-expression. */
return build_x_conditional_expr (logical_or_expr,
expr,
assignment_expr);
}
/* Parse an assignment-expression.
assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment_expression
throw-expression
CAST_P is true if this expression is the target of a cast.
Returns a representation for the expression. */
static tree
cp_parser_assignment_expression (cp_parser* parser, bool cast_p)
{
tree expr;
/* If the next token is the `throw' keyword, then we're looking at
a throw-expression. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
expr = cp_parser_throw_expression (parser);
/* Otherwise, it must be that we are looking at a
logical-or-expression. */
else
{
/* Parse the binary expressions (logical-or-expression). */
expr = cp_parser_binary_expression (parser, cast_p);
/* If the next token is a `?' then we're actually looking at a
conditional-expression. */
if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
return cp_parser_question_colon_clause (parser, expr);
else
{
enum tree_code assignment_operator;
/* If it's an assignment-operator, we're using the second
production. */
assignment_operator
= cp_parser_assignment_operator_opt (parser);
if (assignment_operator != ERROR_MARK)
{
tree rhs;
/* Parse the right-hand side of the assignment. */
rhs = cp_parser_assignment_expression (parser, cast_p);
/* An assignment may not appear in a
constant-expression. */
if (cp_parser_non_integral_constant_expression (parser,
"an assignment"))
return error_mark_node;
/* Build the assignment expression. */
expr = build_x_modify_expr (expr,
assignment_operator,
rhs);
}
}
}
return expr;
}
/* Parse an (optional) assignment-operator.
assignment-operator: one of
= *= /= %= += -= >>= <<= &= ^= |=
GNU Extension:
assignment-operator: one of
<?= >?=
If the next token is an assignment operator, the corresponding tree
code is returned, and the token is consumed. For example, for
`+=', PLUS_EXPR is returned. For `=' itself, the code returned is
NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
operator, ERROR_MARK is returned. */
static enum tree_code
cp_parser_assignment_operator_opt (cp_parser* parser)
{
enum tree_code op;
cp_token *token;
/* Peek at the next toen. */
token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_EQ:
op = NOP_EXPR;
break;
case CPP_MULT_EQ:
op = MULT_EXPR;
break;
case CPP_DIV_EQ:
op = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
op = TRUNC_MOD_EXPR;
break;
case CPP_PLUS_EQ:
op = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
op = MINUS_EXPR;
break;
case CPP_RSHIFT_EQ:
op = RSHIFT_EXPR;
break;
case CPP_LSHIFT_EQ:
op = LSHIFT_EXPR;
break;
case CPP_AND_EQ:
op = BIT_AND_EXPR;
break;
case CPP_XOR_EQ:
op = BIT_XOR_EXPR;
break;
case CPP_OR_EQ:
op = BIT_IOR_EXPR;
break;
default:
/* Nothing else is an assignment operator. */
op = ERROR_MARK;
}
/* If it was an assignment operator, consume it. */
if (op != ERROR_MARK)
cp_lexer_consume_token (parser->lexer);
return op;
}
/* Parse an expression.
expression:
assignment-expression
expression , assignment-expression
CAST_P is true if this expression is the target of a cast.
Returns a representation of the expression. */
static tree
cp_parser_expression (cp_parser* parser, bool cast_p)
{
tree expression = NULL_TREE;
while (true)
{
tree assignment_expression;
/* Parse the next assignment-expression. */
assignment_expression
= cp_parser_assignment_expression (parser, cast_p);
/* If this is the first assignment-expression, we can just
save it away. */
if (!expression)
expression = assignment_expression;
else
expression = build_x_compound_expr (expression,
assignment_expression);
/* If the next token is not a comma, then we are done with the
expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
/* A comma operator cannot appear in a constant-expression. */
if (cp_parser_non_integral_constant_expression (parser,
"a comma operator"))
expression = error_mark_node;
}
return expression;
}
/* Parse a constant-expression.
constant-expression:
conditional-expression
If ALLOW_NON_CONSTANT_P a non-constant expression is silently
accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
is false, NON_CONSTANT_P should be NULL. */
static tree
cp_parser_constant_expression (cp_parser* parser,
bool allow_non_constant_p,
bool *non_constant_p)
{
bool saved_integral_constant_expression_p;
bool saved_allow_non_integral_constant_expression_p;
bool saved_non_integral_constant_expression_p;
tree expression;
/* It might seem that we could simply parse the
conditional-expression, and then check to see if it were
TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
one that the compiler can figure out is constant, possibly after
doing some simplifications or optimizations. The standard has a
precise definition of constant-expression, and we must honor
that, even though it is somewhat more restrictive.
For example:
int i[(2, 3)];
is not a legal declaration, because `(2, 3)' is not a
constant-expression. The `,' operator is forbidden in a
constant-expression. However, GCC's constant-folding machinery
will fold this operation to an INTEGER_CST for `3'. */
/* Save the old settings. */
saved_integral_constant_expression_p = parser->integral_constant_expression_p;
saved_allow_non_integral_constant_expression_p
= parser->allow_non_integral_constant_expression_p;
saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
/* We are now parsing a constant-expression. */
parser->integral_constant_expression_p = true;
parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
parser->non_integral_constant_expression_p = false;
/* Although the grammar says "conditional-expression", we parse an
"assignment-expression", which also permits "throw-expression"
and the use of assignment operators. In the case that
ALLOW_NON_CONSTANT_P is false, we get better errors than we would
otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
actually essential that we look for an assignment-expression.
For example, cp_parser_initializer_clauses uses this function to
determine whether a particular assignment-expression is in fact
constant. */
expression = cp_parser_assignment_expression (parser, /*cast_p=*/false);
/* Restore the old settings. */
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->allow_non_integral_constant_expression_p
= saved_allow_non_integral_constant_expression_p;
if (allow_non_constant_p)
*non_constant_p = parser->non_integral_constant_expression_p;
else if (parser->non_integral_constant_expression_p)
expression = error_mark_node;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
return expression;
}
/* Parse __builtin_offsetof.
offsetof-expression:
"__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
offsetof-member-designator:
id-expression
| offsetof-member-designator "." id-expression
| offsetof-member-designator "[" expression "]" */
static tree
cp_parser_builtin_offsetof (cp_parser *parser)
{
int save_ice_p, save_non_ice_p;
tree type, expr;
cp_id_kind dummy;
/* We're about to accept non-integral-constant things, but will
definitely yield an integral constant expression. Save and
restore these values around our local parsing. */
save_ice_p = parser->integral_constant_expression_p;
save_non_ice_p = parser->non_integral_constant_expression_p;
/* Consume the "__builtin_offsetof" token. */
cp_lexer_consume_token (parser->lexer);
/* Consume the opening `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the type-id. */
type = cp_parser_type_id (parser);
/* Look for the `,'. */
cp_parser_require (parser, CPP_COMMA, "`,'");
/* Build the (type *)null that begins the traditional offsetof macro. */
expr = build_static_cast (build_pointer_type (type), null_pointer_node);
/* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
true, &dummy);
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
switch (token->type)
{
case CPP_OPEN_SQUARE:
/* offsetof-member-designator "[" expression "]" */
expr = cp_parser_postfix_open_square_expression (parser, expr, true);
break;
case CPP_DOT:
/* offsetof-member-designator "." identifier */
cp_lexer_consume_token (parser->lexer);
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
true, &dummy);
break;
case CPP_CLOSE_PAREN:
/* Consume the ")" token. */
cp_lexer_consume_token (parser->lexer);
goto success;
default:
/* Error. We know the following require will fail, but
that gives the proper error message. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
expr = error_mark_node;
goto failure;
}
}
success:
/* If we're processing a template, we can't finish the semantics yet.
Otherwise we can fold the entire expression now. */
if (processing_template_decl)
expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
else
expr = finish_offsetof (expr);
failure:
parser->integral_constant_expression_p = save_ice_p;
parser->non_integral_constant_expression_p = save_non_ice_p;
return expr;
}
/* Statements [gram.stmt.stmt] */
/* Parse a statement.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block
IN_COMPOUND is true when the statement is nested inside a
cp_parser_compound_statement; this matters for certain pragmas. */
static void
cp_parser_statement (cp_parser* parser, tree in_statement_expr,
bool in_compound)
{
tree statement;
cp_token *token;
location_t statement_location;
restart:
/* There is no statement yet. */
statement = NULL_TREE;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Remember the location of the first token in the statement. */
statement_location = token->location;
/* If this is a keyword, then that will often determine what kind of
statement we have. */
if (token->type == CPP_KEYWORD)
{
enum rid keyword = token->keyword;
switch (keyword)
{
case RID_CASE:
case RID_DEFAULT:
/* Looks like a labeled-statement with a case label.
Parse the label, and then use tail recursion to parse
the statement. */
cp_parser_label_for_labeled_statement (parser);
goto restart;
case RID_IF:
case RID_SWITCH:
statement = cp_parser_selection_statement (parser);
break;
case RID_WHILE:
case RID_DO:
case RID_FOR:
statement = cp_parser_iteration_statement (parser);
break;
case RID_BREAK:
case RID_CONTINUE:
case RID_RETURN:
case RID_GOTO:
statement = cp_parser_jump_statement (parser);
break;
/* Objective-C++ exception-handling constructs. */
case RID_AT_TRY:
case RID_AT_CATCH:
case RID_AT_FINALLY:
case RID_AT_SYNCHRONIZED:
case RID_AT_THROW:
statement = cp_parser_objc_statement (parser);
break;
case RID_TRY:
statement = cp_parser_try_block (parser);
break;
default:
/* It might be a keyword like `int' that can start a
declaration-statement. */
break;
}
}
else if (token->type == CPP_NAME)
{
/* If the next token is a `:', then we are looking at a
labeled-statement. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token->type == CPP_COLON)
{
/* Looks like a labeled-statement with an ordinary label.
Parse the label, and then use tail recursion to parse
the statement. */
cp_parser_label_for_labeled_statement (parser);
goto restart;
}
}
/* Anything that starts with a `{' must be a compound-statement. */
else if (token->type == CPP_OPEN_BRACE)
statement = cp_parser_compound_statement (parser, NULL, false);
/* CPP_PRAGMA is a #pragma inside a function body, which constitutes
a statement all its own. */
else if (token->type == CPP_PRAGMA)
{
/* Only certain OpenMP pragmas are attached to statements, and thus
are considered statements themselves. All others are not. In
the context of a compound, accept the pragma as a "statement" and
return so that we can check for a close brace. Otherwise we
require a real statement and must go back and read one. */
if (in_compound)
cp_parser_pragma (parser, pragma_compound);
else if (!cp_parser_pragma (parser, pragma_stmt))
goto restart;
return;
}
else if (token->type == CPP_EOF)
{
cp_parser_error (parser, "expected statement");
return;
}
/* Everything else must be a declaration-statement or an
expression-statement. Try for the declaration-statement
first, unless we are looking at a `;', in which case we know that
we have an expression-statement. */
if (!statement)
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
cp_parser_parse_tentatively (parser);
/* Try to parse the declaration-statement. */
cp_parser_declaration_statement (parser);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return;
}
/* Look for an expression-statement instead. */
statement = cp_parser_expression_statement (parser, in_statement_expr);
}
/* Set the line number for the statement. */
if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
SET_EXPR_LOCATION (statement, statement_location);
}
/* Parse the label for a labeled-statement, i.e.
identifier :
case constant-expression :
default :
GNU Extension:
case constant-expression ... constant-expression : statement
When a label is parsed without errors, the label is added to the
parse tree by the finish_* functions, so this function doesn't
have to return the label. */
static void
cp_parser_label_for_labeled_statement (cp_parser* parser)
{
cp_token *token;
/* The next token should be an identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME
&& token->type != CPP_KEYWORD)
{
cp_parser_error (parser, "expected labeled-statement");
return;
}
switch (token->keyword)
{
case RID_CASE:
{
tree expr, expr_hi;
cp_token *ellipsis;
/* Consume the `case' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the constant-expression. */
expr = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
NULL);
ellipsis = cp_lexer_peek_token (parser->lexer);
if (ellipsis->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
expr_hi =
cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
NULL);
/* We don't need to emit warnings here, as the common code
will do this for us. */
}
else
expr_hi = NULL_TREE;
if (parser->in_switch_statement_p)
finish_case_label (expr, expr_hi);
else
error ("case label %qE not within a switch statement", expr);
}
break;
case RID_DEFAULT:
/* Consume the `default' token. */
cp_lexer_consume_token (parser->lexer);
if (parser->in_switch_statement_p)
finish_case_label (NULL_TREE, NULL_TREE);
else
error ("case label not within a switch statement");
break;
default:
/* Anything else must be an ordinary label. */
finish_label_stmt (cp_parser_identifier (parser));
break;
}
/* Require the `:' token. */
cp_parser_require (parser, CPP_COLON, "`:'");
}
/* Parse an expression-statement.
expression-statement:
expression [opt] ;
Returns the new EXPR_STMT -- or NULL_TREE if the expression
statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
indicates whether this expression-statement is part of an
expression statement. */
static tree
cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
{
tree statement = NULL_TREE;
/* If the next token is a ';', then there is no expression
statement. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
statement = cp_parser_expression (parser, /*cast_p=*/false);
/* Consume the final `;'. */
cp_parser_consume_semicolon_at_end_of_statement (parser);
if (in_statement_expr
&& cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
/* This is the final expression statement of a statement
expression. */
statement = finish_stmt_expr_expr (statement, in_statement_expr);
else if (statement)
statement = finish_expr_stmt (statement);
else
finish_stmt ();
return statement;
}
/* Parse a compound-statement.
compound-statement:
{ statement-seq [opt] }
Returns a tree representing the statement. */
static tree
cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
bool in_try)
{
tree compound_stmt;
/* Consume the `{'. */
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
return error_mark_node;
/* Begin the compound-statement. */
compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
/* Parse an (optional) statement-seq. */
cp_parser_statement_seq_opt (parser, in_statement_expr);
/* Finish the compound-statement. */
finish_compound_stmt (compound_stmt);
/* Consume the `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
return compound_stmt;
}
/* Parse an (optional) statement-seq.
statement-seq:
statement
statement-seq [opt] statement */
static void
cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
{
/* Scan statements until there aren't any more. */
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a `}', then we've run out of statements. */
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF
|| token->type == CPP_PRAGMA_EOL)
break;
/* Parse the statement. */
cp_parser_statement (parser, in_statement_expr, true);
}
}
/* Parse a selection-statement.
selection-statement:
if ( condition ) statement
if ( condition ) statement else statement
switch ( condition ) statement
Returns the new IF_STMT or SWITCH_STMT. */
static tree
cp_parser_selection_statement (cp_parser* parser)
{
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_IF:
case RID_SWITCH:
{
tree statement;
tree condition;
/* Look for the `('. */
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
{
cp_parser_skip_to_end_of_statement (parser);
return error_mark_node;
}
/* Begin the selection-statement. */
if (keyword == RID_IF)
statement = begin_if_stmt ();
else
statement = begin_switch_stmt ();
/* Parse the condition. */
condition = cp_parser_condition (parser);
/* Look for the `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, true, false,
/*consume_paren=*/true);
if (keyword == RID_IF)
{
/* Add the condition. */
finish_if_stmt_cond (condition, statement);
/* Parse the then-clause. */
cp_parser_implicitly_scoped_statement (parser);
finish_then_clause (statement);
/* If the next token is `else', parse the else-clause. */
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_ELSE))
{
/* Consume the `else' keyword. */
cp_lexer_consume_token (parser->lexer);
begin_else_clause (statement);
/* Parse the else-clause. */
cp_parser_implicitly_scoped_statement (parser);
finish_else_clause (statement);
}
/* Now we're all done with the if-statement. */
finish_if_stmt (statement);
}
else
{
bool in_switch_statement_p;
unsigned char in_statement;
/* Add the condition. */
finish_switch_cond (condition, statement);
/* Parse the body of the switch-statement. */
in_switch_statement_p = parser->in_switch_statement_p;
in_statement = parser->in_statement;
parser->in_switch_statement_p = true;
parser->in_statement |= IN_SWITCH_STMT;
cp_parser_implicitly_scoped_statement (parser);
parser->in_switch_statement_p = in_switch_statement_p;
parser->in_statement = in_statement;
/* Now we're all done with the switch-statement. */
finish_switch_stmt (statement);
}
return statement;
}
break;
default:
cp_parser_error (parser, "expected selection-statement");
return error_mark_node;
}
}
/* Parse a condition.
condition:
expression
type-specifier-seq declarator = assignment-expression
GNU Extension:
condition:
type-specifier-seq declarator asm-specification [opt]
attributes [opt] = assignment-expression
Returns the expression that should be tested. */
static tree
cp_parser_condition (cp_parser* parser)
{
cp_decl_specifier_seq type_specifiers;
const char *saved_message;
/* Try the declaration first. */
cp_parser_parse_tentatively (parser);
/* New types are not allowed in the type-specifier-seq for a
condition. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in conditions";
/* Parse the type-specifier-seq. */
cp_parser_type_specifier_seq (parser, /*is_condition==*/true,
&type_specifiers);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
/* If all is well, we might be looking at a declaration. */
if (!cp_parser_error_occurred (parser))
{
tree decl;
tree asm_specification;
tree attributes;
cp_declarator *declarator;
tree initializer = NULL_TREE;
/* Parse the declarator. */
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* Parse the asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* If the next token is not an `=', then we might still be
looking at an expression. For example:
if (A(a).x)
looks like a decl-specifier-seq and a declarator -- but then
there is no `=', so this is an expression. */
cp_parser_require (parser, CPP_EQ, "`='");
/* If we did see an `=', then we are looking at a declaration
for sure. */
if (cp_parser_parse_definitely (parser))
{
tree pushed_scope;
bool non_constant_p;
/* Create the declaration. */
decl = start_decl (declarator, &type_specifiers,
/*initialized_p=*/true,
attributes, /*prefix_attributes=*/NULL_TREE,
&pushed_scope);
/* Parse the assignment-expression. */
initializer
= cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/true,
&non_constant_p);
if (!non_constant_p)
initializer = fold_non_dependent_expr (initializer);
/* Process the initializer. */
cp_finish_decl (decl,
initializer, !non_constant_p,
asm_specification,
LOOKUP_ONLYCONVERTING);
if (pushed_scope)
pop_scope (pushed_scope);
return convert_from_reference (decl);
}
}
/* If we didn't even get past the declarator successfully, we are
definitely not looking at a declaration. */
else
cp_parser_abort_tentative_parse (parser);
/* Otherwise, we are looking at an expression. */
return cp_parser_expression (parser, /*cast_p=*/false);
}
/* Parse an iteration-statement.
iteration-statement:
while ( condition ) statement
do statement while ( expression ) ;
for ( for-init-statement condition [opt] ; expression [opt] )
statement
Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
static tree
cp_parser_iteration_statement (cp_parser* parser)
{
cp_token *token;
enum rid keyword;
tree statement;
unsigned char in_statement;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
if (!token)
return error_mark_node;
/* Remember whether or not we are already within an iteration
statement. */
in_statement = parser->in_statement;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_WHILE:
{
tree condition;
/* Begin the while-statement. */
statement = begin_while_stmt ();
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the condition. */
condition = cp_parser_condition (parser);
finish_while_stmt_cond (condition, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Parse the dependent statement. */
parser->in_statement = IN_ITERATION_STMT;
cp_parser_already_scoped_statement (parser);
parser->in_statement = in_statement;
/* We're done with the while-statement. */
finish_while_stmt (statement);
}
break;
case RID_DO:
{
tree expression;
/* Begin the do-statement. */
statement = begin_do_stmt ();
/* Parse the body of the do-statement. */
parser->in_statement = IN_ITERATION_STMT;
cp_parser_implicitly_scoped_statement (parser);
parser->in_statement = in_statement;
finish_do_body (statement);
/* Look for the `while' keyword. */
cp_parser_require_keyword (parser, RID_WHILE, "`while'");
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the expression. */
expression = cp_parser_expression (parser, /*cast_p=*/false);
/* We're done with the do-statement. */
finish_do_stmt (expression, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
break;
case RID_FOR:
{
tree condition = NULL_TREE;
tree expression = NULL_TREE;
/* Begin the for-statement. */
statement = begin_for_stmt ();
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the initialization. */
cp_parser_for_init_statement (parser);
finish_for_init_stmt (statement);
/* If there's a condition, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
condition = cp_parser_condition (parser);
finish_for_cond (condition, statement);
/* Look for the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* If there's an expression, process it. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
expression = cp_parser_expression (parser, /*cast_p=*/false);
finish_for_expr (expression, statement);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Parse the body of the for-statement. */
parser->in_statement = IN_ITERATION_STMT;
cp_parser_already_scoped_statement (parser);
parser->in_statement = in_statement;
/* We're done with the for-statement. */
finish_for_stmt (statement);
}
break;
default:
cp_parser_error (parser, "expected iteration-statement");
statement = error_mark_node;
break;
}
return statement;
}
/* Parse a for-init-statement.
for-init-statement:
expression-statement
simple-declaration */
static void
cp_parser_for_init_statement (cp_parser* parser)
{
/* If the next token is a `;', then we have an empty
expression-statement. Grammatically, this is also a
simple-declaration, but an invalid one, because it does not
declare anything. Therefore, if we did not handle this case
specially, we would issue an error message about an invalid
declaration. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
/* We're going to speculatively look for a declaration, falling back
to an expression, if necessary. */
cp_parser_parse_tentatively (parser);
/* Parse the declaration. */
cp_parser_simple_declaration (parser,
/*function_definition_allowed_p=*/false);
/* If the tentative parse failed, then we shall need to look for an
expression-statement. */
if (cp_parser_parse_definitely (parser))
return;
}
cp_parser_expression_statement (parser, false);
}
/* Parse a jump-statement.
jump-statement:
break ;
continue ;
return expression [opt] ;
goto identifier ;
GNU extension:
jump-statement:
goto * expression ;
Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
static tree
cp_parser_jump_statement (cp_parser* parser)
{
tree statement = error_mark_node;
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
if (!token)
return error_mark_node;
/* See what kind of keyword it is. */
keyword = token->keyword;
switch (keyword)
{
case RID_BREAK:
switch (parser->in_statement)
{
case 0:
error ("break statement not within loop or switch");
break;
default:
gcc_assert ((parser->in_statement & IN_SWITCH_STMT)
|| parser->in_statement == IN_ITERATION_STMT);
statement = finish_break_stmt ();
break;
case IN_OMP_BLOCK:
error ("invalid exit from OpenMP structured block");
break;
case IN_OMP_FOR:
error ("break statement used with OpenMP for loop");
break;
}
cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
break;
case RID_CONTINUE:
switch (parser->in_statement & ~IN_SWITCH_STMT)
{
case 0:
error ("continue statement not within a loop");
break;
case IN_ITERATION_STMT:
case IN_OMP_FOR:
statement = finish_continue_stmt ();
break;
case IN_OMP_BLOCK:
error ("invalid exit from OpenMP structured block");
break;
default:
gcc_unreachable ();
}
cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
break;
case RID_RETURN:
{
tree expr;
/* If the next token is a `;', then there is no
expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
expr = cp_parser_expression (parser, /*cast_p=*/false);
else
expr = NULL_TREE;
/* Build the return-statement. */
statement = finish_return_stmt (expr);
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
}
break;
case RID_GOTO:
/* Create the goto-statement. */
if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
{
/* Issue a warning about this use of a GNU extension. */
if (pedantic)
pedwarn ("ISO C++ forbids computed gotos");
/* Consume the '*' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the dependent expression. */
finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false));
}
else
finish_goto_stmt (cp_parser_identifier (parser));
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
break;
default:
cp_parser_error (parser, "expected jump-statement");
break;
}
return statement;
}
/* Parse a declaration-statement.
declaration-statement:
block-declaration */
static void
cp_parser_declaration_statement (cp_parser* parser)
{
void *p;
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
p = obstack_alloc (&declarator_obstack, 0);
/* Parse the block-declaration. */
cp_parser_block_declaration (parser, /*statement_p=*/true);
/* Free any declarators allocated. */
obstack_free (&declarator_obstack, p);
/* Finish off the statement. */
finish_stmt ();
}
/* Some dependent statements (like `if (cond) statement'), are
implicitly in their own scope. In other words, if the statement is
a single statement (as opposed to a compound-statement), it is
none-the-less treated as if it were enclosed in braces. Any
declarations appearing in the dependent statement are out of scope
after control passes that point. This function parses a statement,
but ensures that is in its own scope, even if it is not a
compound-statement.
Returns the new statement. */
static tree
cp_parser_implicitly_scoped_statement (cp_parser* parser)
{
tree statement;
/* Mark if () ; with a special NOP_EXPR. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
{
cp_lexer_consume_token (parser->lexer);
statement = add_stmt (build_empty_stmt ());
}
/* if a compound is opened, we simply parse the statement directly. */
else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
statement = cp_parser_compound_statement (parser, NULL, false);
/* If the token is not a `{', then we must take special action. */
else
{
/* Create a compound-statement. */
statement = begin_compound_stmt (0);
/* Parse the dependent-statement. */
cp_parser_statement (parser, NULL_TREE, false);
/* Finish the dummy compound-statement. */
finish_compound_stmt (statement);
}
/* Return the statement. */
return statement;
}
/* For some dependent statements (like `while (cond) statement'), we
have already created a scope. Therefore, even if the dependent
statement is a compound-statement, we do not want to create another
scope. */
static void
cp_parser_already_scoped_statement (cp_parser* parser)
{
/* If the token is a `{', then we must take special action. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
cp_parser_statement (parser, NULL_TREE, false);
else
{
/* Avoid calling cp_parser_compound_statement, so that we
don't create a new scope. Do everything else by hand. */
cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
cp_parser_statement_seq_opt (parser, NULL_TREE);
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
}
/* Declarations [gram.dcl.dcl] */
/* Parse an optional declaration-sequence.
declaration-seq:
declaration
declaration-seq declaration */
static void
cp_parser_declaration_seq_opt (cp_parser* parser)
{
while (true)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF
|| token->type == CPP_PRAGMA_EOL)
break;
if (token->type == CPP_SEMICOLON)
{
/* A declaration consisting of a single semicolon is
invalid. Allow it unless we're being pedantic. */
cp_lexer_consume_token (parser->lexer);
if (pedantic && !in_system_header)
pedwarn ("extra %<;%>");
continue;
}
/* If we're entering or exiting a region that's implicitly
extern "C", modify the lang context appropriately. */
if (!parser->implicit_extern_c && token->implicit_extern_c)
{
push_lang_context (lang_name_c);
parser->implicit_extern_c = true;
}
else if (parser->implicit_extern_c && !token->implicit_extern_c)
{
pop_lang_context ();
parser->implicit_extern_c = false;
}
if (token->type == CPP_PRAGMA)
{
/* A top-level declaration can consist solely of a #pragma.
A nested declaration cannot, so this is done here and not
in cp_parser_declaration. (A #pragma at block scope is
handled in cp_parser_statement.) */
cp_parser_pragma (parser, pragma_external);
continue;
}
/* Parse the declaration itself. */
cp_parser_declaration (parser);
}
}
/* Parse a declaration.
declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
GNU extension:
declaration:
__extension__ declaration */
static void
cp_parser_declaration (cp_parser* parser)
{
cp_token token1;
cp_token token2;
int saved_pedantic;
void *p;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_declaration (parser);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Try to figure out what kind of declaration is present. */
token1 = *cp_lexer_peek_token (parser->lexer);
if (token1.type != CPP_EOF)
token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
else
{
token2.type = CPP_EOF;
token2.keyword = RID_MAX;
}
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
p = obstack_alloc (&declarator_obstack, 0);
/* If the next token is `extern' and the following token is a string
literal, then we have a linkage specification. */
if (token1.keyword == RID_EXTERN
&& cp_parser_is_string_literal (&token2))
cp_parser_linkage_specification (parser);
/* If the next token is `template', then we have either a template
declaration, an explicit instantiation, or an explicit
specialization. */
else if (token1.keyword == RID_TEMPLATE)
{
/* `template <>' indicates a template specialization. */
if (token2.type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
cp_parser_explicit_specialization (parser);
/* `template <' indicates a template declaration. */
else if (token2.type == CPP_LESS)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* Anything else must be an explicit instantiation. */
else
cp_parser_explicit_instantiation (parser);
}
/* If the next token is `export', then we have a template
declaration. */
else if (token1.keyword == RID_EXPORT)
cp_parser_template_declaration (parser, /*member_p=*/false);
/* If the next token is `extern', 'static' or 'inline' and the one
after that is `template', we have a GNU extended explicit
instantiation directive. */
else if (cp_parser_allow_gnu_extensions_p (parser)
&& (token1.keyword == RID_EXTERN
|| token1.keyword == RID_STATIC
|| token1.keyword == RID_INLINE)
&& token2.keyword == RID_TEMPLATE)
cp_parser_explicit_instantiation (parser);
/* If the next token is `namespace', check for a named or unnamed
namespace definition. */
else if (token1.keyword == RID_NAMESPACE
&& (/* A named namespace definition. */
(token2.type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
!= CPP_EQ))
/* An unnamed namespace definition. */
|| token2.type == CPP_OPEN_BRACE
|| token2.keyword == RID_ATTRIBUTE))
cp_parser_namespace_definition (parser);
/* Objective-C++ declaration/definition. */
else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
cp_parser_objc_declaration (parser);
/* We must have either a block declaration or a function
definition. */
else
/* Try to parse a block-declaration, or a function-definition. */
cp_parser_block_declaration (parser, /*statement_p=*/false);
/* Free any declarators allocated. */
obstack_free (&declarator_obstack, p);
}
/* Parse a block-declaration.
block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
GNU Extension:
block-declaration:
__extension__ block-declaration
label-declaration
If STATEMENT_P is TRUE, then this block-declaration is occurring as
part of a declaration-statement. */
static void
cp_parser_block_declaration (cp_parser *parser,
bool statement_p)
{
cp_token *token1;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Parse the qualified declaration. */
cp_parser_block_declaration (parser, statement_p);
/* Restore the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Peek at the next token to figure out which kind of declaration is
present. */
token1 = cp_lexer_peek_token (parser->lexer);
/* If the next keyword is `asm', we have an asm-definition. */
if (token1->keyword == RID_ASM)
{
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
cp_parser_asm_definition (parser);
}
/* If the next keyword is `namespace', we have a
namespace-alias-definition. */
else if (token1->keyword == RID_NAMESPACE)
cp_parser_namespace_alias_definition (parser);
/* If the next keyword is `using', we have either a
using-declaration or a using-directive. */
else if (token1->keyword == RID_USING)
{
cp_token *token2;
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
/* If the token after `using' is `namespace', then we have a
using-directive. */
token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
if (token2->keyword == RID_NAMESPACE)
cp_parser_using_directive (parser);
/* Otherwise, it's a using-declaration. */
else
cp_parser_using_declaration (parser,
/*access_declaration_p=*/false);
}
/* If the next keyword is `__label__' we have a label declaration. */
else if (token1->keyword == RID_LABEL)
{
if (statement_p)
cp_parser_commit_to_tentative_parse (parser);
cp_parser_label_declaration (parser);
}
/* Anything else must be a simple-declaration. */
else
cp_parser_simple_declaration (parser, !statement_p);
}
/* Parse a simple-declaration.
simple-declaration:
decl-specifier-seq [opt] init-declarator-list [opt] ;
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
function-definition as a simple-declaration. */
static void
cp_parser_simple_declaration (cp_parser* parser,
bool function_definition_allowed_p)
{
cp_decl_specifier_seq decl_specifiers;
int declares_class_or_enum;
bool saw_declarator;
/* Defer access checks until we know what is being declared; the
checks for names appearing in the decl-specifier-seq should be
done as if we were in the scope of the thing being declared. */
push_deferring_access_checks (dk_deferred);
/* Parse the decl-specifier-seq. We have to keep track of whether
or not the decl-specifier-seq declares a named class or
enumeration type, since that is the only case in which the
init-declarator-list is allowed to be empty.
[dcl.dcl]
In a simple-declaration, the optional init-declarator-list can be
omitted only when declaring a class or enumeration, that is when
the decl-specifier-seq contains either a class-specifier, an
elaborated-type-specifier, or an enum-specifier. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&decl_specifiers,
&declares_class_or_enum);
/* We no longer need to defer access checks. */
stop_deferring_access_checks ();
/* In a block scope, a valid declaration must always have a
decl-specifier-seq. By not trying to parse declarators, we can
resolve the declaration/expression ambiguity more quickly. */
if (!function_definition_allowed_p
&& !decl_specifiers.any_specifiers_p)
{
cp_parser_error (parser, "expected declaration");
goto done;
}
/* If the next two tokens are both identifiers, the code is
erroneous. The usual cause of this situation is code like:
T t;
where "T" should name a type -- but does not. */
if (!decl_specifiers.type
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
{
/* If parsing tentatively, we should commit; we really are
looking at a declaration. */
cp_parser_commit_to_tentative_parse (parser);
/* Give up. */
goto done;
}
/* If we have seen at least one decl-specifier, and the next token
is not a parenthesis, then we must be looking at a declaration.
(After "int (" we might be looking at a functional cast.) */
if (decl_specifiers.any_specifiers_p
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
cp_parser_commit_to_tentative_parse (parser);
/* Keep going until we hit the `;' at the end of the simple
declaration. */
saw_declarator = false;
while (cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON))
{
cp_token *token;
bool function_definition_p;
tree decl;
if (saw_declarator)
{
/* If we are processing next declarator, coma is expected */
token = cp_lexer_peek_token (parser->lexer);
gcc_assert (token->type == CPP_COMMA);
cp_lexer_consume_token (parser->lexer);
}
else
saw_declarator = true;
/* Parse the init-declarator. */
decl = cp_parser_init_declarator (parser, &decl_specifiers,
/*checks=*/NULL,
function_definition_allowed_p,
/*member_p=*/false,
declares_class_or_enum,
&function_definition_p);
/* If an error occurred while parsing tentatively, exit quickly.
(That usually happens when in the body of a function; each
statement is treated as a declaration-statement until proven
otherwise.) */
if (cp_parser_error_occurred (parser))
goto done;
/* Handle function definitions specially. */
if (function_definition_p)
{
/* If the next token is a `,', then we are probably
processing something like:
void f() {}, *p;
which is erroneous. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
error ("mixing declarations and function-definitions is forbidden");
/* Otherwise, we're done with the list of declarators. */
else
{
pop_deferring_access_checks ();
return;
}
}
/* The next token should be either a `,' or a `;'. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `,', there are more declarators to come. */
if (token->type == CPP_COMMA)
/* will be consumed next time around */;
/* If it's a `;', we are done. */
else if (token->type == CPP_SEMICOLON)
break;
/* Anything else is an error. */
else
{
/* If we have already issued an error message we don't need
to issue another one. */
if (decl != error_mark_node
|| cp_parser_uncommitted_to_tentative_parse_p (parser))
cp_parser_error (parser, "expected %<,%> or %<;%>");
/* Skip tokens until we reach the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is now a `;', consume it. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
goto done;
}
/* After the first time around, a function-definition is not
allowed -- even if it was OK at first. For example:
int i, f() {}
is not valid. */
function_definition_allowed_p = false;
}
/* Issue an error message if no declarators are present, and the
decl-specifier-seq does not itself declare a class or
enumeration. */
if (!saw_declarator)
{
if (cp_parser_declares_only_class_p (parser))
shadow_tag (&decl_specifiers);
/* Perform any deferred access checks. */
perform_deferred_access_checks ();
}
/* Consume the `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
done:
pop_deferring_access_checks ();
}
/* Parse a decl-specifier-seq.
decl-specifier-seq:
decl-specifier-seq [opt] decl-specifier
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef
GNU Extension:
decl-specifier:
attributes
Set *DECL_SPECS to a representation of the decl-specifier-seq.
The parser flags FLAGS is used to control type-specifier parsing.
*DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
flags:
1: one of the decl-specifiers is an elaborated-type-specifier
(i.e., a type declaration)
2: one of the decl-specifiers is an enum-specifier or a
class-specifier (i.e., a type definition)
*/
static void
cp_parser_decl_specifier_seq (cp_parser* parser,
cp_parser_flags flags,
cp_decl_specifier_seq *decl_specs,
int* declares_class_or_enum)
{
bool constructor_possible_p = !parser->in_declarator_p;
/* Clear DECL_SPECS. */
clear_decl_specs (decl_specs);
/* Assume no class or enumeration type is declared. */
*declares_class_or_enum = 0;
/* Keep reading specifiers until there are no more to read. */
while (true)
{
bool constructor_p;
bool found_decl_spec;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Handle attributes. */
if (token->keyword == RID_ATTRIBUTE)
{
/* Parse the attributes. */
decl_specs->attributes
= chainon (decl_specs->attributes,
cp_parser_attributes_opt (parser));
continue;
}
/* Assume we will find a decl-specifier keyword. */
found_decl_spec = true;
/* If the next token is an appropriate keyword, we can simply
add it to the list. */
switch (token->keyword)
{
/* decl-specifier:
friend */
case RID_FRIEND:
if (!at_class_scope_p ())
{
error ("%<friend%> used outside of class");
cp_lexer_purge_token (parser->lexer);
}
else
{
++decl_specs->specs[(int) ds_friend];
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
break;
/* function-specifier:
inline
virtual
explicit */
case RID_INLINE:
case RID_VIRTUAL:
case RID_EXPLICIT:
cp_parser_function_specifier_opt (parser, decl_specs);
break;
/* decl-specifier:
typedef */
case RID_TYPEDEF:
++decl_specs->specs[(int) ds_typedef];
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
/* A constructor declarator cannot appear in a typedef. */
constructor_possible_p = false;
/* The "typedef" keyword can only occur in a declaration; we
may as well commit at this point. */
cp_parser_commit_to_tentative_parse (parser);
if (decl_specs->storage_class != sc_none)
decl_specs->conflicting_specifiers_p = true;
break;
/* storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
thread */
case RID_AUTO:
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
cp_parser_set_storage_class (parser, decl_specs, token->keyword);
break;
case RID_THREAD:
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
++decl_specs->specs[(int) ds_thread];
break;
default:
/* We did not yet find a decl-specifier yet. */
found_decl_spec = false;
break;
}
/* Constructors are a special case. The `S' in `S()' is not a
decl-specifier; it is the beginning of the declarator. */
constructor_p
= (!found_decl_spec
&& constructor_possible_p
&& (cp_parser_constructor_declarator_p
(parser, decl_specs->specs[(int) ds_friend] != 0)));
/* If we don't have a DECL_SPEC yet, then we must be looking at
a type-specifier. */
if (!found_decl_spec && !constructor_p)
{
int decl_spec_declares_class_or_enum;
bool is_cv_qualifier;
tree type_spec;
type_spec
= cp_parser_type_specifier (parser, flags,
decl_specs,
/*is_declaration=*/true,
&decl_spec_declares_class_or_enum,
&is_cv_qualifier);
*declares_class_or_enum |= decl_spec_declares_class_or_enum;
/* If this type-specifier referenced a user-defined type
(a typedef, class-name, etc.), then we can't allow any
more such type-specifiers henceforth.
[dcl.spec]
The longest sequence of decl-specifiers that could
possibly be a type name is taken as the
decl-specifier-seq of a declaration. The sequence shall
be self-consistent as described below.
[dcl.type]
As a general rule, at most one type-specifier is allowed
in the complete decl-specifier-seq of a declaration. The
only exceptions are the following:
-- const or volatile can be combined with any other
type-specifier.
-- signed or unsigned can be combined with char, long,
short, or int.
-- ..
