1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
|
/* Expands front end tree to back end RTL for GCC.
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This file handles the generation of rtl code from tree structure
at the level of the function as a whole.
It creates the rtl expressions for parameters and auto variables
and has full responsibility for allocating stack slots.
`expand_function_start' is called at the beginning of a function,
before the function body is parsed, and `expand_function_end' is
called after parsing the body.
Call `assign_stack_local' to allocate a stack slot for a local variable.
This is usually done during the RTL generation for the function body,
but it can also be done in the reload pass when a pseudo-register does
not get a hard register. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
#include "basic-block.h"
#include "toplev.h"
#include "hashtab.h"
#include "ggc.h"
#include "tm_p.h"
#include "integrate.h"
#include "langhooks.h"
#include "target.h"
#include "cfglayout.h"
#include "tree-gimple.h"
#include "tree-pass.h"
#include "predict.h"
#include "vecprim.h"
#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
/* Some systems use __main in a way incompatible with its use in gcc, in these
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
give the same symbol without quotes for an alternative entry point. You
must define both, or neither. */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#endif
/* Round a value to the lowest integer less than it that is a multiple of
the required alignment. Avoid using division in case the value is
negative. Assume the alignment is a power of two. */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
/* Similar, but round to the next highest integer that meets the
alignment. */
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
/* Nonzero if function being compiled doesn't contain any calls
(ignoring the prologue and epilogue). This is set prior to
local register allocation and is valid for the remaining
compiler passes. */
int current_function_is_leaf;
/* Nonzero if function being compiled doesn't modify the stack pointer
(ignoring the prologue and epilogue). This is only valid after
life_analysis has run. */
int current_function_sp_is_unchanging;
/* Nonzero if the function being compiled is a leaf function which only
uses leaf registers. This is valid after reload (specifically after
sched2) and is useful only if the port defines LEAF_REGISTERS. */
int current_function_uses_only_leaf_regs;
/* Nonzero once virtual register instantiation has been done.
assign_stack_local uses frame_pointer_rtx when this is nonzero.
calls.c:emit_library_call_value_1 uses it to set up
post-instantiation libcalls. */
int virtuals_instantiated;
/* Assign unique numbers to labels generated for profiling, debugging, etc. */
static GTY(()) int funcdef_no;
/* These variables hold pointers to functions to create and destroy
target specific, per-function data structures. */
struct machine_function * (*init_machine_status) (void);
/* The currently compiled function. */
struct function *cfun = 0;
/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
static VEC(int,heap) *prologue;
static VEC(int,heap) *epilogue;
/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
in this function. */
static VEC(int,heap) *sibcall_epilogue;
/* In order to evaluate some expressions, such as function calls returning
structures in memory, we need to temporarily allocate stack locations.
We record each allocated temporary in the following structure.
Associated with each temporary slot is a nesting level. When we pop up
one level, all temporaries associated with the previous level are freed.
Normally, all temporaries are freed after the execution of the statement
in which they were created. However, if we are inside a ({...}) grouping,
the result may be in a temporary and hence must be preserved. If the
result could be in a temporary, we preserve it if we can determine which
one it is in. If we cannot determine which temporary may contain the
result, all temporaries are preserved. A temporary is preserved by
pretending it was allocated at the previous nesting level.
Automatic variables are also assigned temporary slots, at the nesting
level where they are defined. They are marked a "kept" so that
free_temp_slots will not free them. */
struct temp_slot GTY(())
{
/* Points to next temporary slot. */
struct temp_slot *next;
/* Points to previous temporary slot. */
struct temp_slot *prev;
/* The rtx to used to reference the slot. */
rtx slot;
/* The rtx used to represent the address if not the address of the
slot above. May be an EXPR_LIST if multiple addresses exist. */
rtx address;
/* The alignment (in bits) of the slot. */
unsigned int align;
/* The size, in units, of the slot. */
HOST_WIDE_INT size;
/* The type of the object in the slot, or zero if it doesn't correspond
to a type. We use this to determine whether a slot can be reused.
It can be reused if objects of the type of the new slot will always
conflict with objects of the type of the old slot. */
tree type;
/* Nonzero if this temporary is currently in use. */
char in_use;
/* Nonzero if this temporary has its address taken. */
char addr_taken;
/* Nesting level at which this slot is being used. */
int level;
/* Nonzero if this should survive a call to free_temp_slots. */
int keep;
/* The offset of the slot from the frame_pointer, including extra space
for alignment. This info is for combine_temp_slots. */
HOST_WIDE_INT base_offset;
/* The size of the slot, including extra space for alignment. This
info is for combine_temp_slots. */
HOST_WIDE_INT full_size;
};
/* Forward declarations. */
static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
struct function *);
static struct temp_slot *find_temp_slot_from_address (rtx);
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
static void pad_below (struct args_size *, enum machine_mode, tree);
static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
static int all_blocks (tree, tree *);
static tree *get_block_vector (tree, int *);
extern tree debug_find_var_in_block_tree (tree, tree);
/* We always define `record_insns' even if it's not used so that we
can always export `prologue_epilogue_contains'. */
static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
static int contains (rtx, VEC(int,heap) **);
#ifdef HAVE_return
static void emit_return_into_block (basic_block, rtx);
#endif
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed (rtx);
#endif
static void prepare_function_start (tree);
static void do_clobber_return_reg (rtx, void *);
static void do_use_return_reg (rtx, void *);
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
/* Pointer to chain of `struct function' for containing functions. */
struct function *outer_function_chain;
/* Given a function decl for a containing function,
return the `struct function' for it. */
struct function *
find_function_data (tree decl)
{
struct function *p;
for (p = outer_function_chain; p; p = p->outer)
if (p->decl == decl)
return p;
gcc_unreachable ();
}
/* Save the current context for compilation of a nested function.
This is called from language-specific code. The caller should use
the enter_nested langhook to save any language-specific state,
since this function knows only about language-independent
variables. */
void
push_function_context_to (tree context ATTRIBUTE_UNUSED)
{
struct function *p;
if (cfun == 0)
init_dummy_function_start ();
p = cfun;
p->outer = outer_function_chain;
outer_function_chain = p;
lang_hooks.function.enter_nested (p);
cfun = 0;
}
void
push_function_context (void)
{
push_function_context_to (current_function_decl);
}
/* Restore the last saved context, at the end of a nested function.
This function is called from language-specific code. */
void
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
{
struct function *p = outer_function_chain;
cfun = p;
outer_function_chain = p->outer;
current_function_decl = p->decl;
lang_hooks.function.leave_nested (p);
/* Reset variables that have known state during rtx generation. */
virtuals_instantiated = 0;
generating_concat_p = 1;
}
void
pop_function_context (void)
{
pop_function_context_from (current_function_decl);
}
/* Clear out all parts of the state in F that can safely be discarded
after the function has been parsed, but not compiled, to let
garbage collection reclaim the memory. */
void
free_after_parsing (struct function *f)
{
/* f->expr->forced_labels is used by code generation. */
/* f->emit->regno_reg_rtx is used by code generation. */
/* f->varasm is used by code generation. */
/* f->eh->eh_return_stub_label is used by code generation. */
lang_hooks.function.final (f);
}
/* Clear out all parts of the state in F that can safely be discarded
after the function has been compiled, to let garbage collection
reclaim the memory. */
void
free_after_compilation (struct function *f)
{
VEC_free (int, heap, prologue);
VEC_free (int, heap, epilogue);
VEC_free (int, heap, sibcall_epilogue);
f->eh = NULL;
f->expr = NULL;
f->emit = NULL;
f->varasm = NULL;
f->machine = NULL;
f->cfg = NULL;
f->x_avail_temp_slots = NULL;
f->x_used_temp_slots = NULL;
f->arg_offset_rtx = NULL;
f->return_rtx = NULL;
f->internal_arg_pointer = NULL;
f->x_nonlocal_goto_handler_labels = NULL;
f->x_return_label = NULL;
f->x_naked_return_label = NULL;
f->x_stack_slot_list = NULL;
f->x_stack_check_probe_note = NULL;
f->x_arg_pointer_save_area = NULL;
f->x_parm_birth_insn = NULL;
f->epilogue_delay_list = NULL;
}
/* Allocate fixed slots in the stack frame of the current function. */
/* Return size needed for stack frame based on slots so far allocated in
function F.
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
the caller may have to do that. */
static HOST_WIDE_INT
get_func_frame_size (struct function *f)
{
if (FRAME_GROWS_DOWNWARD)
return -f->x_frame_offset;
else
return f->x_frame_offset;
}
/* Return size needed for stack frame based on slots so far allocated.
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
the caller may have to do that. */
HOST_WIDE_INT
get_frame_size (void)
{
return get_func_frame_size (cfun);
}
/* Issue an error message and return TRUE if frame OFFSET overflows in
the signed target pointer arithmetics for function FUNC. Otherwise
return FALSE. */
bool
frame_offset_overflow (HOST_WIDE_INT offset, tree func)
{
unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
/* Leave room for the fixed part of the frame. */
- 64 * UNITS_PER_WORD)
{
error ("%Jtotal size of local objects too large", func);
return TRUE;
}
return FALSE;
}
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
with machine mode MODE.
ALIGN controls the amount of alignment for the address of the slot:
0 means according to MODE,
-1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
-2 means use BITS_PER_UNIT,
positive specifies alignment boundary in bits.
We do not round to stack_boundary here.
FUNCTION specifies the function to allocate in. */
static rtx
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
struct function *function)
{
rtx x, addr;
int bigend_correction = 0;
unsigned int alignment;
int frame_off, frame_alignment, frame_phase;
if (align == 0)
{
tree type;
if (mode == BLKmode)
alignment = BIGGEST_ALIGNMENT;
else
alignment = GET_MODE_ALIGNMENT (mode);
/* Allow the target to (possibly) increase the alignment of this
stack slot. */
type = lang_hooks.types.type_for_mode (mode, 0);
if (type)
alignment = LOCAL_ALIGNMENT (type, alignment);
alignment /= BITS_PER_UNIT;
}
else if (align == -1)
{
alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
size = CEIL_ROUND (size, alignment);
}
else if (align == -2)
alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
else
alignment = align / BITS_PER_UNIT;
if (FRAME_GROWS_DOWNWARD)
function->x_frame_offset -= size;
/* Ignore alignment we can't do with expected alignment of the boundary. */
if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
function->stack_alignment_needed = alignment * BITS_PER_UNIT;
/* Calculate how many bytes the start of local variables is off from
stack alignment. */
frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
frame_off = STARTING_FRAME_OFFSET % frame_alignment;
frame_phase = frame_off ? frame_alignment - frame_off : 0;
/* Round the frame offset to the specified alignment. The default is
to always honor requests to align the stack but a port may choose to
do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
if (STACK_ALIGNMENT_NEEDED
|| mode != BLKmode
|| size != 0)
{
/* We must be careful here, since FRAME_OFFSET might be negative and
division with a negative dividend isn't as well defined as we might
like. So we instead assume that ALIGNMENT is a power of two and
use logical operations which are unambiguous. */
if (FRAME_GROWS_DOWNWARD)
function->x_frame_offset
= (FLOOR_ROUND (function->x_frame_offset - frame_phase,
(unsigned HOST_WIDE_INT) alignment)
+ frame_phase);
else
function->x_frame_offset
= (CEIL_ROUND (function->x_frame_offset - frame_phase,
(unsigned HOST_WIDE_INT) alignment)
+ frame_phase);
}
/* On a big-endian machine, if we are allocating more space than we will use,
use the least significant bytes of those that are allocated. */
if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
bigend_correction = size - GET_MODE_SIZE (mode);
/* If we have already instantiated virtual registers, return the actual
address relative to the frame pointer. */
if (function == cfun && virtuals_instantiated)
addr = plus_constant (frame_pointer_rtx,
trunc_int_for_mode
(frame_offset + bigend_correction
+ STARTING_FRAME_OFFSET, Pmode));
else
addr = plus_constant (virtual_stack_vars_rtx,
trunc_int_for_mode
(function->x_frame_offset + bigend_correction,
Pmode));
if (!FRAME_GROWS_DOWNWARD)
function->x_frame_offset += size;
x = gen_rtx_MEM (mode, addr);
MEM_NOTRAP_P (x) = 1;
function->x_stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
if (frame_offset_overflow (function->x_frame_offset, function->decl))
function->x_frame_offset = 0;
return x;
}
/* Wrapper around assign_stack_local_1; assign a local stack slot for the
current function. */
rtx
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
{
return assign_stack_local_1 (mode, size, align, cfun);
}
/* Removes temporary slot TEMP from LIST. */
static void
cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
{
if (temp->next)
temp->next->prev = temp->prev;
if (temp->prev)
temp->prev->next = temp->next;
else
*list = temp->next;
temp->prev = temp->next = NULL;
}
/* Inserts temporary slot TEMP to LIST. */
static void
insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
{
temp->next = *list;
if (*list)
(*list)->prev = temp;
temp->prev = NULL;
*list = temp;
}
/* Returns the list of used temp slots at LEVEL. */
static struct temp_slot **
temp_slots_at_level (int level)
{
if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
{
size_t old_length = VEC_length (temp_slot_p, used_temp_slots);
temp_slot_p *p;
VEC_safe_grow (temp_slot_p, gc, used_temp_slots, level + 1);
p = VEC_address (temp_slot_p, used_temp_slots);
memset (&p[old_length], 0,
sizeof (temp_slot_p) * (level + 1 - old_length));
}
return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
}
/* Returns the maximal temporary slot level. */
static int
max_slot_level (void)
{
if (!used_temp_slots)
return -1;
return VEC_length (temp_slot_p, used_temp_slots) - 1;
}
/* Moves temporary slot TEMP to LEVEL. */
static void
move_slot_to_level (struct temp_slot *temp, int level)
{
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
insert_slot_to_list (temp, temp_slots_at_level (level));
temp->level = level;
}
/* Make temporary slot TEMP available. */
static void
make_slot_available (struct temp_slot *temp)
{
cut_slot_from_list (temp, temp_slots_at_level (temp->level));
insert_slot_to_list (temp, &avail_temp_slots);
temp->in_use = 0;
temp->level = -1;
}
/* Allocate a temporary stack slot and record it for possible later
reuse.
MODE is the machine mode to be given to the returned rtx.
SIZE is the size in units of the space required. We do no rounding here
since assign_stack_local will do any required rounding.
KEEP is 1 if this slot is to be retained after a call to
free_temp_slots. Automatic variables for a block are allocated
with this flag. KEEP values of 2 or 3 were needed respectively
for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
or for SAVE_EXPRs, but they are now unused.
TYPE is the type that will be used for the stack slot. */
rtx
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
int keep, tree type)
{
unsigned int align;
struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
rtx slot;
/* If SIZE is -1 it means that somebody tried to allocate a temporary
of a variable size. */
gcc_assert (size != -1);
/* These are now unused. */
gcc_assert (keep <= 1);
if (mode == BLKmode)
align = BIGGEST_ALIGNMENT;
else
align = GET_MODE_ALIGNMENT (mode);
if (! type)
type = lang_hooks.types.type_for_mode (mode, 0);
if (type)
align = LOCAL_ALIGNMENT (type, align);
/* Try to find an available, already-allocated temporary of the proper
mode which meets the size and alignment requirements. Choose the
smallest one with the closest alignment.
If assign_stack_temp is called outside of the tree->rtl expansion,
we cannot reuse the stack slots (that may still refer to
VIRTUAL_STACK_VARS_REGNUM). */
if (!virtuals_instantiated)
{
for (p = avail_temp_slots; p; p = p->next)
{
if (p->align >= align && p->size >= size
&& GET_MODE (p->slot) == mode
&& objects_must_conflict_p (p->type, type)
&& (best_p == 0 || best_p->size > p->size
|| (best_p->size == p->size && best_p->align > p->align)))
{
if (p->align == align && p->size == size)
{
selected = p;
cut_slot_from_list (selected, &avail_temp_slots);
best_p = 0;
break;
}
best_p = p;
}
}
}
/* Make our best, if any, the one to use. */
if (best_p)
{
selected = best_p;
cut_slot_from_list (selected, &avail_temp_slots);
/* If there are enough aligned bytes left over, make them into a new
temp_slot so that the extra bytes don't get wasted. Do this only
for BLKmode slots, so that we can be sure of the alignment. */
if (GET_MODE (best_p->slot) == BLKmode)
{
int alignment = best_p->align / BITS_PER_UNIT;
HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
if (best_p->size - rounded_size >= alignment)
{
p = ggc_alloc (sizeof (struct temp_slot));
p->in_use = p->addr_taken = 0;
p->size = best_p->size - rounded_size;
p->base_offset = best_p->base_offset + rounded_size;
p->full_size = best_p->full_size - rounded_size;
p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
p->align = best_p->align;
p->address = 0;
p->type = best_p->type;
insert_slot_to_list (p, &avail_temp_slots);
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
stack_slot_list);
best_p->size = rounded_size;
best_p->full_size = rounded_size;
}
}
}
/* If we still didn't find one, make a new temporary. */
if (selected == 0)
{
HOST_WIDE_INT frame_offset_old = frame_offset;
p = ggc_alloc (sizeof (struct temp_slot));
/* We are passing an explicit alignment request to assign_stack_local.
One side effect of that is assign_stack_local will not round SIZE
to ensure the frame offset remains suitably aligned.
So for requests which depended on the rounding of SIZE, we go ahead
and round it now. We also make sure ALIGNMENT is at least
BIGGEST_ALIGNMENT. */
gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
p->slot = assign_stack_local (mode,
(mode == BLKmode
? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
: size),
align);
p->align = align;
/* The following slot size computation is necessary because we don't
know the actual size of the temporary slot until assign_stack_local
has performed all the frame alignment and size rounding for the
requested temporary. Note that extra space added for alignment
can be either above or below this stack slot depending on which
way the frame grows. We include the extra space if and only if it
is above this slot. */
if (FRAME_GROWS_DOWNWARD)
p->size = frame_offset_old - frame_offset;
else
p->size = size;
/* Now define the fields used by combine_temp_slots. */
if (FRAME_GROWS_DOWNWARD)
{
p->base_offset = frame_offset;
p->full_size = frame_offset_old - frame_offset;
}
else
{
p->base_offset = frame_offset_old;
p->full_size = frame_offset - frame_offset_old;
}
p->address = 0;
selected = p;
}
p = selected;
p->in_use = 1;
p->addr_taken = 0;
p->type = type;
p->level = temp_slot_level;
p->keep = keep;
pp = temp_slots_at_level (p->level);
insert_slot_to_list (p, pp);
/* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
/* If we know the alias set for the memory that will be used, use
it. If there's no TYPE, then we don't know anything about the
alias set for the memory. */
set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
set_mem_align (slot, align);
/* If a type is specified, set the relevant flags. */
if (type != 0)
{
MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
}
MEM_NOTRAP_P (slot) = 1;
return slot;
}
/* Allocate a temporary stack slot and record it for possible later
reuse. First three arguments are same as in preceding function. */
rtx
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
{
return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
}
/* Assign a temporary.
If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
and so that should be used in error messages. In either case, we
allocate of the given type.
KEEP is as for assign_stack_temp.
MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
it is 0 if a register is OK.
DONT_PROMOTE is 1 if we should not promote values in register
to wider modes. */
rtx
assign_temp (tree type_or_decl, int keep, int memory_required,
int dont_promote ATTRIBUTE_UNUSED)
{
tree type, decl;
enum machine_mode mode;
#ifdef PROMOTE_MODE
int unsignedp;
#endif
if (DECL_P (type_or_decl))
decl = type_or_decl, type = TREE_TYPE (decl);
else
decl = NULL, type = type_or_decl;
mode = TYPE_MODE (type);
#ifdef PROMOTE_MODE
unsignedp = TYPE_UNSIGNED (type);
#endif
if (mode == BLKmode || memory_required)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
rtx tmp;
/* Zero sized arrays are GNU C extension. Set size to 1 to avoid
problems with allocating the stack space. */
if (size == 0)
size = 1;
/* Unfortunately, we don't yet know how to allocate variable-sized
temporaries. However, sometimes we can find a fixed upper limit on
the size, so try that instead. */
else if (size == -1)
size = max_int_size_in_bytes (type);
/* The size of the temporary may be too large to fit into an integer. */
/* ??? Not sure this should happen except for user silliness, so limit
this to things that aren't compiler-generated temporaries. The
rest of the time we'll die in assign_stack_temp_for_type. */
if (decl && size == -1
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
{
error ("size of variable %q+D is too large", decl);
size = 1;
}
tmp = assign_stack_temp_for_type (mode, size, keep, type);
return tmp;
}
#ifdef PROMOTE_MODE
if (! dont_promote)
mode = promote_mode (type, mode, &unsignedp, 0);
#endif
return gen_reg_rtx (mode);
}
/* Combine temporary stack slots which are adjacent on the stack.
This allows for better use of already allocated stack space. This is only
done for BLKmode slots because we can be sure that we won't have alignment
problems in this case. */
static void
combine_temp_slots (void)
{
struct temp_slot *p, *q, *next, *next_q;
int num_slots;
/* We can't combine slots, because the information about which slot
is in which alias set will be lost. */
if (flag_strict_aliasing)
return;
/* If there are a lot of temp slots, don't do anything unless
high levels of optimization. */
if (! flag_expensive_optimizations)
for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
if (num_slots > 100 || (num_slots > 10 && optimize == 0))
return;
for (p = avail_temp_slots; p; p = next)
{
int delete_p = 0;
next = p->next;
if (GET_MODE (p->slot) != BLKmode)
continue;
for (q = p->next; q; q = next_q)
{
int delete_q = 0;
next_q = q->next;
if (GET_MODE (q->slot) != BLKmode)
continue;
if (p->base_offset + p->full_size == q->base_offset)
{
/* Q comes after P; combine Q into P. */
p->size += q->size;
p->full_size += q->full_size;
delete_q = 1;
}
else if (q->base_offset + q->full_size == p->base_offset)
{
/* P comes after Q; combine P into Q. */
q->size += p->size;
q->full_size += p->full_size;
delete_p = 1;
break;
}
if (delete_q)
cut_slot_from_list (q, &avail_temp_slots);
}
/* Either delete P or advance past it. */
if (delete_p)
cut_slot_from_list (p, &avail_temp_slots);
}
}
/* Find the temp slot corresponding to the object at address X. */
static struct temp_slot *
find_temp_slot_from_address (rtx x)
{
struct temp_slot *p;
rtx next;
int i;
for (i = max_slot_level (); i >= 0; i--)
for (p = *temp_slots_at_level (i); p; p = p->next)
{
if (XEXP (p->slot, 0) == x
|| p->address == x
|| (GET_CODE (x) == PLUS
&& XEXP (x, 0) == virtual_stack_vars_rtx
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= p->base_offset
&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
return p;
else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
for (next = p->address; next; next = XEXP (next, 1))
if (XEXP (next, 0) == x)
return p;
}
/* If we have a sum involving a register, see if it points to a temp
slot. */
if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
&& (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
return p;
else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
&& (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
return p;
return 0;
}
/* Indicate that NEW is an alternate way of referring to the temp slot
that previously was known by OLD. */
void
update_temp_slot_address (rtx old, rtx new)
{
struct temp_slot *p;
if (rtx_equal_p (old, new))
return;
p = find_temp_slot_from_address (old);
/* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
is a register, see if one operand of the PLUS is a temporary
location. If so, NEW points into it. Otherwise, if both OLD and
NEW are a PLUS and if there is a register in common between them.
If so, try a recursive call on those values. */
if (p == 0)
{
if (GET_CODE (old) != PLUS)
return;
if (REG_P (new))
{
update_temp_slot_address (XEXP (old, 0), new);
update_temp_slot_address (XEXP (old, 1), new);
return;
}
else if (GET_CODE (new) != PLUS)
return;
if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
return;
}
/* Otherwise add an alias for the temp's address. */
else if (p->address == 0)
p->address = new;
else
{
if (GET_CODE (p->address) != EXPR_LIST)
p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
}
}
/* If X could be a reference to a temporary slot, mark the fact that its
address was taken. */
void
mark_temp_addr_taken (rtx x)
{
struct temp_slot *p;
if (x == 0)
return;
/* If X is not in memory or is at a constant address, it cannot be in
a temporary slot. */
if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
return;
p = find_temp_slot_from_address (XEXP (x, 0));
if (p != 0)
p->addr_taken = 1;
}
/* If X could be a reference to a temporary slot, mark that slot as
belonging to the to one level higher than the current level. If X
matched one of our slots, just mark that one. Otherwise, we can't
easily predict which it is, so upgrade all of them. Kept slots
need not be touched.
This is called when an ({...}) construct occurs and a statement
returns a value in memory. */
void
preserve_temp_slots (rtx x)
{
struct temp_slot *p = 0, *next;
/* If there is no result, we still might have some objects whose address
were taken, so we need to make sure they stay around. */
if (x == 0)
{
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
next = p->next;
if (p->addr_taken)
move_slot_to_level (p, temp_slot_level - 1);
}
return;
}
/* If X is a register that is being used as a pointer, see if we have
a temporary slot we know it points to. To be consistent with
the code below, we really should preserve all non-kept slots
if we can't find a match, but that seems to be much too costly. */
if (REG_P (x) && REG_POINTER (x))
p = find_temp_slot_from_address (x);
/* If X is not in memory or is at a constant address, it cannot be in
a temporary slot, but it can contain something whose address was
taken. */
if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
{
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
next = p->next;
if (p->addr_taken)
move_slot_to_level (p, temp_slot_level - 1);
}
return;
}
/* First see if we can find a match. */
if (p == 0)
p = find_temp_slot_from_address (XEXP (x, 0));
if (p != 0)
{
/* Move everything at our level whose address was taken to our new
level in case we used its address. */
struct temp_slot *q;
if (p->level == temp_slot_level)
{
for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
{
next = q->next;
if (p != q && q->addr_taken)
move_slot_to_level (q, temp_slot_level - 1);
}
move_slot_to_level (p, temp_slot_level - 1);
p->addr_taken = 0;
}
return;
}
/* Otherwise, preserve all non-kept slots at this level. */
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
next = p->next;
if (!p->keep)
move_slot_to_level (p, temp_slot_level - 1);
}
}
/* Free all temporaries used so far. This is normally called at the
end of generating code for a statement. */
void
free_temp_slots (void)
{
struct temp_slot *p, *next;
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
next = p->next;
if (!p->keep)
make_slot_available (p);
}
combine_temp_slots ();
}
/* Push deeper into the nesting level for stack temporaries. */
void
push_temp_slots (void)
{
temp_slot_level++;
}
/* Pop a temporary nesting level. All slots in use in the current level
are freed. */
void
pop_temp_slots (void)
{
struct temp_slot *p, *next;
for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
{
next = p->next;
make_slot_available (p);
}
combine_temp_slots ();
temp_slot_level--;
}
/* Initialize temporary slots. */
void
init_temp_slots (void)
{
/* We have not allocated any temporaries yet. */
avail_temp_slots = 0;
used_temp_slots = 0;
temp_slot_level = 0;
}
/* These routines are responsible for converting virtual register references
to the actual hard register references once RTL generation is complete.
The following four variables are used for communication between the
routines. They contain the offsets of the virtual registers from their
respective hard registers. */
static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
static int cfa_offset;
/* In most machines, the stack pointer register is equivalent to the bottom
of the stack. */
#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET 0
#endif
/* If not defined, pick an appropriate default for the offset of dynamically
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
#ifndef STACK_DYNAMIC_OFFSET
/* The bottom of the stack points to the actual arguments. If
REG_PARM_STACK_SPACE is defined, this includes the space for the register
parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
stack space for register parameters is not pushed by the caller, but
rather part of the fixed stack areas and hence not included in
`current_function_outgoing_args_size'. Nevertheless, we must allow
for it when allocating stack dynamic objects. */
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((ACCUMULATE_OUTGOING_ARGS \
? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
+ (STACK_POINTER_OFFSET)) \
#else
#define STACK_DYNAMIC_OFFSET(FNDECL) \
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
+ (STACK_POINTER_OFFSET))
#endif
#endif
/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
is a virtual register, return the equivalent hard register and set the
offset indirectly through the pointer. Otherwise, return 0. */
static rtx
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
{
rtx new;
HOST_WIDE_INT offset;
if (x == virtual_incoming_args_rtx)
new = arg_pointer_rtx, offset = in_arg_offset;
else if (x == virtual_stack_vars_rtx)
new = frame_pointer_rtx, offset = var_offset;
else if (x == virtual_stack_dynamic_rtx)
new = stack_pointer_rtx, offset = dynamic_offset;
else if (x == virtual_outgoing_args_rtx)
new = stack_pointer_rtx, offset = out_arg_offset;
else if (x == virtual_cfa_rtx)
{
#ifdef FRAME_POINTER_CFA_OFFSET
new = frame_pointer_rtx;
#else
new = arg_pointer_rtx;
#endif
offset = cfa_offset;
}
else
return NULL_RTX;
*poffset = offset;
return new;
}
/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
Instantiate any virtual registers present inside of *LOC. The expression
is simplified, as much as possible, but is not to be considered "valid"
in any sense implied by the target. If any change is made, set CHANGED
to true. */
static int
instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
{
HOST_WIDE_INT offset;
bool *changed = (bool *) data;
rtx x, new;
x = *loc;
if (x == 0)
return 0;
switch (GET_CODE (x))
{
case REG:
new = instantiate_new_reg (x, &offset);
if (new)
{
*loc = plus_constant (new, offset);
if (changed)
*changed = true;
}
return -1;
case PLUS:
new = instantiate_new_reg (XEXP (x, 0), &offset);
if (new)
{
new = plus_constant (new, offset);
*loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
if (changed)
*changed = true;
return -1;
}
/* FIXME -- from old code */
/* If we have (plus (subreg (virtual-reg)) (const_int)), we know
we can commute the PLUS and SUBREG because pointers into the
frame are well-behaved. */
break;
default:
break;
}
return 0;
}
/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
matches the predicate for insn CODE operand OPERAND. */
static int
safe_insn_predicate (int code, int operand, rtx x)
{
const struct insn_operand_data *op_data;
if (code < 0)
return true;
op_data = &insn_data[code].operand[operand];
if (op_data->predicate == NULL)
return true;
return op_data->predicate (x, op_data->mode);
}
/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
registers present inside of insn. The result will be a valid insn. */
static void
instantiate_virtual_regs_in_insn (rtx insn)
{
HOST_WIDE_INT offset;
int insn_code, i;
bool any_change = false;
rtx set, new, x, seq;
/* There are some special cases to be handled first. */
set = single_set (insn);
if (set)
{
/* We're allowed to assign to a virtual register. This is interpreted
to mean that the underlying register gets assigned the inverse
transformation. This is used, for example, in the handling of
non-local gotos. */
new = instantiate_new_reg (SET_DEST (set), &offset);
if (new)
{
start_sequence ();
for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
GEN_INT (-offset));
x = force_operand (x, new);
if (x != new)
emit_move_insn (new, x);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
delete_insn (insn);
return;
}
/* Handle a straight copy from a virtual register by generating a
new add insn. The difference between this and falling through
to the generic case is avoiding a new pseudo and eliminating a
move insn in the initial rtl stream. */
new = instantiate_new_reg (SET_SRC (set), &offset);
if (new && offset != 0
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
{
start_sequence ();
x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
new, GEN_INT (offset), SET_DEST (set),
1, OPTAB_LIB_WIDEN);
if (x != SET_DEST (set))
emit_move_insn (SET_DEST (set), x);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
delete_insn (insn);
return;
}
extract_insn (insn);
insn_code = INSN_CODE (insn);
/* Handle a plus involving a virtual register by determining if the
operands remain valid if they're modified in place. */
if (GET_CODE (SET_SRC (set)) == PLUS
&& recog_data.n_operands >= 3
&& recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
&& recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
&& GET_CODE (recog_data.operand[2]) == CONST_INT
&& (new = instantiate_new_reg (recog_data.operand[1], &offset)))
{
offset += INTVAL (recog_data.operand[2]);
/* If the sum is zero, then replace with a plain move. */
if (offset == 0
&& REG_P (SET_DEST (set))
&& REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
{
start_sequence ();
emit_move_insn (SET_DEST (set), new);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
delete_insn (insn);
return;
}
x = gen_int_mode (offset, recog_data.operand_mode[2]);
/* Using validate_change and apply_change_group here leaves
recog_data in an invalid state. Since we know exactly what
we want to check, do those two by hand. */
if (safe_insn_predicate (insn_code, 1, new)
&& safe_insn_predicate (insn_code, 2, x))
{
*recog_data.operand_loc[1] = recog_data.operand[1] = new;
*recog_data.operand_loc[2] = recog_data.operand[2] = x;
any_change = true;
/* Fall through into the regular operand fixup loop in
order to take care of operands other than 1 and 2. */
}
}
}
else
{
extract_insn (insn);
insn_code = INSN_CODE (insn);
}
/* In the general case, we expect virtual registers to appear only in
operands, and then only as either bare registers or inside memories. */
for (i = 0; i < recog_data.n_operands; ++i)
{
x = recog_data.operand[i];
switch (GET_CODE (x))
{
case MEM:
{
rtx addr = XEXP (x, 0);
bool changed = false;
for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
if (!changed)
continue;
start_sequence ();
x = replace_equiv_address (x, addr);
seq = get_insns ();
end_sequence ();
if (seq)
emit_insn_before (seq, insn);
}
break;
case REG:
new = instantiate_new_reg (x, &offset);
if (new == NULL)
continue;
if (offset == 0)
x = new;
else
{
start_sequence ();
/* Careful, special mode predicates may have stuff in
insn_data[insn_code].operand[i].mode that isn't useful
to us for computing a new value. */
/* ??? Recognize address_operand and/or "p" constraints
to see if (plus new offset) is a valid before we put
this through expand_simple_binop. */
x = expand_simple_binop (GET_MODE (x), PLUS, new,
GEN_INT (offset), NULL_RTX,
1, OPTAB_LIB_WIDEN);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
}
break;
case SUBREG:
new = instantiate_new_reg (SUBREG_REG (x), &offset);
if (new == NULL)
continue;
if (offset != 0)
{
start_sequence ();
new = expand_simple_binop (GET_MODE (new), PLUS, new,
GEN_INT (offset), NULL_RTX,
1, OPTAB_LIB_WIDEN);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
}
x = simplify_gen_subreg (recog_data.operand_mode[i], new,
GET_MODE (new), SUBREG_BYTE (x));
break;
default:
continue;
}
/* At this point, X contains the new value for the operand.