Example:
typedef char* Pc;
void g (const int Pc);
Here, Pc is *not* part of the decl-specifier seq; it's
the declarator. Therefore, once we see a type-specifier
(other than a cv-qualifier), we forbid any additional
user-defined types. We *do* still allow things like `int
int' to be considered a decl-specifier-seq, and issue the
error message later. */
if (type_spec && !is_cv_qualifier)
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
/* A constructor declarator cannot follow a type-specifier. */
if (type_spec)
{
constructor_possible_p = false;
found_decl_spec = true;
}
}
/* If we still do not have a DECL_SPEC, then there are no more
decl-specifiers. */
if (!found_decl_spec)
break;
decl_specs->any_specifiers_p = true;
/* After we see one decl-specifier, further decl-specifiers are
always optional. */
flags |= CP_PARSER_FLAGS_OPTIONAL;
}
cp_parser_check_decl_spec (decl_specs);
/* Don't allow a friend specifier with a class definition. */
if (decl_specs->specs[(int) ds_friend] != 0
&& (*declares_class_or_enum & 2))
error ("class definition may not be declared a friend");
}
/* Parse an (optional) storage-class-specifier.
storage-class-specifier:
auto
register
static
extern
mutable
GNU Extension:
storage-class-specifier:
thread
Returns an IDENTIFIER_NODE corresponding to the keyword used. */
static tree
cp_parser_storage_class_specifier_opt (cp_parser* parser)
{
switch (cp_lexer_peek_token (parser->lexer)->keyword)
{
case RID_AUTO:
case RID_REGISTER:
case RID_STATIC:
case RID_EXTERN:
case RID_MUTABLE:
case RID_THREAD:
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->u.value;
default:
return NULL_TREE;
}
}
/* Parse an (optional) function-specifier.
function-specifier:
inline
virtual
explicit
Returns an IDENTIFIER_NODE corresponding to the keyword used.
Updates DECL_SPECS, if it is non-NULL. */
static tree
cp_parser_function_specifier_opt (cp_parser* parser,
cp_decl_specifier_seq *decl_specs)
{
switch (cp_lexer_peek_token (parser->lexer)->keyword)
{
case RID_INLINE:
if (decl_specs)
++decl_specs->specs[(int) ds_inline];
break;
case RID_VIRTUAL:
/* 14.5.2.3 [temp.mem]
A member function template shall not be virtual. */
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
error ("templates may not be %<virtual%>");
else if (decl_specs)
++decl_specs->specs[(int) ds_virtual];
break;
case RID_EXPLICIT:
if (decl_specs)
++decl_specs->specs[(int) ds_explicit];
break;
default:
return NULL_TREE;
}
/* Consume the token. */
return cp_lexer_consume_token (parser->lexer)->u.value;
}
/* Parse a linkage-specification.
linkage-specification:
extern string-literal { declaration-seq [opt] }
extern string-literal declaration */
static void
cp_parser_linkage_specification (cp_parser* parser)
{
tree linkage;
/* Look for the `extern' keyword. */
cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
/* Look for the string-literal. */
linkage = cp_parser_string_literal (parser, false, false);
/* Transform the literal into an identifier. If the literal is a
wide-character string, or contains embedded NULs, then we can't
handle it as the user wants. */
if (strlen (TREE_STRING_POINTER (linkage))
!= (size_t) (TREE_STRING_LENGTH (linkage) - 1))
{
cp_parser_error (parser, "invalid linkage-specification");
/* Assume C++ linkage. */
linkage = lang_name_cplusplus;
}
else
linkage = get_identifier (TREE_STRING_POINTER (linkage));
/* We're now using the new linkage. */
push_lang_context (linkage);
/* If the next token is a `{', then we're using the first
production. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
/* Consume the `{' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the declarations. */
cp_parser_declaration_seq_opt (parser);
/* Look for the closing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* Otherwise, there's just one declaration. */
else
{
bool saved_in_unbraced_linkage_specification_p;
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = true;
cp_parser_declaration (parser);
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
}
/* We're done with the linkage-specification. */
pop_lang_context ();
}
/* Special member functions [gram.special] */
/* Parse a conversion-function-id.
conversion-function-id:
operator conversion-type-id
Returns an IDENTIFIER_NODE representing the operator. */
static tree
cp_parser_conversion_function_id (cp_parser* parser)
{
tree type;
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
tree pushed_scope = NULL_TREE;
/* Look for the `operator' token. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
return error_mark_node;
/* When we parse the conversion-type-id, the current scope will be
reset. However, we need that information in able to look up the
conversion function later, so we save it here. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* We must enter the scope of the class so that the names of
entities declared within the class are available in the
conversion-type-id. For example, consider:
struct S {
typedef int I;
operator I();
};
S::operator I() { ... }
In order to see that `I' is a type-name in the definition, we
must be in the scope of `S'. */
if (saved_scope)
pushed_scope = push_scope (saved_scope);
/* Parse the conversion-type-id. */
type = cp_parser_conversion_type_id (parser);
/* Leave the scope of the class, if any. */
if (pushed_scope)
pop_scope (pushed_scope);
/* Restore the saved scope. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
/* If the TYPE is invalid, indicate failure. */
if (type == error_mark_node)
return error_mark_node;
return mangle_conv_op_name_for_type (type);
}
/* Parse a conversion-type-id:
conversion-type-id:
type-specifier-seq conversion-declarator [opt]
Returns the TYPE specified. */
static tree
cp_parser_conversion_type_id (cp_parser* parser)
{
tree attributes;
cp_decl_specifier_seq type_specifiers;
cp_declarator *declarator;
tree type_specified;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* Parse the type-specifiers. */
cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
&type_specifiers);
/* If that didn't work, stop. */
if (type_specifiers.type == error_mark_node)
return error_mark_node;
/* Parse the conversion-declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
/*initialized=*/0, &attributes);
if (attributes)
cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
return type_specified;
}
/* Parse an (optional) conversion-declarator.
conversion-declarator:
ptr-operator conversion-declarator [opt]
*/
static cp_declarator *
cp_parser_conversion_declarator_opt (cp_parser* parser)
{
enum tree_code code;
tree class_type;
cp_cv_quals cv_quals;
/* We don't know if there's a ptr-operator next, or not. */
cp_parser_parse_tentatively (parser);
/* Try the ptr-operator. */
code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
/* If it worked, look for more conversion-declarators. */
if (cp_parser_parse_definitely (parser))
{
cp_declarator *declarator;
/* Parse another optional declarator. */
declarator = cp_parser_conversion_declarator_opt (parser);
/* Create the representation of the declarator. */
if (class_type)
declarator = make_ptrmem_declarator (cv_quals, class_type,
declarator);
else if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_quals, declarator);
else
declarator = make_reference_declarator (cv_quals, declarator);
return declarator;
}
return NULL;
}
/* Parse an (optional) ctor-initializer.
ctor-initializer:
: mem-initializer-list
Returns TRUE iff the ctor-initializer was actually present. */
static bool
cp_parser_ctor_initializer_opt (cp_parser* parser)
{
/* If the next token is not a `:', then there is no
ctor-initializer. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
{
/* Do default initialization of any bases and members. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (NULL_TREE);
return false;
}
/* Consume the `:' token. */
cp_lexer_consume_token (parser->lexer);
/* And the mem-initializer-list. */
cp_parser_mem_initializer_list (parser);
return true;
}
/* Parse a mem-initializer-list.
mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list */
static void
cp_parser_mem_initializer_list (cp_parser* parser)
{
tree mem_initializer_list = NULL_TREE;
/* Let the semantic analysis code know that we are starting the
mem-initializer-list. */
if (!DECL_CONSTRUCTOR_P (current_function_decl))
error ("only constructors take base initializers");
/* Loop through the list. */
while (true)
{
tree mem_initializer;
/* Parse the mem-initializer. */
mem_initializer = cp_parser_mem_initializer (parser);
/* Add it to the list, unless it was erroneous. */
if (mem_initializer != error_mark_node)
{
TREE_CHAIN (mem_initializer) = mem_initializer_list;
mem_initializer_list = mem_initializer;
}
/* If the next token is not a `,', we're done. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
/* Perform semantic analysis. */
if (DECL_CONSTRUCTOR_P (current_function_decl))
finish_mem_initializers (mem_initializer_list);
}
/* Parse a mem-initializer.
mem-initializer:
mem-initializer-id ( expression-list [opt] )
GNU extension:
mem-initializer:
( expression-list [opt] )
Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
class) or FIELD_DECL (for a non-static data member) to initialize;
the TREE_VALUE is the expression-list. An empty initialization
list is represented by void_list_node. */
static tree
cp_parser_mem_initializer (cp_parser* parser)
{
tree mem_initializer_id;
tree expression_list;
tree member;
/* Find out what is being initialized. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
pedwarn ("anachronistic old-style base class initializer");
mem_initializer_id = NULL_TREE;
}
else
mem_initializer_id = cp_parser_mem_initializer_id (parser);
member = expand_member_init (mem_initializer_id);
if (member && !DECL_P (member))
in_base_initializer = 1;
expression_list
= cp_parser_parenthesized_expression_list (parser, false,
/*cast_p=*/false,
/*non_constant_p=*/NULL);
if (expression_list == error_mark_node)
return error_mark_node;
if (!expression_list)
expression_list = void_type_node;
in_base_initializer = 0;
return member ? build_tree_list (member, expression_list) : error_mark_node;
}
/* Parse a mem-initializer-id.
mem-initializer-id:
:: [opt] nested-name-specifier [opt] class-name
identifier
Returns a TYPE indicating the class to be initializer for the first
production. Returns an IDENTIFIER_NODE indicating the data member
to be initialized for the second production. */
static tree
cp_parser_mem_initializer_id (cp_parser* parser)
{
bool global_scope_p;
bool nested_name_specifier_p;
bool template_p = false;
tree id;
/* `typename' is not allowed in this context ([temp.res]). */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
{
error ("keyword %<typename%> not allowed in this context (a qualified "
"member initializer is implicitly a type)");
cp_lexer_consume_token (parser->lexer);
}
/* Look for the optional `::' operator. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the optional nested-name-specifier. The simplest way to
implement:
[temp.res]
The keyword `typename' is not permitted in a base-specifier or
mem-initializer; in these contexts a qualified name that
depends on a template-parameter is implicitly assumed to be a
type name.
is to assume that we have seen the `typename' keyword at this
point. */
nested_name_specifier_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true,
/*is_declaration=*/true)
!= NULL_TREE);
if (nested_name_specifier_p)
template_p = cp_parser_optional_template_keyword (parser);
/* If there is a `::' operator or a nested-name-specifier, then we
are definitely looking for a class-name. */
if (global_scope_p || nested_name_specifier_p)
return cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/template_p,
none_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/true);
/* Otherwise, we could also be looking for an ordinary identifier. */
cp_parser_parse_tentatively (parser);
/* Try a class-name. */
id = cp_parser_class_name (parser,
/*typename_keyword_p=*/true,
/*template_keyword_p=*/false,
none_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/true);
/* If we found one, we're done. */
if (cp_parser_parse_definitely (parser))
return id;
/* Otherwise, look for an ordinary identifier. */
return cp_parser_identifier (parser);
}
/* Overloading [gram.over] */
/* Parse an operator-function-id.
operator-function-id:
operator operator
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static tree
cp_parser_operator_function_id (cp_parser* parser)
{
/* Look for the `operator' keyword. */
if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
return error_mark_node;
/* And then the name of the operator itself. */
return cp_parser_operator (parser);
}
/* Parse an operator.
operator:
new delete new[] delete[] + - * / % ^ & | ~ ! = < >
+= -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
|| ++ -- , ->* -> () []
GNU Extensions:
operator:
<? >? <?= >?=
Returns an IDENTIFIER_NODE for the operator which is a
human-readable spelling of the identifier, e.g., `operator +'. */
static tree
cp_parser_operator (cp_parser* parser)
{
tree id = NULL_TREE;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Figure out which operator we have. */
switch (token->type)
{
case CPP_KEYWORD:
{
enum tree_code op;
/* The keyword should be either `new' or `delete'. */
if (token->keyword == RID_NEW)
op = NEW_EXPR;
else if (token->keyword == RID_DELETE)
op = DELETE_EXPR;
else
break;
/* Consume the `new' or `delete' token. */
cp_lexer_consume_token (parser->lexer);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `[' token then this is the array variant of the
operator. */
if (token->type == CPP_OPEN_SQUARE)
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `]' token. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
id = ansi_opname (op == NEW_EXPR
? VEC_NEW_EXPR : VEC_DELETE_EXPR);
}
/* Otherwise, we have the non-array variant. */
else
id = ansi_opname (op);
return id;
}
case CPP_PLUS:
id = ansi_opname (PLUS_EXPR);
break;
case CPP_MINUS:
id = ansi_opname (MINUS_EXPR);
break;
case CPP_MULT:
id = ansi_opname (MULT_EXPR);
break;
case CPP_DIV:
id = ansi_opname (TRUNC_DIV_EXPR);
break;
case CPP_MOD:
id = ansi_opname (TRUNC_MOD_EXPR);
break;
case CPP_XOR:
id = ansi_opname (BIT_XOR_EXPR);
break;
case CPP_AND:
id = ansi_opname (BIT_AND_EXPR);
break;
case CPP_OR:
id = ansi_opname (BIT_IOR_EXPR);
break;
case CPP_COMPL:
id = ansi_opname (BIT_NOT_EXPR);
break;
case CPP_NOT:
id = ansi_opname (TRUTH_NOT_EXPR);
break;
case CPP_EQ:
id = ansi_assopname (NOP_EXPR);
break;
case CPP_LESS:
id = ansi_opname (LT_EXPR);
break;
case CPP_GREATER:
id = ansi_opname (GT_EXPR);
break;
case CPP_PLUS_EQ:
id = ansi_assopname (PLUS_EXPR);
break;
case CPP_MINUS_EQ:
id = ansi_assopname (MINUS_EXPR);
break;
case CPP_MULT_EQ:
id = ansi_assopname (MULT_EXPR);
break;
case CPP_DIV_EQ:
id = ansi_assopname (TRUNC_DIV_EXPR);
break;
case CPP_MOD_EQ:
id = ansi_assopname (TRUNC_MOD_EXPR);
break;
case CPP_XOR_EQ:
id = ansi_assopname (BIT_XOR_EXPR);
break;
case CPP_AND_EQ:
id = ansi_assopname (BIT_AND_EXPR);
break;
case CPP_OR_EQ:
id = ansi_assopname (BIT_IOR_EXPR);
break;
case CPP_LSHIFT:
id = ansi_opname (LSHIFT_EXPR);
break;
case CPP_RSHIFT:
id = ansi_opname (RSHIFT_EXPR);
break;
case CPP_LSHIFT_EQ:
id = ansi_assopname (LSHIFT_EXPR);
break;
case CPP_RSHIFT_EQ:
id = ansi_assopname (RSHIFT_EXPR);
break;
case CPP_EQ_EQ:
id = ansi_opname (EQ_EXPR);
break;
case CPP_NOT_EQ:
id = ansi_opname (NE_EXPR);
break;
case CPP_LESS_EQ:
id = ansi_opname (LE_EXPR);
break;
case CPP_GREATER_EQ:
id = ansi_opname (GE_EXPR);
break;
case CPP_AND_AND:
id = ansi_opname (TRUTH_ANDIF_EXPR);
break;
case CPP_OR_OR:
id = ansi_opname (TRUTH_ORIF_EXPR);
break;
case CPP_PLUS_PLUS:
id = ansi_opname (POSTINCREMENT_EXPR);
break;
case CPP_MINUS_MINUS:
id = ansi_opname (PREDECREMENT_EXPR);
break;
case CPP_COMMA:
id = ansi_opname (COMPOUND_EXPR);
break;
case CPP_DEREF_STAR:
id = ansi_opname (MEMBER_REF);
break;
case CPP_DEREF:
id = ansi_opname (COMPONENT_REF);
break;
case CPP_OPEN_PAREN:
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Look for the matching `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return ansi_opname (CALL_EXPR);
case CPP_OPEN_SQUARE:
/* Consume the `['. */
cp_lexer_consume_token (parser->lexer);
/* Look for the matching `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
return ansi_opname (ARRAY_REF);
default:
/* Anything else is an error. */
break;
}
/* If we have selected an identifier, we need to consume the
operator token. */
if (id)
cp_lexer_consume_token (parser->lexer);
/* Otherwise, no valid operator name was present. */
else
{
cp_parser_error (parser, "expected operator");
id = error_mark_node;
}
return id;
}
/* Parse a template-declaration.
template-declaration:
export [opt] template < template-parameter-list > declaration
If MEMBER_P is TRUE, this template-declaration occurs within a
class-specifier.
The grammar rule given by the standard isn't correct. What
is really meant is:
template-declaration:
export [opt] template-parameter-list-seq
decl-specifier-seq [opt] init-declarator [opt] ;
export [opt] template-parameter-list-seq
function-definition
template-parameter-list-seq:
template-parameter-list-seq [opt]
template < template-parameter-list > */
static void
cp_parser_template_declaration (cp_parser* parser, bool member_p)
{
/* Check for `export'. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
{
/* Consume the `export' token. */
cp_lexer_consume_token (parser->lexer);
/* Warn that we do not support `export'. */
warning (0, "keyword %<export%> not implemented, and will be ignored");
}
cp_parser_template_declaration_after_export (parser, member_p);
}
/* Parse a template-parameter-list.
template-parameter-list:
template-parameter
template-parameter-list , template-parameter
Returns a TREE_LIST. Each node represents a template parameter.
The nodes are connected via their TREE_CHAINs. */
static tree
cp_parser_template_parameter_list (cp_parser* parser)
{
tree parameter_list = NULL_TREE;
begin_template_parm_list ();
while (true)
{
tree parameter;
cp_token *token;
bool is_non_type;
/* Parse the template-parameter. */
parameter = cp_parser_template_parameter (parser, &is_non_type);
/* Add it to the list. */
if (parameter != error_mark_node)
parameter_list = process_template_parm (parameter_list,
parameter,
is_non_type);
else
{
tree err_parm = build_tree_list (parameter, parameter);
TREE_VALUE (err_parm) = error_mark_node;
parameter_list = chainon (parameter_list, err_parm);
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `,', we're done. */
if (token->type != CPP_COMMA)
break;
/* Otherwise, consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return end_template_parm_list (parameter_list);
}
/* Parse a template-parameter.
template-parameter:
type-parameter
parameter-declaration
If all goes well, returns a TREE_LIST. The TREE_VALUE represents
the parameter. The TREE_PURPOSE is the default value, if any.
Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
iff this parameter is a non-type parameter. */
static tree
cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
{
cp_token *token;
cp_parameter_declarator *parameter_declarator;
tree parm;
/* Assume it is a type parameter or a template parameter. */
*is_non_type = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it is `class' or `template', we have a type-parameter. */
if (token->keyword == RID_TEMPLATE)
return cp_parser_type_parameter (parser);
/* If it is `class' or `typename' we do not know yet whether it is a
type parameter or a non-type parameter. Consider:
template <typename T, typename T::X X> ...
or:
template <class C, class D*> ...
Here, the first parameter is a type parameter, and the second is
a non-type parameter. We can tell by looking at the token after
the identifier -- if it is a `,', `=', or `>' then we have a type
parameter. */
if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
{
/* Peek at the token after `class' or `typename'. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If it's an identifier, skip it. */
if (token->type == CPP_NAME)
token = cp_lexer_peek_nth_token (parser->lexer, 3);
/* Now, see if the token looks like the end of a template
parameter. */
if (token->type == CPP_COMMA
|| token->type == CPP_EQ
|| token->type == CPP_GREATER)
return cp_parser_type_parameter (parser);
}
/* Otherwise, it is a non-type parameter.
[temp.param]
When parsing a default template-argument for a non-type
template-parameter, the first non-nested `>' is taken as the end
of the template parameter-list rather than a greater-than
operator. */
*is_non_type = true;
parameter_declarator
= cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
/*parenthesized_p=*/NULL);
parm = grokdeclarator (parameter_declarator->declarator,
¶meter_declarator->decl_specifiers,
PARM, /*initialized=*/0,
/*attrlist=*/NULL);
if (parm == error_mark_node)
return error_mark_node;
return build_tree_list (parameter_declarator->default_argument, parm);
}
/* Parse a type-parameter.
type-parameter:
class identifier [opt]
class identifier [opt] = type-id
typename identifier [opt]
typename identifier [opt] = type-id
template < template-parameter-list > class identifier [opt]
template < template-parameter-list > class identifier [opt]
= id-expression
Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
the declaration of the parameter. */
static tree
cp_parser_type_parameter (cp_parser* parser)
{
cp_token *token;
tree parameter;
/* Look for a keyword to tell us what kind of parameter this is. */
token = cp_parser_require (parser, CPP_KEYWORD,
"`class', `typename', or `template'");
if (!token)
return error_mark_node;
switch (token->keyword)
{
case RID_CLASS:
case RID_TYPENAME:
{
tree identifier;
tree default_argument;
/* If the next token is an identifier, then it names the
parameter. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Create the parameter. */
parameter = finish_template_type_parm (class_type_node, identifier);
/* If the next token is an `=', we have a default argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* Consume the `=' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the default-argument. */
push_deferring_access_checks (dk_no_deferred);
default_argument = cp_parser_type_id (parser);
pop_deferring_access_checks ();
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
case RID_TEMPLATE:
{
tree parameter_list;
tree identifier;
tree default_argument;
/* Look for the `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Parse the template-parameter-list. */
parameter_list = cp_parser_template_parameter_list (parser);
/* Look for the `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* Look for the `class' keyword. */
cp_parser_require_keyword (parser, RID_CLASS, "`class'");
/* If the next token is an `=', then there is a
default-argument. If the next token is a `>', we are at
the end of the parameter-list. If the next token is a `,',
then we are at the end of this parameter. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
{
identifier = cp_parser_identifier (parser);
/* Treat invalid names as if the parameter were nameless. */
if (identifier == error_mark_node)
identifier = NULL_TREE;
}
else
identifier = NULL_TREE;
/* Create the template parameter. */
parameter = finish_template_template_parm (class_type_node,
identifier);
/* If the next token is an `=', then there is a
default-argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
bool is_template;
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* Parse the id-expression. */
push_deferring_access_checks (dk_no_deferred);
default_argument
= cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/&is_template,
/*declarator_p=*/false,
/*optional_p=*/false);
if (TREE_CODE (default_argument) == TYPE_DECL)
/* If the id-expression was a template-id that refers to
a template-class, we already have the declaration here,
so no further lookup is needed. */
;
else
/* Look up the name. */
default_argument
= cp_parser_lookup_name (parser, default_argument,
none_type,
/*is_template=*/is_template,
/*is_namespace=*/false,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL);
/* See if the default argument is valid. */
default_argument
= check_template_template_default_arg (default_argument);
pop_deferring_access_checks ();
}
else
default_argument = NULL_TREE;
/* Create the combined representation of the parameter and the
default argument. */
parameter = build_tree_list (default_argument, parameter);
}
break;
default:
gcc_unreachable ();
break;
}
return parameter;
}
/* Parse a template-id.
template-id:
template-name < template-argument-list [opt] >
If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
`template' keyword. In this case, a TEMPLATE_ID_EXPR will be
returned. Otherwise, if the template-name names a function, or set
of functions, returns a TEMPLATE_ID_EXPR. If the template-name
names a class, returns a TYPE_DECL for the specialization.
If CHECK_DEPENDENCY_P is FALSE, names are looked up in
uninstantiated templates. */
static tree
cp_parser_template_id (cp_parser *parser,
bool template_keyword_p,
bool check_dependency_p,
bool is_declaration)
{
int i;
tree template;
tree arguments;
tree template_id;
cp_token_position start_of_id = 0;
deferred_access_check *chk;
VEC (deferred_access_check,gc) *access_check;
cp_token *next_token, *next_token_2;
bool is_identifier;
/* If the next token corresponds to a template-id, there is no need
to reparse it. */
next_token = cp_lexer_peek_token (parser->lexer);
if (next_token->type == CPP_TEMPLATE_ID)
{
struct tree_check *check_value;
/* Get the stored value. */
check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
/* Perform any access checks that were deferred. */
access_check = check_value->checks;
if (access_check)
{
for (i = 0 ;
VEC_iterate (deferred_access_check, access_check, i, chk) ;
++i)
{
perform_or_defer_access_check (chk->binfo,
chk->decl,
chk->diag_decl);
}
}
/* Return the stored value. */
return check_value->value;
}
/* Avoid performing name lookup if there is no possibility of
finding a template-id. */
if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
|| (next_token->type == CPP_NAME
&& !cp_parser_nth_token_starts_template_argument_list_p
(parser, 2)))
{
cp_parser_error (parser, "expected template-id");
return error_mark_node;
}
/* Remember where the template-id starts. */
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
start_of_id = cp_lexer_token_position (parser->lexer, false);
push_deferring_access_checks (dk_deferred);
/* Parse the template-name. */
is_identifier = false;
template = cp_parser_template_name (parser, template_keyword_p,
check_dependency_p,
is_declaration,
&is_identifier);
if (template == error_mark_node || is_identifier)
{
pop_deferring_access_checks ();
return template;
}
/* If we find the sequence `[:' after a template-name, it's probably
a digraph-typo for `< ::'. Substitute the tokens and check if we can
parse correctly the argument list. */
next_token = cp_lexer_peek_token (parser->lexer);
next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
if (next_token->type == CPP_OPEN_SQUARE
&& next_token->flags & DIGRAPH
&& next_token_2->type == CPP_COLON
&& !(next_token_2->flags & PREV_WHITE))
{
cp_parser_parse_tentatively (parser);
/* Change `:' into `::'. */
next_token_2->type = CPP_SCOPE;
/* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
CPP_LESS. */
cp_lexer_consume_token (parser->lexer);
/* Parse the arguments. */
arguments = cp_parser_enclosed_template_argument_list (parser);
if (!cp_parser_parse_definitely (parser))
{
/* If we couldn't parse an argument list, then we revert our changes
and return simply an error. Maybe this is not a template-id
after all. */
next_token_2->type = CPP_COLON;
cp_parser_error (parser, "expected %<<%>");
pop_deferring_access_checks ();
return error_mark_node;
}
/* Otherwise, emit an error about the invalid digraph, but continue
parsing because we got our argument list. */
pedwarn ("%<<::%> cannot begin a template-argument list");
inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
"between %<<%> and %<::%>");
if (!flag_permissive)
{
static bool hint;
if (!hint)
{
inform ("(if you use -fpermissive G++ will accept your code)");
hint = true;
}
}
}
else
{
/* Look for the `<' that starts the template-argument-list. */
if (!cp_parser_require (parser, CPP_LESS, "`<'"))
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* Parse the arguments. */
arguments = cp_parser_enclosed_template_argument_list (parser);
}
/* Build a representation of the specialization. */
if (TREE_CODE (template) == IDENTIFIER_NODE)
template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
else if (DECL_CLASS_TEMPLATE_P (template)
|| DECL_TEMPLATE_TEMPLATE_PARM_P (template))
{
bool entering_scope;
/* In "template <typename T> ... A<T>::", A<T> is the abstract A
template (rather than some instantiation thereof) only if
is not nested within some other construct. For example, in
"template <typename T> void f(T) { A<T>::", A<T> is just an
instantiation of A. */
entering_scope = (template_parm_scope_p ()
&& cp_lexer_next_token_is (parser->lexer,
CPP_SCOPE));
template_id
= finish_template_type (template, arguments, entering_scope);
}
else
{
/* If it's not a class-template or a template-template, it should be
a function-template. */
gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
|| TREE_CODE (template) == OVERLOAD
|| BASELINK_P (template)));
template_id = lookup_template_function (template, arguments);
}
/* If parsing tentatively, replace the sequence of tokens that makes
up the template-id with a CPP_TEMPLATE_ID token. That way,
should we re-parse the token stream, we will not have to repeat
the effort required to do the parse, nor will we issue duplicate
error messages about problems during instantiation of the
template. */
if (start_of_id)
{
cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
/* Reset the contents of the START_OF_ID token. */
token->type = CPP_TEMPLATE_ID;
/* Retrieve any deferred checks. Do not pop this access checks yet
so the memory will not be reclaimed during token replacing below. */
token->u.tree_check_value = GGC_CNEW (struct tree_check);
token->u.tree_check_value->value = template_id;
token->u.tree_check_value->checks = get_deferred_access_checks ();
token->keyword = RID_MAX;
/* Purge all subsequent tokens. */
cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
/* ??? Can we actually assume that, if template_id ==
error_mark_node, we will have issued a diagnostic to the
user, as opposed to simply marking the tentative parse as
failed? */
if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
error ("parse error in template argument list");
}
pop_deferring_access_checks ();
return template_id;
}
/* Parse a template-name.
template-name:
identifier
The standard should actually say:
template-name:
identifier
operator-function-id
A defect report has been filed about this issue.
A conversion-function-id cannot be a template name because they cannot
be part of a template-id. In fact, looking at this code:
a.operator K<int>()
the conversion-function-id is "operator K<int>", and K<int> is a type-id.
It is impossible to call a templated conversion-function-id with an
explicit argument list, since the only allowed template parameter is
the type to which it is converting.
If TEMPLATE_KEYWORD_P is true, then we have just seen the
`template' keyword, in a construction like:
T::template f<3>()
In that case `f' is taken to be a template-name, even though there
is no way of knowing for sure.
Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
name refers to a set of overloaded functions, at least one of which
is a template, or an IDENTIFIER_NODE with the name of the template,
if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
names are looked up inside uninstantiated templates. */
static tree
cp_parser_template_name (cp_parser* parser,
bool template_keyword_p,
bool check_dependency_p,
bool is_declaration,
bool *is_identifier)
{
tree identifier;
tree decl;
tree fns;
/* If the next token is `operator', then we have either an
operator-function-id or a conversion-function-id. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
{
/* We don't know whether we're looking at an
operator-function-id or a conversion-function-id. */
cp_parser_parse_tentatively (parser);
/* Try an operator-function-id. */
identifier = cp_parser_operator_function_id (parser);
/* If that didn't work, try a conversion-function-id. */
if (!cp_parser_parse_definitely (parser))
{
cp_parser_error (parser, "expected template-name");
return error_mark_node;
}
}
/* Look for the identifier. */
else
identifier = cp_parser_identifier (parser);
/* If we didn't find an identifier, we don't have a template-id. */
if (identifier == error_mark_node)
return error_mark_node;
/* If the name immediately followed the `template' keyword, then it
is a template-name. However, if the next token is not `<', then
we do not treat it as a template-name, since it is not being used
as part of a template-id. This enables us to handle constructs
like:
template <typename T> struct S { S(); };
template <typename T> S<T>::S();
correctly. We would treat `S' as a template -- if it were `S<T>'
-- but we do not if there is no `<'. */
if (processing_template_decl
&& cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
{
/* In a declaration, in a dependent context, we pretend that the
"template" keyword was present in order to improve error
recovery. For example, given:
template <typename T> void f(T::X<int>);
we want to treat "X<int>" as a template-id. */
if (is_declaration
&& !template_keyword_p
&& parser->scope && TYPE_P (parser->scope)
&& check_dependency_p
&& dependent_type_p (parser->scope)
/* Do not do this for dtors (or ctors), since they never
need the template keyword before their name. */
&& !constructor_name_p (identifier, parser->scope))
{
cp_token_position start = 0;
/* Explain what went wrong. */
error ("non-template %qD used as template", identifier);
inform ("use %<%T::template %D%> to indicate that it is a template",
parser->scope, identifier);
/* If parsing tentatively, find the location of the "<" token. */
if (cp_parser_simulate_error (parser))
start = cp_lexer_token_position (parser->lexer, true);
/* Parse the template arguments so that we can issue error
messages about them. */
cp_lexer_consume_token (parser->lexer);
cp_parser_enclosed_template_argument_list (parser);
/* Skip tokens until we find a good place from which to
continue parsing. */
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/false);
/* If parsing tentatively, permanently remove the
template argument list. That will prevent duplicate
error messages from being issued about the missing
"template" keyword. */
if (start)
cp_lexer_purge_tokens_after (parser->lexer, start);
if (is_identifier)
*is_identifier = true;
return identifier;
}
/* If the "template" keyword is present, then there is generally
no point in doing name-lookup, so we just return IDENTIFIER.
But, if the qualifying scope is non-dependent then we can
(and must) do name-lookup normally. */
if (template_keyword_p
&& (!parser->scope
|| (TYPE_P (parser->scope)
&& dependent_type_p (parser->scope))))
return identifier;
}
/* Look up the name. */
decl = cp_parser_lookup_name (parser, identifier,
none_type,
/*is_template=*/false,
/*is_namespace=*/false,
check_dependency_p,
/*ambiguous_decls=*/NULL);
decl = maybe_get_template_decl_from_type_decl (decl);
/* If DECL is a template, then the name was a template-name. */
if (TREE_CODE (decl) == TEMPLATE_DECL)
;
else
{
tree fn = NULL_TREE;
/* The standard does not explicitly indicate whether a name that
names a set of overloaded declarations, some of which are
templates, is a template-name. However, such a name should
be a template-name; otherwise, there is no way to form a
template-id for the overloaded templates. */
fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
if (TREE_CODE (fns) == OVERLOAD)
for (fn = fns; fn; fn = OVL_NEXT (fn))
if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
break;
if (!fn)
{
/* The name does not name a template. */
cp_parser_error (parser, "expected template-name");
return error_mark_node;
}
}
/* If DECL is dependent, and refers to a function, then just return
its name; we will look it up again during template instantiation. */
if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
{
tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
if (TYPE_P (scope) && dependent_type_p (scope))
return identifier;
}
return decl;
}
/* Parse a template-argument-list.
template-argument-list:
template-argument
template-argument-list , template-argument
Returns a TREE_VEC containing the arguments. */
static tree
cp_parser_template_argument_list (cp_parser* parser)
{
tree fixed_args[10];
unsigned n_args = 0;
unsigned alloced = 10;
tree *arg_ary = fixed_args;
tree vec;
bool saved_in_template_argument_list_p;
bool saved_ice_p;
bool saved_non_ice_p;
saved_in_template_argument_list_p = parser->in_template_argument_list_p;
parser->in_template_argument_list_p = true;
/* Even if the template-id appears in an integral
constant-expression, the contents of the argument list do
not. */
saved_ice_p = parser->integral_constant_expression_p;
parser->integral_constant_expression_p = false;
saved_non_ice_p = parser->non_integral_constant_expression_p;
parser->non_integral_constant_expression_p = false;
/* Parse the arguments. */
do
{
tree argument;
if (n_args)
/* Consume the comma. */
cp_lexer_consume_token (parser->lexer);
/* Parse the template-argument. */
argument = cp_parser_template_argument (parser);
if (n_args == alloced)
{
alloced *= 2;
if (arg_ary == fixed_args)
{
arg_ary = XNEWVEC (tree, alloced);
memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
}
else
arg_ary = XRESIZEVEC (tree, arg_ary, alloced);
}
arg_ary[n_args++] = argument;
}
while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
vec = make_tree_vec (n_args);
while (n_args--)
TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
if (arg_ary != fixed_args)
free (arg_ary);
parser->non_integral_constant_expression_p = saved_non_ice_p;
parser->integral_constant_expression_p = saved_ice_p;
parser->in_template_argument_list_p = saved_in_template_argument_list_p;
return vec;
}
/* Parse a template-argument.
template-argument:
assignment-expression
type-id
id-expression
The representation is that of an assignment-expression, type-id, or
id-expression -- except that the qualified id-expression is
evaluated, so that the value returned is either a DECL or an
OVERLOAD.
Although the standard says "assignment-expression", it forbids
throw-expressions or assignments in the template argument.
Therefore, we use "conditional-expression" instead. */
static tree
cp_parser_template_argument (cp_parser* parser)
{
tree argument;
bool template_p;
bool address_p;
bool maybe_type_id = false;
cp_token *token;
cp_id_kind idk;
/* There's really no way to know what we're looking at, so we just
try each alternative in order.
[temp.arg]
In a template-argument, an ambiguity between a type-id and an
expression is resolved to a type-id, regardless of the form of
the corresponding template-parameter.
Therefore, we try a type-id first. */
cp_parser_parse_tentatively (parser);
argument = cp_parser_type_id (parser);
/* If there was no error parsing the type-id but the next token is a '>>',
we probably found a typo for '> >'. But there are type-id which are
also valid expressions. For instance:
struct X { int operator >> (int); };
template <int V> struct Foo {};
Foo<X () >> 5> r;
Here 'X()' is a valid type-id of a function type, but the user just
wanted to write the expression "X() >> 5". Thus, we remember that we
found a valid type-id, but we still try to parse the argument as an
expression to see what happens. */
if (!cp_parser_error_occurred (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
{
maybe_type_id = true;
cp_parser_abort_tentative_parse (parser);
}
else
{
/* If the next token isn't a `,' or a `>', then this argument wasn't
really finished. This means that the argument is not a valid
type-id. */
if (!cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_error (parser, "expected template-argument");
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
return argument;
}
/* We're still not sure what the argument will be. */
cp_parser_parse_tentatively (parser);
/* Try a template. */
argument = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
&template_p,
/*declarator_p=*/false,
/*optional_p=*/false);
/* If the next token isn't a `,' or a `>', then this argument wasn't
really finished. */
if (!cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_error (parser, "expected template-argument");
if (!cp_parser_error_occurred (parser))
{
/* Figure out what is being referred to. If the id-expression
was for a class template specialization, then we will have a
TYPE_DECL at this point. There is no need to do name lookup
at this point in that case. */
if (TREE_CODE (argument) != TYPE_DECL)
argument = cp_parser_lookup_name (parser, argument,
none_type,
/*is_template=*/template_p,
/*is_namespace=*/false,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL);
if (TREE_CODE (argument) != TEMPLATE_DECL
&& TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
cp_parser_error (parser, "expected template-name");
}
if (cp_parser_parse_definitely (parser))
return argument;
/* It must be a non-type argument. There permitted cases are given
in [temp.arg.nontype]:
-- an integral constant-expression of integral or enumeration
type; or
-- the name of a non-type template-parameter; or
-- the name of an object or function with external linkage...
-- the address of an object or function with external linkage...
-- a pointer to member... */
/* Look for a non-type template parameter. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
cp_parser_parse_tentatively (parser);
argument = cp_parser_primary_expression (parser,
/*adress_p=*/false,
/*cast_p=*/false,
/*template_arg_p=*/true,
&idk);
if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
|| !cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_simulate_error (parser);
if (cp_parser_parse_definitely (parser))
return argument;
}
/* If the next token is "&", the argument must be the address of an
object or function with external linkage. */
address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
if (address_p)
cp_lexer_consume_token (parser->lexer);
/* See if we might have an id-expression. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_NAME
|| token->keyword == RID_OPERATOR
|| token->type == CPP_SCOPE
|| token->type == CPP_TEMPLATE_ID
|| token->type == CPP_NESTED_NAME_SPECIFIER)
{
cp_parser_parse_tentatively (parser);
argument = cp_parser_primary_expression (parser,
address_p,
/*cast_p=*/false,
/*template_arg_p=*/true,
&idk);
if (cp_parser_error_occurred (parser)
|| !cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_abort_tentative_parse (parser);
else
{
if (TREE_CODE (argument) == INDIRECT_REF)
{
gcc_assert (REFERENCE_REF_P (argument));
argument = TREE_OPERAND (argument, 0);
}
if (TREE_CODE (argument) == VAR_DECL)
{
/* A variable without external linkage might still be a
valid constant-expression, so no error is issued here
if the external-linkage check fails. */
if (!address_p && !DECL_EXTERNAL_LINKAGE_P (argument))
cp_parser_simulate_error (parser);
}
else if (is_overloaded_fn (argument))
/* All overloaded functions are allowed; if the external
linkage test does not pass, an error will be issued
later. */
;
else if (address_p
&& (TREE_CODE (argument) == OFFSET_REF
|| TREE_CODE (argument) == SCOPE_REF))
/* A pointer-to-member. */
;
else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
;
else
cp_parser_simulate_error (parser);
if (cp_parser_parse_definitely (parser))
{
if (address_p)
argument = build_x_unary_op (ADDR_EXPR, argument);
return argument;
}
}
}
/* If the argument started with "&", there are no other valid
alternatives at this point. */
if (address_p)
{
cp_parser_error (parser, "invalid non-type template argument");
return error_mark_node;
}
/* If the argument wasn't successfully parsed as a type-id followed
by '>>', the argument can only be a constant expression now.