Validate the new value vs the insn predicate. Note that
asm insns will have insn_code -1 here. */
if (!safe_insn_predicate (insn_code, i, x))
{
start_sequence ();
x = force_reg (insn_data[insn_code].operand[i].mode, x);
seq = get_insns ();
end_sequence ();
if (seq)
emit_insn_before (seq, insn);
}
*recog_data.operand_loc[i] = recog_data.operand[i] = x;
any_change = true;
}
if (any_change)
{
/* Propagate operand changes into the duplicates. */
for (i = 0; i < recog_data.n_dups; ++i)
*recog_data.dup_loc[i]
= recog_data.operand[(unsigned)recog_data.dup_num[i]];
/* Force re-recognition of the instruction for validation. */
INSN_CODE (insn) = -1;
}
if (asm_noperands (PATTERN (insn)) >= 0)
{
if (!check_asm_operands (PATTERN (insn)))
{
error_for_asm (insn, "impossible constraint in %<asm%>");
delete_insn (insn);
}
}
else
{
if (recog_memoized (insn) < 0)
fatal_insn_not_found (insn);
}
}
/* Subroutine of instantiate_decls. Given RTL representing a decl,
do any instantiation required. */
static void
instantiate_decl (rtx x)
{
rtx addr;
if (x == 0)
return;
/* If this is a CONCAT, recurse for the pieces. */
if (GET_CODE (x) == CONCAT)
{
instantiate_decl (XEXP (x, 0));
instantiate_decl (XEXP (x, 1));
return;
}
/* If this is not a MEM, no need to do anything. Similarly if the
address is a constant or a register that is not a virtual register. */
if (!MEM_P (x))
return;
addr = XEXP (x, 0);
if (CONSTANT_P (addr)
|| (REG_P (addr)
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
return;
for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
}
/* Helper for instantiate_decls called via walk_tree: Process all decls
in the given DECL_VALUE_EXPR. */
static tree
instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp;
if (! EXPR_P (t))
{
*walk_subtrees = 0;
if (DECL_P (t) && DECL_RTL_SET_P (t))
instantiate_decl (DECL_RTL (t));
}
return NULL;
}
/* Subroutine of instantiate_decls: Process all decls in the given
BLOCK node and all its subblocks. */
static void
instantiate_decls_1 (tree let)
{
tree t;
for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
{
if (DECL_RTL_SET_P (t))
instantiate_decl (DECL_RTL (t));
if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
{
tree v = DECL_VALUE_EXPR (t);
walk_tree (&v, instantiate_expr, NULL, NULL);
}
}
/* Process all subblocks. */
for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
instantiate_decls_1 (t);
}
/* Scan all decls in FNDECL (both variables and parameters) and instantiate
all virtual registers in their DECL_RTL's. */
static void
instantiate_decls (tree fndecl)
{
tree decl;
/* Process all parameters of the function. */
for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
{
instantiate_decl (DECL_RTL (decl));
instantiate_decl (DECL_INCOMING_RTL (decl));
if (DECL_HAS_VALUE_EXPR_P (decl))
{
tree v = DECL_VALUE_EXPR (decl);
walk_tree (&v, instantiate_expr, NULL, NULL);
}
}
/* Now process all variables defined in the function or its subblocks. */
instantiate_decls_1 (DECL_INITIAL (fndecl));
}
/* Pass through the INSNS of function FNDECL and convert virtual register
references to hard register references. */
static unsigned int
instantiate_virtual_regs (void)
{
rtx insn;
/* Compute the offsets to use for this function. */
in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
var_offset = STARTING_FRAME_OFFSET;
dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
out_arg_offset = STACK_POINTER_OFFSET;
#ifdef FRAME_POINTER_CFA_OFFSET
cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
#else
cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
#endif
/* Initialize recognition, indicating that volatile is OK. */
init_recog ();
/* Scan through all the insns, instantiating every virtual register still
present. */
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (INSN_P (insn))
{
/* These patterns in the instruction stream can never be recognized.
Fortunately, they shouldn't contain virtual registers either. */
if (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == ADDR_VEC
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|| GET_CODE (PATTERN (insn)) == ASM_INPUT)
continue;
instantiate_virtual_regs_in_insn (insn);
if (INSN_DELETED_P (insn))
continue;
for_each_rtx (®_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
if (GET_CODE (insn) == CALL_INSN)
for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
instantiate_virtual_regs_in_rtx, NULL);
}
/* Instantiate the virtual registers in the DECLs for debugging purposes. */
instantiate_decls (current_function_decl);
/* Indicate that, from now on, assign_stack_local should use
frame_pointer_rtx. */
virtuals_instantiated = 1;
return 0;
}
struct tree_opt_pass pass_instantiate_virtual_regs =
{
"vregs", /* name */
NULL, /* gate */
instantiate_virtual_regs, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
This means a type for which function calls must pass an address to the
function or get an address back from the function.
EXP may be a type node or an expression (whose type is tested). */
int
aggregate_value_p (tree exp, tree fntype)
{
int i, regno, nregs;
rtx reg;
tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
/* DECL node associated with FNTYPE when relevant, which we might need to
check for by-invisible-reference returns, typically for CALL_EXPR input
EXPressions. */
tree fndecl = NULL_TREE;
if (fntype)
switch (TREE_CODE (fntype))
{
case CALL_EXPR:
fndecl = get_callee_fndecl (fntype);
fntype = fndecl ? TREE_TYPE (fndecl) : 0;
break;
case FUNCTION_DECL:
fndecl = fntype;
fntype = TREE_TYPE (fndecl);
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
break;
case IDENTIFIER_NODE:
fntype = 0;
break;
default:
/* We don't expect other rtl types here. */
gcc_unreachable ();
}
if (TREE_CODE (type) == VOID_TYPE)
return 0;
/* If the front end has decided that this needs to be passed by
reference, do so. */
if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
&& DECL_BY_REFERENCE (exp))
return 1;
/* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
called function RESULT_DECL, meaning the function returns in memory by
invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
on the function type, which used to be the way to request such a return
mechanism but might now be causing troubles at gimplification time if
temporaries with the function type need to be created. */
if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
&& DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
return 1;
if (targetm.calls.return_in_memory (type, fntype))
return 1;
/* Types that are TREE_ADDRESSABLE must be constructed in memory,
and thus can't be returned in registers. */
if (TREE_ADDRESSABLE (type))
return 1;
if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
return 1;
/* Make sure we have suitable call-clobbered regs to return
the value in; if not, we must return it in memory. */
reg = hard_function_value (type, 0, fntype, 0);
/* If we have something other than a REG (e.g. a PARALLEL), then assume
it is OK. */
if (!REG_P (reg))
return 0;
regno = REGNO (reg);
nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
for (i = 0; i < nregs; i++)
if (! call_used_regs[regno + i])
return 1;
return 0;
}
/* Return true if we should assign DECL a pseudo register; false if it
should live on the local stack. */
bool
use_register_for_decl (tree decl)
{
/* Honor volatile. */
if (TREE_SIDE_EFFECTS (decl))
return false;
/* Honor addressability. */
if (TREE_ADDRESSABLE (decl))
return false;
/* Only register-like things go in registers. */
if (DECL_MODE (decl) == BLKmode)
return false;
/* If -ffloat-store specified, don't put explicit float variables
into registers. */
/* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
propagates values across these stores, and it probably shouldn't. */
if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
return false;
/* If we're not interested in tracking debugging information for
this decl, then we can certainly put it in a register. */
if (DECL_IGNORED_P (decl))
return true;
return (optimize || DECL_REGISTER (decl));
}
/* Return true if TYPE should be passed by invisible reference. */
bool
pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
tree type, bool named_arg)
{
if (type)
{
/* If this type contains non-trivial constructors, then it is
forbidden for the middle-end to create any new copies. */
if (TREE_ADDRESSABLE (type))
return true;
/* GCC post 3.4 passes *all* variable sized types by reference. */
if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
return true;
}
return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
}
/* Return true if TYPE, which is passed by reference, should be callee
copied instead of caller copied. */
bool
reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
tree type, bool named_arg)
{
if (type && TREE_ADDRESSABLE (type))
return false;
return targetm.calls.callee_copies (ca, mode, type, named_arg);
}
/* Structures to communicate between the subroutines of assign_parms.
The first holds data persistent across all parameters, the second
is cleared out for each parameter. */
struct assign_parm_data_all
{
CUMULATIVE_ARGS args_so_far;
struct args_size stack_args_size;
tree function_result_decl;
tree orig_fnargs;
rtx conversion_insns;
HOST_WIDE_INT pretend_args_size;
HOST_WIDE_INT extra_pretend_bytes;
int reg_parm_stack_space;
};
struct assign_parm_data_one
{
tree nominal_type;
tree passed_type;
rtx entry_parm;
rtx stack_parm;
enum machine_mode nominal_mode;
enum machine_mode passed_mode;
enum machine_mode promoted_mode;
struct locate_and_pad_arg_data locate;
int partial;
BOOL_BITFIELD named_arg : 1;
BOOL_BITFIELD passed_pointer : 1;
BOOL_BITFIELD on_stack : 1;
BOOL_BITFIELD loaded_in_reg : 1;
};
/* A subroutine of assign_parms. Initialize ALL. */
static void
assign_parms_initialize_all (struct assign_parm_data_all *all)
{
tree fntype;
memset (all, 0, sizeof (*all));
fntype = TREE_TYPE (current_function_decl);
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
#else
INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
current_function_decl, -1);
#endif
#ifdef REG_PARM_STACK_SPACE
all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
#endif
}
/* If ARGS contains entries with complex types, split the entry into two
entries of the component type. Return a new list of substitutions are
needed, else the old list. */
static tree
split_complex_args (tree args)
{
tree p;
/* Before allocating memory, check for the common case of no complex. */
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
goto found;
}
return args;
found:
args = copy_list (args);
for (p = args; p; p = TREE_CHAIN (p))
{
tree type = TREE_TYPE (p);
if (TREE_CODE (type) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (type))
{
tree decl;
tree subtype = TREE_TYPE (type);
bool addressable = TREE_ADDRESSABLE (p);
/* Rewrite the PARM_DECL's type with its component. */
TREE_TYPE (p) = subtype;
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
DECL_MODE (p) = VOIDmode;
DECL_SIZE (p) = NULL;
DECL_SIZE_UNIT (p) = NULL;
/* If this arg must go in memory, put it in a pseudo here.
We can't allow it to go in memory as per normal parms,
because the usual place might not have the imag part
adjacent to the real part. */
DECL_ARTIFICIAL (p) = addressable;
DECL_IGNORED_P (p) = addressable;
TREE_ADDRESSABLE (p) = 0;
layout_decl (p, 0);
/* Build a second synthetic decl. */
decl = build_decl (PARM_DECL, NULL_TREE, subtype);
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
DECL_ARTIFICIAL (decl) = addressable;
DECL_IGNORED_P (decl) = addressable;
layout_decl (decl, 0);
/* Splice it in; skip the new decl. */
TREE_CHAIN (decl) = TREE_CHAIN (p);
TREE_CHAIN (p) = decl;
p = decl;
}
}
return args;
}
/* A subroutine of assign_parms. Adjust the parameter list to incorporate
the hidden struct return argument, and (abi willing) complex args.
Return the new parameter list. */
static tree
assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
{
tree fndecl = current_function_decl;
tree fntype = TREE_TYPE (fndecl);
tree fnargs = DECL_ARGUMENTS (fndecl);
/* If struct value address is treated as the first argument, make it so. */
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
&& ! current_function_returns_pcc_struct
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
{
tree type = build_pointer_type (TREE_TYPE (fntype));
tree decl;
decl = build_decl (PARM_DECL, NULL_TREE, type);
DECL_ARG_TYPE (decl) = type;
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_CHAIN (decl) = fnargs;
fnargs = decl;
all->function_result_decl = decl;
}
all->orig_fnargs = fnargs;
/* If the target wants to split complex arguments into scalars, do so. */
if (targetm.calls.split_complex_arg)
fnargs = split_complex_args (fnargs);
return fnargs;
}
/* A subroutine of assign_parms. Examine PARM and pull out type and mode
data for the parameter. Incorporate ABI specifics such as pass-by-
reference and type promotion. */
static void
assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
struct assign_parm_data_one *data)
{
tree nominal_type, passed_type;
enum machine_mode nominal_mode, passed_mode, promoted_mode;
memset (data, 0, sizeof (*data));
/* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
if (!current_function_stdarg)
data->named_arg = 1; /* No varadic parms. */
else if (TREE_CHAIN (parm))
data->named_arg = 1; /* Not the last non-varadic parm. */
else if (targetm.calls.strict_argument_naming (&all->args_so_far))
data->named_arg = 1; /* Only varadic ones are unnamed. */
else
data->named_arg = 0; /* Treat as varadic. */
nominal_type = TREE_TYPE (parm);
passed_type = DECL_ARG_TYPE (parm);
/* Look out for errors propagating this far. Also, if the parameter's
type is void then its value doesn't matter. */
if (TREE_TYPE (parm) == error_mark_node
/* This can happen after weird syntax errors
or if an enum type is defined among the parms. */
|| TREE_CODE (parm) != PARM_DECL
|| passed_type == NULL
|| VOID_TYPE_P (nominal_type))
{
nominal_type = passed_type = void_type_node;
nominal_mode = passed_mode = promoted_mode = VOIDmode;
goto egress;
}
/* Find mode of arg as it is passed, and mode of arg as it should be
during execution of this function. */
passed_mode = TYPE_MODE (passed_type);
nominal_mode = TYPE_MODE (nominal_type);
/* If the parm is to be passed as a transparent union, use the type of
the first field for the tests below. We have already verified that
the modes are the same. */
if (TREE_CODE (passed_type) == UNION_TYPE
&& TYPE_TRANSPARENT_UNION (passed_type))
passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
/* See if this arg was passed by invisible reference. */
if (pass_by_reference (&all->args_so_far, passed_mode,
passed_type, data->named_arg))
{
passed_type = nominal_type = build_pointer_type (passed_type);
data->passed_pointer = true;
passed_mode = nominal_mode = Pmode;
}
/* Find mode as it is passed by the ABI. */
promoted_mode = passed_mode;
if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
{
int unsignedp = TYPE_UNSIGNED (passed_type);
promoted_mode = promote_mode (passed_type, promoted_mode,
&unsignedp, 1);
}
egress:
data->nominal_type = nominal_type;
data->passed_type = passed_type;
data->nominal_mode = nominal_mode;
data->passed_mode = passed_mode;
data->promoted_mode = promoted_mode;
}
/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
static void
assign_parms_setup_varargs (struct assign_parm_data_all *all,
struct assign_parm_data_one *data, bool no_rtl)
{
int varargs_pretend_bytes = 0;
targetm.calls.setup_incoming_varargs (&all->args_so_far,
data->promoted_mode,
data->passed_type,
&varargs_pretend_bytes, no_rtl);
/* If the back-end has requested extra stack space, record how much is
needed. Do not change pretend_args_size otherwise since it may be
nonzero from an earlier partial argument. */
if (varargs_pretend_bytes > 0)
all->pretend_args_size = varargs_pretend_bytes;
}
/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
the incoming location of the current parameter. */
static void
assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
struct assign_parm_data_one *data)
{
HOST_WIDE_INT pretend_bytes = 0;
rtx entry_parm;
bool in_regs;
if (data->promoted_mode == VOIDmode)
{
data->entry_parm = data->stack_parm = const0_rtx;
return;
}
#ifdef FUNCTION_INCOMING_ARG
entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, data->named_arg);
#else
entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, data->named_arg);
#endif
if (entry_parm == 0)
data->promoted_mode = data->passed_mode;
/* Determine parm's home in the stack, in case it arrives in the stack
or we should pretend it did. Compute the stack position and rtx where
the argument arrives and its size.