Otherwise, we try parsing the constant-expression tentatively,
because the argument could really be a type-id. */
if (maybe_type_id)
cp_parser_parse_tentatively (parser);
argument = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
/*non_constant_p=*/NULL);
argument = fold_non_dependent_expr (argument);
if (!maybe_type_id)
return argument;
if (!cp_parser_next_token_ends_template_argument_p (parser))
cp_parser_error (parser, "expected template-argument");
if (cp_parser_parse_definitely (parser))
return argument;
/* We did our best to parse the argument as a non type-id, but that
was the only alternative that matched (albeit with a '>' after
it). We can assume it's just a typo from the user, and a
diagnostic will then be issued. */
return cp_parser_type_id (parser);
}
/* Parse an explicit-instantiation.
explicit-instantiation:
template declaration
Although the standard says `declaration', what it really means is:
explicit-instantiation:
template decl-specifier-seq [opt] declarator [opt] ;
Things like `template int S<int>::i = 5, int S<double>::j;' are not
supposed to be allowed. A defect report has been filed about this
issue.
GNU Extension:
explicit-instantiation:
storage-class-specifier template
decl-specifier-seq [opt] declarator [opt] ;
function-specifier template
decl-specifier-seq [opt] declarator [opt] ; */
static void
cp_parser_explicit_instantiation (cp_parser* parser)
{
int declares_class_or_enum;
cp_decl_specifier_seq decl_specifiers;
tree extension_specifier = NULL_TREE;
/* Look for an (optional) storage-class-specifier or
function-specifier. */
if (cp_parser_allow_gnu_extensions_p (parser))
{
extension_specifier
= cp_parser_storage_class_specifier_opt (parser);
if (!extension_specifier)
extension_specifier
= cp_parser_function_specifier_opt (parser,
/*decl_specs=*/NULL);
}
/* Look for the `template' keyword. */
cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
/* Let the front end know that we are processing an explicit
instantiation. */
begin_explicit_instantiation ();
/* [temp.explicit] says that we are supposed to ignore access
control while processing explicit instantiation directives. */
push_deferring_access_checks (dk_no_check);
/* Parse a decl-specifier-seq. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&decl_specifiers,
&declares_class_or_enum);
/* If there was exactly one decl-specifier, and it declared a class,
and there's no declarator, then we have an explicit type
instantiation. */
if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
{
tree type;
type = check_tag_decl (&decl_specifiers);
/* Turn access control back on for names used during
template instantiation. */
pop_deferring_access_checks ();
if (type)
do_type_instantiation (type, extension_specifier,
/*complain=*/tf_error);
}
else
{
cp_declarator *declarator;
tree decl;
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
if (declares_class_or_enum & 2)
cp_parser_check_for_definition_in_return_type (declarator,
decl_specifiers.type);
if (declarator != cp_error_declarator)
{
decl = grokdeclarator (declarator, &decl_specifiers,
NORMAL, 0, &decl_specifiers.attributes);
/* Turn access control back on for names used during
template instantiation. */
pop_deferring_access_checks ();
/* Do the explicit instantiation. */
do_decl_instantiation (decl, extension_specifier);
}
else
{
pop_deferring_access_checks ();
/* Skip the body of the explicit instantiation. */
cp_parser_skip_to_end_of_statement (parser);
}
}
/* We're done with the instantiation. */
end_explicit_instantiation ();
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
/* Parse an explicit-specialization.
explicit-specialization:
template < > declaration
Although the standard says `declaration', what it really means is:
explicit-specialization:
template <> decl-specifier [opt] init-declarator [opt] ;
template <> function-definition
template <> explicit-specialization
template <> template-declaration */
static void
cp_parser_explicit_specialization (cp_parser* parser)
{
bool need_lang_pop;
/* Look for the `template' keyword. */
cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
/* Look for the `<'. */
cp_parser_require (parser, CPP_LESS, "`<'");
/* Look for the `>'. */
cp_parser_require (parser, CPP_GREATER, "`>'");
/* We have processed another parameter list. */
++parser->num_template_parameter_lists;
/* [temp]
A template ... explicit specialization ... shall not have C
linkage. */
if (current_lang_name == lang_name_c)
{
error ("template specialization with C linkage");
/* Give it C++ linkage to avoid confusing other parts of the
front end. */
push_lang_context (lang_name_cplusplus);
need_lang_pop = true;
}
else
need_lang_pop = false;
/* Let the front end know that we are beginning a specialization. */
if (!begin_specialization ())
{
end_specialization ();
cp_parser_skip_to_end_of_block_or_statement (parser);
return;
}
/* If the next keyword is `template', we need to figure out whether
or not we're looking a template-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
cp_parser_template_declaration_after_export (parser,
/*member_p=*/false);
else
cp_parser_explicit_specialization (parser);
}
else
/* Parse the dependent declaration. */
cp_parser_single_declaration (parser,
/*checks=*/NULL,
/*member_p=*/false,
/*friend_p=*/NULL);
/* We're done with the specialization. */
end_specialization ();
/* For the erroneous case of a template with C linkage, we pushed an
implicit C++ linkage scope; exit that scope now. */
if (need_lang_pop)
pop_lang_context ();
/* We're done with this parameter list. */
--parser->num_template_parameter_lists;
}
/* Parse a type-specifier.
type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier
GNU Extension:
type-specifier:
__complex__
Returns a representation of the type-specifier. For a
class-specifier, enum-specifier, or elaborated-type-specifier, a
TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
The parser flags FLAGS is used to control type-specifier parsing.
If IS_DECLARATION is TRUE, then this type-specifier is appearing
in a decl-specifier-seq.
If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
class-specifier, enum-specifier, or elaborated-type-specifier, then
*DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
if a type is declared; 2 if it is defined. Otherwise, it is set to
zero.
If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
is set to FALSE. */
static tree
cp_parser_type_specifier (cp_parser* parser,
cp_parser_flags flags,
cp_decl_specifier_seq *decl_specs,
bool is_declaration,
int* declares_class_or_enum,
bool* is_cv_qualifier)
{
tree type_spec = NULL_TREE;
cp_token *token;
enum rid keyword;
cp_decl_spec ds = ds_last;
/* Assume this type-specifier does not declare a new type. */
if (declares_class_or_enum)
*declares_class_or_enum = 0;
/* And that it does not specify a cv-qualifier. */
if (is_cv_qualifier)
*is_cv_qualifier = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a keyword, we can use that to guide the
production we choose. */
keyword = token->keyword;
switch (keyword)
{
case RID_ENUM:
/* Look for the enum-specifier. */
type_spec = cp_parser_enum_specifier (parser);
/* If that worked, we're done. */
if (type_spec)
{
if (declares_class_or_enum)
*declares_class_or_enum = 2;
if (decl_specs)
cp_parser_set_decl_spec_type (decl_specs,
type_spec,
/*user_defined_p=*/true);
return type_spec;
}
else
goto elaborated_type_specifier;
/* Any of these indicate either a class-specifier, or an
elaborated-type-specifier. */
case RID_CLASS:
case RID_STRUCT:
case RID_UNION:
/* Parse tentatively so that we can back up if we don't find a
class-specifier. */
cp_parser_parse_tentatively (parser);
/* Look for the class-specifier. */
type_spec = cp_parser_class_specifier (parser);
/* If that worked, we're done. */
if (cp_parser_parse_definitely (parser))
{
if (declares_class_or_enum)
*declares_class_or_enum = 2;
if (decl_specs)
cp_parser_set_decl_spec_type (decl_specs,
type_spec,
/*user_defined_p=*/true);
return type_spec;
}
/* Fall through. */
elaborated_type_specifier:
/* We're declaring (not defining) a class or enum. */
if (declares_class_or_enum)
*declares_class_or_enum = 1;
/* Fall through. */
case RID_TYPENAME:
/* Look for an elaborated-type-specifier. */
type_spec
= (cp_parser_elaborated_type_specifier
(parser,
decl_specs && decl_specs->specs[(int) ds_friend],
is_declaration));
if (decl_specs)
cp_parser_set_decl_spec_type (decl_specs,
type_spec,
/*user_defined_p=*/true);
return type_spec;
case RID_CONST:
ds = ds_const;
if (is_cv_qualifier)
*is_cv_qualifier = true;
break;
case RID_VOLATILE:
ds = ds_volatile;
if (is_cv_qualifier)
*is_cv_qualifier = true;
break;
case RID_RESTRICT:
ds = ds_restrict;
if (is_cv_qualifier)
*is_cv_qualifier = true;
break;
case RID_COMPLEX:
/* The `__complex__' keyword is a GNU extension. */
ds = ds_complex;
break;
default:
break;
}
/* Handle simple keywords. */
if (ds != ds_last)
{
if (decl_specs)
{
++decl_specs->specs[(int)ds];
decl_specs->any_specifiers_p = true;
}
return cp_lexer_consume_token (parser->lexer)->u.value;
}
/* If we do not already have a type-specifier, assume we are looking
at a simple-type-specifier. */
type_spec = cp_parser_simple_type_specifier (parser,
decl_specs,
flags);
/* If we didn't find a type-specifier, and a type-specifier was not
optional in this context, issue an error message. */
if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
{
cp_parser_error (parser, "expected type specifier");
return error_mark_node;
}
return type_spec;
}
/* Parse a simple-type-specifier.
simple-type-specifier:
:: [opt] nested-name-specifier [opt] type-name
:: [opt] nested-name-specifier template template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void
GNU Extension:
simple-type-specifier:
__typeof__ unary-expression
__typeof__ ( type-id )
Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
appropriately updated. */
static tree
cp_parser_simple_type_specifier (cp_parser* parser,
cp_decl_specifier_seq *decl_specs,
cp_parser_flags flags)
{
tree type = NULL_TREE;
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a keyword, things are easy. */
switch (token->keyword)
{
case RID_CHAR:
if (decl_specs)
decl_specs->explicit_char_p = true;
type = char_type_node;
break;
case RID_WCHAR:
type = wchar_type_node;
break;
case RID_BOOL:
type = boolean_type_node;
break;
case RID_SHORT:
if (decl_specs)
++decl_specs->specs[(int) ds_short];
type = short_integer_type_node;
break;
case RID_INT:
if (decl_specs)
decl_specs->explicit_int_p = true;
type = integer_type_node;
break;
case RID_LONG:
if (decl_specs)
++decl_specs->specs[(int) ds_long];
type = long_integer_type_node;
break;
case RID_SIGNED:
if (decl_specs)
++decl_specs->specs[(int) ds_signed];
type = integer_type_node;
break;
case RID_UNSIGNED:
if (decl_specs)
++decl_specs->specs[(int) ds_unsigned];
type = unsigned_type_node;
break;
case RID_FLOAT:
type = float_type_node;
break;
case RID_DOUBLE:
type = double_type_node;
break;
case RID_VOID:
type = void_type_node;
break;
case RID_TYPEOF:
/* Consume the `typeof' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the operand to `typeof'. */
type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
/* If it is not already a TYPE, take its type. */
if (!TYPE_P (type))
type = finish_typeof (type);
if (decl_specs)
cp_parser_set_decl_spec_type (decl_specs, type,
/*user_defined_p=*/true);
return type;
default:
break;
}
/* If the type-specifier was for a built-in type, we're done. */
if (type)
{
tree id;
/* Record the type. */
if (decl_specs
&& (token->keyword != RID_SIGNED
&& token->keyword != RID_UNSIGNED
&& token->keyword != RID_SHORT
&& token->keyword != RID_LONG))
cp_parser_set_decl_spec_type (decl_specs,
type,
/*user_defined=*/false);
if (decl_specs)
decl_specs->any_specifiers_p = true;
/* Consume the token. */
id = cp_lexer_consume_token (parser->lexer)->u.value;
/* There is no valid C++ program where a non-template type is
followed by a "<". That usually indicates that the user thought
that the type was a template. */
cp_parser_check_for_invalid_template_id (parser, type);
return TYPE_NAME (type);
}
/* The type-specifier must be a user-defined type. */
if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
{
bool qualified_p;
bool global_p;
/* Don't gobble tokens or issue error messages if this is an
optional type-specifier. */
if (flags & CP_PARSER_FLAGS_OPTIONAL)
cp_parser_parse_tentatively (parser);
/* Look for the optional `::' operator. */
global_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* Look for the nested-name specifier. */
qualified_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/false)
!= NULL_TREE);
/* If we have seen a nested-name-specifier, and the next token
is `template', then we are using the template-id production. */
if (parser->scope
&& cp_parser_optional_template_keyword (parser))
{
/* Look for the template-id. */
type = cp_parser_template_id (parser,
/*template_keyword_p=*/true,
/*check_dependency_p=*/true,
/*is_declaration=*/false);
/* If the template-id did not name a type, we are out of
luck. */
if (TREE_CODE (type) != TYPE_DECL)
{
cp_parser_error (parser, "expected template-id for type");
type = NULL_TREE;
}
}
/* Otherwise, look for a type-name. */
else
type = cp_parser_type_name (parser);
/* Keep track of all name-lookups performed in class scopes. */
if (type
&& !global_p
&& !qualified_p
&& TREE_CODE (type) == TYPE_DECL
&& TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
maybe_note_name_used_in_class (DECL_NAME (type), type);
/* If it didn't work out, we don't have a TYPE. */
if ((flags & CP_PARSER_FLAGS_OPTIONAL)
&& !cp_parser_parse_definitely (parser))
type = NULL_TREE;
if (type && decl_specs)
cp_parser_set_decl_spec_type (decl_specs, type,
/*user_defined=*/true);
}
/* If we didn't get a type-name, issue an error message. */
if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
{
cp_parser_error (parser, "expected type-name");
return error_mark_node;
}
/* There is no valid C++ program where a non-template type is
followed by a "<". That usually indicates that the user thought
that the type was a template. */
if (type && type != error_mark_node)
{
/* As a last-ditch effort, see if TYPE is an Objective-C type.
If it is, then the '<'...'>' enclose protocol names rather than
template arguments, and so everything is fine. */
if (c_dialect_objc ()
&& (objc_is_id (type) || objc_is_class_name (type)))
{
tree protos = cp_parser_objc_protocol_refs_opt (parser);
tree qual_type = objc_get_protocol_qualified_type (type, protos);
/* Clobber the "unqualified" type previously entered into
DECL_SPECS with the new, improved protocol-qualified version. */
if (decl_specs)
decl_specs->type = qual_type;
return qual_type;
}
cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
}
return type;
}
/* Parse a type-name.
type-name:
class-name
enum-name
typedef-name
enum-name:
identifier
typedef-name:
identifier
Returns a TYPE_DECL for the type. */
static tree
cp_parser_type_name (cp_parser* parser)
{
tree type_decl;
tree identifier;
/* We can't know yet whether it is a class-name or not. */
cp_parser_parse_tentatively (parser);
/* Try a class-name. */
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/false);
/* If it's not a class-name, keep looking. */
if (!cp_parser_parse_definitely (parser))
{
/* It must be a typedef-name or an enum-name. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return error_mark_node;
/* Look up the type-name. */
type_decl = cp_parser_lookup_name_simple (parser, identifier);
if (TREE_CODE (type_decl) != TYPE_DECL
&& (objc_is_id (identifier) || objc_is_class_name (identifier)))
{
/* See if this is an Objective-C type. */
tree protos = cp_parser_objc_protocol_refs_opt (parser);
tree type = objc_get_protocol_qualified_type (identifier, protos);
if (type)
type_decl = TYPE_NAME (type);
}
/* Issue an error if we did not find a type-name. */
if (TREE_CODE (type_decl) != TYPE_DECL)
{
if (!cp_parser_simulate_error (parser))
cp_parser_name_lookup_error (parser, identifier, type_decl,
"is not a type");
type_decl = error_mark_node;
}
/* Remember that the name was used in the definition of the
current class so that we can check later to see if the
meaning would have been different after the class was
entirely defined. */
else if (type_decl != error_mark_node
&& !parser->scope)
maybe_note_name_used_in_class (identifier, type_decl);
}
return type_decl;
}
/* Parse an elaborated-type-specifier. Note that the grammar given
here incorporates the resolution to DR68.
elaborated-type-specifier:
class-key :: [opt] nested-name-specifier [opt] identifier
class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
enum :: [opt] nested-name-specifier [opt] identifier
typename :: [opt] nested-name-specifier identifier
typename :: [opt] nested-name-specifier template [opt]
template-id
GNU extension:
elaborated-type-specifier:
class-key attributes :: [opt] nested-name-specifier [opt] identifier
class-key attributes :: [opt] nested-name-specifier [opt]
template [opt] template-id
enum attributes :: [opt] nested-name-specifier [opt] identifier
If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
declared `friend'. If IS_DECLARATION is TRUE, then this
elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
something is being declared.
Returns the TYPE specified. */
static tree
cp_parser_elaborated_type_specifier (cp_parser* parser,
bool is_friend,
bool is_declaration)
{
enum tag_types tag_type;
tree identifier;
tree type = NULL_TREE;
tree attributes = NULL_TREE;
/* See if we're looking at the `enum' keyword. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
{
/* Consume the `enum' token. */
cp_lexer_consume_token (parser->lexer);
/* Remember that it's an enumeration type. */
tag_type = enum_type;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
}
/* Or, it might be `typename'. */
else if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_TYPENAME))
{
/* Consume the `typename' token. */
cp_lexer_consume_token (parser->lexer);
/* Remember that it's a `typename' type. */
tag_type = typename_type;
/* The `typename' keyword is only allowed in templates. */
if (!processing_template_decl)
pedwarn ("using %<typename%> outside of template");
}
/* Otherwise it must be a class-key. */
else
{
tag_type = cp_parser_class_key (parser);
if (tag_type == none_type)
return error_mark_node;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
}
/* Look for the `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. */
if (tag_type == typename_type)
{
if (!cp_parser_nested_name_specifier (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true,
is_declaration))
return error_mark_node;
}
else
/* Even though `typename' is not present, the proposed resolution
to Core Issue 180 says that in `class A<T>::B', `B' should be
considered a type-name, even if `A<T>' is dependent. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
/*type_p=*/true,
is_declaration);
/* For everything but enumeration types, consider a template-id.
For an enumeration type, consider only a plain identifier. */
if (tag_type != enum_type)
{
bool template_p = false;
tree decl;
/* Allow the `template' keyword. */
template_p = cp_parser_optional_template_keyword (parser);
/* If we didn't see `template', we don't know if there's a
template-id or not. */
if (!template_p)
cp_parser_parse_tentatively (parser);
/* Parse the template-id. */
decl = cp_parser_template_id (parser, template_p,
/*check_dependency_p=*/true,
is_declaration);
/* If we didn't find a template-id, look for an ordinary
identifier. */
if (!template_p && !cp_parser_parse_definitely (parser))
;
/* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
in effect, then we must assume that, upon instantiation, the
template will correspond to a class. */
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
&& tag_type == typename_type)
type = make_typename_type (parser->scope, decl,
typename_type,
/*complain=*/tf_error);
else
type = TREE_TYPE (decl);
}
if (!type)
{
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
{
parser->scope = NULL_TREE;
return error_mark_node;
}
/* For a `typename', we needn't call xref_tag. */
if (tag_type == typename_type
&& TREE_CODE (parser->scope) != NAMESPACE_DECL)
return cp_parser_make_typename_type (parser, parser->scope,
identifier);
/* Look up a qualified name in the usual way. */
if (parser->scope)
{
tree decl;
decl = cp_parser_lookup_name (parser, identifier,
tag_type,
/*is_template=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL);
/* If we are parsing friend declaration, DECL may be a
TEMPLATE_DECL tree node here. However, we need to check
whether this TEMPLATE_DECL results in valid code. Consider
the following example:
namespace N {
template <class T> class C {};
}
class X {
template <class T> friend class N::C; // #1, valid code
};
template <class T> class Y {
friend class N::C; // #2, invalid code
};
For both case #1 and #2, we arrive at a TEMPLATE_DECL after
name lookup of `N::C'. We see that friend declaration must
be template for the code to be valid. Note that
processing_template_decl does not work here since it is
always 1 for the above two cases. */
decl = (cp_parser_maybe_treat_template_as_class
(decl, /*tag_name_p=*/is_friend
&& parser->num_template_parameter_lists));
if (TREE_CODE (decl) != TYPE_DECL)
{
cp_parser_diagnose_invalid_type_name (parser,
parser->scope,
identifier);
return error_mark_node;
}
if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
{
bool allow_template = (parser->num_template_parameter_lists
|| DECL_SELF_REFERENCE_P (decl));
type = check_elaborated_type_specifier (tag_type, decl,
allow_template);
if (type == error_mark_node)
return error_mark_node;
}
type = TREE_TYPE (decl);
}
else
{
/* An elaborated-type-specifier sometimes introduces a new type and
sometimes names an existing type. Normally, the rule is that it
introduces a new type only if there is not an existing type of
the same name already in scope. For example, given:
struct S {};
void f() { struct S s; }
the `struct S' in the body of `f' is the same `struct S' as in
the global scope; the existing definition is used. However, if
there were no global declaration, this would introduce a new
local class named `S'.
An exception to this rule applies to the following code:
namespace N { struct S; }
Here, the elaborated-type-specifier names a new type
unconditionally; even if there is already an `S' in the
containing scope this declaration names a new type.
This exception only applies if the elaborated-type-specifier
forms the complete declaration:
[class.name]
A declaration consisting solely of `class-key identifier ;' is
either a redeclaration of the name in the current scope or a
forward declaration of the identifier as a class name. It
introduces the name into the current scope.
We are in this situation precisely when the next token is a `;'.
An exception to the exception is that a `friend' declaration does
*not* name a new type; i.e., given:
struct S { friend struct T; };
`T' is not a new type in the scope of `S'.
Also, `new struct S' or `sizeof (struct S)' never results in the
definition of a new type; a new type can only be declared in a
declaration context. */
tag_scope ts;
bool template_p;
if (is_friend)
/* Friends have special name lookup rules. */
ts = ts_within_enclosing_non_class;
else if (is_declaration
&& cp_lexer_next_token_is (parser->lexer,
CPP_SEMICOLON))
/* This is a `class-key identifier ;' */
ts = ts_current;
else
ts = ts_global;
template_p =
(parser->num_template_parameter_lists
&& (cp_parser_next_token_starts_class_definition_p (parser)
|| cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)));
/* An unqualified name was used to reference this type, so
there were no qualifying templates. */
if (!cp_parser_check_template_parameters (parser,
/*num_templates=*/0))
return error_mark_node;
type = xref_tag (tag_type, identifier, ts, template_p);
}
}
if (type == error_mark_node)
return error_mark_node;
/* Allow attributes on forward declarations of classes. */
if (attributes)
{
if (TREE_CODE (type) == TYPENAME_TYPE)
warning (OPT_Wattributes,
"attributes ignored on uninstantiated type");
else if (tag_type != enum_type && CLASSTYPE_TEMPLATE_INSTANTIATION (type)
&& ! processing_explicit_instantiation)
warning (OPT_Wattributes,
"attributes ignored on template instantiation");
else if (is_declaration && cp_parser_declares_only_class_p (parser))
cplus_decl_attributes (&type, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
else
warning (OPT_Wattributes,
"attributes ignored on elaborated-type-specifier that is not a forward declaration");
}
if (tag_type != enum_type)
cp_parser_check_class_key (tag_type, type);
/* A "<" cannot follow an elaborated type specifier. If that
happens, the user was probably trying to form a template-id. */
cp_parser_check_for_invalid_template_id (parser, type);
return type;
}
/* Parse an enum-specifier.
enum-specifier:
enum identifier [opt] { enumerator-list [opt] }
GNU Extensions:
enum attributes[opt] identifier [opt] { enumerator-list [opt] }
attributes[opt]
Returns an ENUM_TYPE representing the enumeration, or NULL_TREE
if the token stream isn't an enum-specifier after all. */
static tree
cp_parser_enum_specifier (cp_parser* parser)
{
tree identifier;
tree type;
tree attributes;
/* Parse tentatively so that we can back up if we don't find a
enum-specifier. */
cp_parser_parse_tentatively (parser);
/* Caller guarantees that the current token is 'enum', an identifier
possibly follows, and the token after that is an opening brace.
If we don't have an identifier, fabricate an anonymous name for
the enumeration being defined. */
cp_lexer_consume_token (parser->lexer);
attributes = cp_parser_attributes_opt (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = make_anon_name ();
/* Look for the `{' but don't consume it yet. */
if (!cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
cp_parser_simulate_error (parser);
if (!cp_parser_parse_definitely (parser))
return NULL_TREE;
/* Issue an error message if type-definitions are forbidden here. */
if (!cp_parser_check_type_definition (parser))
type = error_mark_node;
else
/* Create the new type. We do this before consuming the opening
brace so the enum will be recorded as being on the line of its
tag (or the 'enum' keyword, if there is no tag). */
type = start_enum (identifier);
/* Consume the opening brace. */
cp_lexer_consume_token (parser->lexer);
if (type == error_mark_node)
{
cp_parser_skip_to_end_of_block_or_statement (parser);
return error_mark_node;
}
/* If the next token is not '}', then there are some enumerators. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
cp_parser_enumerator_list (parser, type);
/* Consume the final '}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
/* Look for trailing attributes to apply to this enumeration, and
apply them if appropriate. */
if (cp_parser_allow_gnu_extensions_p (parser))
{
tree trailing_attr = cp_parser_attributes_opt (parser);
cplus_decl_attributes (&type,
trailing_attr,
(int) ATTR_FLAG_TYPE_IN_PLACE);
}
/* Finish up the enumeration. */
finish_enum (type);
return type;
}
/* Parse an enumerator-list. The enumerators all have the indicated
TYPE.
enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition */
static void
cp_parser_enumerator_list (cp_parser* parser, tree type)
{
while (true)
{
/* Parse an enumerator-definition. */
cp_parser_enumerator_definition (parser, type);
/* If the next token is not a ',', we've reached the end of
the list. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Otherwise, consume the `,' and keep going. */
cp_lexer_consume_token (parser->lexer);
/* If the next token is a `}', there is a trailing comma. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
{
if (pedantic && !in_system_header)
pedwarn ("comma at end of enumerator list");
break;
}
}
}
/* Parse an enumerator-definition. The enumerator has the indicated
TYPE.
enumerator-definition:
enumerator
enumerator = constant-expression
enumerator:
identifier */
static void
cp_parser_enumerator_definition (cp_parser* parser, tree type)
{
tree identifier;
tree value;
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return;
/* If the next token is an '=', then there is an explicit value. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* Consume the `=' token. */
cp_lexer_consume_token (parser->lexer);
/* Parse the value. */
value = cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/false,
NULL);
}
else
value = NULL_TREE;
/* Create the enumerator. */
build_enumerator (identifier, value, type);
}
/* Parse a namespace-name.
namespace-name:
original-namespace-name
namespace-alias
Returns the NAMESPACE_DECL for the namespace. */
static tree
cp_parser_namespace_name (cp_parser* parser)
{
tree identifier;
tree namespace_decl;
/* Get the name of the namespace. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return error_mark_node;
/* Look up the identifier in the currently active scope. Look only
for namespaces, due to:
[basic.lookup.udir]
When looking up a namespace-name in a using-directive or alias
definition, only namespace names are considered.
And:
[basic.lookup.qual]
During the lookup of a name preceding the :: scope resolution
operator, object, function, and enumerator names are ignored.
(Note that cp_parser_class_or_namespace_name only calls this
function if the token after the name is the scope resolution
operator.) */
namespace_decl = cp_parser_lookup_name (parser, identifier,
none_type,
/*is_template=*/false,
/*is_namespace=*/true,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL);
/* If it's not a namespace, issue an error. */
if (namespace_decl == error_mark_node
|| TREE_CODE (namespace_decl) != NAMESPACE_DECL)
{
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
error ("%qD is not a namespace-name", identifier);
cp_parser_error (parser, "expected namespace-name");
namespace_decl = error_mark_node;
}
return namespace_decl;
}
/* Parse a namespace-definition.
namespace-definition:
named-namespace-definition
unnamed-namespace-definition
named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
namespace identifier { namespace-body }
extension-namespace-definition:
namespace original-namespace-name { namespace-body }
unnamed-namespace-definition:
namespace { namespace-body } */
static void
cp_parser_namespace_definition (cp_parser* parser)
{
tree identifier, attribs;
/* Look for the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Get the name of the namespace. We do not attempt to distinguish
between an original-namespace-definition and an
extension-namespace-definition at this point. The semantic
analysis routines are responsible for that. */
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Parse any specified attributes. */
attribs = cp_parser_attributes_opt (parser);
/* Look for the `{' to start the namespace. */
cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
/* Start the namespace. */
push_namespace_with_attribs (identifier, attribs);
/* Parse the body of the namespace. */
cp_parser_namespace_body (parser);
/* Finish the namespace. */
pop_namespace ();
/* Look for the final `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
/* Parse a namespace-body.
namespace-body:
declaration-seq [opt] */
static void
cp_parser_namespace_body (cp_parser* parser)
{
cp_parser_declaration_seq_opt (parser);
}
/* Parse a namespace-alias-definition.
namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ; */
static void
cp_parser_namespace_alias_definition (cp_parser* parser)
{
tree identifier;
tree namespace_specifier;
/* Look for the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Look for the identifier. */
identifier = cp_parser_identifier (parser);
if (identifier == error_mark_node)
return;
/* Look for the `=' token. */
cp_parser_require (parser, CPP_EQ, "`='");
/* Look for the qualified-namespace-specifier. */
namespace_specifier
= cp_parser_qualified_namespace_specifier (parser);
/* Look for the `;' token. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* Register the alias in the symbol table. */
do_namespace_alias (identifier, namespace_specifier);
}
/* Parse a qualified-namespace-specifier.
qualified-namespace-specifier:
:: [opt] nested-name-specifier [opt] namespace-name
Returns a NAMESPACE_DECL corresponding to the specified
namespace. */
static tree
cp_parser_qualified_namespace_specifier (cp_parser* parser)
{
/* Look for the optional `::'. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the optional nested-name-specifier. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/true);
return cp_parser_namespace_name (parser);
}
/* Parse a using-declaration, or, if ACCESS_DECLARATION_P is true, an
access declaration.
using-declaration:
using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
using :: unqualified-id ;
access-declaration:
qualified-id ;
*/
static bool
cp_parser_using_declaration (cp_parser* parser,
bool access_declaration_p)
{
cp_token *token;
bool typename_p = false;
bool global_scope_p;
tree decl;
tree identifier;
tree qscope;
if (access_declaration_p)
cp_parser_parse_tentatively (parser);
else
{
/* Look for the `using' keyword. */
cp_parser_require_keyword (parser, RID_USING, "`using'");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* See if it's `typename'. */
if (token->keyword == RID_TYPENAME)
{
/* Remember that we've seen it. */
typename_p = true;
/* Consume the `typename' token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* Look for the optional global scope qualification. */
global_scope_p
= (cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false)
!= NULL_TREE);
/* If we saw `typename', or didn't see `::', then there must be a
nested-name-specifier present. */
if (typename_p || !global_scope_p)
qscope = cp_parser_nested_name_specifier (parser, typename_p,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/true);
/* Otherwise, we could be in either of the two productions. In that
case, treat the nested-name-specifier as optional. */
else
qscope = cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/true);
if (!qscope)
qscope = global_namespace;
if (access_declaration_p && cp_parser_error_occurred (parser))
/* Something has already gone wrong; there's no need to parse
further. Since an error has occurred, the return value of
cp_parser_parse_definitely will be false, as required. */
return cp_parser_parse_definitely (parser);
/* Parse the unqualified-id. */
identifier = cp_parser_unqualified_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*declarator_p=*/true,
/*optional_p=*/false);
if (access_declaration_p)
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
cp_parser_simulate_error (parser);
if (!cp_parser_parse_definitely (parser))
return false;
}
/* The function we call to handle a using-declaration is different
depending on what scope we are in. */
if (qscope == error_mark_node || identifier == error_mark_node)
;
else if (TREE_CODE (identifier) != IDENTIFIER_NODE
&& TREE_CODE (identifier) != BIT_NOT_EXPR)
/* [namespace.udecl]
A using declaration shall not name a template-id. */
error ("a template-id may not appear in a using-declaration");
else
{
if (at_class_scope_p ())
{
/* Create the USING_DECL. */
decl = do_class_using_decl (parser->scope, identifier);
/* Add it to the list of members in this class. */
finish_member_declaration (decl);
}
else
{
decl = cp_parser_lookup_name_simple (parser, identifier);
if (decl == error_mark_node)
cp_parser_name_lookup_error (parser, identifier, decl, NULL);
else if (!at_namespace_scope_p ())
do_local_using_decl (decl, qscope, identifier);
else
do_toplevel_using_decl (decl, qscope, identifier);
}
}
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
return true;
}
/* Parse a using-directive.
using-directive:
using namespace :: [opt] nested-name-specifier [opt]
namespace-name ; */
static void
cp_parser_using_directive (cp_parser* parser)
{
tree namespace_decl;
tree attribs;
/* Look for the `using' keyword. */
cp_parser_require_keyword (parser, RID_USING, "`using'");
/* And the `namespace' keyword. */
cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
/* And the optional nested-name-specifier. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/true);
/* Get the namespace being used. */
namespace_decl = cp_parser_namespace_name (parser);
/* And any specified attributes. */
attribs = cp_parser_attributes_opt (parser);
/* Update the symbol table. */
parse_using_directive (namespace_decl, attribs);
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Parse an asm-definition.
asm-definition:
asm ( string-literal ) ;
GNU Extension:
asm-definition:
asm volatile [opt] ( string-literal ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt]
: asm-operand-list [opt] ) ;
asm volatile [opt] ( string-literal : asm-operand-list [opt]
: asm-operand-list [opt]
: asm-operand-list [opt] ) ; */
static void
cp_parser_asm_definition (cp_parser* parser)
{
tree string;
tree outputs = NULL_TREE;
tree inputs = NULL_TREE;
tree clobbers = NULL_TREE;
tree asm_stmt;
bool volatile_p = false;
bool extended_p = false;
/* Look for the `asm' keyword. */
cp_parser_require_keyword (parser, RID_ASM, "`asm'");
/* See if the next token is `volatile'. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
{
/* Remember that we saw the `volatile' keyword. */
volatile_p = true;
/* Consume the token. */
cp_lexer_consume_token (parser->lexer);
}
/* Look for the opening `('. */
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return;
/* Look for the string. */
string = cp_parser_string_literal (parser, false, false);
if (string == error_mark_node)
{
cp_parser_skip_to_closing_parenthesis (parser, true, false,
/*consume_paren=*/true);
return;
}
/* If we're allowing GNU extensions, check for the extended assembly
syntax. Unfortunately, the `:' tokens need not be separated by
a space in C, and so, for compatibility, we tolerate that here
too. Doing that means that we have to treat the `::' operator as
two `:' tokens. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& parser->in_function_body
&& (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
|| cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
{
bool inputs_p = false;
bool clobbers_p = false;
/* The extended syntax was used. */
extended_p = true;
/* Look for outputs. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the output-operands. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_COLON)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_SCOPE)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
outputs = cp_parser_asm_operand_list (parser);
}
/* If the next token is `::', there are no outputs, and the
next token is the beginning of the inputs. */
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
/* The inputs are coming next. */
inputs_p = true;
/* Look for inputs. */
if (inputs_p
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
/* Consume the `:' or `::'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the output-operands. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_COLON)
&& cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
inputs = cp_parser_asm_operand_list (parser);
}
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
/* The clobbers are coming next. */
clobbers_p = true;
/* Look for clobbers. */
if (clobbers_p
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
{
/* Consume the `:' or `::'. */
cp_lexer_consume_token (parser->lexer);
/* Parse the clobbers. */
if (cp_lexer_next_token_is_not (parser->lexer,
CPP_CLOSE_PAREN))
clobbers = cp_parser_asm_clobber_list (parser);
}
}
/* Look for the closing `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, true, false,
/*consume_paren=*/true);
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
/* Create the ASM_EXPR. */
if (parser->in_function_body)
{
asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
inputs, clobbers);
/* If the extended syntax was not used, mark the ASM_EXPR. */
if (!extended_p)
{
tree temp = asm_stmt;
if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
temp = TREE_OPERAND (temp, 0);
ASM_INPUT_P (temp) = 1;
}
}
else
cgraph_add_asm_node (string);
}
/* Declarators [gram.dcl.decl] */
/* Parse an init-declarator.
init-declarator:
declarator initializer [opt]
GNU Extension:
init-declarator:
declarator asm-specification [opt] attributes [opt] initializer [opt]
function-definition:
decl-specifier-seq [opt] declarator ctor-initializer [opt]
function-body
decl-specifier-seq [opt] declarator function-try-block
GNU Extension:
function-definition:
__extension__ function-definition
The DECL_SPECIFIERS apply to this declarator. Returns a
representation of the entity declared. If MEMBER_P is TRUE, then
this declarator appears in a class scope. The new DECL created by
this declarator is returned.
The CHECKS are access checks that should be performed once we know
what entity is being declared (and, therefore, what classes have
befriended it).
If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
for a function-definition here as well. If the declarator is a
declarator for a function-definition, *FUNCTION_DEFINITION_P will
be TRUE upon return. By that point, the function-definition will
have been completely parsed.
FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
is FALSE. */
static tree
cp_parser_init_declarator (cp_parser* parser,
cp_decl_specifier_seq *decl_specifiers,
VEC (deferred_access_check,gc)* checks,
bool function_definition_allowed_p,
bool member_p,
int declares_class_or_enum,
bool* function_definition_p)
{
cp_token *token;
cp_declarator *declarator;
tree prefix_attributes;
tree attributes;
tree asm_specification;
tree initializer;
tree decl = NULL_TREE;
tree scope;
bool is_initialized;
/* Only valid if IS_INITIALIZED is true. In that case, CPP_EQ if
initialized with "= ..", CPP_OPEN_PAREN if initialized with
"(...)". */
enum cpp_ttype initialization_kind;
bool is_parenthesized_init = false;
bool is_non_constant_init;
int ctor_dtor_or_conv_p;
bool friend_p;
tree pushed_scope = NULL;
/* Gather the attributes that were provided with the
decl-specifiers. */
prefix_attributes = decl_specifiers->attributes;
/* Assume that this is not the declarator for a function
definition. */
if (function_definition_p)
*function_definition_p = false;
/* Defer access checks while parsing the declarator; we cannot know
what names are accessible until we know what is being
declared. */
resume_deferring_access_checks ();
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
&ctor_dtor_or_conv_p,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
/* Gather up the deferred checks. */
stop_deferring_access_checks ();
/* If the DECLARATOR was erroneous, there's no need to go
further. */
if (declarator == cp_error_declarator)
return error_mark_node;
/* Check that the number of template-parameter-lists is OK. */
if (!cp_parser_check_declarator_template_parameters (parser, declarator))
return error_mark_node;
if (declares_class_or_enum & 2)
cp_parser_check_for_definition_in_return_type (declarator,
decl_specifiers->type);
/* Figure out what scope the entity declared by the DECLARATOR is
located in. `grokdeclarator' sometimes changes the scope, so
we compute it now. */
scope = get_scope_of_declarator (declarator);
/* If we're allowing GNU extensions, look for an asm-specification
and attributes. */
if (cp_parser_allow_gnu_extensions_p (parser))
{
/* Look for an asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* And attributes. */
attributes = cp_parser_attributes_opt (parser);
}
else
{
asm_specification = NULL_TREE;
attributes = NULL_TREE;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check to see if the token indicates the start of a
function-definition. */
if (cp_parser_token_starts_function_definition_p (token))
{
if (!function_definition_allowed_p)
{
/* If a function-definition should not appear here, issue an
error message. */
cp_parser_error (parser,
"a function-definition is not allowed here");
return error_mark_node;
}
else
{
/* Neither attributes nor an asm-specification are allowed
on a function-definition. */
if (asm_specification)
error ("an asm-specification is not allowed on a function-definition");
if (attributes)
error ("attributes are not allowed on a function-definition");
/* This is a function-definition. */
*function_definition_p = true;
/* Parse the function definition. */
if (member_p)
decl = cp_parser_save_member_function_body (parser,
decl_specifiers,
declarator,
prefix_attributes);
else
decl
= (cp_parser_function_definition_from_specifiers_and_declarator
(parser, decl_specifiers, prefix_attributes, declarator));
return decl;
}
}
/* [dcl.dcl]
Only in function declarations for constructors, destructors, and
type conversions can the decl-specifier-seq be omitted.