There is one complexity here: If this was a parameter that would
have been passed in registers, but wasn't only because it is
__builtin_va_alist, we want locate_and_pad_parm to treat it as if
it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
as it was the previous time. */
in_regs = entry_parm != 0;
#ifdef STACK_PARMS_IN_REG_PARM_AREA
in_regs = true;
#endif
if (!in_regs && !data->named_arg)
{
if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
{
rtx tem;
#ifdef FUNCTION_INCOMING_ARG
tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, true);
#else
tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
data->passed_type, true);
#endif
in_regs = tem != NULL;
}
}
/* If this parameter was passed both in registers and in the stack, use
the copy on the stack. */
if (targetm.calls.must_pass_in_stack (data->promoted_mode,
data->passed_type))
entry_parm = 0;
if (entry_parm)
{
int partial;
partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
data->promoted_mode,
data->passed_type,
data->named_arg);
data->partial = partial;
/* The caller might already have allocated stack space for the
register parameters. */
if (partial != 0 && all->reg_parm_stack_space == 0)
{
/* Part of this argument is passed in registers and part
is passed on the stack. Ask the prologue code to extend
the stack part so that we can recreate the full value.
PRETEND_BYTES is the size of the registers we need to store.
CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
stack space that the prologue should allocate.
Internally, gcc assumes that the argument pointer is aligned
to STACK_BOUNDARY bits. This is used both for alignment
optimizations (see init_emit) and to locate arguments that are
aligned to more than PARM_BOUNDARY bits. We must preserve this
invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
a stack boundary. */
/* We assume at most one partial arg, and it must be the first
argument on the stack. */
gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
pretend_bytes = partial;
all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
/* We want to align relative to the actual stack pointer, so
don't include this in the stack size until later. */
all->extra_pretend_bytes = all->pretend_args_size;
}
}
locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
entry_parm ? data->partial : 0, current_function_decl,
&all->stack_args_size, &data->locate);
/* Adjust offsets to include the pretend args. */
pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
data->locate.slot_offset.constant += pretend_bytes;
data->locate.offset.constant += pretend_bytes;
data->entry_parm = entry_parm;
}
/* A subroutine of assign_parms. If there is actually space on the stack
for this parm, count it in stack_args_size and return true. */
static bool
assign_parm_is_stack_parm (struct assign_parm_data_all *all,
struct assign_parm_data_one *data)
{
/* Trivially true if we've no incoming register. */
if (data->entry_parm == NULL)
;
/* Also true if we're partially in registers and partially not,
since we've arranged to drop the entire argument on the stack. */
else if (data->partial != 0)
;
/* Also true if the target says that it's passed in both registers
and on the stack. */
else if (GET_CODE (data->entry_parm) == PARALLEL
&& XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
;
/* Also true if the target says that there's stack allocated for
all register parameters. */
else if (all->reg_parm_stack_space > 0)
;
/* Otherwise, no, this parameter has no ABI defined stack slot. */
else
return false;
all->stack_args_size.constant += data->locate.size.constant;
if (data->locate.size.var)
ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
return true;
}
/* A subroutine of assign_parms. Given that this parameter is allocated
stack space by the ABI, find it. */
static void
assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
{
rtx offset_rtx, stack_parm;
unsigned int align, boundary;
/* If we're passing this arg using a reg, make its stack home the
aligned stack slot. */
if (data->entry_parm)
offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
else
offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
stack_parm = current_function_internal_arg_pointer;
if (offset_rtx != const0_rtx)
stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
set_mem_attributes (stack_parm, parm, 1);
boundary = data->locate.boundary;
align = BITS_PER_UNIT;
/* If we're padding upward, we know that the alignment of the slot
is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
intentionally forcing upward padding. Otherwise we have to come
up with a guess at the alignment based on OFFSET_RTX. */
if (data->locate.where_pad != downward || data->entry_parm)
align = boundary;
else if (GET_CODE (offset_rtx) == CONST_INT)
{
align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
align = align & -align;
}
set_mem_align (stack_parm, align);
if (data->entry_parm)
set_reg_attrs_for_parm (data->entry_parm, stack_parm);
data->stack_parm = stack_parm;
}
/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
always valid and contiguous. */
static void
assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
{
rtx entry_parm = data->entry_parm;
rtx stack_parm = data->stack_parm;
/* If this parm was passed part in regs and part in memory, pretend it
arrived entirely in memory by pushing the register-part onto the stack.
In the special case of a DImode or DFmode that is split, we could put
it together in a pseudoreg directly, but for now that's not worth
bothering with. */
if (data->partial != 0)
{
/* Handle calls that pass values in multiple non-contiguous
locations. The Irix 6 ABI has examples of this. */
if (GET_CODE (entry_parm) == PARALLEL)
emit_group_store (validize_mem (stack_parm), entry_parm,
data->passed_type,
int_size_in_bytes (data->passed_type));
else
{
gcc_assert (data->partial % UNITS_PER_WORD == 0);
move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
data->partial / UNITS_PER_WORD);
}
entry_parm = stack_parm;
}
/* If we didn't decide this parm came in a register, by default it came
on the stack. */
else if (entry_parm == NULL)
entry_parm = stack_parm;
/* When an argument is passed in multiple locations, we can't make use
of this information, but we can save some copying if the whole argument
is passed in a single register. */
else if (GET_CODE (entry_parm) == PARALLEL
&& data->nominal_mode != BLKmode
&& data->passed_mode != BLKmode)
{
size_t i, len = XVECLEN (entry_parm, 0);
for (i = 0; i < len; i++)
if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
&& REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
== data->passed_mode)
&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
{
entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
break;
}
}
data->entry_parm = entry_parm;
}
/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
always valid and properly aligned. */
static void
assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
{
rtx stack_parm = data->stack_parm;
/* If we can't trust the parm stack slot to be aligned enough for its
ultimate type, don't use that slot after entry. We'll make another
stack slot, if we need one. */
if (stack_parm
&& ((STRICT_ALIGNMENT
&& GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
|| (data->nominal_type
&& TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
&& MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
stack_parm = NULL;
/* If parm was passed in memory, and we need to convert it on entry,
don't store it back in that same slot. */
else if (data->entry_parm == stack_parm
&& data->nominal_mode != BLKmode
&& data->nominal_mode != data->passed_mode)
stack_parm = NULL;
/* If stack protection is in effect for this function, don't leave any
pointers in their passed stack slots. */
else if (cfun->stack_protect_guard
&& (flag_stack_protect == 2
|| data->passed_pointer
|| POINTER_TYPE_P (data->nominal_type)))
stack_parm = NULL;
data->stack_parm = stack_parm;
}
/* A subroutine of assign_parms. Return true if the current parameter
should be stored as a BLKmode in the current frame. */
static bool
assign_parm_setup_block_p (struct assign_parm_data_one *data)
{
if (data->nominal_mode == BLKmode)
return true;
if (GET_CODE (data->entry_parm) == PARALLEL)
return true;
#ifdef BLOCK_REG_PADDING
/* Only assign_parm_setup_block knows how to deal with register arguments
that are padded at the least significant end. */
if (REG_P (data->entry_parm)
&& GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
&& (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
== (BYTES_BIG_ENDIAN ? upward : downward)))
return true;
#endif
return false;
}
/* A subroutine of assign_parms. Arrange for the parameter to be
present and valid in DATA->STACK_RTL. */
static void
assign_parm_setup_block (struct assign_parm_data_all *all,
tree parm, struct assign_parm_data_one *data)
{
rtx entry_parm = data->entry_parm;
rtx stack_parm = data->stack_parm;
HOST_WIDE_INT size;
HOST_WIDE_INT size_stored;
rtx orig_entry_parm = entry_parm;
if (GET_CODE (entry_parm) == PARALLEL)
entry_parm = emit_group_move_into_temps (entry_parm);
/* If we've a non-block object that's nevertheless passed in parts,
reconstitute it in register operations rather than on the stack. */
if (GET_CODE (entry_parm) == PARALLEL
&& data->nominal_mode != BLKmode)
{
rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
if ((XVECLEN (entry_parm, 0) > 1
|| hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
&& use_register_for_decl (parm))
{
rtx parmreg = gen_reg_rtx (data->nominal_mode);
push_to_sequence (all->conversion_insns);
/* For values returned in multiple registers, handle possible
incompatible calls to emit_group_store.
For example, the following would be invalid, and would have to
be fixed by the conditional below:
emit_group_store ((reg:SF), (parallel:DF))
emit_group_store ((reg:SI), (parallel:DI))
An example of this are doubles in e500 v2:
(parallel:DF (expr_list (reg:SI) (const_int 0))
(expr_list (reg:SI) (const_int 4))). */
if (data->nominal_mode != data->passed_mode)
{
rtx t = gen_reg_rtx (GET_MODE (entry_parm));
emit_group_store (t, entry_parm, NULL_TREE,
GET_MODE_SIZE (GET_MODE (entry_parm)));
convert_move (parmreg, t, 0);
}
else
emit_group_store (parmreg, entry_parm, data->nominal_type,
int_size_in_bytes (data->nominal_type));
all->conversion_insns = get_insns ();
end_sequence ();
SET_DECL_RTL (parm, parmreg);
return;
}
}
size = int_size_in_bytes (data->passed_type);
size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
if (stack_parm == 0)
{
DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
stack_parm = assign_stack_local (BLKmode, size_stored,
DECL_ALIGN (parm));
if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
PUT_MODE (stack_parm, GET_MODE (entry_parm));
set_mem_attributes (stack_parm, parm, 1);
}
/* If a BLKmode arrives in registers, copy it to a stack slot. Handle
calls that pass values in multiple non-contiguous locations. */
if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
{
rtx mem;
/* Note that we will be storing an integral number of words.
So we have to be careful to ensure that we allocate an
integral number of words. We do this above when we call
assign_stack_local if space was not allocated in the argument
list. If it was, this will not work if PARM_BOUNDARY is not
a multiple of BITS_PER_WORD. It isn't clear how to fix this
if it becomes a problem. Exception is when BLKmode arrives
with arguments not conforming to word_mode. */
if (data->stack_parm == 0)
;
else if (GET_CODE (entry_parm) == PARALLEL)
;
else
gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
mem = validize_mem (stack_parm);
/* Handle values in multiple non-contiguous locations. */
if (GET_CODE (entry_parm) == PARALLEL)
{
push_to_sequence (all->conversion_insns);
emit_group_store (mem, entry_parm, data->passed_type, size);
all->conversion_insns = get_insns ();
end_sequence ();
}
else if (size == 0)
;
/* If SIZE is that of a mode no bigger than a word, just use
that mode's store operation. */
else if (size <= UNITS_PER_WORD)
{
enum machine_mode mode
= mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
if (mode != BLKmode
#ifdef BLOCK_REG_PADDING
&& (size == UNITS_PER_WORD
|| (BLOCK_REG_PADDING (mode, data->passed_type, 1)
!= (BYTES_BIG_ENDIAN ? upward : downward)))
#endif
)
{
rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
emit_move_insn (change_address (mem, mode, 0), reg);
}
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN
machine must be aligned to the left before storing
to memory. Note that the previous test doesn't
handle all cases (e.g. SIZE == 3). */
else if (size != UNITS_PER_WORD
#ifdef BLOCK_REG_PADDING
&& (BLOCK_REG_PADDING (mode, data->passed_type, 1)
== downward)
#else
&& BYTES_BIG_ENDIAN
#endif
)
{
rtx tem, x;
int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
x = expand_shift (LSHIFT_EXPR, word_mode, reg,
build_int_cst (NULL_TREE, by),
NULL_RTX, 1);
tem = change_address (mem, word_mode, 0);
emit_move_insn (tem, x);
}
else
move_block_from_reg (REGNO (entry_parm), mem,
size_stored / UNITS_PER_WORD);
}
else
move_block_from_reg (REGNO (entry_parm), mem,
size_stored / UNITS_PER_WORD);
}
else if (data->stack_parm == 0)
{
push_to_sequence (all->conversion_insns);
emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
BLOCK_OP_NORMAL);
all->conversion_insns = get_insns ();
end_sequence ();
}
data->stack_parm = stack_parm;
SET_DECL_RTL (parm, stack_parm);
}
/* A subroutine of assign_parms. Allocate a pseudo to hold the current
parameter. Get it there. Perform all ABI specified conversions. */
static void
assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
struct assign_parm_data_one *data)
{
rtx parmreg;
enum machine_mode promoted_nominal_mode;
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
bool did_conversion = false;
/* Store the parm in a pseudoregister during the function, but we may
need to do it in a wider mode. */
/* This is not really promoting for a call. However we need to be
consistent with assign_parm_find_data_types and expand_expr_real_1. */
promoted_nominal_mode
= promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
parmreg = gen_reg_rtx (promoted_nominal_mode);
if (!DECL_ARTIFICIAL (parm))
mark_user_reg (parmreg);
/* If this was an item that we received a pointer to,
set DECL_RTL appropriately. */
if (data->passed_pointer)
{
rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
set_mem_attributes (x, parm, 1);
SET_DECL_RTL (parm, x);
}
else
SET_DECL_RTL (parm, parmreg);
/* Copy the value into the register. */
if (data->nominal_mode != data->passed_mode
|| promoted_nominal_mode != data->promoted_mode)
{
int save_tree_used;
/* ENTRY_PARM has been converted to PROMOTED_MODE, its
mode, by the caller. We now have to convert it to
NOMINAL_MODE, if different. However, PARMREG may be in
a different mode than NOMINAL_MODE if it is being stored
promoted.
If ENTRY_PARM is a hard register, it might be in a register
not valid for operating in its mode (e.g., an odd-numbered
register for a DFmode). In that case, moves are the only
thing valid, so we can't do a convert from there. This
occurs when the calling sequence allow such misaligned
usages.