We explicitly postpone this check past the point where we handle
function-definitions because we tolerate function-definitions
that are missing their return types in some modes. */
if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
{
cp_parser_error (parser,
"expected constructor, destructor, or type conversion");
return error_mark_node;
}
/* An `=' or an `(' indicates an initializer. */
if (token->type == CPP_EQ
|| token->type == CPP_OPEN_PAREN)
{
is_initialized = true;
initialization_kind = token->type;
}
else
{
/* If the init-declarator isn't initialized and isn't followed by a
`,' or `;', it's not a valid init-declarator. */
if (token->type != CPP_COMMA
&& token->type != CPP_SEMICOLON)
{
cp_parser_error (parser, "expected initializer");
return error_mark_node;
}
is_initialized = false;
initialization_kind = CPP_EOF;
}
/* Because start_decl has side-effects, we should only call it if we
know we're going ahead. By this point, we know that we cannot
possibly be looking at any other construct. */
cp_parser_commit_to_tentative_parse (parser);
/* If the decl specifiers were bad, issue an error now that we're
sure this was intended to be a declarator. Then continue
declaring the variable(s), as int, to try to cut down on further
errors. */
if (decl_specifiers->any_specifiers_p
&& decl_specifiers->type == error_mark_node)
{
cp_parser_error (parser, "invalid type in declaration");
decl_specifiers->type = integer_type_node;
}
/* Check to see whether or not this declaration is a friend. */
friend_p = cp_parser_friend_p (decl_specifiers);
/* Enter the newly declared entry in the symbol table. If we're
processing a declaration in a class-specifier, we wait until
after processing the initializer. */
if (!member_p)
{
if (parser->in_unbraced_linkage_specification_p)
decl_specifiers->storage_class = sc_extern;
decl = start_decl (declarator, decl_specifiers,
is_initialized, attributes, prefix_attributes,
&pushed_scope);
}
else if (scope)
/* Enter the SCOPE. That way unqualified names appearing in the
initializer will be looked up in SCOPE. */
pushed_scope = push_scope (scope);
/* Perform deferred access control checks, now that we know in which
SCOPE the declared entity resides. */
if (!member_p && decl)
{
tree saved_current_function_decl = NULL_TREE;
/* If the entity being declared is a function, pretend that we
are in its scope. If it is a `friend', it may have access to
things that would not otherwise be accessible. */
if (TREE_CODE (decl) == FUNCTION_DECL)
{
saved_current_function_decl = current_function_decl;
current_function_decl = decl;
}
/* Perform access checks for template parameters. */
cp_parser_perform_template_parameter_access_checks (checks);
/* Perform the access control checks for the declarator and the
the decl-specifiers. */
perform_deferred_access_checks ();
/* Restore the saved value. */
if (TREE_CODE (decl) == FUNCTION_DECL)
current_function_decl = saved_current_function_decl;
}
/* Parse the initializer. */
initializer = NULL_TREE;
is_parenthesized_init = false;
is_non_constant_init = true;
if (is_initialized)
{
if (function_declarator_p (declarator))
{
if (initialization_kind == CPP_EQ)
initializer = cp_parser_pure_specifier (parser);
else
{
/* If the declaration was erroneous, we don't really
know what the user intended, so just silently
consume the initializer. */
if (decl != error_mark_node)
error ("initializer provided for function");
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
}
}
else
initializer = cp_parser_initializer (parser,
&is_parenthesized_init,
&is_non_constant_init);
}
/* The old parser allows attributes to appear after a parenthesized
initializer. Mark Mitchell proposed removing this functionality
on the GCC mailing lists on 2002-08-13. This parser accepts the
attributes -- but ignores them. */
if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
if (cp_parser_attributes_opt (parser))
warning (OPT_Wattributes,
"attributes after parenthesized initializer ignored");
/* For an in-class declaration, use `grokfield' to create the
declaration. */
if (member_p)
{
if (pushed_scope)
{
pop_scope (pushed_scope);
pushed_scope = false;
}
decl = grokfield (declarator, decl_specifiers,
initializer, !is_non_constant_init,
/*asmspec=*/NULL_TREE,
prefix_attributes);
if (decl && TREE_CODE (decl) == FUNCTION_DECL)
cp_parser_save_default_args (parser, decl);
}
/* Finish processing the declaration. But, skip friend
declarations. */
if (!friend_p && decl && decl != error_mark_node)
{
cp_finish_decl (decl,
initializer, !is_non_constant_init,
asm_specification,
/* If the initializer is in parentheses, then this is
a direct-initialization, which means that an
`explicit' constructor is OK. Otherwise, an
`explicit' constructor cannot be used. */
((is_parenthesized_init || !is_initialized)
? 0 : LOOKUP_ONLYCONVERTING));
}
if (!friend_p && pushed_scope)
pop_scope (pushed_scope);
return decl;
}
/* Parse a declarator.
declarator:
direct-declarator
ptr-operator declarator
abstract-declarator:
ptr-operator abstract-declarator [opt]
direct-abstract-declarator
GNU Extensions:
declarator:
attributes [opt] direct-declarator
attributes [opt] ptr-operator declarator
abstract-declarator:
attributes [opt] ptr-operator abstract-declarator [opt]
attributes [opt] direct-abstract-declarator
If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
detect constructor, destructor or conversion operators. It is set
to -1 if the declarator is a name, and +1 if it is a
function. Otherwise it is set to zero. Usually you just want to
test for >0, but internally the negative value is used.
(The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
a decl-specifier-seq unless it declares a constructor, destructor,
or conversion. It might seem that we could check this condition in
semantic analysis, rather than parsing, but that makes it difficult
to handle something like `f()'. We want to notice that there are
no decl-specifiers, and therefore realize that this is an
expression, not a declaration.)
If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
the declarator is a direct-declarator of the form "(...)".
MEMBER_P is true iff this declarator is a member-declarator. */
static cp_declarator *
cp_parser_declarator (cp_parser* parser,
cp_parser_declarator_kind dcl_kind,
int* ctor_dtor_or_conv_p,
bool* parenthesized_p,
bool member_p)
{
cp_token *token;
cp_declarator *declarator;
enum tree_code code;
cp_cv_quals cv_quals;
tree class_type;
tree attributes = NULL_TREE;
/* Assume this is not a constructor, destructor, or type-conversion
operator. */
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = 0;
if (cp_parser_allow_gnu_extensions_p (parser))
attributes = cp_parser_attributes_opt (parser);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for the ptr-operator production. */
cp_parser_parse_tentatively (parser);
/* Parse the ptr-operator. */
code = cp_parser_ptr_operator (parser,
&class_type,
&cv_quals);
/* If that worked, then we have a ptr-operator. */
if (cp_parser_parse_definitely (parser))
{
/* If a ptr-operator was found, then this declarator was not
parenthesized. */
if (parenthesized_p)
*parenthesized_p = true;
/* The dependent declarator is optional if we are parsing an
abstract-declarator. */
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
cp_parser_parse_tentatively (parser);
/* Parse the dependent declarator. */
declarator = cp_parser_declarator (parser, dcl_kind,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
/* If we are parsing an abstract-declarator, we must handle the
case where the dependent declarator is absent. */
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
&& !cp_parser_parse_definitely (parser))
declarator = NULL;
/* Build the representation of the ptr-operator. */
if (class_type)
declarator = make_ptrmem_declarator (cv_quals,
class_type,
declarator);
else if (code == INDIRECT_REF)
declarator = make_pointer_declarator (cv_quals, declarator);
else
declarator = make_reference_declarator (cv_quals, declarator);
}
/* Everything else is a direct-declarator. */
else
{
if (parenthesized_p)
*parenthesized_p = cp_lexer_next_token_is (parser->lexer,
CPP_OPEN_PAREN);
declarator = cp_parser_direct_declarator (parser, dcl_kind,
ctor_dtor_or_conv_p,
member_p);
}
if (attributes && declarator && declarator != cp_error_declarator)
declarator->attributes = attributes;
return declarator;
}
/* Parse a direct-declarator or direct-abstract-declarator.
direct-declarator:
declarator-id
direct-declarator ( parameter-declaration-clause )
cv-qualifier-seq [opt]
exception-specification [opt]
direct-declarator [ constant-expression [opt] ]
( declarator )
direct-abstract-declarator:
direct-abstract-declarator [opt]
( parameter-declaration-clause )
cv-qualifier-seq [opt]
exception-specification [opt]
direct-abstract-declarator [opt] [ constant-expression [opt] ]
( abstract-declarator )
Returns a representation of the declarator. DCL_KIND is
CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
we are parsing a direct-declarator. It is
CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
of ambiguity we prefer an abstract declarator, as per
[dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
cp_parser_declarator. */
static cp_declarator *
cp_parser_direct_declarator (cp_parser* parser,
cp_parser_declarator_kind dcl_kind,
int* ctor_dtor_or_conv_p,
bool member_p)
{
cp_token *token;
cp_declarator *declarator = NULL;
tree scope = NULL_TREE;
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
bool saved_in_declarator_p = parser->in_declarator_p;
bool first = true;
tree pushed_scope = NULL_TREE;
while (true)
{
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_OPEN_PAREN)
{
/* This is either a parameter-declaration-clause, or a
parenthesized declarator. When we know we are parsing a
named declarator, it must be a parenthesized declarator
if FIRST is true. For instance, `(int)' is a
parameter-declaration-clause, with an omitted
direct-abstract-declarator. But `((*))', is a
parenthesized abstract declarator. Finally, when T is a
template parameter `(T)' is a
parameter-declaration-clause, and not a parenthesized
named declarator.
We first try and parse a parameter-declaration-clause,
and then try a nested declarator (if FIRST is true).
It is not an error for it not to be a
parameter-declaration-clause, even when FIRST is
false. Consider,
int i (int);
int i (3);
The first is the declaration of a function while the
second is a the definition of a variable, including its
initializer.
Having seen only the parenthesis, we cannot know which of
these two alternatives should be selected. Even more
complex are examples like:
int i (int (a));
int i (int (3));
The former is a function-declaration; the latter is a
variable initialization.
Thus again, we try a parameter-declaration-clause, and if
that fails, we back out and return. */
if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
{
cp_parameter_declarator *params;
unsigned saved_num_template_parameter_lists;
/* In a member-declarator, the only valid interpretation
of a parenthesis is the start of a
parameter-declaration-clause. (It is invalid to
initialize a static data member with a parenthesized
initializer; only the "=" form of initialization is
permitted.) */
if (!member_p)
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
if (first)
{
/* If this is going to be an abstract declarator, we're
in a declarator and we can't have default args. */
parser->default_arg_ok_p = false;
parser->in_declarator_p = true;
}
/* Inside the function parameter list, surrounding
template-parameter-lists do not apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* Parse the parameter-declaration-clause. */
params = cp_parser_parameter_declaration_clause (parser);
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
/* If all went well, parse the cv-qualifier-seq and the
exception-specification. */
if (member_p || cp_parser_parse_definitely (parser))
{
cp_cv_quals cv_quals;
tree exception_specification;
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
first = false;
/* Consume the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Parse the cv-qualifier-seq. */
cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
/* And the exception-specification. */
exception_specification
= cp_parser_exception_specification_opt (parser);
/* Create the function-declarator. */
declarator = make_call_declarator (declarator,
params,
cv_quals,
exception_specification);
/* Any subsequent parameter lists are to do with
return type, so are not those of the declared
function. */
parser->default_arg_ok_p = false;
/* Repeat the main loop. */
continue;
}
}
/* If this is the first, we can try a parenthesized
declarator. */
if (first)
{
bool saved_in_type_id_in_expr_p;
parser->default_arg_ok_p = saved_default_arg_ok_p;
parser->in_declarator_p = saved_in_declarator_p;
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the nested declarator. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
declarator
= cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
/*parenthesized_p=*/NULL,
member_p);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
first = false;
/* Expect a `)'. */
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
declarator = cp_error_declarator;
if (declarator == cp_error_declarator)
break;
goto handle_declarator;
}
/* Otherwise, we must be done. */
else
break;
}
else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
&& token->type == CPP_OPEN_SQUARE)
{
/* Parse an array-declarator. */
tree bounds;
if (ctor_dtor_or_conv_p)
*ctor_dtor_or_conv_p = 0;
first = false;
parser->default_arg_ok_p = false;
parser->in_declarator_p = true;
/* Consume the `['. */
cp_lexer_consume_token (parser->lexer);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is `]', then there is no
constant-expression. */
if (token->type != CPP_CLOSE_SQUARE)
{
bool non_constant_p;
bounds
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/true,
&non_constant_p);
if (!non_constant_p)
bounds = fold_non_dependent_expr (bounds);
/* Normally, the array bound must be an integral constant
expression. However, as an extension, we allow VLAs
in function scopes. */
else if (!parser->in_function_body)
{
error ("array bound is not an integer constant");
bounds = error_mark_node;
}
}
else
bounds = NULL_TREE;
/* Look for the closing `]'. */
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
{
declarator = cp_error_declarator;
break;
}
declarator = make_array_declarator (declarator, bounds);
}
else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
{
tree qualifying_scope;
tree unqualified_name;
special_function_kind sfk;
bool abstract_ok;
/* Parse a declarator-id */
abstract_ok = (dcl_kind == CP_PARSER_DECLARATOR_EITHER);
if (abstract_ok)
cp_parser_parse_tentatively (parser);
unqualified_name
= cp_parser_declarator_id (parser, /*optional_p=*/abstract_ok);
qualifying_scope = parser->scope;
if (abstract_ok)
{
if (!cp_parser_parse_definitely (parser))
unqualified_name = error_mark_node;
else if (unqualified_name
&& (qualifying_scope
|| (TREE_CODE (unqualified_name)
!= IDENTIFIER_NODE)))
{
cp_parser_error (parser, "expected unqualified-id");
unqualified_name = error_mark_node;
}
}
if (!unqualified_name)
return NULL;
if (unqualified_name == error_mark_node)
{
declarator = cp_error_declarator;
break;
}
if (qualifying_scope && at_namespace_scope_p ()
&& TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
{
/* In the declaration of a member of a template class
outside of the class itself, the SCOPE will sometimes
be a TYPENAME_TYPE. For example, given:
template <typename T>
int S<T>::R::i = 3;
the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
this context, we must resolve S<T>::R to an ordinary
type, rather than a typename type.
The reason we normally avoid resolving TYPENAME_TYPEs
is that a specialization of `S' might render
`S<T>::R' not a type. However, if `S' is
specialized, then this `i' will not be used, so there
is no harm in resolving the types here. */
tree type;
/* Resolve the TYPENAME_TYPE. */
type = resolve_typename_type (qualifying_scope,
/*only_current_p=*/false);
/* If that failed, the declarator is invalid. */
if (type == error_mark_node)
error ("%<%T::%D%> is not a type",
TYPE_CONTEXT (qualifying_scope),
TYPE_IDENTIFIER (qualifying_scope));
qualifying_scope = type;
}
sfk = sfk_none;
if (unqualified_name)
{
tree class_type;
if (qualifying_scope
&& CLASS_TYPE_P (qualifying_scope))
class_type = qualifying_scope;
else
class_type = current_class_type;
if (TREE_CODE (unqualified_name) == TYPE_DECL)
{
tree name_type = TREE_TYPE (unqualified_name);
if (class_type && same_type_p (name_type, class_type))
{
if (qualifying_scope
&& CLASSTYPE_USE_TEMPLATE (name_type))
{
error ("invalid use of constructor as a template");
inform ("use %<%T::%D%> instead of %<%T::%D%> to "
"name the constructor in a qualified name",
class_type,
DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
class_type, name_type);
declarator = cp_error_declarator;
break;
}
else
unqualified_name = constructor_name (class_type);
}
else
{
/* We do not attempt to print the declarator
here because we do not have enough
information about its original syntactic
form. */
cp_parser_error (parser, "invalid declarator");
declarator = cp_error_declarator;
break;
}
}
if (class_type)
{
if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
sfk = sfk_destructor;
else if (IDENTIFIER_TYPENAME_P (unqualified_name))
sfk = sfk_conversion;
else if (/* There's no way to declare a constructor
for an anonymous type, even if the type
got a name for linkage purposes. */
!TYPE_WAS_ANONYMOUS (class_type)
&& constructor_name_p (unqualified_name,
class_type))
{
unqualified_name = constructor_name (class_type);
sfk = sfk_constructor;
}
if (ctor_dtor_or_conv_p && sfk != sfk_none)
*ctor_dtor_or_conv_p = -1;
}
}
declarator = make_id_declarator (qualifying_scope,
unqualified_name,
sfk);
declarator->id_loc = token->location;
handle_declarator:;
scope = get_scope_of_declarator (declarator);
if (scope)
/* Any names that appear after the declarator-id for a
member are looked up in the containing scope. */
pushed_scope = push_scope (scope);
parser->in_declarator_p = true;
if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
|| (declarator && declarator->kind == cdk_id))
/* Default args are only allowed on function
declarations. */
parser->default_arg_ok_p = saved_default_arg_ok_p;
else
parser->default_arg_ok_p = false;
first = false;
}
/* We're done. */
else
break;
}
/* For an abstract declarator, we might wind up with nothing at this
point. That's an error; the declarator is not optional. */
if (!declarator)
cp_parser_error (parser, "expected declarator");
/* If we entered a scope, we must exit it now. */
if (pushed_scope)
pop_scope (pushed_scope);
parser->default_arg_ok_p = saved_default_arg_ok_p;
parser->in_declarator_p = saved_in_declarator_p;
return declarator;
}
/* Parse a ptr-operator.
ptr-operator:
* cv-qualifier-seq [opt]
&
:: [opt] nested-name-specifier * cv-qualifier-seq [opt]
GNU Extension:
ptr-operator:
& cv-qualifier-seq [opt]
Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
Returns ADDR_EXPR if a reference was used. In the case of a
pointer-to-member, *TYPE is filled in with the TYPE containing the
member. *CV_QUALS is filled in with the cv-qualifier-seq, or
TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
ERROR_MARK if an error occurred. */
static enum tree_code
cp_parser_ptr_operator (cp_parser* parser,
tree* type,
cp_cv_quals *cv_quals)
{
enum tree_code code = ERROR_MARK;
cp_token *token;
/* Assume that it's not a pointer-to-member. */
*type = NULL_TREE;
/* And that there are no cv-qualifiers. */
*cv_quals = TYPE_UNQUALIFIED;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `*' or `&' we have a pointer or reference. */
if (token->type == CPP_MULT || token->type == CPP_AND)
{
/* Remember which ptr-operator we were processing. */
code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
/* Consume the `*' or `&'. */
cp_lexer_consume_token (parser->lexer);
/* A `*' can be followed by a cv-qualifier-seq, and so can a
`&', if we are allowing GNU extensions. (The only qualifier
that can legally appear after `&' is `restrict', but that is
enforced during semantic analysis. */
if (code == INDIRECT_REF
|| cp_parser_allow_gnu_extensions_p (parser))
*cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
}
else
{
/* Try the pointer-to-member case. */
cp_parser_parse_tentatively (parser);
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name specifier. */
cp_parser_nested_name_specifier (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/true,
/*type_p=*/false,
/*is_declaration=*/false);
/* If we found it, and the next token is a `*', then we are
indeed looking at a pointer-to-member operator. */
if (!cp_parser_error_occurred (parser)
&& cp_parser_require (parser, CPP_MULT, "`*'"))
{
/* Indicate that the `*' operator was used. */
code = INDIRECT_REF;
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
error ("%qD is a namespace", parser->scope);
else
{
/* The type of which the member is a member is given by the
current SCOPE. */
*type = parser->scope;
/* The next name will not be qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* Look for the optional cv-qualifier-seq. */
*cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
}
}
/* If that didn't work we don't have a ptr-operator. */
if (!cp_parser_parse_definitely (parser))
cp_parser_error (parser, "expected ptr-operator");
}
return code;
}
/* Parse an (optional) cv-qualifier-seq.
cv-qualifier-seq:
cv-qualifier cv-qualifier-seq [opt]
cv-qualifier:
const
volatile
GNU Extension:
cv-qualifier:
__restrict__
Returns a bitmask representing the cv-qualifiers. */
static cp_cv_quals
cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
{
cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
while (true)
{
cp_token *token;
cp_cv_quals cv_qualifier;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* See if it's a cv-qualifier. */
switch (token->keyword)
{
case RID_CONST:
cv_qualifier = TYPE_QUAL_CONST;
break;
case RID_VOLATILE:
cv_qualifier = TYPE_QUAL_VOLATILE;
break;
case RID_RESTRICT:
cv_qualifier = TYPE_QUAL_RESTRICT;
break;
default:
cv_qualifier = TYPE_UNQUALIFIED;
break;
}
if (!cv_qualifier)
break;
if (cv_quals & cv_qualifier)
{
error ("duplicate cv-qualifier");
cp_lexer_purge_token (parser->lexer);
}
else
{
cp_lexer_consume_token (parser->lexer);
cv_quals |= cv_qualifier;
}
}
return cv_quals;
}
/* Parse a declarator-id.
declarator-id:
id-expression
:: [opt] nested-name-specifier [opt] type-name
In the `id-expression' case, the value returned is as for
cp_parser_id_expression if the id-expression was an unqualified-id.
If the id-expression was a qualified-id, then a SCOPE_REF is
returned. The first operand is the scope (either a NAMESPACE_DECL
or TREE_TYPE), but the second is still just a representation of an
unqualified-id. */
static tree
cp_parser_declarator_id (cp_parser* parser, bool optional_p)
{
tree id;
/* The expression must be an id-expression. Assume that qualified
names are the names of types so that:
template <class T>
int S<T>::R::i = 3;
will work; we must treat `S<T>::R' as the name of a type.
Similarly, assume that qualified names are templates, where
required, so that:
template <class T>
int S<T>::R<T>::i = 3;
will work, too. */
id = cp_parser_id_expression (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/false,
/*template_p=*/NULL,
/*declarator_p=*/true,
optional_p);
if (id && BASELINK_P (id))
id = BASELINK_FUNCTIONS (id);
return id;
}
/* Parse a type-id.
type-id:
type-specifier-seq abstract-declarator [opt]
Returns the TYPE specified. */
static tree
cp_parser_type_id (cp_parser* parser)
{
cp_decl_specifier_seq type_specifier_seq;
cp_declarator *abstract_declarator;
/* Parse the type-specifier-seq. */
cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
&type_specifier_seq);
if (type_specifier_seq.type == error_mark_node)
return error_mark_node;
/* There might or might not be an abstract declarator. */
cp_parser_parse_tentatively (parser);
/* Look for the declarator. */
abstract_declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
/* Check to see if there really was a declarator. */
if (!cp_parser_parse_definitely (parser))
abstract_declarator = NULL;
return groktypename (&type_specifier_seq, abstract_declarator);
}
/* Parse a type-specifier-seq.
type-specifier-seq:
type-specifier type-specifier-seq [opt]
GNU extension:
type-specifier-seq:
attributes type-specifier-seq [opt]
If IS_CONDITION is true, we are at the start of a "condition",
e.g., we've just seen "if (".
Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
static void
cp_parser_type_specifier_seq (cp_parser* parser,
bool is_condition,
cp_decl_specifier_seq *type_specifier_seq)
{
bool seen_type_specifier = false;
cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL;
/* Clear the TYPE_SPECIFIER_SEQ. */
clear_decl_specs (type_specifier_seq);
/* Parse the type-specifiers and attributes. */
while (true)
{
tree type_specifier;
bool is_cv_qualifier;
/* Check for attributes first. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
{
type_specifier_seq->attributes =
chainon (type_specifier_seq->attributes,
cp_parser_attributes_opt (parser));
continue;
}
/* Look for the type-specifier. */
type_specifier = cp_parser_type_specifier (parser,
flags,
type_specifier_seq,
/*is_declaration=*/false,
NULL,
&is_cv_qualifier);
if (!type_specifier)
{
/* If the first type-specifier could not be found, this is not a
type-specifier-seq at all. */
if (!seen_type_specifier)
{
cp_parser_error (parser, "expected type-specifier");
type_specifier_seq->type = error_mark_node;
return;
}
/* If subsequent type-specifiers could not be found, the
type-specifier-seq is complete. */
break;
}
seen_type_specifier = true;
/* The standard says that a condition can be:
type-specifier-seq declarator = assignment-expression
However, given:
struct S {};
if (int S = ...)
we should treat the "S" as a declarator, not as a
type-specifier. The standard doesn't say that explicitly for
type-specifier-seq, but it does say that for
decl-specifier-seq in an ordinary declaration. Perhaps it
would be clearer just to allow a decl-specifier-seq here, and
then add a semantic restriction that if any decl-specifiers
that are not type-specifiers appear, the program is invalid. */
if (is_condition && !is_cv_qualifier)
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
}
cp_parser_check_decl_spec (type_specifier_seq);
}
/* Parse a parameter-declaration-clause.
parameter-declaration-clause:
parameter-declaration-list [opt] ... [opt]
parameter-declaration-list , ...
Returns a representation for the parameter declarations. A return
value of NULL indicates a parameter-declaration-clause consisting
only of an ellipsis. */
static cp_parameter_declarator *
cp_parser_parameter_declaration_clause (cp_parser* parser)
{
cp_parameter_declarator *parameters;
cp_token *token;
bool ellipsis_p;
bool is_error;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for trivial parameter-declaration-clauses. */
if (token->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
return NULL;
}
else if (token->type == CPP_CLOSE_PAREN)
/* There are no parameters. */
{
#ifndef NO_IMPLICIT_EXTERN_C
if (in_system_header && current_class_type == NULL
&& current_lang_name == lang_name_c)
return NULL;
else
#endif
return no_parameters;
}
/* Check for `(void)', too, which is a special case. */
else if (token->keyword == RID_VOID
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_CLOSE_PAREN))
{
/* Consume the `void' token. */
cp_lexer_consume_token (parser->lexer);
/* There are no parameters. */
return no_parameters;
}
/* Parse the parameter-declaration-list. */
parameters = cp_parser_parameter_declaration_list (parser, &is_error);
/* If a parse error occurred while parsing the
parameter-declaration-list, then the entire
parameter-declaration-clause is erroneous. */
if (is_error)
return NULL;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `,', the clause should terminate with an ellipsis. */
if (token->type == CPP_COMMA)
{
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
/* Expect an ellipsis. */
ellipsis_p
= (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
}
/* It might also be `...' if the optional trailing `,' was
omitted. */
else if (token->type == CPP_ELLIPSIS)
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
/* And remember that we saw it. */
ellipsis_p = true;
}
else
ellipsis_p = false;
/* Finish the parameter list. */
if (parameters && ellipsis_p)
parameters->ellipsis_p = true;
return parameters;
}
/* Parse a parameter-declaration-list.
parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration
Returns a representation of the parameter-declaration-list, as for
cp_parser_parameter_declaration_clause. However, the
`void_list_node' is never appended to the list. Upon return,
*IS_ERROR will be true iff an error occurred. */
static cp_parameter_declarator *
cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
{
cp_parameter_declarator *parameters = NULL;
cp_parameter_declarator **tail = ¶meters;
bool saved_in_unbraced_linkage_specification_p;
/* Assume all will go well. */
*is_error = false;
/* The special considerations that apply to a function within an
unbraced linkage specifications do not apply to the parameters
to the function. */
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = false;
/* Look for more parameters. */
while (true)
{
cp_parameter_declarator *parameter;
bool parenthesized_p;
/* Parse the parameter. */
parameter
= cp_parser_parameter_declaration (parser,
/*template_parm_p=*/false,
&parenthesized_p);
/* If a parse error occurred parsing the parameter declaration,
then the entire parameter-declaration-list is erroneous. */
if (!parameter)
{
*is_error = true;
parameters = NULL;
break;
}
/* Add the new parameter to the list. */
*tail = parameter;
tail = ¶meter->next;
/* Peek at the next token. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
|| cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
/* These are for Objective-C++ */
|| cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
/* The parameter-declaration-list is complete. */
break;
else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If it's an ellipsis, then the list is complete. */
if (token->type == CPP_ELLIPSIS)
break;
/* Otherwise, there must be more parameters. Consume the
`,'. */
cp_lexer_consume_token (parser->lexer);
/* When parsing something like:
int i(float f, double d)
we can tell after seeing the declaration for "f" that we
are not looking at an initialization of a variable "i",
but rather at the declaration of a function "i".
Due to the fact that the parsing of template arguments
(as specified to a template-id) requires backtracking we
cannot use this technique when inside a template argument
list. */
if (!parser->in_template_argument_list_p
&& !parser->in_type_id_in_expr_p
&& cp_parser_uncommitted_to_tentative_parse_p (parser)
/* However, a parameter-declaration of the form
"foat(f)" (which is a valid declaration of a
parameter "f") can also be interpreted as an
expression (the conversion of "f" to "float"). */
&& !parenthesized_p)
cp_parser_commit_to_tentative_parse (parser);
}
else
{
cp_parser_error (parser, "expected %<,%> or %<...%>");
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/false);
break;
}
}
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
return parameters;
}
/* Parse a parameter declaration.
parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declarator [opt]
decl-specifier-seq abstract-declarator [opt] = assignment-expression
If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
declares a template parameter. (In that case, a non-nested `>'
token encountered during the parsing of the assignment-expression
is not interpreted as a greater-than operator.)
Returns a representation of the parameter, or NULL if an error
occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
true iff the declarator is of the form "(p)". */
static cp_parameter_declarator *
cp_parser_parameter_declaration (cp_parser *parser,
bool template_parm_p,
bool *parenthesized_p)
{
int declares_class_or_enum;
bool greater_than_is_operator_p;
cp_decl_specifier_seq decl_specifiers;
cp_declarator *declarator;
tree default_argument;
cp_token *token;
const char *saved_message;
/* In a template parameter, `>' is not an operator.
[temp.param]
When parsing a default template-argument for a non-type
template-parameter, the first non-nested `>' is taken as the end
of the template parameter-list rather than a greater-than
operator. */
greater_than_is_operator_p = !template_parm_p;
/* Type definitions may not appear in parameter types. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in parameter types";
/* Parse the declaration-specifiers. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_NONE,
&decl_specifiers,
&declares_class_or_enum);
/* If an error occurred, there's no reason to attempt to parse the
rest of the declaration. */
if (cp_parser_error_occurred (parser))
{
parser->type_definition_forbidden_message = saved_message;
return NULL;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is a `)', `,', `=', `>', or `...', then there
is no declarator. */
if (token->type == CPP_CLOSE_PAREN
|| token->type == CPP_COMMA
|| token->type == CPP_EQ
|| token->type == CPP_ELLIPSIS
|| token->type == CPP_GREATER)
{
declarator = NULL;
if (parenthesized_p)
*parenthesized_p = false;
}
/* Otherwise, there should be a declarator. */
else
{
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
parser->default_arg_ok_p = false;
/* After seeing a decl-specifier-seq, if the next token is not a
"(", there is no possibility that the code is a valid
expression. Therefore, if parsing tentatively, we commit at
this point. */
if (!parser->in_template_argument_list_p
/* In an expression context, having seen:
(int((char ...
we cannot be sure whether we are looking at a
function-type (taking a "char" as a parameter) or a cast
of some object of type "char" to "int". */
&& !parser->in_type_id_in_expr_p
&& cp_parser_uncommitted_to_tentative_parse_p (parser)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
cp_parser_commit_to_tentative_parse (parser);
/* Parse the declarator. */
declarator = cp_parser_declarator (parser,
CP_PARSER_DECLARATOR_EITHER,
/*ctor_dtor_or_conv_p=*/NULL,
parenthesized_p,
/*member_p=*/false);
parser->default_arg_ok_p = saved_default_arg_ok_p;
/* After the declarator, allow more attributes. */
decl_specifiers.attributes
= chainon (decl_specifiers.attributes,
cp_parser_attributes_opt (parser));
}
/* The restriction on defining new types applies only to the type
of the parameter, not to the default argument. */
parser->type_definition_forbidden_message = saved_message;
/* If the next token is `=', then process a default argument. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
bool saved_greater_than_is_operator_p;
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* If we are defining a class, then the tokens that make up the
default argument must be saved and processed later. */
if (!template_parm_p && at_class_scope_p ()
&& TYPE_BEING_DEFINED (current_class_type))
{
unsigned depth = 0;
cp_token *first_token;
cp_token *token;
/* Add tokens until we have processed the entire default
argument. We add the range [first_token, token). */
first_token = cp_lexer_peek_token (parser->lexer);
while (true)
{
bool done = false;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* What we do depends on what token we have. */
switch (token->type)
{
/* In valid code, a default argument must be
immediately followed by a `,' `)', or `...'. */
case CPP_COMMA:
case CPP_CLOSE_PAREN:
case CPP_ELLIPSIS:
/* If we run into a non-nested `;', `}', or `]',
then the code is invalid -- but the default
argument is certainly over. */
case CPP_SEMICOLON:
case CPP_CLOSE_BRACE:
case CPP_CLOSE_SQUARE:
if (depth == 0)
done = true;
/* Update DEPTH, if necessary. */
else if (token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_SQUARE)
--depth;
break;
case CPP_OPEN_PAREN:
case CPP_OPEN_SQUARE:
case CPP_OPEN_BRACE:
++depth;
break;
case CPP_GREATER:
/* If we see a non-nested `>', and `>' is not an
operator, then it marks the end of the default
argument. */
if (!depth && !greater_than_is_operator_p)
done = true;
break;
/* If we run out of tokens, issue an error message. */
case CPP_EOF:
case CPP_PRAGMA_EOL:
error ("file ends in default argument");
done = true;
break;
case CPP_NAME:
case CPP_SCOPE:
/* In these cases, we should look for template-ids.
For example, if the default argument is
`X<int, double>()', we need to do name lookup to
figure out whether or not `X' is a template; if
so, the `,' does not end the default argument.
That is not yet done. */
break;
default:
break;
}
/* If we've reached the end, stop. */
if (done)
break;
/* Add the token to the token block. */
token = cp_lexer_consume_token (parser->lexer);
}
/* Create a DEFAULT_ARG to represented the unparsed default
argument. */
default_argument = make_node (DEFAULT_ARG);
DEFARG_TOKENS (default_argument)
= cp_token_cache_new (first_token, token);
DEFARG_INSTANTIATIONS (default_argument) = NULL;
}
/* Outside of a class definition, we can just parse the
assignment-expression. */
else
{
bool saved_local_variables_forbidden_p;
/* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
set correctly. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = greater_than_is_operator_p;
/* Local variable names (and the `this' keyword) may not
appear in a default argument. */
saved_local_variables_forbidden_p
= parser->local_variables_forbidden_p;
parser->local_variables_forbidden_p = true;
/* The default argument expression may cause implicitly
defined member functions to be synthesized, which will
result in garbage collection. We must treat this
situation as if we were within the body of function so as
to avoid collecting live data on the stack. */
++function_depth;
/* Parse the assignment-expression. */
if (template_parm_p)
push_deferring_access_checks (dk_no_deferred);
default_argument
= cp_parser_assignment_expression (parser, /*cast_p=*/false);
if (template_parm_p)
pop_deferring_access_checks ();
/* Restore saved state. */
--function_depth;
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
parser->local_variables_forbidden_p
= saved_local_variables_forbidden_p;
}
if (!parser->default_arg_ok_p)
{
if (!flag_pedantic_errors)
warning (0, "deprecated use of default argument for parameter of non-function");
else
{
error ("default arguments are only permitted for function parameters");
default_argument = NULL_TREE;
}
}
}
else
default_argument = NULL_TREE;
return make_parameter_declarator (&decl_specifiers,
declarator,
default_argument);
}
/* Parse a function-body.
function-body:
compound_statement */
static void
cp_parser_function_body (cp_parser *parser)
{
cp_parser_compound_statement (parser, NULL, false);
}
/* Parse a ctor-initializer-opt followed by a function-body. Return
true if a ctor-initializer was present. */
static bool
cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
{
tree body;
bool ctor_initializer_p;
/* Begin the function body. */
body = begin_function_body ();
/* Parse the optional ctor-initializer. */
ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
/* Parse the function-body. */
cp_parser_function_body (parser);
/* Finish the function body. */
finish_function_body (body);
return ctor_initializer_p;
}
/* Parse an initializer.
initializer:
= initializer-clause
( expression-list )
Returns an expression representing the initializer. If no
initializer is present, NULL_TREE is returned.
*IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
set to FALSE if there is no initializer present. If there is an
initializer, and it is not a constant-expression, *NON_CONSTANT_P
is set to true; otherwise it is set to false. */
static tree
cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
bool* non_constant_p)
{
cp_token *token;
tree init;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Let our caller know whether or not this initializer was
parenthesized. */
*is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
/* Assume that the initializer is constant. */
*non_constant_p = false;
if (token->type == CPP_EQ)
{
/* Consume the `='. */
cp_lexer_consume_token (parser->lexer);
/* Parse the initializer-clause. */
init = cp_parser_initializer_clause (parser, non_constant_p);
}
else if (token->type == CPP_OPEN_PAREN)
init = cp_parser_parenthesized_expression_list (parser, false,
/*cast_p=*/false,
non_constant_p);
else
{
/* Anything else is an error. */
cp_parser_error (parser, "expected initializer");
init = error_mark_node;
}
return init;
}
/* Parse an initializer-clause.
initializer-clause:
assignment-expression
{ initializer-list , [opt] }
{ }
Returns an expression representing the initializer.
If the `assignment-expression' production is used the value
returned is simply a representation for the expression.
Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
the elements of the initializer-list (or NULL, if the last
production is used). The TREE_TYPE for the CONSTRUCTOR will be
NULL_TREE. There is no way to detect whether or not the optional
trailing `,' was provided. NON_CONSTANT_P is as for
cp_parser_initializer. */
static tree
cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
{
tree initializer;
/* Assume the expression is constant. */
*non_constant_p = false;
/* If it is not a `{', then we are looking at an
assignment-expression. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
{
initializer
= cp_parser_constant_expression (parser,
/*allow_non_constant_p=*/true,
non_constant_p);
if (!*non_constant_p)
initializer = fold_non_dependent_expr (initializer);
}
else
{
/* Consume the `{' token. */
cp_lexer_consume_token (parser->lexer);
/* Create a CONSTRUCTOR to represent the braced-initializer. */
initializer = make_node (CONSTRUCTOR);
/* If it's not a `}', then there is a non-trivial initializer. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
{
/* Parse the initializer list. */
CONSTRUCTOR_ELTS (initializer)
= cp_parser_initializer_list (parser, non_constant_p);
/* A trailing `,' token is allowed. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
}
/* Now, there should be a trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
}
return initializer;
}
/* Parse an initializer-list.
initializer-list:
initializer-clause
initializer-list , initializer-clause
GNU Extension:
initializer-list:
identifier : initializer-clause
initializer-list, identifier : initializer-clause
Returns a VEC of constructor_elt. The VALUE of each elt is an expression
for the initializer. If the INDEX of the elt is non-NULL, it is the
IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
as for cp_parser_initializer. */
static VEC(constructor_elt,gc) *
cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
{
VEC(constructor_elt,gc) *v = NULL;
/* Assume all of the expressions are constant. */
*non_constant_p = false;
/* Parse the rest of the list. */
while (true)
{
cp_token *token;
tree identifier;
tree initializer;
bool clause_non_constant_p;
/* If the next token is an identifier and the following one is a
colon, we are looking at the GNU designated-initializer
syntax. */
if (cp_parser_allow_gnu_extensions_p (parser)
&& cp_lexer_next_token_is (parser->lexer, CPP_NAME)
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
{
/* Warn the user that they are using an extension. */
if (pedantic)
pedwarn ("ISO C++ does not allow designated initializers");
/* Consume the identifier. */
identifier = cp_lexer_consume_token (parser->lexer)->u.value;
/* Consume the `:'. */
cp_lexer_consume_token (parser->lexer);
}
else
identifier = NULL_TREE;
/* Parse the initializer. */
initializer = cp_parser_initializer_clause (parser,
&clause_non_constant_p);
/* If any clause is non-constant, so is the entire initializer. */
if (clause_non_constant_p)
*non_constant_p = true;
/* Add it to the vector. */
CONSTRUCTOR_APPEND_ELT(v, identifier, initializer);
/* If the next token is not a comma, we have reached the end of
the list. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Peek at the next token. */
token = cp_lexer_peek_nth_token (parser->lexer, 2);
/* If the next token is a `}', then we're still done. An
initializer-clause can have a trailing `,' after the
initializer-list and before the closing `}'. */
if (token->type == CPP_CLOSE_BRACE)
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return v;
}
/* Classes [gram.class] */
/* Parse a class-name.
class-name:
identifier
template-id
TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
to indicate that names looked up in dependent types should be
assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
keyword has been used to indicate that the name that appears next
is a template. TAG_TYPE indicates the explicit tag given before
the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
is the class being defined in a class-head.
Returns the TYPE_DECL representing the class. */
static tree
cp_parser_class_name (cp_parser *parser,
bool typename_keyword_p,
bool template_keyword_p,
enum tag_types tag_type,
bool check_dependency_p,
bool class_head_p,
bool is_declaration)
{
tree decl;
tree scope;
bool typename_p;
cp_token *token;
/* All class-names start with an identifier. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
{
cp_parser_error (parser, "expected class-name");
return error_mark_node;
}
/* PARSER->SCOPE can be cleared when parsing the template-arguments
to a template-id, so we save it here. */
scope = parser->scope;
if (scope == error_mark_node)
return error_mark_node;
/* Any name names a type if we're following the `typename' keyword
in a qualified name where the enclosing scope is type-dependent. */
typename_p = (typename_keyword_p && scope && TYPE_P (scope)
&& dependent_type_p (scope));
/* Handle the common case (an identifier, but not a template-id)
efficiently. */
if (token->type == CPP_NAME
&& !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
{
cp_token *identifier_token;
tree identifier;
bool ambiguous_p;
/* Look for the identifier. */
identifier_token = cp_lexer_peek_token (parser->lexer);
ambiguous_p = identifier_token->ambiguous_p;
identifier = cp_parser_identifier (parser);
/* If the next token isn't an identifier, we are certainly not
looking at a class-name. */
if (identifier == error_mark_node)
decl = error_mark_node;
/* If we know this is a type-name, there's no need to look it
up. */
else if (typename_p)
decl = identifier;
else
{
tree ambiguous_decls;
/* If we already know that this lookup is ambiguous, then
we've already issued an error message; there's no reason
to check again. */
if (ambiguous_p)
{
cp_parser_simulate_error (parser);
return error_mark_node;
}
/* If the next token is a `::', then the name must be a type
name.
[basic.lookup.qual]
During the lookup for a name preceding the :: scope
resolution operator, object, function, and enumerator
names are ignored. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
tag_type = typename_type;
/* Look up the name. */
decl = cp_parser_lookup_name (parser, identifier,
tag_type,
/*is_template=*/false,
/*is_namespace=*/false,
check_dependency_p,
&ambiguous_decls);
if (ambiguous_decls)
{
error ("reference to %qD is ambiguous", identifier);
print_candidates (ambiguous_decls);
if (cp_parser_parsing_tentatively (parser))
{
identifier_token->ambiguous_p = true;
cp_parser_simulate_error (parser);
}
return error_mark_node;
}
}
}
else
{
/* Try a template-id. */
decl = cp_parser_template_id (parser, template_keyword_p,
check_dependency_p,
is_declaration);
if (decl == error_mark_node)
return error_mark_node;
}
decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
/* If this is a typename, create a TYPENAME_TYPE. */
if (typename_p && decl != error_mark_node)
{
decl = make_typename_type (scope, decl, typename_type,
/*complain=*/tf_error);
if (decl != error_mark_node)
decl = TYPE_NAME (decl);
}
/* Check to see that it is really the name of a class. */
if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
&& TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
&& cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
/* Situations like this:
template <typename T> struct A {
typename T::template X<int>::I i;
};
are problematic. Is `T::template X<int>' a class-name? The
standard does not seem to be definitive, but there is no other
valid interpretation of the following `::'. Therefore, those
names are considered class-names. */
{
decl = make_typename_type (scope, decl, tag_type, tf_error);
if (decl != error_mark_node)
decl = TYPE_NAME (decl);
}
else if (TREE_CODE (decl) != TYPE_DECL
|| TREE_TYPE (decl) == error_mark_node
|| !IS_AGGR_TYPE (TREE_TYPE (decl)))
decl = error_mark_node;
if (decl == error_mark_node)
cp_parser_error (parser, "expected class-name");
return decl;
}
/* Parse a class-specifier.
class-specifier:
class-head { member-specification [opt] }
Returns the TREE_TYPE representing the class. */
static tree
cp_parser_class_specifier (cp_parser* parser)
{
cp_token *token;
tree type;
tree attributes = NULL_TREE;
int has_trailing_semicolon;
bool nested_name_specifier_p;
unsigned saved_num_template_parameter_lists;
bool saved_in_function_body;
tree old_scope = NULL_TREE;
tree scope = NULL_TREE;
tree bases;
push_deferring_access_checks (dk_no_deferred);
/* Parse the class-head. */
type = cp_parser_class_head (parser,
&nested_name_specifier_p,
&attributes,
&bases);
/* If the class-head was a semantic disaster, skip the entire body
of the class. */
if (!type)
{
cp_parser_skip_to_end_of_block_or_statement (parser);
pop_deferring_access_checks ();
return error_mark_node;
}
/* Look for the `{'. */
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
{
pop_deferring_access_checks ();
return error_mark_node;
}
/* Process the base classes. If they're invalid, skip the
entire class body. */
if (!xref_basetypes (type, bases))
{
cp_parser_skip_to_closing_brace (parser);
/* Consuming the closing brace yields better error messages
later on. */
cp_lexer_consume_token (parser->lexer);
pop_deferring_access_checks ();
return error_mark_node;
}
/* Issue an error message if type-definitions are forbidden here. */
cp_parser_check_type_definition (parser);
/* Remember that we are defining one more class. */
++parser->num_classes_being_defined;
/* Inside the class, surrounding template-parameter-lists do not
apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* We are not in a function body. */
saved_in_function_body = parser->in_function_body;
parser->in_function_body = false;
/* Start the class. */
if (nested_name_specifier_p)
{
scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
old_scope = push_inner_scope (scope);
}
type = begin_class_definition (type, attributes);
if (type == error_mark_node)
/* If the type is erroneous, skip the entire body of the class. */
cp_parser_skip_to_closing_brace (parser);
else
/* Parse the member-specification. */
cp_parser_member_specification_opt (parser);
/* Look for the trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
/* We get better error messages by noticing a common problem: a
missing trailing `;'. */
token = cp_lexer_peek_token (parser->lexer);
has_trailing_semicolon = (token->type == CPP_SEMICOLON);
/* Look for trailing attributes to apply to this class. */
if (cp_parser_allow_gnu_extensions_p (parser))
attributes = cp_parser_attributes_opt (parser);
if (type != error_mark_node)
type = finish_struct (type, attributes);
if (nested_name_specifier_p)
pop_inner_scope (old_scope, scope);
/* If this class is not itself within the scope of another class,
then we need to parse the bodies of all of the queued function
definitions. Note that the queued functions defined in a class
are not always processed immediately following the
class-specifier for that class. Consider:
struct A {
struct B { void f() { sizeof (A); } };
};
If `f' were processed before the processing of `A' were
completed, there would be no way to compute the size of `A'.
Note that the nesting we are interested in here is lexical --
not the semantic nesting given by TYPE_CONTEXT. In particular,
for:
struct A { struct B; };
struct A::B { void f() { } };
there is no need to delay the parsing of `A::B::f'. */
if (--parser->num_classes_being_defined == 0)
{
tree queue_entry;
tree fn;
tree class_type = NULL_TREE;
tree pushed_scope = NULL_TREE;
/* In a first pass, parse default arguments to the functions.
Then, in a second pass, parse the bodies of the functions.
This two-phased approach handles cases like:
struct S {
void f() { g(); }
void g(int i = 3);
};
*/
for (TREE_PURPOSE (parser->unparsed_functions_queues)
= nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
(queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
TREE_PURPOSE (parser->unparsed_functions_queues)
= TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
{
fn = TREE_VALUE (queue_entry);
/* If there are default arguments that have not yet been processed,
take care of them now. */
if (class_type != TREE_PURPOSE (queue_entry))
{
if (pushed_scope)
pop_scope (pushed_scope);
class_type = TREE_PURPOSE (queue_entry);
pushed_scope = push_scope (class_type);
}
/* Make sure that any template parameters are in scope. */
maybe_begin_member_template_processing (fn);
/* Parse the default argument expressions. */
cp_parser_late_parsing_default_args (parser, fn);
/* Remove any template parameters from the symbol table. */
maybe_end_member_template_processing ();
}
if (pushed_scope)
pop_scope (pushed_scope);
/* Now parse the body of the functions. */
for (TREE_VALUE (parser->unparsed_functions_queues)
= nreverse (TREE_VALUE (parser->unparsed_functions_queues));
(queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
TREE_VALUE (parser->unparsed_functions_queues)
= TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
{
/* Figure out which function we need to process. */
fn = TREE_VALUE (queue_entry);
/* Parse the function. */
cp_parser_late_parsing_for_member (parser, fn);
}
}
/* Put back any saved access checks. */
pop_deferring_access_checks ();
/* Restore saved state. */
parser->in_function_body = saved_in_function_body;
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
return type;
}
/* Parse a class-head.
class-head:
class-key identifier [opt] base-clause [opt]
class-key nested-name-specifier identifier base-clause [opt]
class-key nested-name-specifier [opt] template-id
base-clause [opt]
GNU Extensions:
class-key attributes identifier [opt] base-clause [opt]
class-key attributes nested-name-specifier identifier base-clause [opt]
class-key attributes nested-name-specifier [opt] template-id
base-clause [opt]
Returns the TYPE of the indicated class. Sets
*NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
involving a nested-name-specifier was used, and FALSE otherwise.
Returns error_mark_node if this is not a class-head.
Returns NULL_TREE if the class-head is syntactically valid, but
semantically invalid in a way that means we should skip the entire
body of the class. */
static tree
cp_parser_class_head (cp_parser* parser,
bool* nested_name_specifier_p,
tree *attributes_p,
tree *bases)
{
tree nested_name_specifier;
enum tag_types class_key;
tree id = NULL_TREE;
tree type = NULL_TREE;
tree attributes;
bool template_id_p = false;
bool qualified_p = false;
bool invalid_nested_name_p = false;
bool invalid_explicit_specialization_p = false;
tree pushed_scope = NULL_TREE;
unsigned num_templates;
/* Assume no nested-name-specifier will be present. */
*nested_name_specifier_p = false;
/* Assume no template parameter lists will be used in defining the
type. */
num_templates = 0;
/* Look for the class-key. */
class_key = cp_parser_class_key (parser);
if (class_key == none_type)
return error_mark_node;
/* Parse the attributes. */
attributes = cp_parser_attributes_opt (parser);
/* If the next token is `::', that is invalid -- but sometimes
people do try to write:
struct ::S {};
Handle this gracefully by accepting the extra qualifier, and then
issuing an error about it later if this really is a
class-head. If it turns out just to be an elaborated type
specifier, remain silent. */
if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
qualified_p = true;
push_deferring_access_checks (dk_no_check);
/* Determine the name of the class. Begin by looking for an
optional nested-name-specifier. */
nested_name_specifier
= cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/false,
/*type_p=*/false,
/*is_declaration=*/false);
/* If there was a nested-name-specifier, then there *must* be an
identifier. */
if (nested_name_specifier)
{
/* Although the grammar says `identifier', it really means
`class-name' or `template-name'. You are only allowed to
define a class that has already been declared with this
syntax.
The proposed resolution for Core Issue 180 says that wherever
you see `class T::X' you should treat `X' as a type-name.
It is OK to define an inaccessible class; for example:
class A { class B; };
class A::B {};
We do not know if we will see a class-name, or a
template-name. We look for a class-name first, in case the
class-name is a template-id; if we looked for the
template-name first we would stop after the template-name. */
cp_parser_parse_tentatively (parser);
type = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
class_type,
/*check_dependency_p=*/false,
/*class_head_p=*/true,
/*is_declaration=*/false);
/* If that didn't work, ignore the nested-name-specifier. */
if (!cp_parser_parse_definitely (parser))
{
invalid_nested_name_p = true;
id = cp_parser_identifier (parser);
if (id == error_mark_node)
id = NULL_TREE;
}
/* If we could not find a corresponding TYPE, treat this
declaration like an unqualified declaration. */
if (type == error_mark_node)
nested_name_specifier = NULL_TREE;
/* Otherwise, count the number of templates used in TYPE and its
containing scopes. */
else
{
tree scope;
for (scope = TREE_TYPE (type);
scope && TREE_CODE (scope) != NAMESPACE_DECL;
scope = (TYPE_P (scope)
? TYPE_CONTEXT (scope)
: DECL_CONTEXT (scope)))
if (TYPE_P (scope)
&& CLASS_TYPE_P (scope)
&& CLASSTYPE_TEMPLATE_INFO (scope)
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
++num_templates;
}
}
/* Otherwise, the identifier is optional. */
else
{
/* We don't know whether what comes next is a template-id,
an identifier, or nothing at all. */
cp_parser_parse_tentatively (parser);
/* Check for a template-id. */
id = cp_parser_template_id (parser,
/*template_keyword_p=*/false,
/*check_dependency_p=*/true,
/*is_declaration=*/true);
/* If that didn't work, it could still be an identifier. */
if (!cp_parser_parse_definitely (parser))
{
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
id = cp_parser_identifier (parser);
else
id = NULL_TREE;
}
else
{
template_id_p = true;
++num_templates;
}
}
pop_deferring_access_checks ();
if (id)
cp_parser_check_for_invalid_template_id (parser, id);
/* If it's not a `:' or a `{' then we can't really be looking at a
class-head, since a class-head only appears as part of a
class-specifier. We have to detect this situation before calling
xref_tag, since that has irreversible side-effects. */
if (!cp_parser_next_token_starts_class_definition_p (parser))
{
cp_parser_error (parser, "expected %<{%> or %<:%>");
return error_mark_node;
}
/* At this point, we're going ahead with the class-specifier, even
if some other problem occurs. */
cp_parser_commit_to_tentative_parse (parser);
/* Issue the error about the overly-qualified name now. */
if (qualified_p)
cp_parser_error (parser,
"global qualification of class name is invalid");
else if (invalid_nested_name_p)
cp_parser_error (parser,
"qualified name does not name a class");
else if (nested_name_specifier)
{
tree scope;
/* Reject typedef-names in class heads. */
if (!DECL_IMPLICIT_TYPEDEF_P (type))
{
error ("invalid class name in declaration of %qD", type);
type = NULL_TREE;
goto done;
}
/* Figure out in what scope the declaration is being placed. */
scope = current_scope ();
/* If that scope does not contain the scope in which the
class was originally declared, the program is invalid. */
if (scope && !is_ancestor (scope, nested_name_specifier))
{
error ("declaration of %qD in %qD which does not enclose %qD",
type, scope, nested_name_specifier);
type = NULL_TREE;
goto done;
}
/* [dcl.meaning]
A declarator-id shall not be qualified exception of the
definition of a ... nested class outside of its class
... [or] a the definition or explicit instantiation of a
class member of a namespace outside of its namespace. */
if (scope == nested_name_specifier)
{
pedwarn ("extra qualification ignored");
nested_name_specifier = NULL_TREE;
num_templates = 0;
}
}
/* An explicit-specialization must be preceded by "template <>". If
it is not, try to recover gracefully. */
if (at_namespace_scope_p ()
&& parser->num_template_parameter_lists == 0
&& template_id_p)
{
error ("an explicit specialization must be preceded by %<template <>%>");
invalid_explicit_specialization_p = true;
/* Take the same action that would have been taken by
cp_parser_explicit_specialization. */
++parser->num_template_parameter_lists;
begin_specialization ();
}
/* There must be no "return" statements between this point and the
end of this function; set "type "to the correct return value and
use "goto done;" to return. */
/* Make sure that the right number of template parameters were
present. */
if (!cp_parser_check_template_parameters (parser, num_templates))
{
/* If something went wrong, there is no point in even trying to
process the class-definition. */
type = NULL_TREE;
goto done;
}
/* Look up the type. */
if (template_id_p)
{
type = TREE_TYPE (id);
type = maybe_process_partial_specialization (type);
if (nested_name_specifier)
pushed_scope = push_scope (nested_name_specifier);
}
else if (nested_name_specifier)
{
tree class_type;
/* Given:
template <typename T> struct S { struct T };
template <typename T> struct S<T>::T { };
we will get a TYPENAME_TYPE when processing the definition of
`S::T'. We need to resolve it to the actual type before we
try to define it. */
if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
{
class_type = resolve_typename_type (TREE_TYPE (type),
/*only_current_p=*/false);
if (class_type != error_mark_node)
type = TYPE_NAME (class_type);
else
{
cp_parser_error (parser, "could not resolve typename type");
type = error_mark_node;
}
}
maybe_process_partial_specialization (TREE_TYPE (type));
class_type = current_class_type;
/* Enter the scope indicated by the nested-name-specifier. */
pushed_scope = push_scope (nested_name_specifier);
/* Get the canonical version of this type. */
type = TYPE_MAIN_DECL (TREE_TYPE (type));
if (PROCESSING_REAL_TEMPLATE_DECL_P ()
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
{
type = push_template_decl (type);
if (type == error_mark_node)
{
type = NULL_TREE;
goto done;
}
}
type = TREE_TYPE (type);
*nested_name_specifier_p = true;
}
else /* The name is not a nested name. */
{
/* If the class was unnamed, create a dummy name. */
if (!id)
id = make_anon_name ();
type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
parser->num_template_parameter_lists);
}
/* Indicate whether this class was declared as a `class' or as a
`struct'. */
if (TREE_CODE (type) == RECORD_TYPE)
CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
cp_parser_check_class_key (class_key, type);
/* If this type was already complete, and we see another definition,
that's an error. */
if (type != error_mark_node && COMPLETE_TYPE_P (type))
{
error ("redefinition of %q#T", type);
error ("previous definition of %q+#T", type);
type = NULL_TREE;
goto done;
}
else if (type == error_mark_node)
type = NULL_TREE;
/* We will have entered the scope containing the class; the names of
base classes should be looked up in that context. For example:
struct A { struct B {}; struct C; };
struct A::C : B {};
is valid. */
*bases = NULL_TREE;
/* Get the list of base-classes, if there is one. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
*bases = cp_parser_base_clause (parser);
done:
/* Leave the scope given by the nested-name-specifier. We will
enter the class scope itself while processing the members. */
if (pushed_scope)
pop_scope (pushed_scope);
if (invalid_explicit_specialization_p)
{
end_specialization ();
--parser->num_template_parameter_lists;
}
*attributes_p = attributes;
return type;
}
/* Parse a class-key.
class-key:
class
struct
union
Returns the kind of class-key specified, or none_type to indicate
error. */
static enum tag_types
cp_parser_class_key (cp_parser* parser)
{
cp_token *token;
enum tag_types tag_type;
/* Look for the class-key. */
token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
if (!token)
return none_type;
/* Check to see if the TOKEN is a class-key. */
tag_type = cp_parser_token_is_class_key (token);
if (!tag_type)
cp_parser_error (parser, "expected class-key");
return tag_type;
}
/* Parse an (optional) member-specification.
member-specification:
member-declaration member-specification [opt]
access-specifier : member-specification [opt] */
static void
cp_parser_member_specification_opt (cp_parser* parser)
{
while (true)
{
cp_token *token;
enum rid keyword;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's a `}', or EOF then we've seen all the members. */
if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_EOF
|| token->type == CPP_PRAGMA_EOL)
break;
/* See if this token is a keyword. */
keyword = token->keyword;
switch (keyword)
{
case RID_PUBLIC:
case RID_PROTECTED:
case RID_PRIVATE:
/* Consume the access-specifier. */
cp_lexer_consume_token (parser->lexer);
/* Remember which access-specifier is active. */
current_access_specifier = token->u.value;
/* Look for the `:'. */
cp_parser_require (parser, CPP_COLON, "`:'");
break;
default:
/* Accept #pragmas at class scope. */
if (token->type == CPP_PRAGMA)
{
cp_parser_pragma (parser, pragma_external);
break;
}
/* Otherwise, the next construction must be a
member-declaration. */
cp_parser_member_declaration (parser);
}
}
}
/* Parse a member-declaration.
member-declaration:
decl-specifier-seq [opt] member-declarator-list [opt] ;
function-definition ; [opt]
:: [opt] nested-name-specifier template [opt] unqualified-id ;
using-declaration
template-declaration
member-declarator-list:
member-declarator
member-declarator-list , member-declarator
member-declarator:
declarator pure-specifier [opt]
declarator constant-initializer [opt]
identifier [opt] : constant-expression
GNU Extensions:
member-declaration:
__extension__ member-declaration
member-declarator:
declarator attributes [opt] pure-specifier [opt]
declarator attributes [opt] constant-initializer [opt]
identifier [opt] attributes [opt] : constant-expression */
static void
cp_parser_member_declaration (cp_parser* parser)
{
cp_decl_specifier_seq decl_specifiers;
tree prefix_attributes;
tree decl;
int declares_class_or_enum;
bool friend_p;
cp_token *token;
int saved_pedantic;
/* Check for the `__extension__' keyword. */
if (cp_parser_extension_opt (parser, &saved_pedantic))
{
/* Recurse. */
cp_parser_member_declaration (parser);
/* Restore the old value of the PEDANTIC flag. */
pedantic = saved_pedantic;
return;
}
/* Check for a template-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* An explicit specialization here is an error condition, and we
expect the specialization handler to detect and report this. */
if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
cp_parser_explicit_specialization (parser);
else
cp_parser_template_declaration (parser, /*member_p=*/true);
return;
}
/* Check for a using-declaration. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
{
/* Parse the using-declaration. */
cp_parser_using_declaration (parser,
/*access_declaration_p=*/false);
return;
}
/* Check for @defs. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS))
{
tree ivar, member;
tree ivar_chains = cp_parser_objc_defs_expression (parser);
ivar = ivar_chains;
while (ivar)
{
member = ivar;
ivar = TREE_CHAIN (member);
TREE_CHAIN (member) = NULL_TREE;
finish_member_declaration (member);
}
return;
}
if (cp_parser_using_declaration (parser, /*access_declaration=*/true))
return;
/* Parse the decl-specifier-seq. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&decl_specifiers,
&declares_class_or_enum);
prefix_attributes = decl_specifiers.attributes;
decl_specifiers.attributes = NULL_TREE;
/* Check for an invalid type-name. */
if (!decl_specifiers.type
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
return;
/* If there is no declarator, then the decl-specifier-seq should
specify a type. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
{
/* If there was no decl-specifier-seq, and the next token is a
`;', then we have something like:
struct S { ; };
[class.mem]
Each member-declaration shall declare at least one member
name of the class. */
if (!decl_specifiers.any_specifiers_p)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (pedantic && !token->in_system_header)
pedwarn ("%Hextra %<;%>", &token->location);
}
else
{
tree type;
/* See if this declaration is a friend. */
friend_p = cp_parser_friend_p (&decl_specifiers);
/* If there were decl-specifiers, check to see if there was
a class-declaration. */
type = check_tag_decl (&decl_specifiers);
/* Nested classes have already been added to the class, but
a `friend' needs to be explicitly registered. */
if (friend_p)
{
/* If the `friend' keyword was present, the friend must
be introduced with a class-key. */
if (!declares_class_or_enum)
error ("a class-key must be used when declaring a friend");
/* In this case:
template <typename T> struct A {
friend struct A<T>::B;
};
A<T>::B will be represented by a TYPENAME_TYPE, and
therefore not recognized by check_tag_decl. */
if (!type
&& decl_specifiers.type
&& TYPE_P (decl_specifiers.type))
type = decl_specifiers.type;
if (!type || !TYPE_P (type))
error ("friend declaration does not name a class or "
"function");
else
make_friend_class (current_class_type, type,
/*complain=*/true);
}
/* If there is no TYPE, an error message will already have
been issued. */
else if (!type || type == error_mark_node)
;
/* An anonymous aggregate has to be handled specially; such
a declaration really declares a data member (with a
particular type), as opposed to a nested class. */
else if (ANON_AGGR_TYPE_P (type))
{
/* Remove constructors and such from TYPE, now that we
know it is an anonymous aggregate. */
fixup_anonymous_aggr (type);
/* And make the corresponding data member. */
decl = build_decl (FIELD_DECL, NULL_TREE, type);
/* Add it to the class. */
finish_member_declaration (decl);
}
else
cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
}
}
else
{
/* See if these declarations will be friends. */
friend_p = cp_parser_friend_p (&decl_specifiers);
/* Keep going until we hit the `;' at the end of the
declaration. */
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
tree attributes = NULL_TREE;
tree first_attribute;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Check for a bitfield declaration. */
if (token->type == CPP_COLON
|| (token->type == CPP_NAME
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_COLON))
{
tree identifier;
tree width;
/* Get the name of the bitfield. Note that we cannot just
check TOKEN here because it may have been invalidated by
the call to cp_lexer_peek_nth_token above. */
if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
identifier = cp_parser_identifier (parser);
else
identifier = NULL_TREE;
/* Consume the `:' token. */
cp_lexer_consume_token (parser->lexer);
/* Get the width of the bitfield. */
width
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
/* Look for attributes that apply to the bitfield. */
attributes = cp_parser_attributes_opt (parser);
/* Remember which attributes are prefix attributes and
which are not. */
first_attribute = attributes;
/* Combine the attributes. */
attributes = chainon (prefix_attributes, attributes);
/* Create the bitfield declaration. */
decl = grokbitfield (identifier
? make_id_declarator (NULL_TREE,
identifier,
sfk_none)
: NULL,
&decl_specifiers,
width);
/* Apply the attributes. */
cplus_decl_attributes (&decl, attributes, /*flags=*/0);
}
else
{
cp_declarator *declarator;
tree initializer;
tree asm_specification;
int ctor_dtor_or_conv_p;
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
&ctor_dtor_or_conv_p,
/*parenthesized_p=*/NULL,
/*member_p=*/true);
/* If something went wrong parsing the declarator, make sure
that we at least consume some tokens. */
if (declarator == cp_error_declarator)
{
/* Skip to the end of the statement. */
cp_parser_skip_to_end_of_statement (parser);
/* If the next token is not a semicolon, that is
probably because we just skipped over the body of
a function. So, we consume a semicolon if
present, but do not issue an error message if it
is not present. */
if (cp_lexer_next_token_is (parser->lexer,
CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
return;
}
if (declares_class_or_enum & 2)
cp_parser_check_for_definition_in_return_type
(declarator, decl_specifiers.type);
/* Look for an asm-specification. */
asm_specification = cp_parser_asm_specification_opt (parser);
/* Look for attributes that apply to the declaration. */
attributes = cp_parser_attributes_opt (parser);
/* Remember which attributes are prefix attributes and
which are not. */
first_attribute = attributes;
/* Combine the attributes. */
attributes = chainon (prefix_attributes, attributes);
/* If it's an `=', then we have a constant-initializer or a
pure-specifier. It is not correct to parse the
initializer before registering the member declaration
since the member declaration should be in scope while
its initializer is processed. However, the rest of the
front end does not yet provide an interface that allows
us to handle this correctly. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
{
/* In [class.mem]:
A pure-specifier shall be used only in the declaration of
a virtual function.
A member-declarator can contain a constant-initializer
only if it declares a static member of integral or
enumeration type.
Therefore, if the DECLARATOR is for a function, we look
for a pure-specifier; otherwise, we look for a
constant-initializer. When we call `grokfield', it will
perform more stringent semantics checks. */
if (function_declarator_p (declarator))
initializer = cp_parser_pure_specifier (parser);
else
/* Parse the initializer. */
initializer = cp_parser_constant_initializer (parser);
}
/* Otherwise, there is no initializer. */
else
initializer = NULL_TREE;
/* See if we are probably looking at a function
definition. We are certainly not looking at a
member-declarator. Calling `grokfield' has
side-effects, so we must not do it unless we are sure
that we are looking at a member-declarator. */
if (cp_parser_token_starts_function_definition_p
(cp_lexer_peek_token (parser->lexer)))
{
/* The grammar does not allow a pure-specifier to be
used when a member function is defined. (It is
possible that this fact is an oversight in the
standard, since a pure function may be defined
outside of the class-specifier. */
if (initializer)
error ("pure-specifier on function-definition");
decl = cp_parser_save_member_function_body (parser,
&decl_specifiers,
declarator,
attributes);
/* If the member was not a friend, declare it here. */
if (!friend_p)
finish_member_declaration (decl);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token is a semicolon, consume it. */
if (token->type == CPP_SEMICOLON)
cp_lexer_consume_token (parser->lexer);
return;
}
else
/* Create the declaration. */
decl = grokfield (declarator, &decl_specifiers,
initializer, /*init_const_expr_p=*/true,
asm_specification,
attributes);
}
/* Reset PREFIX_ATTRIBUTES. */
while (attributes && TREE_CHAIN (attributes) != first_attribute)
attributes = TREE_CHAIN (attributes);
if (attributes)
TREE_CHAIN (attributes) = NULL_TREE;
/* If there is any qualification still in effect, clear it
now; we will be starting fresh with the next declarator. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* If it's a `,', then there are more declarators. */
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
cp_lexer_consume_token (parser->lexer);
/* If the next token isn't a `;', then we have a parse error. */
else if (cp_lexer_next_token_is_not (parser->lexer,
CPP_SEMICOLON))
{
cp_parser_error (parser, "expected %<;%>");
/* Skip tokens until we find a `;'. */
cp_parser_skip_to_end_of_statement (parser);
break;
}
if (decl)
{
/* Add DECL to the list of members. */
if (!friend_p)
finish_member_declaration (decl);
if (TREE_CODE (decl) == FUNCTION_DECL)
cp_parser_save_default_args (parser, decl);
}
}
}
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Parse a pure-specifier.
pure-specifier:
= 0
Returns INTEGER_ZERO_NODE if a pure specifier is found.
Otherwise, ERROR_MARK_NODE is returned. */
static tree
cp_parser_pure_specifier (cp_parser* parser)
{
cp_token *token;
/* Look for the `=' token. */
if (!cp_parser_require (parser, CPP_EQ, "`='"))
return error_mark_node;
/* Look for the `0' token. */
token = cp_lexer_consume_token (parser->lexer);
/* c_lex_with_flags marks a single digit '0' with PURE_ZERO. */
if (token->type != CPP_NUMBER || !(token->flags & PURE_ZERO))
{
cp_parser_error (parser,
"invalid pure specifier (only `= 0' is allowed)");
cp_parser_skip_to_end_of_statement (parser);
return error_mark_node;
}
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
{
error ("templates may not be %<virtual%>");
return error_mark_node;
}
return integer_zero_node;
}
/* Parse a constant-initializer.
constant-initializer:
= constant-expression
Returns a representation of the constant-expression. */
static tree
cp_parser_constant_initializer (cp_parser* parser)
{
/* Look for the `=' token. */
if (!cp_parser_require (parser, CPP_EQ, "`='"))
return error_mark_node;
/* It is invalid to write:
struct S { static const int i = { 7 }; };
*/
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
{
cp_parser_error (parser,
"a brace-enclosed initializer is not allowed here");
/* Consume the opening brace. */
cp_lexer_consume_token (parser->lexer);
/* Skip the initializer. */
cp_parser_skip_to_closing_brace (parser);
/* Look for the trailing `}'. */
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
return error_mark_node;
}
return cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
}
/* Derived classes [gram.class.derived] */
/* Parse a base-clause.
base-clause:
: base-specifier-list
base-specifier-list:
base-specifier
base-specifier-list , base-specifier
Returns a TREE_LIST representing the base-classes, in the order in
which they were declared. The representation of each node is as
described by cp_parser_base_specifier.
In the case that no bases are specified, this function will return
NULL_TREE, not ERROR_MARK_NODE. */
static tree
cp_parser_base_clause (cp_parser* parser)
{
tree bases = NULL_TREE;
/* Look for the `:' that begins the list. */
cp_parser_require (parser, CPP_COLON, "`:'");
/* Scan the base-specifier-list. */
while (true)
{
cp_token *token;
tree base;
/* Look for the base-specifier. */
base = cp_parser_base_specifier (parser);
/* Add BASE to the front of the list. */
if (base != error_mark_node)
{
TREE_CHAIN (base) = bases;
bases = base;
}
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a comma, then the list is complete. */
if (token->type != CPP_COMMA)
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
/* PARSER->SCOPE may still be non-NULL at this point, if the last
base class had a qualified name. However, the next name that
appears is certainly not qualified. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
return nreverse (bases);
}
/* Parse a base-specifier.
base-specifier:
:: [opt] nested-name-specifier [opt] class-name
virtual access-specifier [opt] :: [opt] nested-name-specifier
[opt] class-name
access-specifier virtual [opt] :: [opt] nested-name-specifier
[opt] class-name
Returns a TREE_LIST. The TREE_PURPOSE will be one of
ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
indicate the specifiers provided. The TREE_VALUE will be a TYPE
(or the ERROR_MARK_NODE) indicating the type that was specified. */
static tree
cp_parser_base_specifier (cp_parser* parser)
{
cp_token *token;
bool done = false;
bool virtual_p = false;
bool duplicate_virtual_error_issued_p = false;
bool duplicate_access_error_issued_p = false;
bool class_scope_p, template_p;
tree access = access_default_node;
tree type;
/* Process the optional `virtual' and `access-specifier'. */
while (!done)
{
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* Process `virtual'. */
switch (token->keyword)
{
case RID_VIRTUAL:
/* If `virtual' appears more than once, issue an error. */
if (virtual_p && !duplicate_virtual_error_issued_p)
{
cp_parser_error (parser,
"%<virtual%> specified more than once in base-specified");
duplicate_virtual_error_issued_p = true;
}
virtual_p = true;
/* Consume the `virtual' token. */
cp_lexer_consume_token (parser->lexer);
break;
case RID_PUBLIC:
case RID_PROTECTED:
case RID_PRIVATE:
/* If more than one access specifier appears, issue an
error. */
if (access != access_default_node
&& !duplicate_access_error_issued_p)
{
cp_parser_error (parser,
"more than one access specifier in base-specified");
duplicate_access_error_issued_p = true;
}
access = ridpointers[(int) token->keyword];
/* Consume the access-specifier. */
cp_lexer_consume_token (parser->lexer);
break;
default:
done = true;
break;
}
}
/* It is not uncommon to see programs mechanically, erroneously, use
the 'typename' keyword to denote (dependent) qualified types
as base classes. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
{
if (!processing_template_decl)
error ("keyword %<typename%> not allowed outside of templates");
else
error ("keyword %<typename%> not allowed in this context "
"(the base class is implicitly a type)");
cp_lexer_consume_token (parser->lexer);
}
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. The simplest way to
implement:
[temp.res]
The keyword `typename' is not permitted in a base-specifier or
mem-initializer; in these contexts a qualified name that
depends on a template-parameter is implicitly assumed to be a
type name.
is to pretend that we have seen the `typename' keyword at this
point. */
cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/true,
/*check_dependency_p=*/true,
typename_type,
/*is_declaration=*/true);
/* If the base class is given by a qualified name, assume that names
we see are type names or templates, as appropriate. */
class_scope_p = (parser->scope && TYPE_P (parser->scope));
template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
/* Finally, look for the class-name. */
type = cp_parser_class_name (parser,
class_scope_p,
template_p,
typename_type,
/*check_dependency_p=*/true,
/*class_head_p=*/false,
/*is_declaration=*/true);
if (type == error_mark_node)
return error_mark_node;
return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
}
/* Exception handling [gram.exception] */
/* Parse an (optional) exception-specification.
exception-specification:
throw ( type-id-list [opt] )
Returns a TREE_LIST representing the exception-specification. The
TREE_VALUE of each node is a type. */
static tree
cp_parser_exception_specification_opt (cp_parser* parser)
{
cp_token *token;
tree type_id_list;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `throw', then there's no exception-specification. */
if (!cp_parser_is_keyword (token, RID_THROW))
return NULL_TREE;
/* Consume the `throw'. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not a `)', then there is a type-id-list. */
if (token->type != CPP_CLOSE_PAREN)
{
const char *saved_message;
/* Types may not be defined in an exception-specification. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in an exception-specification";
/* Parse the type-id-list. */
type_id_list = cp_parser_type_id_list (parser);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
}
else
type_id_list = empty_except_spec;
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return type_id_list;
}
/* Parse an (optional) type-id-list.
type-id-list:
type-id
type-id-list , type-id
Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
in the order that the types were presented. */
static tree
cp_parser_type_id_list (cp_parser* parser)
{
tree types = NULL_TREE;
while (true)
{
cp_token *token;
tree type;
/* Get the next type-id. */
type = cp_parser_type_id (parser);
/* Add it to the list. */
types = add_exception_specifier (types, type, /*complain=*/1);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it is not a `,', we are done. */
if (token->type != CPP_COMMA)
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
return nreverse (types);
}
/* Parse a try-block.
try-block:
try compound-statement handler-seq */
static tree
cp_parser_try_block (cp_parser* parser)
{
tree try_block;
cp_parser_require_keyword (parser, RID_TRY, "`try'");
try_block = begin_try_block ();
cp_parser_compound_statement (parser, NULL, true);
finish_try_block (try_block);
cp_parser_handler_seq (parser);
finish_handler_sequence (try_block);
return try_block;
}
/* Parse a function-try-block.
function-try-block:
try ctor-initializer [opt] function-body handler-seq */
static bool
cp_parser_function_try_block (cp_parser* parser)
{
tree compound_stmt;
tree try_block;
bool ctor_initializer_p;
/* Look for the `try' keyword. */
if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
return false;
/* Let the rest of the front-end know where we are. */
try_block = begin_function_try_block (&compound_stmt);
/* Parse the function-body. */
ctor_initializer_p
= cp_parser_ctor_initializer_opt_and_function_body (parser);
/* We're done with the `try' part. */
finish_function_try_block (try_block);
/* Parse the handlers. */
cp_parser_handler_seq (parser);
/* We're done with the handlers. */
finish_function_handler_sequence (try_block, compound_stmt);
return ctor_initializer_p;
}
/* Parse a handler-seq.
handler-seq:
handler handler-seq [opt] */
static void
cp_parser_handler_seq (cp_parser* parser)
{
while (true)
{
cp_token *token;
/* Parse the handler. */
cp_parser_handler (parser);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `catch' then there are no more handlers. */
if (!cp_parser_is_keyword (token, RID_CATCH))
break;
}
}
/* Parse a handler.
handler:
catch ( exception-declaration ) compound-statement */
static void
cp_parser_handler (cp_parser* parser)
{
tree handler;
tree declaration;
cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
handler = begin_handler ();
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
declaration = cp_parser_exception_declaration (parser);
finish_handler_parms (declaration, handler);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
cp_parser_compound_statement (parser, NULL, false);
finish_handler (handler);
}
/* Parse an exception-declaration.
exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...