In addition, the conversion may involve a call, which could
clobber parameters which haven't been copied to pseudo
registers yet. Therefore, we must first copy the parm to
a pseudo reg here, and save the conversion until after all
parameters have been moved. */
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
emit_move_insn (tempreg, validize_mem (data->entry_parm));
push_to_sequence (all->conversion_insns);
tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
if (GET_CODE (tempreg) == SUBREG
&& GET_MODE (tempreg) == data->nominal_mode
&& REG_P (SUBREG_REG (tempreg))
&& data->nominal_mode == data->passed_mode
&& GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
&& GET_MODE_SIZE (GET_MODE (tempreg))
< GET_MODE_SIZE (GET_MODE (data->entry_parm)))
{
/* The argument is already sign/zero extended, so note it
into the subreg. */
SUBREG_PROMOTED_VAR_P (tempreg) = 1;
SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
}
/* TREE_USED gets set erroneously during expand_assignment. */
save_tree_used = TREE_USED (parm);
expand_assignment (parm, make_tree (data->nominal_type, tempreg));
TREE_USED (parm) = save_tree_used;
all->conversion_insns = get_insns ();
end_sequence ();
did_conversion = true;
}
else
emit_move_insn (parmreg, validize_mem (data->entry_parm));
/* If we were passed a pointer but the actual value can safely live
in a register, put it in one. */
if (data->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm)) != BLKmode
/* If by-reference argument was promoted, demote it. */
&& (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
|| use_register_for_decl (parm)))
{
/* We can't use nominal_mode, because it will have been set to
Pmode above. We must use the actual mode of the parm. */
parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
mark_user_reg (parmreg);
if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
{
rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
push_to_sequence (all->conversion_insns);
emit_move_insn (tempreg, DECL_RTL (parm));
tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
emit_move_insn (parmreg, tempreg);
all->conversion_insns = get_insns ();
end_sequence ();
did_conversion = true;
}
else
emit_move_insn (parmreg, DECL_RTL (parm));
SET_DECL_RTL (parm, parmreg);
/* STACK_PARM is the pointer, not the parm, and PARMREG is
now the parm. */
data->stack_parm = NULL;
}
/* Mark the register as eliminable if we did no conversion and it was
copied from memory at a fixed offset, and the arg pointer was not
copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
offset formed an invalid address, such memory-equivalences as we
make here would screw up life analysis for it. */
if (data->nominal_mode == data->passed_mode
&& !did_conversion
&& data->stack_parm != 0
&& MEM_P (data->stack_parm)
&& data->locate.offset.var == 0
&& reg_mentioned_p (virtual_incoming_args_rtx,
XEXP (data->stack_parm, 0)))
{
rtx linsn = get_last_insn ();
rtx sinsn, set;
/* Mark complex types separately. */
if (GET_CODE (parmreg) == CONCAT)
{
enum machine_mode submode
= GET_MODE_INNER (GET_MODE (parmreg));
int regnor = REGNO (XEXP (parmreg, 0));
int regnoi = REGNO (XEXP (parmreg, 1));
rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
rtx stacki = adjust_address_nv (data->stack_parm, submode,
GET_MODE_SIZE (submode));
/* Scan backwards for the set of the real and
imaginary parts. */
for (sinsn = linsn; sinsn != 0;
sinsn = prev_nonnote_insn (sinsn))
{
set = single_set (sinsn);
if (set == 0)
continue;
if (SET_DEST (set) == regno_reg_rtx [regnoi])
REG_NOTES (sinsn)
= gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
REG_NOTES (sinsn));
else if (SET_DEST (set) == regno_reg_rtx [regnor])
REG_NOTES (sinsn)
= gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
REG_NOTES (sinsn));
}
}
else if ((set = single_set (linsn)) != 0
&& SET_DEST (set) == parmreg)
REG_NOTES (linsn)
= gen_rtx_EXPR_LIST (REG_EQUIV,
data->stack_parm, REG_NOTES (linsn));
}
/* For pointer data type, suggest pointer register. */
if (POINTER_TYPE_P (TREE_TYPE (parm)))
mark_reg_pointer (parmreg,
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
}
/* A subroutine of assign_parms. Allocate stack space to hold the current
parameter. Get it there. Perform all ABI specified conversions. */
static void
assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
struct assign_parm_data_one *data)
{
/* Value must be stored in the stack slot STACK_PARM during function
execution. */
bool to_conversion = false;
if (data->promoted_mode != data->nominal_mode)
{
/* Conversion is required. */
rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
emit_move_insn (tempreg, validize_mem (data->entry_parm));
push_to_sequence (all->conversion_insns);
to_conversion = true;
data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
TYPE_UNSIGNED (TREE_TYPE (parm)));
if (data->stack_parm)
/* ??? This may need a big-endian conversion on sparc64. */
data->stack_parm
= adjust_address (data->stack_parm, data->nominal_mode, 0);
}
if (data->entry_parm != data->stack_parm)
{
rtx src, dest;
if (data->stack_parm == 0)
{
data->stack_parm
= assign_stack_local (GET_MODE (data->entry_parm),
GET_MODE_SIZE (GET_MODE (data->entry_parm)),
TYPE_ALIGN (data->passed_type));
set_mem_attributes (data->stack_parm, parm, 1);
}
dest = validize_mem (data->stack_parm);
src = validize_mem (data->entry_parm);
if (MEM_P (src))
{
/* Use a block move to handle potentially misaligned entry_parm. */
if (!to_conversion)
push_to_sequence (all->conversion_insns);
to_conversion = true;
emit_block_move (dest, src,
GEN_INT (int_size_in_bytes (data->passed_type)),
BLOCK_OP_NORMAL);
}
else
emit_move_insn (dest, src);
}
if (to_conversion)
{
all->conversion_insns = get_insns ();
end_sequence ();
}
SET_DECL_RTL (parm, data->stack_parm);
}
/* A subroutine of assign_parms. If the ABI splits complex arguments, then
undo the frobbing that we did in assign_parms_augmented_arg_list. */
static void
assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
{
tree parm;
tree orig_fnargs = all->orig_fnargs;
for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
{
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
&& targetm.calls.split_complex_arg (TREE_TYPE (parm)))
{
rtx tmp, real, imag;
enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
real = DECL_RTL (fnargs);
imag = DECL_RTL (TREE_CHAIN (fnargs));
if (inner != GET_MODE (real))
{
real = gen_lowpart_SUBREG (inner, real);
imag = gen_lowpart_SUBREG (inner, imag);
}
if (TREE_ADDRESSABLE (parm))
{
rtx rmem, imem;
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
/* split_complex_arg put the real and imag parts in
pseudos. Move them to memory. */
tmp = assign_stack_local (DECL_MODE (parm), size,
TYPE_ALIGN (TREE_TYPE (parm)));
set_mem_attributes (tmp, parm, 1);
rmem = adjust_address_nv (tmp, inner, 0);
imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
push_to_sequence (all->conversion_insns);
emit_move_insn (rmem, real);
emit_move_insn (imem, imag);
all->conversion_insns = get_insns ();
end_sequence ();
}
else
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
SET_DECL_RTL (parm, tmp);
real = DECL_INCOMING_RTL (fnargs);
imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
if (inner != GET_MODE (real))
{
real = gen_lowpart_SUBREG (inner, real);
imag = gen_lowpart_SUBREG (inner, imag);
}
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
set_decl_incoming_rtl (parm, tmp);
fnargs = TREE_CHAIN (fnargs);
}
else
{
SET_DECL_RTL (parm, DECL_RTL (fnargs));
set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
/* Set MEM_EXPR to the original decl, i.e. to PARM,
instead of the copy of decl, i.e. FNARGS. */
if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
set_mem_expr (DECL_INCOMING_RTL (parm), parm);
}
fnargs = TREE_CHAIN (fnargs);
}
}
/* Assign RTL expressions to the function's parameters. This may involve
copying them into registers and using those registers as the DECL_RTL. */
static void
assign_parms (tree fndecl)
{
struct assign_parm_data_all all;
tree fnargs, parm;
current_function_internal_arg_pointer
= targetm.calls.internal_arg_pointer ();
assign_parms_initialize_all (&all);
fnargs = assign_parms_augmented_arg_list (&all);
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
{
struct assign_parm_data_one data;
/* Extract the type of PARM; adjust it according to ABI. */
assign_parm_find_data_types (&all, parm, &data);
/* Early out for errors and void parameters. */
if (data.passed_mode == VOIDmode)
{
SET_DECL_RTL (parm, const0_rtx);
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
continue;
}
if (current_function_stdarg && !TREE_CHAIN (parm))
assign_parms_setup_varargs (&all, &data, false);
/* Find out where the parameter arrives in this function. */
assign_parm_find_entry_rtl (&all, &data);
/* Find out where stack space for this parameter might be. */
if (assign_parm_is_stack_parm (&all, &data))
{
assign_parm_find_stack_rtl (parm, &data);
assign_parm_adjust_entry_rtl (&data);
}
/* Record permanently how this parm was passed. */
set_decl_incoming_rtl (parm, data.entry_parm);
/* Update info on where next arg arrives in registers. */
FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
data.passed_type, data.named_arg);
assign_parm_adjust_stack_rtl (&data);
if (assign_parm_setup_block_p (&data))
assign_parm_setup_block (&all, parm, &data);
else if (data.passed_pointer || use_register_for_decl (parm))
assign_parm_setup_reg (&all, parm, &data);
else
assign_parm_setup_stack (&all, parm, &data);
}
if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
assign_parms_unsplit_complex (&all, fnargs);
/* Output all parameter conversion instructions (possibly including calls)
now that all parameters have been copied out of hard registers. */
emit_insn (all.conversion_insns);
/* If we are receiving a struct value address as the first argument, set up
the RTL for the function result. As this might require code to convert
the transmitted address to Pmode, we do this here to ensure that possible
preliminary conversions of the address have been emitted already. */
if (all.function_result_decl)
{
tree result = DECL_RESULT (current_function_decl);
rtx addr = DECL_RTL (all.function_result_decl);
rtx x;
if (DECL_BY_REFERENCE (result))
x = addr;
else
{
addr = convert_memory_address (Pmode, addr);
x = gen_rtx_MEM (DECL_MODE (result), addr);
set_mem_attributes (x, result, 1);
}
SET_DECL_RTL (result, x);
}
/* We have aligned all the args, so add space for the pretend args. */
current_function_pretend_args_size = all.pretend_args_size;
all.stack_args_size.constant += all.extra_pretend_bytes;
current_function_args_size = all.stack_args_size.constant;
/* Adjust function incoming argument size for alignment and
minimum length. */
#ifdef REG_PARM_STACK_SPACE
current_function_args_size = MAX (current_function_args_size,
REG_PARM_STACK_SPACE (fndecl));
#endif
current_function_args_size = CEIL_ROUND (current_function_args_size,
PARM_BOUNDARY / BITS_PER_UNIT);
#ifdef ARGS_GROW_DOWNWARD
current_function_arg_offset_rtx
= (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
: expand_expr (size_diffop (all.stack_args_size.var,
size_int (-all.stack_args_size.constant)),
NULL_RTX, VOIDmode, 0));
#else
current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
#endif
/* See how many bytes, if any, of its args a function should try to pop
on return. */
current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
current_function_args_size);
/* For stdarg.h function, save info about
regs and stack space used by the named args. */
current_function_args_info = all.args_so_far;
/* Set the rtx used for the function return value. Put this in its
own variable so any optimizers that need this information don't have
to include tree.h. Do this here so it gets done when an inlined
function gets output. */
current_function_return_rtx
= (DECL_RTL_SET_P (DECL_RESULT (fndecl))
? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
/* If scalar return value was computed in a pseudo-reg, or was a named
return value that got dumped to the stack, copy that to the hard
return register. */
if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
{
tree decl_result = DECL_RESULT (fndecl);
rtx decl_rtl = DECL_RTL (decl_result);
if (REG_P (decl_rtl)
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
: DECL_REGISTER (decl_result))
{
rtx real_decl_rtl;
real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
fndecl, true);
REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
/* The delay slot scheduler assumes that current_function_return_rtx
holds the hard register containing the return value, not a
temporary pseudo. */
current_function_return_rtx = real_decl_rtl;
}
}
}
/* A subroutine of gimplify_parameters, invoked via walk_tree.
For all seen types, gimplify their sizes. */
static tree
gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
{
tree t = *tp;
*walk_subtrees = 0;
if (TYPE_P (t))
{
if (POINTER_TYPE_P (t))
*walk_subtrees = 1;
else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
&& !TYPE_SIZES_GIMPLIFIED (t))
{
gimplify_type_sizes (t, (tree *) data);
*walk_subtrees = 1;
}
}
return NULL;
}
/* Gimplify the parameter list for current_function_decl. This involves
evaluating SAVE_EXPRs of variable sized parameters and generating code
to implement callee-copies reference parameters. Returns a list of
statements to add to the beginning of the function, or NULL if nothing
to do. */
tree
gimplify_parameters (void)
{
struct assign_parm_data_all all;
tree fnargs, parm, stmts = NULL;
assign_parms_initialize_all (&all);
fnargs = assign_parms_augmented_arg_list (&all);
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
{
struct assign_parm_data_one data;
/* Extract the type of PARM; adjust it according to ABI. */
assign_parm_find_data_types (&all, parm, &data);
/* Early out for errors and void parameters. */
if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
continue;
/* Update info on where next arg arrives in registers. */
FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
data.passed_type, data.named_arg);
/* ??? Once upon a time variable_size stuffed parameter list
SAVE_EXPRs (amongst others) onto a pending sizes list. This
turned out to be less than manageable in the gimple world.
Now we have to hunt them down ourselves. */
walk_tree_without_duplicates (&data.passed_type,
gimplify_parm_type, &stmts);
if (!TREE_CONSTANT (DECL_SIZE (parm)))
{
gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
}
if (data.passed_pointer)
{
tree type = TREE_TYPE (data.passed_type);
if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
type, data.named_arg))
{
tree local, t;
/* For constant sized objects, this is trivial; for
variable-sized objects, we have to play games. */
if (TREE_CONSTANT (DECL_SIZE (parm)))
{
local = create_tmp_var (type, get_name (parm));
DECL_IGNORED_P (local) = 0;
}
else
{
tree ptr_type, addr, args;
ptr_type = build_pointer_type (type);
addr = create_tmp_var (ptr_type, get_name (parm));
DECL_IGNORED_P (addr) = 0;
local = build_fold_indirect_ref (addr);
args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
t = built_in_decls[BUILT_IN_ALLOCA];
t = build_function_call_expr (t, args);
t = fold_convert (ptr_type, t);
t = build2 (MODIFY_EXPR, void_type_node, addr, t);
gimplify_and_add (t, &stmts);
}
t = build2 (MODIFY_EXPR, void_type_node, local, parm);
gimplify_and_add (t, &stmts);
SET_DECL_VALUE_EXPR (parm, local);
DECL_HAS_VALUE_EXPR_P (parm) = 1;
}
}
}
return stmts;
}
/* Indicate whether REGNO is an incoming argument to the current function
that was promoted to a wider mode. If so, return the RTX for the
register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
that REGNO is promoted from and whether the promotion was signed or
unsigned. */
rtx
promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
{
tree arg;
for (arg = DECL_ARGUMENTS (current_function_decl); arg;
arg = TREE_CHAIN (arg))
if (REG_P (DECL_INCOMING_RTL (arg))
&& REGNO (DECL_INCOMING_RTL (arg)) == regno
&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
&& mode != DECL_MODE (arg))
{
*pmode = DECL_MODE (arg);
*punsignedp = unsignedp;
return DECL_INCOMING_RTL (arg);
}
}
return 0;
}
/* Compute the size and offset from the start of the stacked arguments for a
parm passed in mode PASSED_MODE and with type TYPE.
INITIAL_OFFSET_PTR points to the current offset into the stacked
arguments.
The starting offset and size for this parm are returned in
LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
nonzero, the offset is that of stack slot, which is returned in
LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
padding required from the initial offset ptr to the stack slot.
IN_REGS is nonzero if the argument will be passed in registers. It will
never be set if REG_PARM_STACK_SPACE is not defined.
FNDECL is the function in which the argument was defined.
There are two types of rounding that are done. The first, controlled by
FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
list to be aligned to the specific boundary (in bits). This rounding
affects the initial and starting offsets, but not the argument size.