Returns a VAR_DECL for the declaration, or NULL_TREE if the
ellipsis variant is used. */
static tree
cp_parser_exception_declaration (cp_parser* parser)
{
cp_decl_specifier_seq type_specifiers;
cp_declarator *declarator;
const char *saved_message;
/* If it's an ellipsis, it's easy to handle. */
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
{
/* Consume the `...' token. */
cp_lexer_consume_token (parser->lexer);
return NULL_TREE;
}
/* Types may not be defined in exception-declarations. */
saved_message = parser->type_definition_forbidden_message;
parser->type_definition_forbidden_message
= "types may not be defined in exception-declarations";
/* Parse the type-specifier-seq. */
cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
&type_specifiers);
/* If it's a `)', then there is no declarator. */
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
declarator = NULL;
else
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
/* Restore the saved message. */
parser->type_definition_forbidden_message = saved_message;
if (!type_specifiers.any_specifiers_p)
return error_mark_node;
return grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
}
/* Parse a throw-expression.
throw-expression:
throw assignment-expression [opt]
Returns a THROW_EXPR representing the throw-expression. */
static tree
cp_parser_throw_expression (cp_parser* parser)
{
tree expression;
cp_token* token;
cp_parser_require_keyword (parser, RID_THROW, "`throw'");
token = cp_lexer_peek_token (parser->lexer);
/* Figure out whether or not there is an assignment-expression
following the "throw" keyword. */
if (token->type == CPP_COMMA
|| token->type == CPP_SEMICOLON
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE
|| token->type == CPP_CLOSE_BRACE
|| token->type == CPP_COLON)
expression = NULL_TREE;
else
expression = cp_parser_assignment_expression (parser,
/*cast_p=*/false);
return build_throw (expression);
}
/* GNU Extensions */
/* Parse an (optional) asm-specification.
asm-specification:
asm ( string-literal )
If the asm-specification is present, returns a STRING_CST
corresponding to the string-literal. Otherwise, returns
NULL_TREE. */
static tree
cp_parser_asm_specification_opt (cp_parser* parser)
{
cp_token *token;
tree asm_specification;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If the next token isn't the `asm' keyword, then there's no
asm-specification. */
if (!cp_parser_is_keyword (token, RID_ASM))
return NULL_TREE;
/* Consume the `asm' token. */
cp_lexer_consume_token (parser->lexer);
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Look for the string-literal. */
asm_specification = cp_parser_string_literal (parser, false, false);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
return asm_specification;
}
/* Parse an asm-operand-list.
asm-operand-list:
asm-operand
asm-operand-list , asm-operand
asm-operand:
string-literal ( expression )
[ string-literal ] string-literal ( expression )
Returns a TREE_LIST representing the operands. The TREE_VALUE of
each node is the expression. The TREE_PURPOSE is itself a
TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
string-literal (or NULL_TREE if not present) and whose TREE_VALUE
is a STRING_CST for the string literal before the parenthesis. */
static tree
cp_parser_asm_operand_list (cp_parser* parser)
{
tree asm_operands = NULL_TREE;
while (true)
{
tree string_literal;
tree expression;
tree name;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
{
/* Consume the `[' token. */
cp_lexer_consume_token (parser->lexer);
/* Read the operand name. */
name = cp_parser_identifier (parser);
if (name != error_mark_node)
name = build_string (IDENTIFIER_LENGTH (name),
IDENTIFIER_POINTER (name));
/* Look for the closing `]'. */
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
}
else
name = NULL_TREE;
/* Look for the string-literal. */
string_literal = cp_parser_string_literal (parser, false, false);
/* Look for the `('. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Parse the expression. */
expression = cp_parser_expression (parser, /*cast_p=*/false);
/* Look for the `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Add this operand to the list. */
asm_operands = tree_cons (build_tree_list (name, string_literal),
expression,
asm_operands);
/* If the next token is not a `,', there are no more
operands. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,'. */
cp_lexer_consume_token (parser->lexer);
}
return nreverse (asm_operands);
}
/* Parse an asm-clobber-list.
asm-clobber-list:
string-literal
asm-clobber-list , string-literal
Returns a TREE_LIST, indicating the clobbers in the order that they
appeared. The TREE_VALUE of each node is a STRING_CST. */
static tree
cp_parser_asm_clobber_list (cp_parser* parser)
{
tree clobbers = NULL_TREE;
while (true)
{
tree string_literal;
/* Look for the string literal. */
string_literal = cp_parser_string_literal (parser, false, false);
/* Add it to the list. */
clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
/* If the next token is not a `,', then the list is
complete. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
/* Consume the `,' token. */
cp_lexer_consume_token (parser->lexer);
}
return clobbers;
}
/* Parse an (optional) series of attributes.
attributes:
attributes attribute
attribute:
__attribute__ (( attribute-list [opt] ))
The return value is as for cp_parser_attribute_list. */
static tree
cp_parser_attributes_opt (cp_parser* parser)
{
tree attributes = NULL_TREE;
while (true)
{
cp_token *token;
tree attribute_list;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's not `__attribute__', then we're done. */
if (token->keyword != RID_ATTRIBUTE)
break;
/* Consume the `__attribute__' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Look for the two `(' tokens. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_CLOSE_PAREN)
/* Parse the attribute-list. */
attribute_list = cp_parser_attribute_list (parser);
else
/* If the next token is a `)', then there is no attribute
list. */
attribute_list = NULL;
/* Look for the two `)' tokens. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* Add these new attributes to the list. */
attributes = chainon (attributes, attribute_list);
}
return attributes;
}
/* Parse an attribute-list.
attribute-list:
attribute
attribute-list , attribute
attribute:
identifier
identifier ( identifier )
identifier ( identifier , expression-list )
identifier ( expression-list )
Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds
to an attribute. The TREE_PURPOSE of each node is the identifier
indicating which attribute is in use. The TREE_VALUE represents
the arguments, if any. */
static tree
cp_parser_attribute_list (cp_parser* parser)
{
tree attribute_list = NULL_TREE;
bool save_translate_strings_p = parser->translate_strings_p;
parser->translate_strings_p = false;
while (true)
{
cp_token *token;
tree identifier;
tree attribute;
/* Look for the identifier. We also allow keywords here; for
example `__attribute__ ((const))' is legal. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_NAME
|| token->type == CPP_KEYWORD)
{
tree arguments = NULL_TREE;
/* Consume the token. */
token = cp_lexer_consume_token (parser->lexer);
/* Save away the identifier that indicates which attribute
this is. */
identifier = token->u.value;
attribute = build_tree_list (identifier, NULL_TREE);
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If it's an `(', then parse the attribute arguments. */
if (token->type == CPP_OPEN_PAREN)
{
arguments = cp_parser_parenthesized_expression_list
(parser, true, /*cast_p=*/false,
/*non_constant_p=*/NULL);
/* Save the arguments away. */
TREE_VALUE (attribute) = arguments;
}
if (arguments != error_mark_node)
{
/* Add this attribute to the list. */
TREE_CHAIN (attribute) = attribute_list;
attribute_list = attribute;
}
token = cp_lexer_peek_token (parser->lexer);
}
/* Now, look for more attributes. If the next token isn't a
`,', we're done. */
if (token->type != CPP_COMMA)
break;
/* Consume the comma and keep going. */
cp_lexer_consume_token (parser->lexer);
}
parser->translate_strings_p = save_translate_strings_p;
/* We built up the list in reverse order. */
return nreverse (attribute_list);
}
/* Parse an optional `__extension__' keyword. Returns TRUE if it is
present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
current value of the PEDANTIC flag, regardless of whether or not
the `__extension__' keyword is present. The caller is responsible
for restoring the value of the PEDANTIC flag. */
static bool
cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
{
/* Save the old value of the PEDANTIC flag. */
*saved_pedantic = pedantic;
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
{
/* Consume the `__extension__' token. */
cp_lexer_consume_token (parser->lexer);
/* We're not being pedantic while the `__extension__' keyword is
in effect. */
pedantic = 0;
return true;
}
return false;
}
/* Parse a label declaration.
label-declaration:
__label__ label-declarator-seq ;
label-declarator-seq:
identifier , label-declarator-seq
identifier */
static void
cp_parser_label_declaration (cp_parser* parser)
{
/* Look for the `__label__' keyword. */
cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
while (true)
{
tree identifier;
/* Look for an identifier. */
identifier = cp_parser_identifier (parser);
/* If we failed, stop. */
if (identifier == error_mark_node)
break;
/* Declare it as a label. */
finish_label_decl (identifier);
/* If the next token is a `;', stop. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
break;
/* Look for the `,' separating the label declarations. */
cp_parser_require (parser, CPP_COMMA, "`,'");
}
/* Look for the final `;'. */
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
}
/* Support Functions */
/* Looks up NAME in the current scope, as given by PARSER->SCOPE.
NAME should have one of the representations used for an
id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
is returned. If PARSER->SCOPE is a dependent type, then a
SCOPE_REF is returned.
If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
returned; the name was already resolved when the TEMPLATE_ID_EXPR
was formed. Abstractly, such entities should not be passed to this
function, because they do not need to be looked up, but it is
simpler to check for this special case here, rather than at the
call-sites.
In cases not explicitly covered above, this function returns a
DECL, OVERLOAD, or baselink representing the result of the lookup.
If there was no entity with the indicated NAME, the ERROR_MARK_NODE
is returned.
If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
(e.g., "struct") that was used. In that case bindings that do not
refer to types are ignored.
If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
ignored.
If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
are ignored.
If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
types.
If AMBIGUOUS_DECLS is non-NULL, *AMBIGUOUS_DECLS is set to a
TREE_LIST of candidates if name-lookup results in an ambiguity, and
NULL_TREE otherwise. */
static tree
cp_parser_lookup_name (cp_parser *parser, tree name,
enum tag_types tag_type,
bool is_template,
bool is_namespace,
bool check_dependency,
tree *ambiguous_decls)
{
int flags = 0;
tree decl;
tree object_type = parser->context->object_type;
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
flags |= LOOKUP_COMPLAIN;
/* Assume that the lookup will be unambiguous. */
if (ambiguous_decls)
*ambiguous_decls = NULL_TREE;
/* Now that we have looked up the name, the OBJECT_TYPE (if any) is
no longer valid. Note that if we are parsing tentatively, and
the parse fails, OBJECT_TYPE will be automatically restored. */
parser->context->object_type = NULL_TREE;
if (name == error_mark_node)
return error_mark_node;
/* A template-id has already been resolved; there is no lookup to
do. */
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
return name;
if (BASELINK_P (name))
{
gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
== TEMPLATE_ID_EXPR);
return name;
}
/* A BIT_NOT_EXPR is used to represent a destructor. By this point,
it should already have been checked to make sure that the name
used matches the type being destroyed. */
if (TREE_CODE (name) == BIT_NOT_EXPR)
{
tree type;
/* Figure out to which type this destructor applies. */
if (parser->scope)
type = parser->scope;
else if (object_type)
type = object_type;
else
type = current_class_type;
/* If that's not a class type, there is no destructor. */
if (!type || !CLASS_TYPE_P (type))
return error_mark_node;
if (CLASSTYPE_LAZY_DESTRUCTOR (type))
lazily_declare_fn (sfk_destructor, type);
if (!CLASSTYPE_DESTRUCTORS (type))
return error_mark_node;
/* If it was a class type, return the destructor. */
return CLASSTYPE_DESTRUCTORS (type);
}
/* By this point, the NAME should be an ordinary identifier. If
the id-expression was a qualified name, the qualifying scope is
stored in PARSER->SCOPE at this point. */
gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
/* Perform the lookup. */
if (parser->scope)
{
bool dependent_p;
if (parser->scope == error_mark_node)
return error_mark_node;
/* If the SCOPE is dependent, the lookup must be deferred until
the template is instantiated -- unless we are explicitly
looking up names in uninstantiated templates. Even then, we
cannot look up the name if the scope is not a class type; it
might, for example, be a template type parameter. */
dependent_p = (TYPE_P (parser->scope)
&& !(parser->in_declarator_p
&& currently_open_class (parser->scope))
&& dependent_type_p (parser->scope));
if ((check_dependency || !CLASS_TYPE_P (parser->scope))
&& dependent_p)
{
if (tag_type)
{
tree type;
/* The resolution to Core Issue 180 says that `struct
A::B' should be considered a type-name, even if `A'
is dependent. */
type = make_typename_type (parser->scope, name, tag_type,
/*complain=*/tf_error);
decl = TYPE_NAME (type);
}
else if (is_template
&& (cp_parser_next_token_ends_template_argument_p (parser)
|| cp_lexer_next_token_is (parser->lexer,
CPP_CLOSE_PAREN)))
decl = make_unbound_class_template (parser->scope,
name, NULL_TREE,
/*complain=*/tf_error);
else
decl = build_qualified_name (/*type=*/NULL_TREE,
parser->scope, name,
is_template);
}
else
{
tree pushed_scope = NULL_TREE;
/* If PARSER->SCOPE is a dependent type, then it must be a
class type, and we must not be checking dependencies;
otherwise, we would have processed this lookup above. So
that PARSER->SCOPE is not considered a dependent base by
lookup_member, we must enter the scope here. */
if (dependent_p)
pushed_scope = push_scope (parser->scope);
/* If the PARSER->SCOPE is a template specialization, it
may be instantiated during name lookup. In that case,
errors may be issued. Even if we rollback the current
tentative parse, those errors are valid. */
decl = lookup_qualified_name (parser->scope, name,
tag_type != none_type,
/*complain=*/true);
if (pushed_scope)
pop_scope (pushed_scope);
}
parser->qualifying_scope = parser->scope;
parser->object_scope = NULL_TREE;
}
else if (object_type)
{
tree object_decl = NULL_TREE;
/* Look up the name in the scope of the OBJECT_TYPE, unless the
OBJECT_TYPE is not a class. */
if (CLASS_TYPE_P (object_type))
/* If the OBJECT_TYPE is a template specialization, it may
be instantiated during name lookup. In that case, errors
may be issued. Even if we rollback the current tentative
parse, those errors are valid. */
object_decl = lookup_member (object_type,
name,
/*protect=*/0,
tag_type != none_type);
/* Look it up in the enclosing context, too. */
decl = lookup_name_real (name, tag_type != none_type,
/*nonclass=*/0,
/*block_p=*/true, is_namespace, flags);
parser->object_scope = object_type;
parser->qualifying_scope = NULL_TREE;
if (object_decl)
decl = object_decl;
}
else
{
decl = lookup_name_real (name, tag_type != none_type,
/*nonclass=*/0,
/*block_p=*/true, is_namespace, flags);
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
/* If the lookup failed, let our caller know. */
if (!decl || decl == error_mark_node)
return error_mark_node;
/* If it's a TREE_LIST, the result of the lookup was ambiguous. */
if (TREE_CODE (decl) == TREE_LIST)
{
if (ambiguous_decls)
*ambiguous_decls = decl;
/* The error message we have to print is too complicated for
cp_parser_error, so we incorporate its actions directly. */
if (!cp_parser_simulate_error (parser))
{
error ("reference to %qD is ambiguous", name);
print_candidates (decl);
}
return error_mark_node;
}
gcc_assert (DECL_P (decl)
|| TREE_CODE (decl) == OVERLOAD
|| TREE_CODE (decl) == SCOPE_REF
|| TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
|| BASELINK_P (decl));
/* If we have resolved the name of a member declaration, check to
see if the declaration is accessible. When the name resolves to
set of overloaded functions, accessibility is checked when
overload resolution is done.
During an explicit instantiation, access is not checked at all,
as per [temp.explicit]. */
if (DECL_P (decl))
check_accessibility_of_qualified_id (decl, object_type, parser->scope);
return decl;
}
/* Like cp_parser_lookup_name, but for use in the typical case where
CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
static tree
cp_parser_lookup_name_simple (cp_parser* parser, tree name)
{
return cp_parser_lookup_name (parser, name,
none_type,
/*is_template=*/false,
/*is_namespace=*/false,
/*check_dependency=*/true,
/*ambiguous_decls=*/NULL);
}
/* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
the current context, return the TYPE_DECL. If TAG_NAME_P is
true, the DECL indicates the class being defined in a class-head,
or declared in an elaborated-type-specifier.
Otherwise, return DECL. */
static tree
cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
{
/* If the TEMPLATE_DECL is being declared as part of a class-head,
the translation from TEMPLATE_DECL to TYPE_DECL occurs:
struct A {
template <typename T> struct B;
};
template <typename T> struct A::B {};
Similarly, in an elaborated-type-specifier:
namespace N { struct X{}; }
struct A {
template <typename T> friend struct N::X;
};
However, if the DECL refers to a class type, and we are in
the scope of the class, then the name lookup automatically
finds the TYPE_DECL created by build_self_reference rather
than a TEMPLATE_DECL. For example, in:
template <class T> struct S {
S s;
};
there is no need to handle such case. */
if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
return DECL_TEMPLATE_RESULT (decl);
return decl;
}
/* If too many, or too few, template-parameter lists apply to the
declarator, issue an error message. Returns TRUE if all went well,
and FALSE otherwise. */
static bool
cp_parser_check_declarator_template_parameters (cp_parser* parser,
cp_declarator *declarator)
{
unsigned num_templates;
/* We haven't seen any classes that involve template parameters yet. */
num_templates = 0;
switch (declarator->kind)
{
case cdk_id:
if (declarator->u.id.qualifying_scope)
{
tree scope;
tree member;
scope = declarator->u.id.qualifying_scope;
member = declarator->u.id.unqualified_name;
while (scope && CLASS_TYPE_P (scope))
{
/* You're supposed to have one `template <...>'
for every template class, but you don't need one
for a full specialization. For example:
template <class T> struct S{};
template <> struct S<int> { void f(); };
void S<int>::f () {}
is correct; there shouldn't be a `template <>' for
the definition of `S<int>::f'. */
if (!CLASSTYPE_TEMPLATE_INFO (scope))
/* If SCOPE does not have template information of any
kind, then it is not a template, nor is it nested
within a template. */
break;
if (explicit_class_specialization_p (scope))
break;
if (PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
++num_templates;
scope = TYPE_CONTEXT (scope);
}
}
else if (TREE_CODE (declarator->u.id.unqualified_name)
== TEMPLATE_ID_EXPR)
/* If the DECLARATOR has the form `X<y>' then it uses one
additional level of template parameters. */
++num_templates;
return cp_parser_check_template_parameters (parser,
num_templates);
case cdk_function:
case cdk_array:
case cdk_pointer:
case cdk_reference:
case cdk_ptrmem:
return (cp_parser_check_declarator_template_parameters
(parser, declarator->declarator));
case cdk_error:
return true;
default:
gcc_unreachable ();
}
return false;
}
/* NUM_TEMPLATES were used in the current declaration. If that is
invalid, return FALSE and issue an error messages. Otherwise,
return TRUE. */
static bool
cp_parser_check_template_parameters (cp_parser* parser,
unsigned num_templates)
{
/* If there are more template classes than parameter lists, we have
something like:
template <class T> void S<T>::R<T>::f (); */
if (parser->num_template_parameter_lists < num_templates)
{
error ("too few template-parameter-lists");
return false;
}
/* If there are the same number of template classes and parameter
lists, that's OK. */
if (parser->num_template_parameter_lists == num_templates)
return true;
/* If there are more, but only one more, then we are referring to a
member template. That's OK too. */
if (parser->num_template_parameter_lists == num_templates + 1)
return true;
/* Otherwise, there are too many template parameter lists. We have
something like:
template <class T> template <class U> void S::f(); */
error ("too many template-parameter-lists");
return false;
}
/* Parse an optional `::' token indicating that the following name is
from the global namespace. If so, PARSER->SCOPE is set to the
GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
Returns the new value of PARSER->SCOPE, if the `::' token is
present, and NULL_TREE otherwise. */
static tree
cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
{
cp_token *token;
/* Peek at the next token. */
token = cp_lexer_peek_token (parser->lexer);
/* If we're looking at a `::' token then we're starting from the
global namespace, not our current location. */
if (token->type == CPP_SCOPE)
{
/* Consume the `::' token. */
cp_lexer_consume_token (parser->lexer);
/* Set the SCOPE so that we know where to start the lookup. */
parser->scope = global_namespace;
parser->qualifying_scope = global_namespace;
parser->object_scope = NULL_TREE;
return parser->scope;
}
else if (!current_scope_valid_p)
{
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
}
return NULL_TREE;
}
/* Returns TRUE if the upcoming token sequence is the start of a
constructor declarator. If FRIEND_P is true, the declarator is
preceded by the `friend' specifier. */
static bool
cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
{
bool constructor_p;
tree type_decl = NULL_TREE;
bool nested_name_p;
cp_token *next_token;
/* The common case is that this is not a constructor declarator, so
try to avoid doing lots of work if at all possible. It's not
valid declare a constructor at function scope. */
if (parser->in_function_body)
return false;
/* And only certain tokens can begin a constructor declarator. */
next_token = cp_lexer_peek_token (parser->lexer);
if (next_token->type != CPP_NAME
&& next_token->type != CPP_SCOPE
&& next_token->type != CPP_NESTED_NAME_SPECIFIER
&& next_token->type != CPP_TEMPLATE_ID)
return false;
/* Parse tentatively; we are going to roll back all of the tokens
consumed here. */
cp_parser_parse_tentatively (parser);
/* Assume that we are looking at a constructor declarator. */
constructor_p = true;
/* Look for the optional `::' operator. */
cp_parser_global_scope_opt (parser,
/*current_scope_valid_p=*/false);
/* Look for the nested-name-specifier. */
nested_name_p
= (cp_parser_nested_name_specifier_opt (parser,
/*typename_keyword_p=*/false,
/*check_dependency_p=*/false,
/*type_p=*/false,
/*is_declaration=*/false)
!= NULL_TREE);
/* Outside of a class-specifier, there must be a
nested-name-specifier. */
if (!nested_name_p &&
(!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
|| friend_p))
constructor_p = false;
/* If we still think that this might be a constructor-declarator,
look for a class-name. */
if (constructor_p)
{
/* If we have:
template <typename T> struct S { S(); };
template <typename T> S<T>::S ();
we must recognize that the nested `S' names a class.
Similarly, for:
template <typename T> S<T>::S<T> ();
we must recognize that the nested `S' names a template. */
type_decl = cp_parser_class_name (parser,
/*typename_keyword_p=*/false,
/*template_keyword_p=*/false,
none_type,
/*check_dependency_p=*/false,
/*class_head_p=*/false,
/*is_declaration=*/false);
/* If there was no class-name, then this is not a constructor. */
constructor_p = !cp_parser_error_occurred (parser);
}
/* If we're still considering a constructor, we have to see a `(',
to begin the parameter-declaration-clause, followed by either a
`)', an `...', or a decl-specifier. We need to check for a
type-specifier to avoid being fooled into thinking that:
S::S (f) (int);
is a constructor. (It is actually a function named `f' that
takes one parameter (of type `int') and returns a value of type
`S::S'. */
if (constructor_p
&& cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
{
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
/* A parameter declaration begins with a decl-specifier,
which is either the "attribute" keyword, a storage class
specifier, or (usually) a type-specifier. */
&& !cp_lexer_next_token_is_decl_specifier_keyword (parser->lexer))
{
tree type;
tree pushed_scope = NULL_TREE;
unsigned saved_num_template_parameter_lists;
/* Names appearing in the type-specifier should be looked up
in the scope of the class. */
if (current_class_type)
type = NULL_TREE;
else
{
type = TREE_TYPE (type_decl);
if (TREE_CODE (type) == TYPENAME_TYPE)
{
type = resolve_typename_type (type,
/*only_current_p=*/false);
if (type == error_mark_node)
{
cp_parser_abort_tentative_parse (parser);
return false;
}
}
pushed_scope = push_scope (type);
}
/* Inside the constructor parameter list, surrounding
template-parameter-lists do not apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* Look for the type-specifier. */
cp_parser_type_specifier (parser,
CP_PARSER_FLAGS_NONE,
/*decl_specs=*/NULL,
/*is_declarator=*/true,
/*declares_class_or_enum=*/NULL,
/*is_cv_qualifier=*/NULL);
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
/* Leave the scope of the class. */
if (pushed_scope)
pop_scope (pushed_scope);
constructor_p = !cp_parser_error_occurred (parser);
}
}
else
constructor_p = false;
/* We did not really want to consume any tokens. */
cp_parser_abort_tentative_parse (parser);
return constructor_p;
}
/* Parse the definition of the function given by the DECL_SPECIFIERS,
ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
they must be performed once we are in the scope of the function.
Returns the function defined. */
static tree
cp_parser_function_definition_from_specifiers_and_declarator
(cp_parser* parser,
cp_decl_specifier_seq *decl_specifiers,
tree attributes,
const cp_declarator *declarator)
{
tree fn;
bool success_p;
/* Begin the function-definition. */
success_p = start_function (decl_specifiers, declarator, attributes);
/* The things we're about to see are not directly qualified by any
template headers we've seen thus far. */
reset_specialization ();
/* If there were names looked up in the decl-specifier-seq that we
did not check, check them now. We must wait until we are in the
scope of the function to perform the checks, since the function
might be a friend. */
perform_deferred_access_checks ();
if (!success_p)
{
/* Skip the entire function. */
cp_parser_skip_to_end_of_block_or_statement (parser);
fn = error_mark_node;
}
else
fn = cp_parser_function_definition_after_declarator (parser,
/*inline_p=*/false);
return fn;
}
/* Parse the part of a function-definition that follows the
declarator. INLINE_P is TRUE iff this function is an inline
function defined with a class-specifier.
Returns the function defined. */
static tree
cp_parser_function_definition_after_declarator (cp_parser* parser,
bool inline_p)
{
tree fn;
bool ctor_initializer_p = false;
bool saved_in_unbraced_linkage_specification_p;
bool saved_in_function_body;
unsigned saved_num_template_parameter_lists;
saved_in_function_body = parser->in_function_body;
parser->in_function_body = true;
/* If the next token is `return', then the code may be trying to
make use of the "named return value" extension that G++ used to
support. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
{
/* Consume the `return' keyword. */
cp_lexer_consume_token (parser->lexer);
/* Look for the identifier that indicates what value is to be
returned. */
cp_parser_identifier (parser);
/* Issue an error message. */
error ("named return values are no longer supported");
/* Skip tokens until we reach the start of the function body. */
while (true)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_EOF
|| token->type == CPP_PRAGMA_EOL)
break;
cp_lexer_consume_token (parser->lexer);
}
}
/* The `extern' in `extern "C" void f () { ... }' does not apply to
anything declared inside `f'. */
saved_in_unbraced_linkage_specification_p
= parser->in_unbraced_linkage_specification_p;
parser->in_unbraced_linkage_specification_p = false;
/* Inside the function, surrounding template-parameter-lists do not
apply. */
saved_num_template_parameter_lists
= parser->num_template_parameter_lists;
parser->num_template_parameter_lists = 0;
/* If the next token is `try', then we are looking at a
function-try-block. */
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
ctor_initializer_p = cp_parser_function_try_block (parser);
/* A function-try-block includes the function-body, so we only do
this next part if we're not processing a function-try-block. */
else
ctor_initializer_p
= cp_parser_ctor_initializer_opt_and_function_body (parser);
/* Finish the function. */
fn = finish_function ((ctor_initializer_p ? 1 : 0) |
(inline_p ? 2 : 0));
/* Generate code for it, if necessary. */
expand_or_defer_fn (fn);
/* Restore the saved values. */
parser->in_unbraced_linkage_specification_p
= saved_in_unbraced_linkage_specification_p;
parser->num_template_parameter_lists
= saved_num_template_parameter_lists;
parser->in_function_body = saved_in_function_body;
return fn;
}
/* Parse a template-declaration, assuming that the `export' (and
`extern') keywords, if present, has already been scanned. MEMBER_P
is as for cp_parser_template_declaration. */
static void
cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
{
tree decl = NULL_TREE;
VEC (deferred_access_check,gc) *checks;
tree parameter_list;
bool friend_p = false;
bool need_lang_pop;
/* Look for the `template' keyword. */
if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
return;
/* And the `<'. */
if (!cp_parser_require (parser, CPP_LESS, "`<'"))
return;
if (at_class_scope_p () && current_function_decl)
{
/* 14.5.2.2 [temp.mem]
A local class shall not have member templates. */
error ("invalid declaration of member template in local class");
cp_parser_skip_to_end_of_block_or_statement (parser);
return;
}
/* [temp]
A template ... shall not have C linkage. */
if (current_lang_name == lang_name_c)
{
error ("template with C linkage");
/* Give it C++ linkage to avoid confusing other parts of the
front end. */
push_lang_context (lang_name_cplusplus);
need_lang_pop = true;
}
else
need_lang_pop = false;
/* We cannot perform access checks on the template parameter
declarations until we know what is being declared, just as we
cannot check the decl-specifier list. */
push_deferring_access_checks (dk_deferred);
/* If the next token is `>', then we have an invalid
specialization. Rather than complain about an invalid template
parameter, issue an error message here. */
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
{
cp_parser_error (parser, "invalid explicit specialization");
begin_specialization ();
parameter_list = NULL_TREE;
}
else
/* Parse the template parameters. */
parameter_list = cp_parser_template_parameter_list (parser);
/* Get the deferred access checks from the parameter list. These
will be checked once we know what is being declared, as for a
member template the checks must be performed in the scope of the
class containing the member. */
checks = get_deferred_access_checks ();
/* Look for the `>'. */
cp_parser_skip_to_end_of_template_parameter_list (parser);
/* We just processed one more parameter list. */
++parser->num_template_parameter_lists;
/* If the next token is `template', there are more template
parameters. */
if (cp_lexer_next_token_is_keyword (parser->lexer,
RID_TEMPLATE))
cp_parser_template_declaration_after_export (parser, member_p);
else
{
/* There are no access checks when parsing a template, as we do not
know if a specialization will be a friend. */
push_deferring_access_checks (dk_no_check);
decl = cp_parser_single_declaration (parser,
checks,
member_p,
&friend_p);
pop_deferring_access_checks ();
/* If this is a member template declaration, let the front
end know. */
if (member_p && !friend_p && decl)
{
if (TREE_CODE (decl) == TYPE_DECL)
cp_parser_check_access_in_redeclaration (decl);
decl = finish_member_template_decl (decl);
}
else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
make_friend_class (current_class_type, TREE_TYPE (decl),
/*complain=*/true);
}
/* We are done with the current parameter list. */
--parser->num_template_parameter_lists;
pop_deferring_access_checks ();
/* Finish up. */
finish_template_decl (parameter_list);
/* Register member declarations. */
if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
finish_member_declaration (decl);
/* For the erroneous case of a template with C linkage, we pushed an
implicit C++ linkage scope; exit that scope now. */
if (need_lang_pop)
pop_lang_context ();
/* If DECL is a function template, we must return to parse it later.
(Even though there is no definition, there might be default
arguments that need handling.) */
if (member_p && decl
&& (TREE_CODE (decl) == FUNCTION_DECL
|| DECL_FUNCTION_TEMPLATE_P (decl)))
TREE_VALUE (parser->unparsed_functions_queues)
= tree_cons (NULL_TREE, decl,
TREE_VALUE (parser->unparsed_functions_queues));
}
/* Perform the deferred access checks from a template-parameter-list.
CHECKS is a TREE_LIST of access checks, as returned by
get_deferred_access_checks. */
static void
cp_parser_perform_template_parameter_access_checks (VEC (deferred_access_check,gc)* checks)
{
++processing_template_parmlist;
perform_access_checks (checks);
--processing_template_parmlist;
}
/* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
`function-definition' sequence. MEMBER_P is true, this declaration
appears in a class scope.
Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
*FRIEND_P is set to TRUE iff the declaration is a friend. */
static tree
cp_parser_single_declaration (cp_parser* parser,
VEC (deferred_access_check,gc)* checks,
bool member_p,
bool* friend_p)
{
int declares_class_or_enum;
tree decl = NULL_TREE;
cp_decl_specifier_seq decl_specifiers;
bool function_definition_p = false;
/* This function is only used when processing a template
declaration. */
gcc_assert (innermost_scope_kind () == sk_template_parms
|| innermost_scope_kind () == sk_template_spec);
/* Defer access checks until we know what is being declared. */
push_deferring_access_checks (dk_deferred);
/* Try the `decl-specifier-seq [opt] init-declarator [opt]'
alternative. */
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&decl_specifiers,
&declares_class_or_enum);
if (friend_p)
*friend_p = cp_parser_friend_p (&decl_specifiers);
/* There are no template typedefs. */
if (decl_specifiers.specs[(int) ds_typedef])
{
error ("template declaration of %qs", "typedef");
decl = error_mark_node;
}
/* Gather up the access checks that occurred the
decl-specifier-seq. */
stop_deferring_access_checks ();
/* Check for the declaration of a template class. */
if (declares_class_or_enum)
{
if (cp_parser_declares_only_class_p (parser))
{
decl = shadow_tag (&decl_specifiers);
/* In this case:
struct C {
friend template <typename T> struct A<T>::B;
};
A<T>::B will be represented by a TYPENAME_TYPE, and
therefore not recognized by shadow_tag. */
if (friend_p && *friend_p
&& !decl
&& decl_specifiers.type
&& TYPE_P (decl_specifiers.type))
decl = decl_specifiers.type;
if (decl && decl != error_mark_node)
decl = TYPE_NAME (decl);
else
decl = error_mark_node;
/* Perform access checks for template parameters. */
cp_parser_perform_template_parameter_access_checks (checks);
}
}
/* If it's not a template class, try for a template function. If
the next token is a `;', then this declaration does not declare
anything. But, if there were errors in the decl-specifiers, then
the error might well have come from an attempted class-specifier.
In that case, there's no need to warn about a missing declarator. */
if (!decl
&& (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
|| decl_specifiers.type != error_mark_node))
decl = cp_parser_init_declarator (parser,
&decl_specifiers,
checks,
/*function_definition_allowed_p=*/true,
member_p,
declares_class_or_enum,
&function_definition_p);
pop_deferring_access_checks ();
/* Clear any current qualification; whatever comes next is the start
of something new. */
parser->scope = NULL_TREE;
parser->qualifying_scope = NULL_TREE;
parser->object_scope = NULL_TREE;
/* Look for a trailing `;' after the declaration. */
if (!function_definition_p
&& (decl == error_mark_node
|| !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
cp_parser_skip_to_end_of_block_or_statement (parser);
return decl;
}
/* Parse a cast-expression that is not the operand of a unary "&". */
static tree
cp_parser_simple_cast_expression (cp_parser *parser)
{
return cp_parser_cast_expression (parser, /*address_p=*/false,
/*cast_p=*/false);
}
/* Parse a functional cast to TYPE. Returns an expression
representing the cast. */
static tree
cp_parser_functional_cast (cp_parser* parser, tree type)
{
tree expression_list;
tree cast;
expression_list
= cp_parser_parenthesized_expression_list (parser, false,
/*cast_p=*/true,
/*non_constant_p=*/NULL);
cast = build_functional_cast (type, expression_list);
/* [expr.const]/1: In an integral constant expression "only type
conversions to integral or enumeration type can be used". */
if (TREE_CODE (type) == TYPE_DECL)
type = TREE_TYPE (type);
if (cast != error_mark_node
&& !cast_valid_in_integral_constant_expression_p (type)
&& (cp_parser_non_integral_constant_expression
(parser, "a call to a constructor")))
return error_mark_node;
return cast;
}
/* Save the tokens that make up the body of a member function defined
in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
already been parsed. The ATTRIBUTES are any GNU "__attribute__"
specifiers applied to the declaration. Returns the FUNCTION_DECL
for the member function. */
static tree
cp_parser_save_member_function_body (cp_parser* parser,
cp_decl_specifier_seq *decl_specifiers,
cp_declarator *declarator,
tree attributes)
{
cp_token *first;
cp_token *last;
tree fn;
/* Create the function-declaration. */
fn = start_method (decl_specifiers, declarator, attributes);
/* If something went badly wrong, bail out now. */
if (fn == error_mark_node)
{
/* If there's a function-body, skip it. */
if (cp_parser_token_starts_function_definition_p
(cp_lexer_peek_token (parser->lexer)))
cp_parser_skip_to_end_of_block_or_statement (parser);
return error_mark_node;
}
/* Remember it, if there default args to post process. */
cp_parser_save_default_args (parser, fn);
/* Save away the tokens that make up the body of the
function. */
first = parser->lexer->next_token;
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
/* Handle function try blocks. */
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
last = parser->lexer->next_token;
/* Save away the inline definition; we will process it when the
class is complete. */
DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
DECL_PENDING_INLINE_P (fn) = 1;
/* We need to know that this was defined in the class, so that
friend templates are handled correctly. */
DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
/* We're done with the inline definition. */
finish_method (fn);
/* Add FN to the queue of functions to be parsed later. */
TREE_VALUE (parser->unparsed_functions_queues)
= tree_cons (NULL_TREE, fn,
TREE_VALUE (parser->unparsed_functions_queues));
return fn;
}
/* Parse a template-argument-list, as well as the trailing ">" (but
not the opening ">"). See cp_parser_template_argument_list for the
return value. */
static tree
cp_parser_enclosed_template_argument_list (cp_parser* parser)
{
tree arguments;
tree saved_scope;
tree saved_qualifying_scope;
tree saved_object_scope;
bool saved_greater_than_is_operator_p;
bool saved_skip_evaluation;
/* [temp.names]
When parsing a template-id, the first non-nested `>' is taken as
the end of the template-argument-list rather than a greater-than
operator. */
saved_greater_than_is_operator_p
= parser->greater_than_is_operator_p;
parser->greater_than_is_operator_p = false;
/* Parsing the argument list may modify SCOPE, so we save it
here. */
saved_scope = parser->scope;
saved_qualifying_scope = parser->qualifying_scope;
saved_object_scope = parser->object_scope;
/* We need to evaluate the template arguments, even though this
template-id may be nested within a "sizeof". */
saved_skip_evaluation = skip_evaluation;
skip_evaluation = false;
/* Parse the template-argument-list itself. */
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
arguments = NULL_TREE;
else
arguments = cp_parser_template_argument_list (parser);
/* Look for the `>' that ends the template-argument-list. If we find
a '>>' instead, it's probably just a typo. */
if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
{
if (!saved_greater_than_is_operator_p)
{
/* If we're in a nested template argument list, the '>>' has
to be a typo for '> >'. We emit the error message, but we
continue parsing and we push a '>' as next token, so that
the argument list will be parsed correctly. Note that the
global source location is still on the token before the
'>>', so we need to say explicitly where we want it. */
cp_token *token = cp_lexer_peek_token (parser->lexer);
error ("%H%<>>%> should be %<> >%> "
"within a nested template argument list",
&token->location);
/* ??? Proper recovery should terminate two levels of
template argument list here. */
token->type = CPP_GREATER;
}
else
{
/* If this is not a nested template argument list, the '>>'
is a typo for '>'. Emit an error message and continue.
Same deal about the token location, but here we can get it
right by consuming the '>>' before issuing the diagnostic. */
cp_lexer_consume_token (parser->lexer);
error ("spurious %<>>%>, use %<>%> to terminate "
"a template argument list");
}
}
else
cp_parser_skip_to_end_of_template_parameter_list (parser);
/* The `>' token might be a greater-than operator again now. */
parser->greater_than_is_operator_p
= saved_greater_than_is_operator_p;
/* Restore the SAVED_SCOPE. */
parser->scope = saved_scope;
parser->qualifying_scope = saved_qualifying_scope;
parser->object_scope = saved_object_scope;
skip_evaluation = saved_skip_evaluation;
return arguments;
}
/* MEMBER_FUNCTION is a member function, or a friend. If default
arguments, or the body of the function have not yet been parsed,
parse them now. */
static void
cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
{
/* If this member is a template, get the underlying
FUNCTION_DECL. */
if (DECL_FUNCTION_TEMPLATE_P (member_function))
member_function = DECL_TEMPLATE_RESULT (member_function);
/* There should not be any class definitions in progress at this
point; the bodies of members are only parsed outside of all class
definitions. */
gcc_assert (parser->num_classes_being_defined == 0);
/* While we're parsing the member functions we might encounter more
classes. We want to handle them right away, but we don't want
them getting mixed up with functions that are currently in the
queue. */
parser->unparsed_functions_queues
= tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
/* Make sure that any template parameters are in scope. */
maybe_begin_member_template_processing (member_function);
/* If the body of the function has not yet been parsed, parse it
now. */
if (DECL_PENDING_INLINE_P (member_function))
{
tree function_scope;
cp_token_cache *tokens;
/* The function is no longer pending; we are processing it. */
tokens = DECL_PENDING_INLINE_INFO (member_function);
DECL_PENDING_INLINE_INFO (member_function) = NULL;
DECL_PENDING_INLINE_P (member_function) = 0;
/* If this is a local class, enter the scope of the containing
function. */
function_scope = current_function_decl;
if (function_scope)
push_function_context_to (function_scope);
/* Push the body of the function onto the lexer stack. */
cp_parser_push_lexer_for_tokens (parser, tokens);
/* Let the front end know that we going to be defining this
function. */
start_preparsed_function (member_function, NULL_TREE,
SF_PRE_PARSED | SF_INCLASS_INLINE);
/* Don't do access checking if it is a templated function. */
if (processing_template_decl)
push_deferring_access_checks (dk_no_check);
/* Now, parse the body of the function. */
cp_parser_function_definition_after_declarator (parser,
/*inline_p=*/true);
if (processing_template_decl)
pop_deferring_access_checks ();
/* Leave the scope of the containing function. */
if (function_scope)
pop_function_context_from (function_scope);
cp_parser_pop_lexer (parser);
}
/* Remove any template parameters from the symbol table. */
maybe_end_member_template_processing ();
/* Restore the queue. */
parser->unparsed_functions_queues
= TREE_CHAIN (parser->unparsed_functions_queues);
}
/* If DECL contains any default args, remember it on the unparsed
functions queue. */
static void
cp_parser_save_default_args (cp_parser* parser, tree decl)
{
tree probe;
for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
probe;
probe = TREE_CHAIN (probe))
if (TREE_PURPOSE (probe))
{
TREE_PURPOSE (parser->unparsed_functions_queues)
= tree_cons (current_class_type, decl,
TREE_PURPOSE (parser->unparsed_functions_queues));
break;
}
}
/* FN is a FUNCTION_DECL which may contains a parameter with an
unparsed DEFAULT_ARG. Parse the default args now. This function
assumes that the current scope is the scope in which the default
argument should be processed. */
static void
cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
{
bool saved_local_variables_forbidden_p;
tree parm;
/* While we're parsing the default args, we might (due to the
statement expression extension) encounter more classes. We want
to handle them right away, but we don't want them getting mixed
up with default args that are currently in the queue. */
parser->unparsed_functions_queues
= tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
/* Local variable names (and the `this' keyword) may not appear
in a default argument. */
saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
parser->local_variables_forbidden_p = true;
for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
parm;
parm = TREE_CHAIN (parm))
{
cp_token_cache *tokens;
tree default_arg = TREE_PURPOSE (parm);
tree parsed_arg;
VEC(tree,gc) *insts;
tree copy;
unsigned ix;
if (!default_arg)
continue;
if (TREE_CODE (default_arg) != DEFAULT_ARG)
/* This can happen for a friend declaration for a function
already declared with default arguments. */
continue;
/* Push the saved tokens for the default argument onto the parser's
lexer stack. */
tokens = DEFARG_TOKENS (default_arg);
cp_parser_push_lexer_for_tokens (parser, tokens);
/* Parse the assignment-expression. */
parsed_arg = cp_parser_assignment_expression (parser, /*cast_p=*/false);
if (!processing_template_decl)
parsed_arg = check_default_argument (TREE_VALUE (parm), parsed_arg);
TREE_PURPOSE (parm) = parsed_arg;
/* Update any instantiations we've already created. */
for (insts = DEFARG_INSTANTIATIONS (default_arg), ix = 0;
VEC_iterate (tree, insts, ix, copy); ix++)
TREE_PURPOSE (copy) = parsed_arg;
/* If the token stream has not been completely used up, then
there was extra junk after the end of the default
argument. */
if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
cp_parser_error (parser, "expected %<,%>");
/* Revert to the main lexer. */
cp_parser_pop_lexer (parser);
}
/* Make sure no default arg is missing. */
check_default_args (fn);
/* Restore the state of local_variables_forbidden_p. */
parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
/* Restore the queue. */
parser->unparsed_functions_queues
= TREE_CHAIN (parser->unparsed_functions_queues);
}
/* Parse the operand of `sizeof' (or a similar operator). Returns
either a TYPE or an expression, depending on the form of the
input. The KEYWORD indicates which kind of expression we have
encountered. */
static tree
cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
{
static const char *format;
tree expr = NULL_TREE;
const char *saved_message;
bool saved_integral_constant_expression_p;
bool saved_non_integral_constant_expression_p;
/* Initialize FORMAT the first time we get here. */
if (!format)
format = "types may not be defined in '%s' expressions";
/* Types cannot be defined in a `sizeof' expression. Save away the
old message. */
saved_message = parser->type_definition_forbidden_message;
/* And create the new one. */
parser->type_definition_forbidden_message
= XNEWVEC (const char, strlen (format)
+ strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
+ 1 /* `\0' */);
sprintf ((char *) parser->type_definition_forbidden_message,
format, IDENTIFIER_POINTER (ridpointers[keyword]));
/* The restrictions on constant-expressions do not apply inside
sizeof expressions. */
saved_integral_constant_expression_p
= parser->integral_constant_expression_p;
saved_non_integral_constant_expression_p
= parser->non_integral_constant_expression_p;
parser->integral_constant_expression_p = false;
/* Do not actually evaluate the expression. */
++skip_evaluation;
/* If it's a `(', then we might be looking at the type-id
construction. */
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree type;
bool saved_in_type_id_in_expr_p;
/* We can't be sure yet whether we're looking at a type-id or an
expression. */
cp_parser_parse_tentatively (parser);
/* Consume the `('. */
cp_lexer_consume_token (parser->lexer);
/* Parse the type-id. */
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
parser->in_type_id_in_expr_p = true;
type = cp_parser_type_id (parser);
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
/* Now, look for the trailing `)'. */
cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
/* If all went well, then we're done. */
if (cp_parser_parse_definitely (parser))
{
cp_decl_specifier_seq decl_specs;
/* Build a trivial decl-specifier-seq. */
clear_decl_specs (&decl_specs);
decl_specs.type = type;
/* Call grokdeclarator to figure out what type this is. */
expr = grokdeclarator (NULL,
&decl_specs,
TYPENAME,
/*initialized=*/0,
/*attrlist=*/NULL);
}
}
/* If the type-id production did not work out, then we must be
looking at the unary-expression production. */
if (!expr)
expr = cp_parser_unary_expression (parser, /*address_p=*/false,
/*cast_p=*/false);
/* Go back to evaluating expressions. */
--skip_evaluation;
/* Free the message we created. */
free ((char *) parser->type_definition_forbidden_message);
/* And restore the old one. */
parser->type_definition_forbidden_message = saved_message;
parser->integral_constant_expression_p
= saved_integral_constant_expression_p;
parser->non_integral_constant_expression_p
= saved_non_integral_constant_expression_p;
return expr;
}
/* If the current declaration has no declarator, return true. */
static bool
cp_parser_declares_only_class_p (cp_parser *parser)
{
/* If the next token is a `;' or a `,' then there is no
declarator. */
return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|| cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
}
/* Update the DECL_SPECS to reflect the storage class indicated by
KEYWORD. */
static void
cp_parser_set_storage_class (cp_parser *parser,
cp_decl_specifier_seq *decl_specs,
enum rid keyword)
{
cp_storage_class storage_class;
if (parser->in_unbraced_linkage_specification_p)
{
error ("invalid use of %qD in linkage specification",
ridpointers[keyword]);
return;
}
else if (decl_specs->storage_class != sc_none)
{
decl_specs->conflicting_specifiers_p = true;
return;
}
if ((keyword == RID_EXTERN || keyword == RID_STATIC)
&& decl_specs->specs[(int) ds_thread])
{
error ("%<__thread%> before %qD", ridpointers[keyword]);
decl_specs->specs[(int) ds_thread] = 0;
}
switch (keyword)
{
case RID_AUTO:
storage_class = sc_auto;
break;
case RID_REGISTER:
storage_class = sc_register;
break;
case RID_STATIC:
storage_class = sc_static;
break;
case RID_EXTERN:
storage_class = sc_extern;
break;
case RID_MUTABLE:
storage_class = sc_mutable;
break;
default:
gcc_unreachable ();
}
decl_specs->storage_class = storage_class;
/* A storage class specifier cannot be applied alongside a typedef
specifier. If there is a typedef specifier present then set
conflicting_specifiers_p which will trigger an error later
on in grokdeclarator. */
if (decl_specs->specs[(int)ds_typedef])
decl_specs->conflicting_specifiers_p = true;
}
/* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
is true, the type is a user-defined type; otherwise it is a
built-in type specified by a keyword. */
static void
cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
tree type_spec,
bool user_defined_p)
{
decl_specs->any_specifiers_p = true;
/* If the user tries to redeclare bool or wchar_t (with, for
example, in "typedef int wchar_t;") we remember that this is what
happened. In system headers, we ignore these declarations so
that G++ can work with system headers that are not C++-safe. */
if (decl_specs->specs[(int) ds_typedef]
&& !user_defined_p
&& (type_spec == boolean_type_node
|| type_spec == wchar_type_node)
&& (decl_specs->type
|| decl_specs->specs[(int) ds_long]
|| decl_specs->specs[(int) ds_short]
|| decl_specs->specs[(int) ds_unsigned]
|| decl_specs->specs[(int) ds_signed]))
{
decl_specs->redefined_builtin_type = type_spec;
if (!decl_specs->type)
{
decl_specs->type = type_spec;
decl_specs->user_defined_type_p = false;
}
}
else if (decl_specs->type)
decl_specs->multiple_types_p = true;
else
{
decl_specs->type = type_spec;
decl_specs->user_defined_type_p = user_defined_p;
decl_specs->redefined_builtin_type = NULL_TREE;
}
}
/* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
static bool
cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
{
return decl_specifiers->specs[(int) ds_friend] != 0;
}
/* If the next token is of the indicated TYPE, consume it. Otherwise,
issue an error message indicating that TOKEN_DESC was expected.
Returns the token consumed, if the token had the appropriate type.
Otherwise, returns NULL. */
static cp_token *
cp_parser_require (cp_parser* parser,
enum cpp_ttype type,
const char* token_desc)
{
if (cp_lexer_next_token_is (parser->lexer, type))
return cp_lexer_consume_token (parser->lexer);
else
{
/* Output the MESSAGE -- unless we're parsing tentatively. */
if (!cp_parser_simulate_error (parser))
{
char *message = concat ("expected ", token_desc, NULL);
cp_parser_error (parser, message);
free (message);
}
return NULL;
}
}
/* An error message is produced if the next token is not '>'.
All further tokens are skipped until the desired token is
found or '{', '}', ';' or an unbalanced ')' or ']'. */
static void
cp_parser_skip_to_end_of_template_parameter_list (cp_parser* parser)
{
/* Current level of '< ... >'. */
unsigned level = 0;
/* Ignore '<' and '>' nested inside '( ... )' or '[ ... ]'. */
unsigned nesting_depth = 0;
/* Are we ready, yet? If not, issue error message. */
if (cp_parser_require (parser, CPP_GREATER, "%<>%>"))
return;
/* Skip tokens until the desired token is found. */
while (true)
{
/* Peek at the next token. */
switch (cp_lexer_peek_token (parser->lexer)->type)
{
case CPP_LESS:
if (!nesting_depth)
++level;
break;
case CPP_GREATER:
if (!nesting_depth && level-- == 0)
{
/* We've reached the token we want, consume it and stop. */
cp_lexer_consume_token (parser->lexer);
return;
}
break;
case CPP_OPEN_PAREN:
case CPP_OPEN_SQUARE:
++nesting_depth;
break;
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
if (nesting_depth-- == 0)
return;
break;
case CPP_EOF:
case CPP_PRAGMA_EOL:
case CPP_SEMICOLON:
case CPP_OPEN_BRACE:
case CPP_CLOSE_BRACE:
/* The '>' was probably forgotten, don't look further. */
return;
default:
break;
}
/* Consume this token. */
cp_lexer_consume_token (parser->lexer);
}
}
/* If the next token is the indicated keyword, consume it. Otherwise,
issue an error message indicating that TOKEN_DESC was expected.
Returns the token consumed, if the token had the appropriate type.
Otherwise, returns NULL. */
static cp_token *
cp_parser_require_keyword (cp_parser* parser,
enum rid keyword,
const char* token_desc)
{
cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
if (token && token->keyword != keyword)
{
dyn_string_t error_msg;
/* Format the error message. */
error_msg = dyn_string_new (0);
dyn_string_append_cstr (error_msg, "expected ");
dyn_string_append_cstr (error_msg, token_desc);
cp_parser_error (parser, error_msg->s);
dyn_string_delete (error_msg);
return NULL;
}
return token;
}
/* Returns TRUE iff TOKEN is a token that can begin the body of a
function-definition. */
static bool
cp_parser_token_starts_function_definition_p (cp_token* token)
{
return (/* An ordinary function-body begins with an `{'. */
token->type == CPP_OPEN_BRACE
/* A ctor-initializer begins with a `:'. */
|| token->type == CPP_COLON
/* A function-try-block begins with `try'. */
|| token->keyword == RID_TRY
/* The named return value extension begins with `return'. */
|| token->keyword == RID_RETURN);
}
/* Returns TRUE iff the next token is the ":" or "{" beginning a class
definition. */
static bool
cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
}
/* Returns TRUE iff the next token is the "," or ">" ending a
template-argument. */
static bool
cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
{
cp_token *token;
token = cp_lexer_peek_token (parser->lexer);
return (token->type == CPP_COMMA || token->type == CPP_GREATER);
}
/* Returns TRUE iff the n-th token is a "<", or the n-th is a "[" and the
(n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
static bool
cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
size_t n)
{
cp_token *token;
token = cp_lexer_peek_nth_token (parser->lexer, n);
if (token->type == CPP_LESS)
return true;
/* Check for the sequence `<::' in the original code. It would be lexed as
`[:', where `[' is a digraph, and there is no whitespace before
`:'. */
if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
{
cp_token *token2;
token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
return true;
}
return false;
}
/* Returns the kind of tag indicated by TOKEN, if it is a class-key,
or none_type otherwise. */
static enum tag_types
cp_parser_token_is_class_key (cp_token* token)
{
switch (token->keyword)
{
case RID_CLASS:
return class_type;
case RID_STRUCT:
return record_type;
case RID_UNION:
return union_type;
default:
return none_type;
}
}
/* Issue an error message if the CLASS_KEY does not match the TYPE. */
static void
cp_parser_check_class_key (enum tag_types class_key, tree type)
{
if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
pedwarn ("%qs tag used in naming %q#T",
class_key == union_type ? "union"
: class_key == record_type ? "struct" : "class",
type);
}
/* Issue an error message if DECL is redeclared with different
access than its original declaration [class.access.spec/3].
This applies to nested classes and nested class templates.
[class.mem/1]. */
static void
cp_parser_check_access_in_redeclaration (tree decl)
{
if (!CLASS_TYPE_P (TREE_TYPE (decl)))
return;
if ((TREE_PRIVATE (decl)
!= (current_access_specifier == access_private_node))
|| (TREE_PROTECTED (decl)
!= (current_access_specifier == access_protected_node)))
error ("%qD redeclared with different access", decl);
}
/* Look for the `template' keyword, as a syntactic disambiguator.
Return TRUE iff it is present, in which case it will be
consumed. */
static bool
cp_parser_optional_template_keyword (cp_parser *parser)
{
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
{
/* The `template' keyword can only be used within templates;
outside templates the parser can always figure out what is a
template and what is not. */
if (!processing_template_decl)
{
error ("%<template%> (as a disambiguator) is only allowed "
"within templates");
/* If this part of the token stream is rescanned, the same
error message would be generated. So, we purge the token
from the stream. */
cp_lexer_purge_token (parser->lexer);
return false;
}
else
{
/* Consume the `template' keyword. */
cp_lexer_consume_token (parser->lexer);
return true;
}
}
return false;
}
/* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
set PARSER->SCOPE, and perform other related actions. */
static void
cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
{
int i;
struct tree_check *check_value;
deferred_access_check *chk;
VEC (deferred_access_check,gc) *checks;
/* Get the stored value. */
check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
/* Perform any access checks that were deferred. */
checks = check_value->checks;
if (checks)
{
for (i = 0 ;
VEC_iterate (deferred_access_check, checks, i, chk) ;
++i)
{
perform_or_defer_access_check (chk->binfo,
chk->decl,
chk->diag_decl);
}
}
/* Set the scope from the stored value. */
parser->scope = check_value->value;
parser->qualifying_scope = check_value->qualifying_scope;
parser->object_scope = NULL_TREE;
}
/* Consume tokens up through a non-nested END token. */
static void
cp_parser_cache_group (cp_parser *parser,
enum cpp_ttype end,
unsigned depth)
{
while (true)
{
cp_token *token;
/* Abort a parenthesized expression if we encounter a brace. */
if ((end == CPP_CLOSE_PAREN || depth == 0)
&& cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
return;
/* If we've reached the end of the file, stop. */
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF)
|| (end != CPP_PRAGMA_EOL
&& cp_lexer_next_token_is (parser->lexer, CPP_PRAGMA_EOL)))
return;
/* Consume the next token. */
token = cp_lexer_consume_token (parser->lexer);
/* See if it starts a new group. */
if (token->type == CPP_OPEN_BRACE)
{
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
if (depth == 0)
return;
}
else if (token->type == CPP_OPEN_PAREN)
cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
else if (token->type == CPP_PRAGMA)
cp_parser_cache_group (parser, CPP_PRAGMA_EOL, depth + 1);
else if (token->type == end)
return;
}
}
/* Begin parsing tentatively. We always save tokens while parsing
tentatively so that if the tentative parsing fails we can restore the
tokens. */
static void
cp_parser_parse_tentatively (cp_parser* parser)
{
/* Enter a new parsing context. */
parser->context = cp_parser_context_new (parser->context);
/* Begin saving tokens. */
cp_lexer_save_tokens (parser->lexer);
/* In order to avoid repetitive access control error messages,
access checks are queued up until we are no longer parsing
tentatively. */
push_deferring_access_checks (dk_deferred);
}
/* Commit to the currently active tentative parse. */
static void
cp_parser_commit_to_tentative_parse (cp_parser* parser)
{
cp_parser_context *context;
cp_lexer *lexer;
/* Mark all of the levels as committed. */
lexer = parser->lexer;
for (context = parser->context; context->next; context = context->next)
{
if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
break;
context->status = CP_PARSER_STATUS_KIND_COMMITTED;
while (!cp_lexer_saving_tokens (lexer))
lexer = lexer->next;
cp_lexer_commit_tokens (lexer);
}
}
/* Abort the currently active tentative parse. All consumed tokens
will be rolled back, and no diagnostics will be issued. */
static void
cp_parser_abort_tentative_parse (cp_parser* parser)
{
cp_parser_simulate_error (parser);
/* Now, pretend that we want to see if the construct was
successfully parsed. */
cp_parser_parse_definitely (parser);
}
/* Stop parsing tentatively. If a parse error has occurred, restore the
token stream. Otherwise, commit to the tokens we have consumed.
Returns true if no error occurred; false otherwise. */
static bool
cp_parser_parse_definitely (cp_parser* parser)
{
bool error_occurred;
cp_parser_context *context;
/* Remember whether or not an error occurred, since we are about to
destroy that information. */
error_occurred = cp_parser_error_occurred (parser);
/* Remove the topmost context from the stack. */
context = parser->context;
parser->context = context->next;
/* If no parse errors occurred, commit to the tentative parse. */
if (!error_occurred)
{
/* Commit to the tokens read tentatively, unless that was
already done. */
if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
cp_lexer_commit_tokens (parser->lexer);
pop_to_parent_deferring_access_checks ();
}
/* Otherwise, if errors occurred, roll back our state so that things
are just as they were before we began the tentative parse. */
else
{
cp_lexer_rollback_tokens (parser->lexer);
pop_deferring_access_checks ();
}
/* Add the context to the front of the free list. */
context->next = cp_parser_context_free_list;
cp_parser_context_free_list = context;
return !error_occurred;
}
/* Returns true if we are parsing tentatively and are not committed to
this tentative parse. */
static bool
cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
{
return (cp_parser_parsing_tentatively (parser)
&& parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
}
/* Returns nonzero iff an error has occurred during the most recent
tentative parse. */
static bool
cp_parser_error_occurred (cp_parser* parser)
{
return (cp_parser_parsing_tentatively (parser)
&& parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
}
/* Returns nonzero if GNU extensions are allowed. */
static bool
cp_parser_allow_gnu_extensions_p (cp_parser* parser)
{
return parser->allow_gnu_extensions_p;
}
/* Objective-C++ Productions */
/* Parse an Objective-C expression, which feeds into a primary-expression
above.
objc-expression:
objc-message-expression
objc-string-literal
objc-encode-expression
objc-protocol-expression
objc-selector-expression
Returns a tree representation of the expression. */
static tree
cp_parser_objc_expression (cp_parser* parser)
{
/* Try to figure out what kind of declaration is present. */
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
switch (kwd->type)
{
case CPP_OPEN_SQUARE:
return cp_parser_objc_message_expression (parser);
case CPP_OBJC_STRING:
kwd = cp_lexer_consume_token (parser->lexer);
return objc_build_string_object (kwd->u.value);
case CPP_KEYWORD:
switch (kwd->keyword)
{
case RID_AT_ENCODE:
return cp_parser_objc_encode_expression (parser);
case RID_AT_PROTOCOL:
return cp_parser_objc_protocol_expression (parser);
case RID_AT_SELECTOR:
return cp_parser_objc_selector_expression (parser);
default:
break;
}
default:
error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
cp_parser_skip_to_end_of_block_or_statement (parser);
}
return error_mark_node;
}
/* Parse an Objective-C message expression.
objc-message-expression:
[ objc-message-receiver objc-message-args ]
Returns a representation of an Objective-C message. */
static tree
cp_parser_objc_message_expression (cp_parser* parser)
{
tree receiver, messageargs;
cp_lexer_consume_token (parser->lexer); /* Eat '['. */
receiver = cp_parser_objc_message_receiver (parser);
messageargs = cp_parser_objc_message_args (parser);
cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
return objc_build_message_expr (build_tree_list (receiver, messageargs));
}
/* Parse an objc-message-receiver.
objc-message-receiver:
expression
simple-type-specifier
Returns a representation of the type or expression. */
static tree
cp_parser_objc_message_receiver (cp_parser* parser)
{
tree rcv;
/* An Objective-C message receiver may be either (1) a type
or (2) an expression. */
cp_parser_parse_tentatively (parser);
rcv = cp_parser_expression (parser, false);
if (cp_parser_parse_definitely (parser))
return rcv;
rcv = cp_parser_simple_type_specifier (parser,
/*decl_specs=*/NULL,
CP_PARSER_FLAGS_NONE);
return objc_get_class_reference (rcv);
}
/* Parse the arguments and selectors comprising an Objective-C message.
objc-message-args:
objc-selector
objc-selector-args
objc-selector-args , objc-comma-args
objc-selector-args:
objc-selector [opt] : assignment-expression
objc-selector-args objc-selector [opt] : assignment-expression
objc-comma-args:
assignment-expression
objc-comma-args , assignment-expression
Returns a TREE_LIST, with TREE_PURPOSE containing a list of
selector arguments and TREE_VALUE containing a list of comma
arguments. */
static tree
cp_parser_objc_message_args (cp_parser* parser)
{
tree sel_args = NULL_TREE, addl_args = NULL_TREE;
bool maybe_unary_selector_p = true;
cp_token *token = cp_lexer_peek_token (parser->lexer);
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
{
tree selector = NULL_TREE, arg;
if (token->type != CPP_COLON)
selector = cp_parser_objc_selector (parser);
/* Detect if we have a unary selector. */
if (maybe_unary_selector_p
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
return build_tree_list (selector, NULL_TREE);
maybe_unary_selector_p = false;
cp_parser_require (parser, CPP_COLON, "`:'");
arg = cp_parser_assignment_expression (parser, false);
sel_args
= chainon (sel_args,
build_tree_list (selector, arg));
token = cp_lexer_peek_token (parser->lexer);
}
/* Handle non-selector arguments, if any. */
while (token->type == CPP_COMMA)
{
tree arg;
cp_lexer_consume_token (parser->lexer);
arg = cp_parser_assignment_expression (parser, false);
addl_args
= chainon (addl_args,
build_tree_list (NULL_TREE, arg));
token = cp_lexer_peek_token (parser->lexer);
}
return build_tree_list (sel_args, addl_args);
}
/* Parse an Objective-C encode expression.
objc-encode-expression:
@encode objc-typename
Returns an encoded representation of the type argument. */
static tree
cp_parser_objc_encode_expression (cp_parser* parser)
{
tree type;
cp_lexer_consume_token (parser->lexer); /* Eat '@encode'. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
type = complete_type (cp_parser_type_id (parser));
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
if (!type)
{
error ("%<@encode%> must specify a type as an argument");
return error_mark_node;
}
return objc_build_encode_expr (type);
}
/* Parse an Objective-C @defs expression. */
static tree
cp_parser_objc_defs_expression (cp_parser *parser)
{
tree name;
cp_lexer_consume_token (parser->lexer); /* Eat '@defs'. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
name = cp_parser_identifier (parser);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return objc_get_class_ivars (name);
}
/* Parse an Objective-C protocol expression.
objc-protocol-expression:
@protocol ( identifier )
Returns a representation of the protocol expression. */
static tree
cp_parser_objc_protocol_expression (cp_parser* parser)
{
tree proto;
cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
proto = cp_parser_identifier (parser);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return objc_build_protocol_expr (proto);
}
/* Parse an Objective-C selector expression.
objc-selector-expression:
@selector ( objc-method-signature )
objc-method-signature:
objc-selector
objc-selector-seq
objc-selector-seq:
objc-selector :
objc-selector-seq objc-selector :
Returns a representation of the method selector. */
static tree
cp_parser_objc_selector_expression (cp_parser* parser)
{
tree sel_seq = NULL_TREE;
bool maybe_unary_selector_p = true;
cp_token *token;
cp_lexer_consume_token (parser->lexer); /* Eat '@selector'. */
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
token = cp_lexer_peek_token (parser->lexer);
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON
|| token->type == CPP_SCOPE)
{
tree selector = NULL_TREE;
if (token->type != CPP_COLON
|| token->type == CPP_SCOPE)
selector = cp_parser_objc_selector (parser);
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)
&& cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE))
{
/* Detect if we have a unary selector. */
if (maybe_unary_selector_p)
{
sel_seq = selector;
goto finish_selector;
}
else
{
cp_parser_error (parser, "expected %<:%>");
}
}
maybe_unary_selector_p = false;
token = cp_lexer_consume_token (parser->lexer);
if (token->type == CPP_SCOPE)
{
sel_seq
= chainon (sel_seq,
build_tree_list (selector, NULL_TREE));
sel_seq
= chainon (sel_seq,
build_tree_list (NULL_TREE, NULL_TREE));
}
else
sel_seq
= chainon (sel_seq,
build_tree_list (selector, NULL_TREE));
token = cp_lexer_peek_token (parser->lexer);
}
finish_selector:
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
return objc_build_selector_expr (sel_seq);
}
/* Parse a list of identifiers.
objc-identifier-list:
identifier
objc-identifier-list , identifier
Returns a TREE_LIST of identifier nodes. */
static tree
cp_parser_objc_identifier_list (cp_parser* parser)
{
tree list = build_tree_list (NULL_TREE, cp_parser_identifier (parser));
cp_token *sep = cp_lexer_peek_token (parser->lexer);
while (sep->type == CPP_COMMA)
{
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
list = chainon (list,
build_tree_list (NULL_TREE,
cp_parser_identifier (parser)));
sep = cp_lexer_peek_token (parser->lexer);
}
return list;
}
/* Parse an Objective-C alias declaration.
objc-alias-declaration:
@compatibility_alias identifier identifier ;
This function registers the alias mapping with the Objective-C front-end.
It returns nothing. */
static void
cp_parser_objc_alias_declaration (cp_parser* parser)
{
tree alias, orig;
cp_lexer_consume_token (parser->lexer); /* Eat '@compatibility_alias'. */
alias = cp_parser_identifier (parser);
orig = cp_parser_identifier (parser);
objc_declare_alias (alias, orig);
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
/* Parse an Objective-C class forward-declaration.
objc-class-declaration:
@class objc-identifier-list ;
The function registers the forward declarations with the Objective-C
front-end. It returns nothing. */
static void
cp_parser_objc_class_declaration (cp_parser* parser)
{
cp_lexer_consume_token (parser->lexer); /* Eat '@class'. */
objc_declare_class (cp_parser_objc_identifier_list (parser));
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
/* Parse a list of Objective-C protocol references.
objc-protocol-refs-opt:
objc-protocol-refs [opt]
objc-protocol-refs:
< objc-identifier-list >
Returns a TREE_LIST of identifiers, if any. */
static tree
cp_parser_objc_protocol_refs_opt (cp_parser* parser)
{
tree protorefs = NULL_TREE;
if(cp_lexer_next_token_is (parser->lexer, CPP_LESS))
{
cp_lexer_consume_token (parser->lexer); /* Eat '<'. */
protorefs = cp_parser_objc_identifier_list (parser);
cp_parser_require (parser, CPP_GREATER, "`>'");
}
return protorefs;
}
/* Parse a Objective-C visibility specification. */
static void
cp_parser_objc_visibility_spec (cp_parser* parser)
{
cp_token *vis = cp_lexer_peek_token (parser->lexer);
switch (vis->keyword)
{
case RID_AT_PRIVATE:
objc_set_visibility (2);
break;
case RID_AT_PROTECTED:
objc_set_visibility (0);
break;
case RID_AT_PUBLIC:
objc_set_visibility (1);
break;
default:
return;
}
/* Eat '@private'/'@protected'/'@public'. */
cp_lexer_consume_token (parser->lexer);
}
/* Parse an Objective-C method type. */
static void
cp_parser_objc_method_type (cp_parser* parser)
{
objc_set_method_type
(cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS
? PLUS_EXPR
: MINUS_EXPR);
}
/* Parse an Objective-C protocol qualifier. */
static tree
cp_parser_objc_protocol_qualifiers (cp_parser* parser)
{
tree quals = NULL_TREE, node;
cp_token *token = cp_lexer_peek_token (parser->lexer);
node = token->u.value;
while (node && TREE_CODE (node) == IDENTIFIER_NODE
&& (node == ridpointers [(int) RID_IN]
|| node == ridpointers [(int) RID_OUT]
|| node == ridpointers [(int) RID_INOUT]
|| node == ridpointers [(int) RID_BYCOPY]
|| node == ridpointers [(int) RID_BYREF]
|| node == ridpointers [(int) RID_ONEWAY]))
{
quals = tree_cons (NULL_TREE, node, quals);
cp_lexer_consume_token (parser->lexer);
token = cp_lexer_peek_token (parser->lexer);
node = token->u.value;
}
return quals;
}
/* Parse an Objective-C typename. */
static tree
cp_parser_objc_typename (cp_parser* parser)
{
tree typename = NULL_TREE;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
tree proto_quals, cp_type = NULL_TREE;
cp_lexer_consume_token (parser->lexer); /* Eat '('. */
proto_quals = cp_parser_objc_protocol_qualifiers (parser);
/* An ObjC type name may consist of just protocol qualifiers, in which
case the type shall default to 'id'. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
cp_type = cp_parser_type_id (parser);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
typename = build_tree_list (proto_quals, cp_type);
}
return typename;
}
/* Check to see if TYPE refers to an Objective-C selector name. */
static bool
cp_parser_objc_selector_p (enum cpp_ttype type)
{
return (type == CPP_NAME || type == CPP_KEYWORD
|| type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND
|| type == CPP_OR || type == CPP_COMPL || type == CPP_NOT
|| type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ
|| type == CPP_XOR || type == CPP_XOR_EQ);
}
/* Parse an Objective-C selector. */
static tree
cp_parser_objc_selector (cp_parser* parser)
{
cp_token *token = cp_lexer_consume_token (parser->lexer);
if (!cp_parser_objc_selector_p (token->type))
{
error ("invalid Objective-C++ selector name");
return error_mark_node;
}
/* C++ operator names are allowed to appear in ObjC selectors. */
switch (token->type)
{
case CPP_AND_AND: return get_identifier ("and");
case CPP_AND_EQ: return get_identifier ("and_eq");
case CPP_AND: return get_identifier ("bitand");
case CPP_OR: return get_identifier ("bitor");
case CPP_COMPL: return get_identifier ("compl");
case CPP_NOT: return get_identifier ("not");
case CPP_NOT_EQ: return get_identifier ("not_eq");
case CPP_OR_OR: return get_identifier ("or");
case CPP_OR_EQ: return get_identifier ("or_eq");
case CPP_XOR: return get_identifier ("xor");
case CPP_XOR_EQ: return get_identifier ("xor_eq");
default: return token->u.value;
}
}
/* Parse an Objective-C params list. */
static tree
cp_parser_objc_method_keyword_params (cp_parser* parser)
{
tree params = NULL_TREE;
bool maybe_unary_selector_p = true;
cp_token *token = cp_lexer_peek_token (parser->lexer);
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
{
tree selector = NULL_TREE, typename, identifier;
if (token->type != CPP_COLON)
selector = cp_parser_objc_selector (parser);
/* Detect if we have a unary selector. */
if (maybe_unary_selector_p
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
return selector;
maybe_unary_selector_p = false;
cp_parser_require (parser, CPP_COLON, "`:'");
typename = cp_parser_objc_typename (parser);
identifier = cp_parser_identifier (parser);
params
= chainon (params,
objc_build_keyword_decl (selector,
typename,
identifier));
token = cp_lexer_peek_token (parser->lexer);
}
return params;
}
/* Parse the non-keyword Objective-C params. */
static tree
cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp)
{
tree params = make_node (TREE_LIST);
cp_token *token = cp_lexer_peek_token (parser->lexer);
*ellipsisp = false; /* Initially, assume no ellipsis. */
while (token->type == CPP_COMMA)
{
cp_parameter_declarator *parmdecl;
tree parm;
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_ELLIPSIS)
{
cp_lexer_consume_token (parser->lexer); /* Eat '...'. */
*ellipsisp = true;
break;
}
parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
parm = grokdeclarator (parmdecl->declarator,
&parmdecl->decl_specifiers,
PARM, /*initialized=*/0,
/*attrlist=*/NULL);
chainon (params, build_tree_list (NULL_TREE, parm));
token = cp_lexer_peek_token (parser->lexer);
}
return params;
}
/* Parse a linkage specification, a pragma, an extra semicolon or a block. */
static void
cp_parser_objc_interstitial_code (cp_parser* parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
/* If the next token is `extern' and the following token is a string
literal, then we have a linkage specification. */
if (token->keyword == RID_EXTERN
&& cp_parser_is_string_literal (cp_lexer_peek_nth_token (parser->lexer, 2)))
cp_parser_linkage_specification (parser);
/* Handle #pragma, if any. */
else if (token->type == CPP_PRAGMA)
cp_parser_pragma (parser, pragma_external);
/* Allow stray semicolons. */
else if (token->type == CPP_SEMICOLON)
cp_lexer_consume_token (parser->lexer);
/* Finally, try to parse a block-declaration, or a function-definition. */
else
cp_parser_block_declaration (parser, /*statement_p=*/false);
}
/* Parse a method signature. */
static tree
cp_parser_objc_method_signature (cp_parser* parser)
{
tree rettype, kwdparms, optparms;
bool ellipsis = false;
cp_parser_objc_method_type (parser);
rettype = cp_parser_objc_typename (parser);
kwdparms = cp_parser_objc_method_keyword_params (parser);
optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis);
return objc_build_method_signature (rettype, kwdparms, optparms, ellipsis);
}
/* Pars an Objective-C method prototype list. */
static void
cp_parser_objc_method_prototype_list (cp_parser* parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
while (token->keyword != RID_AT_END)
{
if (token->type == CPP_PLUS || token->type == CPP_MINUS)
{
objc_add_method_declaration
(cp_parser_objc_method_signature (parser));
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
else
/* Allow for interspersed non-ObjC++ code. */
cp_parser_objc_interstitial_code (parser);
token = cp_lexer_peek_token (parser->lexer);
}
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
objc_finish_interface ();
}
/* Parse an Objective-C method definition list. */
static void
cp_parser_objc_method_definition_list (cp_parser* parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
while (token->keyword != RID_AT_END)
{
tree meth;
if (token->type == CPP_PLUS || token->type == CPP_MINUS)
{
push_deferring_access_checks (dk_deferred);
objc_start_method_definition
(cp_parser_objc_method_signature (parser));
/* For historical reasons, we accept an optional semicolon. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
perform_deferred_access_checks ();
stop_deferring_access_checks ();
meth = cp_parser_function_definition_after_declarator (parser,
false);
pop_deferring_access_checks ();
objc_finish_method_definition (meth);
}
else
/* Allow for interspersed non-ObjC++ code. */
cp_parser_objc_interstitial_code (parser);
token = cp_lexer_peek_token (parser->lexer);
}
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
objc_finish_implementation ();
}
/* Parse Objective-C ivars. */
static void
cp_parser_objc_class_ivars (cp_parser* parser)
{
cp_token *token = cp_lexer_peek_token (parser->lexer);
if (token->type != CPP_OPEN_BRACE)
return; /* No ivars specified. */
cp_lexer_consume_token (parser->lexer); /* Eat '{'. */
token = cp_lexer_peek_token (parser->lexer);
while (token->type != CPP_CLOSE_BRACE)
{
cp_decl_specifier_seq declspecs;
int decl_class_or_enum_p;
tree prefix_attributes;
cp_parser_objc_visibility_spec (parser);
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
break;
cp_parser_decl_specifier_seq (parser,
CP_PARSER_FLAGS_OPTIONAL,
&declspecs,
&decl_class_or_enum_p);
prefix_attributes = declspecs.attributes;
declspecs.attributes = NULL_TREE;
/* Keep going until we hit the `;' at the end of the
declaration. */
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
tree width = NULL_TREE, attributes, first_attribute, decl;
cp_declarator *declarator = NULL;
int ctor_dtor_or_conv_p;
/* Check for a (possibly unnamed) bitfield declaration. */
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_COLON)
goto eat_colon;
if (token->type == CPP_NAME
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
== CPP_COLON))
{
/* Get the name of the bitfield. */
declarator = make_id_declarator (NULL_TREE,
cp_parser_identifier (parser),
sfk_none);
eat_colon:
cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
/* Get the width of the bitfield. */
width
= cp_parser_constant_expression (parser,
/*allow_non_constant=*/false,
NULL);
}
else
{
/* Parse the declarator. */
declarator
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
&ctor_dtor_or_conv_p,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
}
/* Look for attributes that apply to the ivar. */
attributes = cp_parser_attributes_opt (parser);
/* Remember which attributes are prefix attributes and
which are not. */
first_attribute = attributes;
/* Combine the attributes. */
attributes = chainon (prefix_attributes, attributes);
if (width)
{
/* Create the bitfield declaration. */
decl = grokbitfield (declarator, &declspecs, width);
cplus_decl_attributes (&decl, attributes, /*flags=*/0);
}
else
decl = grokfield (declarator, &declspecs,
NULL_TREE, /*init_const_expr_p=*/false,
NULL_TREE, attributes);
/* Add the instance variable. */
objc_add_instance_variable (decl);
/* Reset PREFIX_ATTRIBUTES. */
while (attributes && TREE_CHAIN (attributes) != first_attribute)
attributes = TREE_CHAIN (attributes);
if (attributes)
TREE_CHAIN (attributes) = NULL_TREE;
token = cp_lexer_peek_token (parser->lexer);
if (token->type == CPP_COMMA)
{
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
continue;
}
break;
}
cp_parser_consume_semicolon_at_end_of_statement (parser);
token = cp_lexer_peek_token (parser->lexer);
}
cp_lexer_consume_token (parser->lexer); /* Eat '}'. */
/* For historical reasons, we accept an optional semicolon. */
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
cp_lexer_consume_token (parser->lexer);
}
/* Parse an Objective-C protocol declaration. */
static void
cp_parser_objc_protocol_declaration (cp_parser* parser)
{
tree proto, protorefs;
cp_token *tok;
cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
{
error ("identifier expected after %<@protocol%>");
goto finish;
}
/* See if we have a forward declaration or a definition. */
tok = cp_lexer_peek_nth_token (parser->lexer, 2);
/* Try a forward declaration first. */
if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON)
{
objc_declare_protocols (cp_parser_objc_identifier_list (parser));
finish:
cp_parser_consume_semicolon_at_end_of_statement (parser);
}
/* Ok, we got a full-fledged definition (or at least should). */
else
{
proto = cp_parser_identifier (parser);
protorefs = cp_parser_objc_protocol_refs_opt (parser);
objc_start_protocol (proto, protorefs);
cp_parser_objc_method_prototype_list (parser);
}
}
/* Parse an Objective-C superclass or category. */
static void
cp_parser_objc_superclass_or_category (cp_parser *parser, tree *super,
tree *categ)
{
cp_token *next = cp_lexer_peek_token (parser->lexer);
*super = *categ = NULL_TREE;
if (next->type == CPP_COLON)
{
cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
*super = cp_parser_identifier (parser);
}
else if (next->type == CPP_OPEN_PAREN)
{
cp_lexer_consume_token (parser->lexer); /* Eat '('. */
*categ = cp_parser_identifier (parser);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
}
}
/* Parse an Objective-C class interface. */
static void
cp_parser_objc_class_interface (cp_parser* parser)
{
tree name, super, categ, protos;
cp_lexer_consume_token (parser->lexer); /* Eat '@interface'. */
name = cp_parser_identifier (parser);
cp_parser_objc_superclass_or_category (parser, &super, &categ);
protos = cp_parser_objc_protocol_refs_opt (parser);
/* We have either a class or a category on our hands. */
if (categ)
objc_start_category_interface (name, categ, protos);
else
{
objc_start_class_interface (name, super, protos);
/* Handle instance variable declarations, if any. */
cp_parser_objc_class_ivars (parser);
objc_continue_interface ();
}
cp_parser_objc_method_prototype_list (parser);
}
/* Parse an Objective-C class implementation. */
static void
cp_parser_objc_class_implementation (cp_parser* parser)
{
tree name, super, categ;
cp_lexer_consume_token (parser->lexer); /* Eat '@implementation'. */
name = cp_parser_identifier (parser);
cp_parser_objc_superclass_or_category (parser, &super, &categ);
/* We have either a class or a category on our hands. */
if (categ)
objc_start_category_implementation (name, categ);
else
{
objc_start_class_implementation (name, super);
/* Handle instance variable declarations, if any. */
cp_parser_objc_class_ivars (parser);
objc_continue_implementation ();
}
cp_parser_objc_method_definition_list (parser);
}
/* Consume the @end token and finish off the implementation. */
static void
cp_parser_objc_end_implementation (cp_parser* parser)
{
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
objc_finish_implementation ();
}
/* Parse an Objective-C declaration. */
static void
cp_parser_objc_declaration (cp_parser* parser)
{
/* Try to figure out what kind of declaration is present. */
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
switch (kwd->keyword)
{
case RID_AT_ALIAS:
cp_parser_objc_alias_declaration (parser);
break;
case RID_AT_CLASS:
cp_parser_objc_class_declaration (parser);
break;
case RID_AT_PROTOCOL:
cp_parser_objc_protocol_declaration (parser);
break;
case RID_AT_INTERFACE:
cp_parser_objc_class_interface (parser);
break;
case RID_AT_IMPLEMENTATION:
cp_parser_objc_class_implementation (parser);
break;
case RID_AT_END:
cp_parser_objc_end_implementation (parser);
break;
default:
error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
cp_parser_skip_to_end_of_block_or_statement (parser);
}
}
/* Parse an Objective-C try-catch-finally statement.