The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
optionally rounds the size of the parm to PARM_BOUNDARY. The
initial offset is not affected by this rounding, while the size always
is and the starting offset may be. */
/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
callers pass in the total size of args so far as
INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
void
locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
int partial, tree fndecl ATTRIBUTE_UNUSED,
struct args_size *initial_offset_ptr,
struct locate_and_pad_arg_data *locate)
{
tree sizetree;
enum direction where_pad;
unsigned int boundary;
int reg_parm_stack_space = 0;
int part_size_in_regs;
#ifdef REG_PARM_STACK_SPACE
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
/* If we have found a stack parm before we reach the end of the
area reserved for registers, skip that area. */
if (! in_regs)
{
if (reg_parm_stack_space > 0)
{
if (initial_offset_ptr->var)
{
initial_offset_ptr->var
= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
ssize_int (reg_parm_stack_space));
initial_offset_ptr->constant = 0;
}
else if (initial_offset_ptr->constant < reg_parm_stack_space)
initial_offset_ptr->constant = reg_parm_stack_space;
}
}
#endif /* REG_PARM_STACK_SPACE */
part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
sizetree
= type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
locate->where_pad = where_pad;
locate->boundary = boundary;
/* Remember if the outgoing parameter requires extra alignment on the
calling function side. */
if (boundary > PREFERRED_STACK_BOUNDARY)
boundary = PREFERRED_STACK_BOUNDARY;
if (cfun->stack_alignment_needed < boundary)
cfun->stack_alignment_needed = boundary;
#ifdef ARGS_GROW_DOWNWARD
locate->slot_offset.constant = -initial_offset_ptr->constant;
if (initial_offset_ptr->var)
locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
initial_offset_ptr->var);
{
tree s2 = sizetree;
if (where_pad != none
&& (!host_integerp (sizetree, 1)
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
SUB_PARM_SIZE (locate->slot_offset, s2);
}
locate->slot_offset.constant += part_size_in_regs;
if (!in_regs
#ifdef REG_PARM_STACK_SPACE
|| REG_PARM_STACK_SPACE (fndecl) > 0
#endif
)
pad_to_arg_alignment (&locate->slot_offset, boundary,
&locate->alignment_pad);
locate->size.constant = (-initial_offset_ptr->constant
- locate->slot_offset.constant);
if (initial_offset_ptr->var)
locate->size.var = size_binop (MINUS_EXPR,
size_binop (MINUS_EXPR,
ssize_int (0),
initial_offset_ptr->var),
locate->slot_offset.var);
/* Pad_below needs the pre-rounded size to know how much to pad
below. */
locate->offset = locate->slot_offset;
if (where_pad == downward)
pad_below (&locate->offset, passed_mode, sizetree);
#else /* !ARGS_GROW_DOWNWARD */
if (!in_regs
#ifdef REG_PARM_STACK_SPACE
|| REG_PARM_STACK_SPACE (fndecl) > 0
#endif
)
pad_to_arg_alignment (initial_offset_ptr, boundary,
&locate->alignment_pad);
locate->slot_offset = *initial_offset_ptr;
#ifdef PUSH_ROUNDING
if (passed_mode != BLKmode)
sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
#endif
/* Pad_below needs the pre-rounded size to know how much to pad below
so this must be done before rounding up. */
locate->offset = locate->slot_offset;
if (where_pad == downward)
pad_below (&locate->offset, passed_mode, sizetree);
if (where_pad != none
&& (!host_integerp (sizetree, 1)
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
ADD_PARM_SIZE (locate->size, sizetree);
locate->size.constant -= part_size_in_regs;
#endif /* ARGS_GROW_DOWNWARD */
}
/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
static void
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
struct args_size *alignment_pad)
{
tree save_var = NULL_TREE;
HOST_WIDE_INT save_constant = 0;
int boundary_in_bytes = boundary / BITS_PER_UNIT;
HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
#ifdef SPARC_STACK_BOUNDARY_HACK
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
the real alignment of %sp. However, when it does this, the
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
if (SPARC_STACK_BOUNDARY_HACK)
sp_offset = 0;
#endif
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
{
save_var = offset_ptr->var;
save_constant = offset_ptr->constant;
}
alignment_pad->var = NULL_TREE;
alignment_pad->constant = 0;
if (boundary > BITS_PER_UNIT)
{
if (offset_ptr->var)
{
tree sp_offset_tree = ssize_int (sp_offset);
tree offset = size_binop (PLUS_EXPR,
ARGS_SIZE_TREE (*offset_ptr),
sp_offset_tree);
#ifdef ARGS_GROW_DOWNWARD
tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
#else
tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
#endif
offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
/* ARGS_SIZE_TREE includes constant term. */
offset_ptr->constant = 0;
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
save_var);
}
else
{
offset_ptr->constant = -sp_offset +
#ifdef ARGS_GROW_DOWNWARD
FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
#else
CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
#endif
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
alignment_pad->constant = offset_ptr->constant - save_constant;
}
}
}
static void
pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
{
if (passed_mode != BLKmode)
{
if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
offset_ptr->constant
+= (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
/ PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
- GET_MODE_SIZE (passed_mode));
}
else
{
if (TREE_CODE (sizetree) != INTEGER_CST
|| (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
{
/* Round the size up to multiple of PARM_BOUNDARY bits. */
tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
/* Add it in. */
ADD_PARM_SIZE (*offset_ptr, s2);
SUB_PARM_SIZE (*offset_ptr, sizetree);
}
}
}
/* Walk the tree of blocks describing the binding levels within a function
and warn about variables the might be killed by setjmp or vfork.
This is done after calling flow_analysis and before global_alloc
clobbers the pseudo-regs to hard regs. */
void
setjmp_vars_warning (tree block)
{
tree decl, sub;
for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
{
if (TREE_CODE (decl) == VAR_DECL
&& DECL_RTL_SET_P (decl)
&& REG_P (DECL_RTL (decl))
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
warning (0, "variable %q+D might be clobbered by %<longjmp%>"
" or %<vfork%>",
decl);
}
for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
setjmp_vars_warning (sub);
}
/* Do the appropriate part of setjmp_vars_warning
but for arguments instead of local variables. */
void
setjmp_args_warning (void)
{
tree decl;
for (decl = DECL_ARGUMENTS (current_function_decl);
decl; decl = TREE_CHAIN (decl))
if (DECL_RTL (decl) != 0
&& REG_P (DECL_RTL (decl))
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
decl);
}
/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
and create duplicate blocks. */
/* ??? Need an option to either create block fragments or to create
abstract origin duplicates of a source block. It really depends
on what optimization has been performed. */
void
reorder_blocks (void)
{
tree block = DECL_INITIAL (current_function_decl);
VEC(tree,heap) *block_stack;
if (block == NULL_TREE)
return;
block_stack = VEC_alloc (tree, heap, 10);
/* Reset the TREE_ASM_WRITTEN bit for all blocks. */
clear_block_marks (block);
/* Prune the old trees away, so that they don't get in the way. */
BLOCK_SUBBLOCKS (block) = NULL_TREE;
BLOCK_CHAIN (block) = NULL_TREE;
/* Recreate the block tree from the note nesting. */
reorder_blocks_1 (get_insns (), block, &block_stack);
BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
VEC_free (tree, heap, block_stack);
}
/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
void
clear_block_marks (tree block)
{
while (block)
{
TREE_ASM_WRITTEN (block) = 0;
clear_block_marks (BLOCK_SUBBLOCKS (block));
block = BLOCK_CHAIN (block);
}
}
static void
reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
{
rtx insn;
for (insn = insns; insn; insn = NEXT_INSN (insn))
{
if (NOTE_P (insn))
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
{
tree block = NOTE_BLOCK (insn);
tree origin;
origin = (BLOCK_FRAGMENT_ORIGIN (block)
? BLOCK_FRAGMENT_ORIGIN (block)
: block);
/* If we have seen this block before, that means it now
spans multiple address regions. Create a new fragment. */
if (TREE_ASM_WRITTEN (block))
{
tree new_block = copy_node (block);
BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
BLOCK_FRAGMENT_CHAIN (new_block)
= BLOCK_FRAGMENT_CHAIN (origin);
BLOCK_FRAGMENT_CHAIN (origin) = new_block;
NOTE_BLOCK (insn) = new_block;
block = new_block;
}
BLOCK_SUBBLOCKS (block) = 0;
TREE_ASM_WRITTEN (block) = 1;
/* When there's only one block for the entire function,
current_block == block and we mustn't do this, it
will cause infinite recursion. */
if (block != current_block)
{
if (block != origin)
gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
BLOCK_SUPERCONTEXT (block) = current_block;
BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
BLOCK_SUBBLOCKS (current_block) = block;
current_block = origin;
}
VEC_safe_push (tree, heap, *p_block_stack, block);
}
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
{
NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
BLOCK_SUBBLOCKS (current_block)
= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
current_block = BLOCK_SUPERCONTEXT (current_block);
}
}
}
}
/* Reverse the order of elements in the chain T of blocks,
and return the new head of the chain (old last element). */
tree
blocks_nreverse (tree t)
{
tree prev = 0, decl, next;
for (decl = t; decl; decl = next)
{
next = BLOCK_CHAIN (decl);
BLOCK_CHAIN (decl) = prev;
prev = decl;
}
return prev;
}
/* Count the subblocks of the list starting with BLOCK. If VECTOR is
non-NULL, list them all into VECTOR, in a depth-first preorder
traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
blocks. */
static int
all_blocks (tree block, tree *vector)
{
int n_blocks = 0;
while (block)
{
TREE_ASM_WRITTEN (block) = 0;
/* Record this block. */
if (vector)
vector[n_blocks] = block;
++n_blocks;
/* Record the subblocks, and their subblocks... */
n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
vector ? vector + n_blocks : 0);
block = BLOCK_CHAIN (block);
}
return n_blocks;
}
/* Return a vector containing all the blocks rooted at BLOCK. The
number of elements in the vector is stored in N_BLOCKS_P. The
vector is dynamically allocated; it is the caller's responsibility
to call `free' on the pointer returned. */
static tree *
get_block_vector (tree block, int *n_blocks_p)
{
tree *block_vector;
*n_blocks_p = all_blocks (block, NULL);
block_vector = XNEWVEC (tree, *n_blocks_p);
all_blocks (block, block_vector);
return block_vector;
}
static GTY(()) int next_block_index = 2;
/* Set BLOCK_NUMBER for all the blocks in FN. */
void
number_blocks (tree fn)
{
int i;
int n_blocks;
tree *block_vector;
/* For SDB and XCOFF debugging output, we start numbering the blocks
from 1 within each function, rather than keeping a running
count. */
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
next_block_index = 1;
#endif
block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
/* The top-level BLOCK isn't numbered at all. */
for (i = 1; i < n_blocks; ++i)
/* We number the blocks from two. */
BLOCK_NUMBER (block_vector[i]) = next_block_index++;
free (block_vector);
return;
}
/* If VAR is present in a subblock of BLOCK, return the subblock. */
tree
debug_find_var_in_block_tree (tree var, tree block)
{
tree t;
for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
if (t == var)
return block;
for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
{
tree ret = debug_find_var_in_block_tree (var, t);
if (ret)
return ret;
}
return NULL_TREE;
}
/* Allocate a function structure for FNDECL and set its contents
to the defaults. */
void
allocate_struct_function (tree fndecl)
{
tree result;
tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
cfun = ggc_alloc_cleared (sizeof (struct function));
cfun->stack_alignment_needed = STACK_BOUNDARY;
cfun->preferred_stack_boundary = STACK_BOUNDARY;
current_function_funcdef_no = funcdef_no++;
cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
init_eh_for_function ();
lang_hooks.function.init (cfun);
if (init_machine_status)
cfun->machine = (*init_machine_status) ();
if (fndecl == NULL)
return;
DECL_STRUCT_FUNCTION (fndecl) = cfun;
cfun->decl = fndecl;
result = DECL_RESULT (fndecl);
if (aggregate_value_p (result, fndecl))
{
#ifdef PCC_STATIC_STRUCT_RETURN
current_function_returns_pcc_struct = 1;
#endif
current_function_returns_struct = 1;
}
current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
current_function_stdarg
= (fntype
&& TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node));
/* Assume all registers in stdarg functions need to be saved. */
cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
}
/* Reset cfun, and other non-struct-function variables to defaults as
appropriate for emitting rtl at the start of a function. */
static void
prepare_function_start (tree fndecl)
{
if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
cfun = DECL_STRUCT_FUNCTION (fndecl);
else
allocate_struct_function (fndecl);
init_emit ();
init_varasm_status (cfun);
init_expr ();
cse_not_expected = ! optimize;
/* Caller save not needed yet. */
caller_save_needed = 0;
/* We haven't done register allocation yet. */
reg_renumber = 0;
/* Indicate that we have not instantiated virtual registers yet. */
virtuals_instantiated = 0;
/* Indicate that we want CONCATs now. */
generating_concat_p = 1;
/* Indicate we have no need of a frame pointer yet. */
frame_pointer_needed = 0;
}
/* Initialize the rtl expansion mechanism so that we can do simple things
like generate sequences. This is used to provide a context during global
initialization of some passes. */
void
init_dummy_function_start (void)
{
prepare_function_start (NULL);
}
/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
and initialize static variables for generating RTL for the statements
of the function. */
void
init_function_start (tree subr)
{
prepare_function_start (subr);
/* Prevent ever trying to delete the first instruction of a
function. Also tell final how to output a linenum before the
function prologue. Note linenums could be missing, e.g. when
compiling a Java .class file. */
if (! DECL_IS_BUILTIN (subr))
emit_line_note (DECL_SOURCE_LOCATION (subr));
/* Make sure first insn is a note even if we don't want linenums.
This makes sure the first insn will never be deleted.
Also, final expects a note to appear there. */
emit_note (NOTE_INSN_DELETED);
/* Warn if this value is an aggregate type,
regardless of which calling convention we are using for it. */
if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
warning (OPT_Waggregate_return, "function returns an aggregate");
}
/* Make sure all values used by the optimization passes have sane
defaults. */
unsigned int
init_function_for_compilation (void)
{
reg_renumber = 0;
/* No prologue/epilogue insns yet. Make sure that these vectors are
empty. */
gcc_assert (VEC_length (int, prologue) == 0);
gcc_assert (VEC_length (int, epilogue) == 0);
gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
return 0;
}
struct tree_opt_pass pass_init_function =
{
NULL, /* name */
NULL, /* gate */
init_function_for_compilation, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
void
expand_main_function (void)
{
#if (defined(INVOKE__main) \
|| (!defined(HAS_INIT_SECTION) \
&& !defined(INIT_SECTION_ASM_OP) \
&& !defined(INIT_ARRAY_SECTION_ASM_OP)))
emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
#endif
}
/* Expand code to initialize the stack_protect_guard. This is invoked at
the beginning of a function to be protected. */
#ifndef HAVE_stack_protect_set
# define HAVE_stack_protect_set 0
# define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
#endif
void
stack_protect_prologue (void)
{
tree guard_decl = targetm.stack_protect_guard ();
rtx x, y;
/* Avoid expand_expr here, because we don't want guard_decl pulled
into registers unless absolutely necessary. And we know that
cfun->stack_protect_guard is a local stack slot, so this skips
all the fluff. */
x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
y = validize_mem (DECL_RTL (guard_decl));
/* Allow the target to copy from Y to X without leaking Y into a
register. */
if (HAVE_stack_protect_set)
{
rtx insn = gen_stack_protect_set (x, y);
if (insn)
{
emit_insn (insn);
return;
}
}
/* Otherwise do a straight move. */
emit_move_insn (x, y);
}
/* Expand code to verify the stack_protect_guard. This is invoked at
the end of a function to be protected. */
#ifndef HAVE_stack_protect_test
# define HAVE_stack_protect_test 0
# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
#endif
void
stack_protect_epilogue (void)
{
tree guard_decl = targetm.stack_protect_guard ();
rtx label = gen_label_rtx ();
rtx x, y, tmp;
/* Avoid expand_expr here, because we don't want guard_decl pulled
into registers unless absolutely necessary. And we know that
cfun->stack_protect_guard is a local stack slot, so this skips
all the fluff. */
x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
y = validize_mem (DECL_RTL (guard_decl));
/* Allow the target to compare Y with X without leaking either into
a register. */
switch (HAVE_stack_protect_test != 0)
{
case 1:
tmp = gen_stack_protect_test (x, y, label);
if (tmp)
{
emit_insn (tmp);
break;
}
/* FALLTHRU */
default:
emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
break;
}
/* The noreturn predictor has been moved to the tree level. The rtl-level
predictors estimate this branch about 20%, which isn't enough to get
things moved out of line. Since this is the only extant case of adding
a noreturn function at the rtl level, it doesn't seem worth doing ought
except adding the prediction by hand. */
tmp = get_last_insn ();
if (JUMP_P (tmp))
predict_insn_def (tmp, PRED_NORETURN, TAKEN);
expand_expr_stmt (targetm.stack_protect_fail ());
emit_label (label);
}
/* Start the RTL for a new function, and set variables used for
emitting RTL.
SUBR is the FUNCTION_DECL node.
PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
the function's parameters, which must be run at any return statement. */
void
expand_function_start (tree subr)
{
/* Make sure volatile mem refs aren't considered
valid operands of arithmetic insns. */
init_recog_no_volatile ();
current_function_profile
= (profile_flag
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
current_function_limit_stack
= (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
/* Make the label for return statements to jump to. Do not special
case machines with special return instructions -- they will be
handled later during jump, ifcvt, or epilogue creation. */
return_label = gen_label_rtx ();
/* Initialize rtx used to return the value. */
/* Do this before assign_parms so that we copy the struct value address
before any library calls that assign parms might generate. */
/* Decide whether to return the value in memory or in a register. */
if (aggregate_value_p (DECL_RESULT (subr), subr))
{
/* Returning something that won't go in a register. */
rtx value_address = 0;
#ifdef PCC_STATIC_STRUCT_RETURN
if (current_function_returns_pcc_struct)
{
int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
value_address = assemble_static_space (size);
}
else
#endif
{
rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
/* Expect to be passed the address of a place to store the value.
If it is passed as an argument, assign_parms will take care of
it. */
if (sv)
{
value_address = gen_reg_rtx (Pmode);
emit_move_insn (value_address, sv);
}
}
if (value_address)
{
rtx x = value_address;
if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
{
x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
set_mem_attributes (x, DECL_RESULT (subr), 1);
}
SET_DECL_RTL (DECL_RESULT (subr), x);
}
}
else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
/* If return mode is void, this decl rtl should not be used. */
SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
else
{
/* Compute the return values into a pseudo reg, which we will copy
into the true return register after the cleanups are done. */
tree return_type = TREE_TYPE (DECL_RESULT (subr));
if (TYPE_MODE (return_type) != BLKmode
&& targetm.calls.return_in_msb (return_type))
/* expand_function_end will insert the appropriate padding in
this case. Use the return value's natural (unpadded) mode
within the function proper. */
SET_DECL_RTL (DECL_RESULT (subr),
gen_reg_rtx (TYPE_MODE (return_type)));
else
{
/* In order to figure out what mode to use for the pseudo, we
figure out what the mode of the eventual return register will
actually be, and use that. */
rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
/* Structures that are returned in registers are not
aggregate_value_p, so we may see a PARALLEL or a REG. */
if (REG_P (hard_reg))
SET_DECL_RTL (DECL_RESULT (subr),
gen_reg_rtx (GET_MODE (hard_reg)));
else
{
gcc_assert (GET_CODE (hard_reg) == PARALLEL);
SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
}
}
/* Set DECL_REGISTER flag so that expand_function_end will copy the
result to the real return register(s). */
DECL_REGISTER (DECL_RESULT (subr)) = 1;
}
/* Initialize rtx for parameters and local variables.
In some cases this requires emitting insns. */
assign_parms (subr);
/* If function gets a static chain arg, store it. */
if (cfun->static_chain_decl)
{
tree parm = cfun->static_chain_decl;
rtx local = gen_reg_rtx (Pmode);
set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
SET_DECL_RTL (parm, local);
mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
emit_move_insn (local, static_chain_incoming_rtx);
}
/* If the function receives a non-local goto, then store the
bits we need to restore the frame pointer. */
if (cfun->nonlocal_goto_save_area)
{
tree t_save;
rtx r_save;
/* ??? We need to do this save early. Unfortunately here is
before the frame variable gets declared. Help out... */
expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
t_save = build4 (ARRAY_REF, ptr_type_node,
cfun->nonlocal_goto_save_area,
integer_zero_node, NULL_TREE, NULL_TREE);
r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
r_save = convert_memory_address (Pmode, r_save);
emit_move_insn (r_save, virtual_stack_vars_rtx);
update_nonlocal_goto_save_area ();
}
/* The following was moved from init_function_start.
The move is supposed to make sdb output more accurate. */
/* Indicate the beginning of the function body,
as opposed to parm setup. */
emit_note (NOTE_INSN_FUNCTION_BEG);
gcc_assert (NOTE_P (get_last_insn ()));
parm_birth_insn = get_last_insn ();
if (current_function_profile)
{
#ifdef PROFILE_HOOK
PROFILE_HOOK (current_function_funcdef_no);
#endif
}
/* After the display initializations is where the stack checking
probe should go. */
if(flag_stack_check)
stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
/* Make sure there is a line number after the function entry setup code. */
force_next_line_note ();
}
/* Undo the effects of init_dummy_function_start. */
void
expand_dummy_function_end (void)
{
/* End any sequences that failed to be closed due to syntax errors. */
while (in_sequence_p ())
end_sequence ();
/* Outside function body, can't compute type's actual size
until next function's body starts. */
free_after_parsing (cfun);
free_after_compilation (cfun);
cfun = 0;
}
/* Call DOIT for each hard register used as a return value from
the current function. */
void
diddle_return_value (void (*doit) (rtx, void *), void *arg)
{
rtx outgoing = current_function_return_rtx;
if (! outgoing)
return;
if (REG_P (outgoing))
(*doit) (outgoing, arg);
else if (GET_CODE (outgoing) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (outgoing, 0); i++)
{
rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
(*doit) (x, arg);
}
}
}
static void
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
}
void
clobber_return_register (void)
{
diddle_return_value (do_clobber_return_reg, NULL);
/* In case we do use pseudo to return value, clobber it too. */
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
{
tree decl_result = DECL_RESULT (current_function_decl);
rtx decl_rtl = DECL_RTL (decl_result);
if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
{
do_clobber_return_reg (decl_rtl, NULL);
}
}
}
static void
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
{
emit_insn (gen_rtx_USE (VOIDmode, reg));
}
static void
use_return_register (void)
{
diddle_return_value (do_use_return_reg, NULL);
}
/* Possibly warn about unused parameters. */
void
do_warn_unused_parameter (tree fn)
{
tree decl;
for (decl = DECL_ARGUMENTS (fn);
decl; decl = TREE_CHAIN (decl))
if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
}
static GTY(()) rtx initial_trampoline;
/* Generate RTL for the end of the current function. */
void
expand_function_end (void)
{
rtx clobber_after;
/* If arg_pointer_save_area was referenced only from a nested
function, we will not have initialized it yet. Do that now. */
if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
get_arg_pointer_save_area (cfun);
/* If we are doing stack checking and this function makes calls,
do a stack probe at the start of the function to ensure we have enough
space for another stack frame. */
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
{
rtx insn, seq;
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
if (CALL_P (insn))
{
start_sequence ();
probe_stack_range (STACK_CHECK_PROTECT,
GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, stack_check_probe_note);
break;
}
}
/* Possibly warn about unused parameters.
When frontend does unit-at-a-time, the warning is already
issued at finalization time. */
if (warn_unused_parameter
&& !lang_hooks.callgraph.expand_function)
do_warn_unused_parameter (current_function_decl);
/* End any sequences that failed to be closed due to syntax errors. */
while (in_sequence_p ())
end_sequence ();
clear_pending_stack_adjust ();
do_pending_stack_adjust ();
/* Mark the end of the function body.
If control reaches this insn, the function can drop through
without returning a value. */
emit_note (NOTE_INSN_FUNCTION_END);
/* Must mark the last line number note in the function, so that the test
coverage code can avoid counting the last line twice. This just tells
the code to ignore the immediately following line note, since there
already exists a copy of this note somewhere above. This line number
note is still needed for debugging though, so we can't delete it. */
if (flag_test_coverage)
emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
/* Output a linenumber for the end of the function.
SDB depends on this. */
force_next_line_note ();
emit_line_note (input_location);
/* Before the return label (if any), clobber the return
registers so that they are not propagated live to the rest of
the function. This can only happen with functions that drop
through; if there had been a return statement, there would
have either been a return rtx, or a jump to the return label.
We delay actual code generation after the current_function_value_rtx
is computed. */
clobber_after = get_last_insn ();
/* Output the label for the actual return from the function. */
emit_label (return_label);
if (USING_SJLJ_EXCEPTIONS)
{
/* Let except.c know where it should emit the call to unregister
the function context for sjlj exceptions. */
if (flag_exceptions)
sjlj_emit_function_exit_after (get_last_insn ());
}
else
{
/* @@@ This is a kludge. We want to ensure that instructions that
may trap are not moved into the epilogue by scheduling, because
we don't always emit unwind information for the epilogue.
However, not all machine descriptions define a blockage insn, so
emit an ASM_INPUT to act as one. */
if (flag_non_call_exceptions)
emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
}
/* If this is an implementation of throw, do what's necessary to
communicate between __builtin_eh_return and the epilogue. */
expand_eh_return ();
/* If scalar return value was computed in a pseudo-reg, or was a named
return value that got dumped to the stack, copy that to the hard
return register. */
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
{
tree decl_result = DECL_RESULT (current_function_decl);
rtx decl_rtl = DECL_RTL (decl_result);
if (REG_P (decl_rtl)
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
: DECL_REGISTER (decl_result))
{
rtx real_decl_rtl = current_function_return_rtx;
/* This should be set in assign_parms. */
gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
/* If this is a BLKmode structure being returned in registers,
then use the mode computed in expand_return. Note that if
decl_rtl is memory, then its mode may have been changed,
but that current_function_return_rtx has not. */
if (GET_MODE (real_decl_rtl) == BLKmode)
PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
/* If a non-BLKmode return value should be padded at the least
significant end of the register, shift it left by the appropriate
amount. BLKmode results are handled using the group load/store
machinery. */
if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
&& targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
{
emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
REGNO (real_decl_rtl)),
decl_rtl);
shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
}
/* If a named return value dumped decl_return to memory, then
we may need to re-do the PROMOTE_MODE signed/unsigned
extension. */
else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
{
int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
&unsignedp, 1);
convert_move (real_decl_rtl, decl_rtl, unsignedp);
}
else if (GET_CODE (real_decl_rtl) == PARALLEL)
{
/* If expand_function_start has created a PARALLEL for decl_rtl,
move the result to the real return registers. Otherwise, do
a group load from decl_rtl for a named return. */
if (GET_CODE (decl_rtl) == PARALLEL)
emit_group_move (real_decl_rtl, decl_rtl);
else
emit_group_load (real_decl_rtl, decl_rtl,
TREE_TYPE (decl_result),
int_size_in_bytes (TREE_TYPE (decl_result)));
}
/* In the case of complex integer modes smaller than a word, we'll
need to generate some non-trivial bitfield insertions. Do that
on a pseudo and not the hard register. */
else if (GET_CODE (decl_rtl) == CONCAT
&& GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
&& GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
{
int old_generating_concat_p;
rtx tmp;
old_generating_concat_p = generating_concat_p;
generating_concat_p = 0;
tmp = gen_reg_rtx (GET_MODE (decl_rtl));
generating_concat_p = old_generating_concat_p;
emit_move_insn (tmp, decl_rtl);
emit_move_insn (real_decl_rtl, tmp);
}
else
emit_move_insn (real_decl_rtl, decl_rtl);
}
}
/* If returning a structure, arrange to return the address of the value
in a place where debuggers expect to find it.
If returning a structure PCC style,
the caller also depends on this value.
And current_function_returns_pcc_struct is not necessarily set. */
if (current_function_returns_struct
|| current_function_returns_pcc_struct)
{
rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
rtx outgoing;
if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
type = TREE_TYPE (type);
else
value_address = XEXP (value_address, 0);
outgoing = targetm.calls.function_value (build_pointer_type (type),
current_function_decl, true);
/* Mark this as a function return value so integrate will delete the
assignment and USE below when inlining this function. */
REG_FUNCTION_VALUE_P (outgoing) = 1;
/* The address may be ptr_mode and OUTGOING may be Pmode. */
value_address = convert_memory_address (GET_MODE (outgoing),
value_address);
emit_move_insn (outgoing, value_address);
/* Show return register used to hold result (in this case the address
of the result. */
current_function_return_rtx = outgoing;
}
/* Emit the actual code to clobber return register. */
{
rtx seq;
start_sequence ();
clobber_return_register ();
expand_naked_return ();
seq = get_insns ();
end_sequence ();
emit_insn_after (seq, clobber_after);
}
/* Output the label for the naked return from the function. */
emit_label (naked_return_label);
/* If stack protection is enabled for this function, check the guard. */
if (cfun->stack_protect_guard)
stack_protect_epilogue ();
/* If we had calls to alloca, and this machine needs
an accurate stack pointer to exit the function,
insert some code to save and restore the stack pointer. */
if (! EXIT_IGNORE_STACK
&& current_function_calls_alloca)
{
rtx tem = 0;
emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
}
/* ??? This should no longer be necessary since stupid is no longer with
us, but there are some parts of the compiler (eg reload_combine, and
sh mach_dep_reorg) that still try and compute their own lifetime info
instead of using the general framework. */
use_return_register ();
}
rtx
get_arg_pointer_save_area (struct function *f)
{
rtx ret = f->x_arg_pointer_save_area;
if (! ret)
{
ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
f->x_arg_pointer_save_area = ret;
}
if (f == cfun && ! f->arg_pointer_save_area_init)
{
rtx seq;
/* Save the arg pointer at the beginning of the function. The
generated stack slot may not be a valid memory address, so we
have to check it and fix it if necessary. */
start_sequence ();
emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
seq = get_insns ();
end_sequence ();
push_topmost_sequence ();
emit_insn_after (seq, entry_of_function ());
pop_topmost_sequence ();
}
return ret;
}
/* Extend a vector that records the INSN_UIDs of INSNS
(a list of one or more insns). */
static void
record_insns (rtx insns, VEC(int,heap) **vecp)
{
rtx tmp;
for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
}
/* Set the locator of the insn chain starting at INSN to LOC. */
static void
set_insn_locators (rtx insn, int loc)
{
while (insn != NULL_RTX)
{
if (INSN_P (insn))
INSN_LOCATOR (insn) = loc;
insn = NEXT_INSN (insn);
}
}
/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
be running after reorg, SEQUENCE rtl is possible. */
static int
contains (rtx insn, VEC(int,heap) **vec)
{
int i, j;
if (NONJUMP_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
{
int count = 0;
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
== VEC_index (int, *vec, j))
count++;
return count;
}
else
{
for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
if (INSN_UID (insn) == VEC_index (int, *vec, j))
return 1;
}
return 0;
}
int
prologue_epilogue_contains (rtx insn)
{
if (contains (insn, &prologue))
return 1;
if (contains (insn, &epilogue))
return 1;
return 0;
}
int
sibcall_epilogue_contains (rtx insn)
{
if (sibcall_epilogue)
return contains (insn, &sibcall_epilogue);
return 0;
}
#ifdef HAVE_return
/* Insert gen_return at the end of block BB. This also means updating
block_for_insn appropriately. */
static void
emit_return_into_block (basic_block bb, rtx line_note)
{
emit_jump_insn_after (gen_return (), BB_END (bb));
if (line_note)
emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
}
#endif /* HAVE_return */
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
/* These functions convert the epilogue into a variant that does not
modify the stack pointer. This is used in cases where a function
returns an object whose size is not known until it is computed.
The called function leaves the object on the stack, leaves the
stack depressed, and returns a pointer to the object.
What we need to do is track all modifications and references to the
stack pointer, deleting the modifications and changing the
references to point to the location the stack pointer would have
pointed to had the modifications taken place.
These functions need to be portable so we need to make as few
assumptions about the epilogue as we can. However, the epilogue
basically contains three things: instructions to reset the stack
pointer, instructions to reload registers, possibly including the
frame pointer, and an instruction to return to the caller.
We must be sure of what a relevant epilogue insn is doing. We also
make no attempt to validate the insns we make since if they are
invalid, we probably can't do anything valid. The intent is that
these routines get "smarter" as more and more machines start to use
them and they try operating on different epilogues.