objc-try-catch-finally-stmt:
@try compound-statement objc-catch-clause-seq [opt]
objc-finally-clause [opt]
objc-catch-clause-seq:
objc-catch-clause objc-catch-clause-seq [opt]
objc-catch-clause:
@catch ( exception-declaration ) compound-statement
objc-finally-clause
@finally compound-statement
Returns NULL_TREE. */
static tree
cp_parser_objc_try_catch_finally_statement (cp_parser *parser) {
location_t location;
tree stmt;
cp_parser_require_keyword (parser, RID_AT_TRY, "`@try'");
location = cp_lexer_peek_token (parser->lexer)->location;
/* NB: The @try block needs to be wrapped in its own STATEMENT_LIST
node, lest it get absorbed into the surrounding block. */
stmt = push_stmt_list ();
cp_parser_compound_statement (parser, NULL, false);
objc_begin_try_stmt (location, pop_stmt_list (stmt));
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH))
{
cp_parameter_declarator *parmdecl;
tree parm;
cp_lexer_consume_token (parser->lexer);
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
parm = grokdeclarator (parmdecl->declarator,
&parmdecl->decl_specifiers,
PARM, /*initialized=*/0,
/*attrlist=*/NULL);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
objc_begin_catch_clause (parm);
cp_parser_compound_statement (parser, NULL, false);
objc_finish_catch_clause ();
}
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY))
{
cp_lexer_consume_token (parser->lexer);
location = cp_lexer_peek_token (parser->lexer)->location;
/* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST
node, lest it get absorbed into the surrounding block. */
stmt = push_stmt_list ();
cp_parser_compound_statement (parser, NULL, false);
objc_build_finally_clause (location, pop_stmt_list (stmt));
}
return objc_finish_try_stmt ();
}
/* Parse an Objective-C synchronized statement.
objc-synchronized-stmt:
@synchronized ( expression ) compound-statement
Returns NULL_TREE. */
static tree
cp_parser_objc_synchronized_statement (cp_parser *parser) {
location_t location;
tree lock, stmt;
cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, "`@synchronized'");
location = cp_lexer_peek_token (parser->lexer)->location;
cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
lock = cp_parser_expression (parser, false);
cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
/* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST
node, lest it get absorbed into the surrounding block. */
stmt = push_stmt_list ();
cp_parser_compound_statement (parser, NULL, false);
return objc_build_synchronized (location, lock, pop_stmt_list (stmt));
}
/* Parse an Objective-C throw statement.
objc-throw-stmt:
@throw assignment-expression [opt] ;
Returns a constructed '@throw' statement. */
static tree
cp_parser_objc_throw_statement (cp_parser *parser) {
tree expr = NULL_TREE;
cp_parser_require_keyword (parser, RID_AT_THROW, "`@throw'");
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
expr = cp_parser_assignment_expression (parser, false);
cp_parser_consume_semicolon_at_end_of_statement (parser);
return objc_build_throw_stmt (expr);
}
/* Parse an Objective-C statement. */
static tree
cp_parser_objc_statement (cp_parser * parser) {
/* Try to figure out what kind of declaration is present. */
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
switch (kwd->keyword)
{
case RID_AT_TRY:
return cp_parser_objc_try_catch_finally_statement (parser);
case RID_AT_SYNCHRONIZED:
return cp_parser_objc_synchronized_statement (parser);
case RID_AT_THROW:
return cp_parser_objc_throw_statement (parser);
default:
error ("misplaced %<@%D%> Objective-C++ construct", kwd->u.value);
cp_parser_skip_to_end_of_block_or_statement (parser);
}
return error_mark_node;
}
/* OpenMP 2.5 parsing routines. */
/* All OpenMP clauses. OpenMP 2.5. */
typedef enum pragma_omp_clause {
PRAGMA_OMP_CLAUSE_NONE = 0,
PRAGMA_OMP_CLAUSE_COPYIN,
PRAGMA_OMP_CLAUSE_COPYPRIVATE,
PRAGMA_OMP_CLAUSE_DEFAULT,
PRAGMA_OMP_CLAUSE_FIRSTPRIVATE,
PRAGMA_OMP_CLAUSE_IF,
PRAGMA_OMP_CLAUSE_LASTPRIVATE,
PRAGMA_OMP_CLAUSE_NOWAIT,
PRAGMA_OMP_CLAUSE_NUM_THREADS,
PRAGMA_OMP_CLAUSE_ORDERED,
PRAGMA_OMP_CLAUSE_PRIVATE,
PRAGMA_OMP_CLAUSE_REDUCTION,
PRAGMA_OMP_CLAUSE_SCHEDULE,
PRAGMA_OMP_CLAUSE_SHARED
} pragma_omp_clause;
/* Returns name of the next clause.
If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and
the token is not consumed. Otherwise appropriate pragma_omp_clause is
returned and the token is consumed. */
static pragma_omp_clause
cp_parser_omp_clause_name (cp_parser *parser)
{
pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE;
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_IF))
result = PRAGMA_OMP_CLAUSE_IF;
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_DEFAULT))
result = PRAGMA_OMP_CLAUSE_DEFAULT;
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_PRIVATE))
result = PRAGMA_OMP_CLAUSE_PRIVATE;
else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
const char *p = IDENTIFIER_POINTER (id);
switch (p[0])
{
case 'c':
if (!strcmp ("copyin", p))
result = PRAGMA_OMP_CLAUSE_COPYIN;
else if (!strcmp ("copyprivate", p))
result = PRAGMA_OMP_CLAUSE_COPYPRIVATE;
break;
case 'f':
if (!strcmp ("firstprivate", p))
result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE;
break;
case 'l':
if (!strcmp ("lastprivate", p))
result = PRAGMA_OMP_CLAUSE_LASTPRIVATE;
break;
case 'n':
if (!strcmp ("nowait", p))
result = PRAGMA_OMP_CLAUSE_NOWAIT;
else if (!strcmp ("num_threads", p))
result = PRAGMA_OMP_CLAUSE_NUM_THREADS;
break;
case 'o':
if (!strcmp ("ordered", p))
result = PRAGMA_OMP_CLAUSE_ORDERED;
break;
case 'r':
if (!strcmp ("reduction", p))
result = PRAGMA_OMP_CLAUSE_REDUCTION;
break;
case 's':
if (!strcmp ("schedule", p))
result = PRAGMA_OMP_CLAUSE_SCHEDULE;
else if (!strcmp ("shared", p))
result = PRAGMA_OMP_CLAUSE_SHARED;
break;
}
}
if (result != PRAGMA_OMP_CLAUSE_NONE)
cp_lexer_consume_token (parser->lexer);
return result;
}
/* Validate that a clause of the given type does not already exist. */
static void
check_no_duplicate_clause (tree clauses, enum tree_code code, const char *name)
{
tree c;
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == code)
{
error ("too many %qs clauses", name);
break;
}
}
/* OpenMP 2.5:
variable-list:
identifier
variable-list , identifier
In addition, we match a closing parenthesis. An opening parenthesis
will have been consumed by the caller.
If KIND is nonzero, create the appropriate node and install the decl
in OMP_CLAUSE_DECL and add the node to the head of the list.
If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE;
return the list created. */
static tree
cp_parser_omp_var_list_no_open (cp_parser *parser, enum omp_clause_code kind,
tree list)
{
while (1)
{
tree name, decl;
name = cp_parser_id_expression (parser, /*template_p=*/false,
/*check_dependency_p=*/true,
/*template_p=*/NULL,
/*declarator_p=*/false,
/*optional_p=*/false);
if (name == error_mark_node)
goto skip_comma;
decl = cp_parser_lookup_name_simple (parser, name);
if (decl == error_mark_node)
cp_parser_name_lookup_error (parser, name, decl, NULL);
else if (kind != 0)
{
tree u = build_omp_clause (kind);
OMP_CLAUSE_DECL (u) = decl;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
}
else
list = tree_cons (decl, NULL_TREE, list);
get_comma:
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
break;
cp_lexer_consume_token (parser->lexer);
}
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
{
int ending;
/* Try to resync to an unnested comma. Copied from
cp_parser_parenthesized_expression_list. */
skip_comma:
ending = cp_parser_skip_to_closing_parenthesis (parser,
/*recovering=*/true,
/*or_comma=*/true,
/*consume_paren=*/true);
if (ending < 0)
goto get_comma;
}
return list;
}
/* Similarly, but expect leading and trailing parenthesis. This is a very
common case for omp clauses. */
static tree
cp_parser_omp_var_list (cp_parser *parser, enum omp_clause_code kind, tree list)
{
if (cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return cp_parser_omp_var_list_no_open (parser, kind, list);
return list;
}
/* OpenMP 2.5:
default ( shared | none ) */
static tree
cp_parser_omp_clause_default (cp_parser *parser, tree list)
{
enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
tree c;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return list;
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
const char *p = IDENTIFIER_POINTER (id);
switch (p[0])
{
case 'n':
if (strcmp ("none", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_NONE;
break;
case 's':
if (strcmp ("shared", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_SHARED;
break;
default:
goto invalid_kind;
}
cp_lexer_consume_token (parser->lexer);
}
else
{
invalid_kind:
cp_parser_error (parser, "expected %<none%> or %<shared%>");
}
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED)
return list;
check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default");
c = build_omp_clause (OMP_CLAUSE_DEFAULT);
OMP_CLAUSE_CHAIN (c) = list;
OMP_CLAUSE_DEFAULT_KIND (c) = kind;
return c;
}
/* OpenMP 2.5:
if ( expression ) */
static tree
cp_parser_omp_clause_if (cp_parser *parser, tree list)
{
tree t, c;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return list;
t = cp_parser_condition (parser);
if (t == error_mark_node
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
check_no_duplicate_clause (list, OMP_CLAUSE_IF, "if");
c = build_omp_clause (OMP_CLAUSE_IF);
OMP_CLAUSE_IF_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
nowait */
static tree
cp_parser_omp_clause_nowait (cp_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait");
c = build_omp_clause (OMP_CLAUSE_NOWAIT);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
num_threads ( expression ) */
static tree
cp_parser_omp_clause_num_threads (cp_parser *parser, tree list)
{
tree t, c;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return list;
t = cp_parser_expression (parser, false);
if (t == error_mark_node
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, "num_threads");
c = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
OMP_CLAUSE_NUM_THREADS_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
ordered */
static tree
cp_parser_omp_clause_ordered (cp_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, "ordered");
c = build_omp_clause (OMP_CLAUSE_ORDERED);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
reduction ( reduction-operator : variable-list )
reduction-operator:
One of: + * - & ^ | && || */
static tree
cp_parser_omp_clause_reduction (cp_parser *parser, tree list)
{
enum tree_code code;
tree nlist, c;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return list;
switch (cp_lexer_peek_token (parser->lexer)->type)
{
case CPP_PLUS:
code = PLUS_EXPR;
break;
case CPP_MULT:
code = MULT_EXPR;
break;
case CPP_MINUS:
code = MINUS_EXPR;
break;
case CPP_AND:
code = BIT_AND_EXPR;
break;
case CPP_XOR:
code = BIT_XOR_EXPR;
break;
case CPP_OR:
code = BIT_IOR_EXPR;
break;
case CPP_AND_AND:
code = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
code = TRUTH_ORIF_EXPR;
break;
default:
cp_parser_error (parser, "`+', `*', `-', `&', `^', `|', `&&', or `||'");
resync_fail:
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
return list;
}
cp_lexer_consume_token (parser->lexer);
if (!cp_parser_require (parser, CPP_COLON, "`:'"))
goto resync_fail;
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_REDUCTION, list);
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
OMP_CLAUSE_REDUCTION_CODE (c) = code;
return nlist;
}
/* OpenMP 2.5:
schedule ( schedule-kind )
schedule ( schedule-kind , expression )
schedule-kind:
static | dynamic | guided | runtime */
static tree
cp_parser_omp_clause_schedule (cp_parser *parser, tree list)
{
tree c, t;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return list;
c = build_omp_clause (OMP_CLAUSE_SCHEDULE);
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
const char *p = IDENTIFIER_POINTER (id);
switch (p[0])
{
case 'd':
if (strcmp ("dynamic", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
break;
case 'g':
if (strcmp ("guided", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED;
break;
case 'r':
if (strcmp ("runtime", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME;
break;
default:
goto invalid_kind;
}
}
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC))
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC;
else
goto invalid_kind;
cp_lexer_consume_token (parser->lexer);
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
{
cp_lexer_consume_token (parser->lexer);
t = cp_parser_assignment_expression (parser, false);
if (t == error_mark_node)
goto resync_fail;
else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME)
error ("schedule %<runtime%> does not take "
"a %<chunk_size%> parameter");
else
OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t;
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
goto resync_fail;
}
else if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`,' or `)'"))
goto resync_fail;
check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule");
OMP_CLAUSE_CHAIN (c) = list;
return c;
invalid_kind:
cp_parser_error (parser, "invalid schedule kind");
resync_fail:
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
return list;
}
/* Parse all OpenMP clauses. The set clauses allowed by the directive
is a bitmask in MASK. Return the list of clauses found; the result
of clause default goes in *pdefault. */
static tree
cp_parser_omp_all_clauses (cp_parser *parser, unsigned int mask,
const char *where, cp_token *pragma_tok)
{
tree clauses = NULL;
while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL))
{
pragma_omp_clause c_kind = cp_parser_omp_clause_name (parser);
const char *c_name;
tree prev = clauses;
switch (c_kind)
{
case PRAGMA_OMP_CLAUSE_COPYIN:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYIN, clauses);
c_name = "copyin";
break;
case PRAGMA_OMP_CLAUSE_COPYPRIVATE:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYPRIVATE,
clauses);
c_name = "copyprivate";
break;
case PRAGMA_OMP_CLAUSE_DEFAULT:
clauses = cp_parser_omp_clause_default (parser, clauses);
c_name = "default";
break;
case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FIRSTPRIVATE,
clauses);
c_name = "firstprivate";
break;
case PRAGMA_OMP_CLAUSE_IF:
clauses = cp_parser_omp_clause_if (parser, clauses);
c_name = "if";
break;
case PRAGMA_OMP_CLAUSE_LASTPRIVATE:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_LASTPRIVATE,
clauses);
c_name = "lastprivate";
break;
case PRAGMA_OMP_CLAUSE_NOWAIT:
clauses = cp_parser_omp_clause_nowait (parser, clauses);
c_name = "nowait";
break;
case PRAGMA_OMP_CLAUSE_NUM_THREADS:
clauses = cp_parser_omp_clause_num_threads (parser, clauses);
c_name = "num_threads";
break;
case PRAGMA_OMP_CLAUSE_ORDERED:
clauses = cp_parser_omp_clause_ordered (parser, clauses);
c_name = "ordered";
break;
case PRAGMA_OMP_CLAUSE_PRIVATE:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_PRIVATE,
clauses);
c_name = "private";
break;
case PRAGMA_OMP_CLAUSE_REDUCTION:
clauses = cp_parser_omp_clause_reduction (parser, clauses);
c_name = "reduction";
break;
case PRAGMA_OMP_CLAUSE_SCHEDULE:
clauses = cp_parser_omp_clause_schedule (parser, clauses);
c_name = "schedule";
break;
case PRAGMA_OMP_CLAUSE_SHARED:
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_SHARED,
clauses);
c_name = "shared";
break;
default:
cp_parser_error (parser, "expected %<#pragma omp%> clause");
goto saw_error;
}
if (((mask >> c_kind) & 1) == 0)
{
/* Remove the invalid clause(s) from the list to avoid
confusing the rest of the compiler. */
clauses = prev;
error ("%qs is not valid for %qs", c_name, where);
}
}
saw_error:
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
return finish_omp_clauses (clauses);
}
/* OpenMP 2.5:
structured-block:
statement
In practice, we're also interested in adding the statement to an
outer node. So it is convenient if we work around the fact that
cp_parser_statement calls add_stmt. */
static unsigned
cp_parser_begin_omp_structured_block (cp_parser *parser)
{
unsigned save = parser->in_statement;
/* Only move the values to IN_OMP_BLOCK if they weren't false.
This preserves the "not within loop or switch" style error messages
for nonsense cases like
void foo() {
#pragma omp single
break;
}
*/
if (parser->in_statement)
parser->in_statement = IN_OMP_BLOCK;
return save;
}
static void
cp_parser_end_omp_structured_block (cp_parser *parser, unsigned save)
{
parser->in_statement = save;
}
static tree
cp_parser_omp_structured_block (cp_parser *parser)
{
tree stmt = begin_omp_structured_block ();
unsigned int save = cp_parser_begin_omp_structured_block (parser);
cp_parser_statement (parser, NULL_TREE, false);
cp_parser_end_omp_structured_block (parser, save);
return finish_omp_structured_block (stmt);
}
/* OpenMP 2.5:
# pragma omp atomic new-line
expression-stmt
expression-stmt:
x binop= expr | x++ | ++x | x-- | --x
binop:
+, *, -, /, &, ^, |, <<, >>
where x is an lvalue expression with scalar type. */
static void
cp_parser_omp_atomic (cp_parser *parser, cp_token *pragma_tok)
{
tree lhs, rhs;
enum tree_code code;
cp_parser_require_pragma_eol (parser, pragma_tok);
lhs = cp_parser_unary_expression (parser, /*address_p=*/false,
/*cast_p=*/false);
switch (TREE_CODE (lhs))
{
case ERROR_MARK:
goto saw_error;
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
lhs = TREE_OPERAND (lhs, 0);
code = PLUS_EXPR;
rhs = integer_one_node;
break;
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
lhs = TREE_OPERAND (lhs, 0);
code = MINUS_EXPR;
rhs = integer_one_node;
break;
default:
switch (cp_lexer_peek_token (parser->lexer)->type)
{
case CPP_MULT_EQ:
code = MULT_EXPR;
break;
case CPP_DIV_EQ:
code = TRUNC_DIV_EXPR;
break;
case CPP_PLUS_EQ:
code = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
code = MINUS_EXPR;
break;
case CPP_LSHIFT_EQ:
code = LSHIFT_EXPR;
break;
case CPP_RSHIFT_EQ:
code = RSHIFT_EXPR;
break;
case CPP_AND_EQ:
code = BIT_AND_EXPR;
break;
case CPP_OR_EQ:
code = BIT_IOR_EXPR;
break;
case CPP_XOR_EQ:
code = BIT_XOR_EXPR;
break;
default:
cp_parser_error (parser,
"invalid operator for %<#pragma omp atomic%>");
goto saw_error;
}
cp_lexer_consume_token (parser->lexer);
rhs = cp_parser_expression (parser, false);
if (rhs == error_mark_node)
goto saw_error;
break;
}
finish_omp_atomic (code, lhs, rhs);
cp_parser_consume_semicolon_at_end_of_statement (parser);
return;
saw_error:
cp_parser_skip_to_end_of_block_or_statement (parser);
}
/* OpenMP 2.5:
# pragma omp barrier new-line */
static void
cp_parser_omp_barrier (cp_parser *parser, cp_token *pragma_tok)
{
cp_parser_require_pragma_eol (parser, pragma_tok);
finish_omp_barrier ();
}
/* OpenMP 2.5:
# pragma omp critical [(name)] new-line
structured-block */
static tree
cp_parser_omp_critical (cp_parser *parser, cp_token *pragma_tok)
{
tree stmt, name = NULL;
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
{
cp_lexer_consume_token (parser->lexer);
name = cp_parser_identifier (parser);
if (name == error_mark_node
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
if (name == error_mark_node)
name = NULL;
}
cp_parser_require_pragma_eol (parser, pragma_tok);
stmt = cp_parser_omp_structured_block (parser);
return c_finish_omp_critical (stmt, name);
}
/* OpenMP 2.5:
# pragma omp flush flush-vars[opt] new-line
flush-vars:
( variable-list ) */
static void
cp_parser_omp_flush (cp_parser *parser, cp_token *pragma_tok)
{
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
(void) cp_parser_omp_var_list (parser, 0, NULL);
cp_parser_require_pragma_eol (parser, pragma_tok);
finish_omp_flush ();
}
/* Parse the restricted form of the for statment allowed by OpenMP. */
static tree
cp_parser_omp_for_loop (cp_parser *parser)
{
tree init, cond, incr, body, decl, pre_body;
location_t loc;
if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
{
cp_parser_error (parser, "for statement expected");
return NULL;
}
loc = cp_lexer_consume_token (parser->lexer)->location;
if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
return NULL;
init = decl = NULL;
pre_body = push_stmt_list ();
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
{
cp_decl_specifier_seq type_specifiers;
/* First, try to parse as an initialized declaration. See
cp_parser_condition, from whence the bulk of this is copied. */
cp_parser_parse_tentatively (parser);
cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
&type_specifiers);
if (!cp_parser_error_occurred (parser))
{
tree asm_specification, attributes;
cp_declarator *declarator;
declarator = cp_parser_declarator (parser,
CP_PARSER_DECLARATOR_NAMED,
/*ctor_dtor_or_conv_p=*/NULL,
/*parenthesized_p=*/NULL,
/*member_p=*/false);
attributes = cp_parser_attributes_opt (parser);
asm_specification = cp_parser_asm_specification_opt (parser);
cp_parser_require (parser, CPP_EQ, "`='");
if (cp_parser_parse_definitely (parser))
{
tree pushed_scope;
decl = start_decl (declarator, &type_specifiers,
/*initialized_p=*/false, attributes,
/*prefix_attributes=*/NULL_TREE,
&pushed_scope);
init = cp_parser_assignment_expression (parser, false);
cp_finish_decl (decl, NULL_TREE, /*init_const_expr_p=*/false,
asm_specification, LOOKUP_ONLYCONVERTING);
if (pushed_scope)
pop_scope (pushed_scope);
}
}
else
cp_parser_abort_tentative_parse (parser);
/* If parsing as an initialized declaration failed, try again as
a simple expression. */
if (decl == NULL)
init = cp_parser_expression (parser, false);
}
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
pre_body = pop_stmt_list (pre_body);
cond = NULL;
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
cond = cp_parser_condition (parser);
cp_parser_require (parser, CPP_SEMICOLON, "`;'");
incr = NULL;
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
incr = cp_parser_expression (parser, false);
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
/*or_comma=*/false,
/*consume_paren=*/true);
/* Note that we saved the original contents of this flag when we entered
the structured block, and so we don't need to re-save it here. */
parser->in_statement = IN_OMP_FOR;
/* Note that the grammar doesn't call for a structured block here,
though the loop as a whole is a structured block. */
body = push_stmt_list ();
cp_parser_statement (parser, NULL_TREE, false);
body = pop_stmt_list (body);
return finish_omp_for (loc, decl, init, cond, incr, body, pre_body);
}
/* OpenMP 2.5:
#pragma omp for for-clause[optseq] new-line
for-loop */
#define OMP_FOR_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_ORDERED) \
| (1u << PRAGMA_OMP_CLAUSE_SCHEDULE) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
cp_parser_omp_for (cp_parser *parser, cp_token *pragma_tok)
{
tree clauses, sb, ret;
unsigned int save;
clauses = cp_parser_omp_all_clauses (parser, OMP_FOR_CLAUSE_MASK,
"#pragma omp for", pragma_tok);
sb = begin_omp_structured_block ();
save = cp_parser_begin_omp_structured_block (parser);
ret = cp_parser_omp_for_loop (parser);
if (ret)
OMP_FOR_CLAUSES (ret) = clauses;
cp_parser_end_omp_structured_block (parser, save);
add_stmt (finish_omp_structured_block (sb));
return ret;
}
/* OpenMP 2.5:
# pragma omp master new-line
structured-block */
static tree
cp_parser_omp_master (cp_parser *parser, cp_token *pragma_tok)
{
cp_parser_require_pragma_eol (parser, pragma_tok);
return c_finish_omp_master (cp_parser_omp_structured_block (parser));
}
/* OpenMP 2.5:
# pragma omp ordered new-line
structured-block */
static tree
cp_parser_omp_ordered (cp_parser *parser, cp_token *pragma_tok)
{
cp_parser_require_pragma_eol (parser, pragma_tok);
return c_finish_omp_ordered (cp_parser_omp_structured_block (parser));
}
/* OpenMP 2.5:
section-scope:
{ section-sequence }
section-sequence:
section-directive[opt] structured-block
section-sequence section-directive structured-block */
static tree
cp_parser_omp_sections_scope (cp_parser *parser)
{
tree stmt, substmt;
bool error_suppress = false;
cp_token *tok;
if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
return NULL_TREE;
stmt = push_stmt_list ();
if (cp_lexer_peek_token (parser->lexer)->pragma_kind != PRAGMA_OMP_SECTION)
{
unsigned save;
substmt = begin_omp_structured_block ();
save = cp_parser_begin_omp_structured_block (parser);
while (1)
{
cp_parser_statement (parser, NULL_TREE, false);
tok = cp_lexer_peek_token (parser->lexer);
if (tok->pragma_kind == PRAGMA_OMP_SECTION)
break;
if (tok->type == CPP_CLOSE_BRACE)
break;
if (tok->type == CPP_EOF)
break;
}
cp_parser_end_omp_structured_block (parser, save);
substmt = finish_omp_structured_block (substmt);
substmt = build1 (OMP_SECTION, void_type_node, substmt);
add_stmt (substmt);
}
while (1)
{
tok = cp_lexer_peek_token (parser->lexer);
if (tok->type == CPP_CLOSE_BRACE)
break;
if (tok->type == CPP_EOF)
break;
if (tok->pragma_kind == PRAGMA_OMP_SECTION)
{
cp_lexer_consume_token (parser->lexer);
cp_parser_require_pragma_eol (parser, tok);
error_suppress = false;
}
else if (!error_suppress)
{
cp_parser_error (parser, "expected %<#pragma omp section%> or %<}%>");
error_suppress = true;
}
substmt = cp_parser_omp_structured_block (parser);
substmt = build1 (OMP_SECTION, void_type_node, substmt);
add_stmt (substmt);
}
cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
substmt = pop_stmt_list (stmt);
stmt = make_node (OMP_SECTIONS);
TREE_TYPE (stmt) = void_type_node;
OMP_SECTIONS_BODY (stmt) = substmt;
add_stmt (stmt);
return stmt;
}
/* OpenMP 2.5:
# pragma omp sections sections-clause[optseq] newline
sections-scope */
#define OMP_SECTIONS_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
cp_parser_omp_sections (cp_parser *parser, cp_token *pragma_tok)
{
tree clauses, ret;
clauses = cp_parser_omp_all_clauses (parser, OMP_SECTIONS_CLAUSE_MASK,
"#pragma omp sections", pragma_tok);
ret = cp_parser_omp_sections_scope (parser);
if (ret)
OMP_SECTIONS_CLAUSES (ret) = clauses;
return ret;
}
/* OpenMP 2.5:
# pragma parallel parallel-clause new-line
# pragma parallel for parallel-for-clause new-line
# pragma parallel sections parallel-sections-clause new-line */
#define OMP_PARALLEL_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_IF) \
| (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_DEFAULT) \
| (1u << PRAGMA_OMP_CLAUSE_SHARED) \
| (1u << PRAGMA_OMP_CLAUSE_COPYIN) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_NUM_THREADS))
static tree
cp_parser_omp_parallel (cp_parser *parser, cp_token *pragma_tok)
{
enum pragma_kind p_kind = PRAGMA_OMP_PARALLEL;
const char *p_name = "#pragma omp parallel";
tree stmt, clauses, par_clause, ws_clause, block;
unsigned int mask = OMP_PARALLEL_CLAUSE_MASK;
unsigned int save;
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
{
cp_lexer_consume_token (parser->lexer);
p_kind = PRAGMA_OMP_PARALLEL_FOR;
p_name = "#pragma omp parallel for";
mask |= OMP_FOR_CLAUSE_MASK;
mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
}
else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
{
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
const char *p = IDENTIFIER_POINTER (id);
if (strcmp (p, "sections") == 0)
{
cp_lexer_consume_token (parser->lexer);
p_kind = PRAGMA_OMP_PARALLEL_SECTIONS;
p_name = "#pragma omp parallel sections";
mask |= OMP_SECTIONS_CLAUSE_MASK;
mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
}
}
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok);
block = begin_omp_parallel ();
save = cp_parser_begin_omp_structured_block (parser);
switch (p_kind)
{
case PRAGMA_OMP_PARALLEL:
cp_parser_already_scoped_statement (parser);
par_clause = clauses;
break;
case PRAGMA_OMP_PARALLEL_FOR:
c_split_parallel_clauses (clauses, &par_clause, &ws_clause);
stmt = cp_parser_omp_for_loop (parser);
if (stmt)
OMP_FOR_CLAUSES (stmt) = ws_clause;
break;
case PRAGMA_OMP_PARALLEL_SECTIONS:
c_split_parallel_clauses (clauses, &par_clause, &ws_clause);
stmt = cp_parser_omp_sections_scope (parser);
if (stmt)
OMP_SECTIONS_CLAUSES (stmt) = ws_clause;
break;
default:
gcc_unreachable ();
}
cp_parser_end_omp_structured_block (parser, save);
stmt = finish_omp_parallel (par_clause, block);
if (p_kind != PRAGMA_OMP_PARALLEL)
OMP_PARALLEL_COMBINED (stmt) = 1;
return stmt;
}
/* OpenMP 2.5:
# pragma omp single single-clause[optseq] new-line
structured-block */
#define OMP_SINGLE_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_COPYPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
cp_parser_omp_single (cp_parser *parser, cp_token *pragma_tok)
{
tree stmt = make_node (OMP_SINGLE);
TREE_TYPE (stmt) = void_type_node;
OMP_SINGLE_CLAUSES (stmt)
= cp_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK,
"#pragma omp single", pragma_tok);
OMP_SINGLE_BODY (stmt) = cp_parser_omp_structured_block (parser);
return add_stmt (stmt);
}
/* OpenMP 2.5:
# pragma omp threadprivate (variable-list) */
static void
cp_parser_omp_threadprivate (cp_parser *parser, cp_token *pragma_tok)
{
tree vars;
vars = cp_parser_omp_var_list (parser, 0, NULL);
cp_parser_require_pragma_eol (parser, pragma_tok);
if (!targetm.have_tls)
sorry ("threadprivate variables not supported in this target");
finish_omp_threadprivate (vars);
}
/* Main entry point to OpenMP statement pragmas. */
static void
cp_parser_omp_construct (cp_parser *parser, cp_token *pragma_tok)
{
tree stmt;
switch (pragma_tok->pragma_kind)
{
case PRAGMA_OMP_ATOMIC:
cp_parser_omp_atomic (parser, pragma_tok);
return;
case PRAGMA_OMP_CRITICAL:
stmt = cp_parser_omp_critical (parser, pragma_tok);
break;
case PRAGMA_OMP_FOR:
stmt = cp_parser_omp_for (parser, pragma_tok);
break;
case PRAGMA_OMP_MASTER:
stmt = cp_parser_omp_master (parser, pragma_tok);
break;
case PRAGMA_OMP_ORDERED:
stmt = cp_parser_omp_ordered (parser, pragma_tok);
break;
case PRAGMA_OMP_PARALLEL:
stmt = cp_parser_omp_parallel (parser, pragma_tok);
break;
case PRAGMA_OMP_SECTIONS:
stmt = cp_parser_omp_sections (parser, pragma_tok);
break;
case PRAGMA_OMP_SINGLE:
stmt = cp_parser_omp_single (parser, pragma_tok);
break;
default:
gcc_unreachable ();
}
if (stmt)
SET_EXPR_LOCATION (stmt, pragma_tok->location);
}
/* The parser. */
static GTY (()) cp_parser *the_parser;
/* Special handling for the first token or line in the file. The first
thing in the file might be #pragma GCC pch_preprocess, which loads a
PCH file, which is a GC collection point. So we need to handle this
first pragma without benefit of an existing lexer structure.
Always returns one token to the caller in *FIRST_TOKEN. This is
either the true first token of the file, or the first token after
the initial pragma. */
static void
cp_parser_initial_pragma (cp_token *first_token)
{
tree name = NULL;
cp_lexer_get_preprocessor_token (NULL, first_token);
if (first_token->pragma_kind != PRAGMA_GCC_PCH_PREPROCESS)
return;
cp_lexer_get_preprocessor_token (NULL, first_token);
if (first_token->type == CPP_STRING)
{
name = first_token->u.value;
cp_lexer_get_preprocessor_token (NULL, first_token);
if (first_token->type != CPP_PRAGMA_EOL)
error ("junk at end of %<#pragma GCC pch_preprocess%>");
}
else
error ("expected string literal");
/* Skip to the end of the pragma. */
while (first_token->type != CPP_PRAGMA_EOL && first_token->type != CPP_EOF)
cp_lexer_get_preprocessor_token (NULL, first_token);
/* Now actually load the PCH file. */
if (name)
c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name));
/* Read one more token to return to our caller. We have to do this
after reading the PCH file in, since its pointers have to be
live. */
cp_lexer_get_preprocessor_token (NULL, first_token);
}
/* Normal parsing of a pragma token. Here we can (and must) use the
regular lexer. */
static bool
cp_parser_pragma (cp_parser *parser, enum pragma_context context)
{
cp_token *pragma_tok;
unsigned int id;
pragma_tok = cp_lexer_consume_token (parser->lexer);
gcc_assert (pragma_tok->type == CPP_PRAGMA);
parser->lexer->in_pragma = true;
id = pragma_tok->pragma_kind;
switch (id)
{
case PRAGMA_GCC_PCH_PREPROCESS:
error ("%<#pragma GCC pch_preprocess%> must be first");
break;
case PRAGMA_OMP_BARRIER:
switch (context)
{
case pragma_compound:
cp_parser_omp_barrier (parser, pragma_tok);
return false;
case pragma_stmt:
error ("%<#pragma omp barrier%> may only be "
"used in compound statements");
break;
default:
goto bad_stmt;
}
break;
case PRAGMA_OMP_FLUSH:
switch (context)
{
case pragma_compound:
cp_parser_omp_flush (parser, pragma_tok);
return false;
case pragma_stmt:
error ("%<#pragma omp flush%> may only be "
"used in compound statements");
break;
default:
goto bad_stmt;
}
break;
case PRAGMA_OMP_THREADPRIVATE:
cp_parser_omp_threadprivate (parser, pragma_tok);
return false;
case PRAGMA_OMP_ATOMIC:
case PRAGMA_OMP_CRITICAL:
case PRAGMA_OMP_FOR:
case PRAGMA_OMP_MASTER:
case PRAGMA_OMP_ORDERED:
case PRAGMA_OMP_PARALLEL:
case PRAGMA_OMP_SECTIONS:
case PRAGMA_OMP_SINGLE:
if (context == pragma_external)
goto bad_stmt;
cp_parser_omp_construct (parser, pragma_tok);
return true;
case PRAGMA_OMP_SECTION:
error ("%<#pragma omp section%> may only be used in "
"%<#pragma omp sections%> construct");
break;
default:
gcc_assert (id >= PRAGMA_FIRST_EXTERNAL);
c_invoke_pragma_handler (id);
break;
bad_stmt:
cp_parser_error (parser, "expected declaration specifiers");
break;
}
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
return false;
}
/* The interface the pragma parsers have to the lexer. */
enum cpp_ttype
pragma_lex (tree *value)
{
cp_token *tok;
enum cpp_ttype ret;
tok = cp_lexer_peek_token (the_parser->lexer);
ret = tok->type;
*value = tok->u.value;
if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF)
ret = CPP_EOF;
else if (ret == CPP_STRING)
*value = cp_parser_string_literal (the_parser, false, false);
else
{
cp_lexer_consume_token (the_parser->lexer);
if (ret == CPP_KEYWORD)
ret = CPP_NAME;
}
return ret;
}
/* External interface. */
/* Parse one entire translation unit. */
void
c_parse_file (void)
{
bool error_occurred;
static bool already_called = false;
if (already_called)
{
sorry ("inter-module optimizations not implemented for C++");
return;
}
already_called = true;
the_parser = cp_parser_new ();
push_deferring_access_checks (flag_access_control
? dk_no_deferred : dk_no_check);
error_occurred = cp_parser_translation_unit (the_parser);
the_parser = NULL;
}
/* This variable must be provided by every front end. */
int yydebug;
#include "gt-cp-parser.h"
|