We use the following structure to track what the part of the
epilogue that we've already processed has done. We keep two copies
of the SP equivalence, one for use during the insn we are
processing and one for use in the next insn. The difference is
because one part of a PARALLEL may adjust SP and the other may use
it. */
struct epi_info
{
rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
should be set to once we no longer need
its value. */
rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
for registers. */
};
static void handle_epilogue_set (rtx, struct epi_info *);
static void update_epilogue_consts (rtx, rtx, void *);
static void emit_equiv_load (struct epi_info *);
/* Modify INSN, a list of one or more insns that is part of the epilogue, to
no modifications to the stack pointer. Return the new list of insns. */
static rtx
keep_stack_depressed (rtx insns)
{
int j;
struct epi_info info;
rtx insn, next;
/* If the epilogue is just a single instruction, it must be OK as is. */
if (NEXT_INSN (insns) == NULL_RTX)
return insns;
/* Otherwise, start a sequence, initialize the information we have, and
process all the insns we were given. */
start_sequence ();
info.sp_equiv_reg = stack_pointer_rtx;
info.sp_offset = 0;
info.equiv_reg_src = 0;
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
info.const_equiv[j] = 0;
insn = insns;
next = NULL_RTX;
while (insn != NULL_RTX)
{
next = NEXT_INSN (insn);
if (!INSN_P (insn))
{
add_insn (insn);
insn = next;
continue;
}
/* If this insn references the register that SP is equivalent to and
we have a pending load to that register, we must force out the load
first and then indicate we no longer know what SP's equivalent is. */
if (info.equiv_reg_src != 0
&& reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
{
emit_equiv_load (&info);
info.sp_equiv_reg = 0;
}
info.new_sp_equiv_reg = info.sp_equiv_reg;
info.new_sp_offset = info.sp_offset;
/* If this is a (RETURN) and the return address is on the stack,
update the address and change to an indirect jump. */
if (GET_CODE (PATTERN (insn)) == RETURN
|| (GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
{
rtx retaddr = INCOMING_RETURN_ADDR_RTX;
rtx base = 0;
HOST_WIDE_INT offset = 0;
rtx jump_insn, jump_set;
/* If the return address is in a register, we can emit the insn
unchanged. Otherwise, it must be a MEM and we see what the
base register and offset are. In any case, we have to emit any
pending load to the equivalent reg of SP, if any. */
if (REG_P (retaddr))
{
emit_equiv_load (&info);
add_insn (insn);
insn = next;
continue;
}
else
{
rtx ret_ptr;
gcc_assert (MEM_P (retaddr));
ret_ptr = XEXP (retaddr, 0);
if (REG_P (ret_ptr))
{
base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
offset = 0;
}
else
{
gcc_assert (GET_CODE (ret_ptr) == PLUS
&& REG_P (XEXP (ret_ptr, 0))
&& GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
offset = INTVAL (XEXP (ret_ptr, 1));
}
}
/* If the base of the location containing the return pointer
is SP, we must update it with the replacement address. Otherwise,
just build the necessary MEM. */
retaddr = plus_constant (base, offset);
if (base == stack_pointer_rtx)
retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
plus_constant (info.sp_equiv_reg,
info.sp_offset));
retaddr = gen_rtx_MEM (Pmode, retaddr);
MEM_NOTRAP_P (retaddr) = 1;
/* If there is a pending load to the equivalent register for SP
and we reference that register, we must load our address into
a scratch register and then do that load. */
if (info.equiv_reg_src
&& reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
{
unsigned int regno;
rtx reg;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (HARD_REGNO_MODE_OK (regno, Pmode)
&& !fixed_regs[regno]
&& TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
&& !REGNO_REG_SET_P
(EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
&& !refers_to_regno_p (regno,
regno + hard_regno_nregs[regno]
[Pmode],
info.equiv_reg_src, NULL)
&& info.const_equiv[regno] == 0)
break;
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
reg = gen_rtx_REG (Pmode, regno);
emit_move_insn (reg, retaddr);
retaddr = reg;
}
emit_equiv_load (&info);
jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
/* Show the SET in the above insn is a RETURN. */
jump_set = single_set (jump_insn);
gcc_assert (jump_set);
SET_IS_RETURN_P (jump_set) = 1;
}
/* If SP is not mentioned in the pattern and its equivalent register, if
any, is not modified, just emit it. Otherwise, if neither is set,
replace the reference to SP and emit the insn. If none of those are
true, handle each SET individually. */
else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
&& (info.sp_equiv_reg == stack_pointer_rtx
|| !reg_set_p (info.sp_equiv_reg, insn)))
add_insn (insn);
else if (! reg_set_p (stack_pointer_rtx, insn)
&& (info.sp_equiv_reg == stack_pointer_rtx
|| !reg_set_p (info.sp_equiv_reg, insn)))
{
int changed;
changed = validate_replace_rtx (stack_pointer_rtx,
plus_constant (info.sp_equiv_reg,
info.sp_offset),
insn);
gcc_assert (changed);
add_insn (insn);
}
else if (GET_CODE (PATTERN (insn)) == SET)
handle_epilogue_set (PATTERN (insn), &info);
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
}
else
add_insn (insn);
info.sp_equiv_reg = info.new_sp_equiv_reg;
info.sp_offset = info.new_sp_offset;
/* Now update any constants this insn sets. */
note_stores (PATTERN (insn), update_epilogue_consts, &info);
insn = next;
}
insns = get_insns ();
end_sequence ();
return insns;
}
/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
structure that contains information about what we've seen so far. We
process this SET by either updating that data or by emitting one or
more insns. */
static void
handle_epilogue_set (rtx set, struct epi_info *p)
{
/* First handle the case where we are setting SP. Record what it is being
set from, which we must be able to determine */
if (reg_set_p (stack_pointer_rtx, set))
{
gcc_assert (SET_DEST (set) == stack_pointer_rtx);
if (GET_CODE (SET_SRC (set)) == PLUS)
{
p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
else
{
gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
&& (REGNO (XEXP (SET_SRC (set), 1))
< FIRST_PSEUDO_REGISTER)
&& p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
p->new_sp_offset
= INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
}
}
else
p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
/* If we are adjusting SP, we adjust from the old data. */
if (p->new_sp_equiv_reg == stack_pointer_rtx)
{
p->new_sp_equiv_reg = p->sp_equiv_reg;
p->new_sp_offset += p->sp_offset;
}
gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
return;
}
/* Next handle the case where we are setting SP's equivalent
register. We must not already have a value to set it to. We
could update, but there seems little point in handling that case.
Note that we have to allow for the case where we are setting the
register set in the previous part of a PARALLEL inside a single
insn. But use the old offset for any updates within this insn.
We must allow for the case where the register is being set in a
different (usually wider) mode than Pmode). */
else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
{
gcc_assert (!p->equiv_reg_src
&& REG_P (p->new_sp_equiv_reg)
&& REG_P (SET_DEST (set))
&& (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
<= BITS_PER_WORD)
&& REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
p->equiv_reg_src
= simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
plus_constant (p->sp_equiv_reg,
p->sp_offset));
}
/* Otherwise, replace any references to SP in the insn to its new value
and emit the insn. */
else
{
SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
plus_constant (p->sp_equiv_reg,
p->sp_offset));
SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
plus_constant (p->sp_equiv_reg,
p->sp_offset));
emit_insn (set);
}
}
/* Update the tracking information for registers set to constants. */
static void
update_epilogue_consts (rtx dest, rtx x, void *data)
{
struct epi_info *p = (struct epi_info *) data;
rtx new;
if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
return;
/* If we are either clobbering a register or doing a partial set,
show we don't know the value. */
else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
p->const_equiv[REGNO (dest)] = 0;
/* If we are setting it to a constant, record that constant. */
else if (GET_CODE (SET_SRC (x)) == CONST_INT)
p->const_equiv[REGNO (dest)] = SET_SRC (x);
/* If this is a binary operation between a register we have been tracking
and a constant, see if we can compute a new constant value. */
else if (ARITHMETIC_P (SET_SRC (x))
&& REG_P (XEXP (SET_SRC (x), 0))
&& REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
&& p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& 0 != (new = simplify_binary_operation
(GET_CODE (SET_SRC (x)), GET_MODE (dest),
p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
XEXP (SET_SRC (x), 1)))
&& GET_CODE (new) == CONST_INT)
p->const_equiv[REGNO (dest)] = new;
/* Otherwise, we can't do anything with this value. */
else
p->const_equiv[REGNO (dest)] = 0;
}
/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
static void
emit_equiv_load (struct epi_info *p)
{
if (p->equiv_reg_src != 0)
{
rtx dest = p->sp_equiv_reg;
if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
REGNO (p->sp_equiv_reg));
emit_move_insn (dest, p->equiv_reg_src);
p->equiv_reg_src = 0;
}
}
#endif
/* Generate the prologue and epilogue RTL if the machine supports it. Thread
this into place with notes indicating where the prologue ends and where
the epilogue begins. Update the basic block information when possible. */
void
thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
{
int inserted = 0;
edge e;
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
rtx seq;
#endif
#ifdef HAVE_prologue
rtx prologue_end = NULL_RTX;
#endif
#if defined (HAVE_epilogue) || defined(HAVE_return)
rtx epilogue_end = NULL_RTX;
#endif
edge_iterator ei;
#ifdef HAVE_prologue
if (HAVE_prologue)
{
start_sequence ();
seq = gen_prologue ();
emit_insn (seq);
/* Retain a map of the prologue insns. */
record_insns (seq, &prologue);
prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
#ifndef PROFILE_BEFORE_PROLOGUE
/* Ensure that instructions are not moved into the prologue when
profiling is on. The call to the profiling routine can be
emitted within the live range of a call-clobbered register. */
if (current_function_profile)
emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
#endif
seq = get_insns ();
end_sequence ();
set_insn_locators (seq, prologue_locator);
/* Can't deal with multiple successors of the entry block
at the moment. Function should always have at least one
entry point. */
gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
inserted = 1;
}
#endif
/* If the exit block has no non-fake predecessors, we don't need
an epilogue. */
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if ((e->flags & EDGE_FAKE) == 0)
break;
if (e == NULL)
goto epilogue_done;
#ifdef HAVE_return
if (optimize && HAVE_return)
{
/* If we're allowed to generate a simple return instruction,
then by definition we don't need a full epilogue. Examine
the block that falls through to EXIT. If it does not
contain any code, examine its predecessors and try to
emit (conditional) return instructions. */
basic_block last;
rtx label;
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if (e->flags & EDGE_FALLTHRU)
break;
if (e == NULL)
goto epilogue_done;
last = e->src;
/* Verify that there are no active instructions in the last block. */
label = BB_END (last);
while (label && !LABEL_P (label))
{
if (active_insn_p (label))
break;
label = PREV_INSN (label);
}
if (BB_HEAD (last) == label && LABEL_P (label))
{
edge_iterator ei2;
rtx epilogue_line_note = NULL_RTX;
/* Locate the line number associated with the closing brace,
if we can find one. */
for (seq = get_last_insn ();
seq && ! active_insn_p (seq);
seq = PREV_INSN (seq))
if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
{
epilogue_line_note = seq;
break;
}
for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
{
basic_block bb = e->src;
rtx jump;
if (bb == ENTRY_BLOCK_PTR)
{
ei_next (&ei2);
continue;
}
jump = BB_END (bb);
if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
{
ei_next (&ei2);
continue;
}
/* If we have an unconditional jump, we can replace that
with a simple return instruction. */
if (simplejump_p (jump))
{
emit_return_into_block (bb, epilogue_line_note);
delete_insn (jump);
}
/* If we have a conditional jump, we can try to replace
that with a conditional return instruction. */
else if (condjump_p (jump))
{
if (! redirect_jump (jump, 0, 0))
{
ei_next (&ei2);
continue;
}
/* If this block has only one successor, it both jumps
and falls through to the fallthru block, so we can't
delete the edge. */
if (single_succ_p (bb))
{
ei_next (&ei2);
continue;
}
}
else
{
ei_next (&ei2);
continue;
}
/* Fix up the CFG for the successful change we just made. */
redirect_edge_succ (e, EXIT_BLOCK_PTR);
}
/* Emit a return insn for the exit fallthru block. Whether
this is still reachable will be determined later. */
emit_barrier_after (BB_END (last));
emit_return_into_block (last, epilogue_line_note);
epilogue_end = BB_END (last);
single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
goto epilogue_done;
}
}
#endif
/* Find the edge that falls through to EXIT. Other edges may exist
due to RETURN instructions, but those don't need epilogues.
There really shouldn't be a mixture -- either all should have
been converted or none, however... */
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
if (e->flags & EDGE_FALLTHRU)
break;
if (e == NULL)
goto epilogue_done;
#ifdef HAVE_epilogue
if (HAVE_epilogue)
{
start_sequence ();
epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
seq = gen_epilogue ();
#ifdef INCOMING_RETURN_ADDR_RTX
/* If this function returns with the stack depressed and we can support
it, massage the epilogue to actually do that. */
if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
&& TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
seq = keep_stack_depressed (seq);
#endif
emit_jump_insn (seq);
/* Retain a map of the epilogue insns. */
record_insns (seq, &epilogue);
set_insn_locators (seq, epilogue_locator);
seq = get_insns ();
end_sequence ();
insert_insn_on_edge (seq, e);
inserted = 1;
}
else
#endif
{
basic_block cur_bb;
if (! next_active_insn (BB_END (e->src)))
goto epilogue_done;
/* We have a fall-through edge to the exit block, the source is not
at the end of the function, and there will be an assembler epilogue
at the end of the function.
We can't use force_nonfallthru here, because that would try to
use return. Inserting a jump 'by hand' is extremely messy, so
we take advantage of cfg_layout_finalize using
fixup_fallthru_exit_predecessor. */
cfg_layout_initialize (0);
FOR_EACH_BB (cur_bb)
if (cur_bb->index >= NUM_FIXED_BLOCKS
&& cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
cur_bb->aux = cur_bb->next_bb;
cfg_layout_finalize ();
}
epilogue_done:
if (inserted)
commit_edge_insertions ();
#ifdef HAVE_sibcall_epilogue
/* Emit sibling epilogues before any sibling call sites. */
for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
{
basic_block bb = e->src;
rtx insn = BB_END (bb);
if (!CALL_P (insn)
|| ! SIBLING_CALL_P (insn))
{
ei_next (&ei);
continue;
}
start_sequence ();
emit_insn (gen_sibcall_epilogue ());
seq = get_insns ();
end_sequence ();
/* Retain a map of the epilogue insns. Used in life analysis to
avoid getting rid of sibcall epilogue insns. Do this before we
actually emit the sequence. */
record_insns (seq, &sibcall_epilogue);
set_insn_locators (seq, epilogue_locator);
emit_insn_before (seq, insn);
ei_next (&ei);
}
#endif
#ifdef HAVE_prologue
/* This is probably all useless now that we use locators. */
if (prologue_end)
{
rtx insn, prev;
/* GDB handles `break f' by setting a breakpoint on the first
line note after the prologue. Which means (1) that if
there are line number notes before where we inserted the
prologue we should move them, and (2) we should generate a
note before the end of the first basic block, if there isn't
one already there.
??? This behavior is completely broken when dealing with
multiple entry functions. We simply place the note always
into first basic block and let alternate entry points
to be missed.
*/
for (insn = prologue_end; insn; insn = prev)
{
prev = PREV_INSN (insn);
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
{
/* Note that we cannot reorder the first insn in the
chain, since rest_of_compilation relies on that
remaining constant. */
if (prev == NULL)
break;
reorder_insns (insn, insn, prologue_end);
}
}
/* Find the last line number note in the first block. */
for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
insn != prologue_end && insn;
insn = PREV_INSN (insn))
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
break;
/* If we didn't find one, make a copy of the first line number
we run across. */
if (! insn)
{
for (insn = next_active_insn (prologue_end);
insn;
insn = PREV_INSN (insn))
if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
{
emit_note_copy_after (insn, prologue_end);
break;
}
}
}
#endif
#ifdef HAVE_epilogue
if (epilogue_end)
{
rtx insn, next;
/* Similarly, move any line notes that appear after the epilogue.
There is no need, however, to be quite so anal about the existence
of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
info generation. */
for (insn = epilogue_end; insn; insn = next)
{
next = NEXT_INSN (insn);
if (NOTE_P (insn)
&& (NOTE_LINE_NUMBER (insn) > 0
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
reorder_insns (insn, insn, PREV_INSN (epilogue_end));
}
}
#endif
}
/* Reposition the prologue-end and epilogue-begin notes after instruction
scheduling and delayed branch scheduling. */
void
reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
{
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
rtx insn, last, note;
int len;
if ((len = VEC_length (int, prologue)) > 0)
{
last = 0, note = 0;
/* Scan from the beginning until we reach the last prologue insn.
We apparently can't depend on basic_block_{head,end} after
reorg has run. */
for (insn = f; insn; insn = NEXT_INSN (insn))
{
if (NOTE_P (insn))
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
note = insn;
}
else if (contains (insn, &prologue))
{
last = insn;
if (--len == 0)
break;
}
}
if (last)
{
/* Find the prologue-end note if we haven't already, and
move it to just after the last prologue insn. */
if (note == 0)
{
for (note = last; (note = NEXT_INSN (note));)
if (NOTE_P (note)
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
break;
}
/* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
if (LABEL_P (last))
last = NEXT_INSN (last);
reorder_insns (note, note, last);
}
}
if ((len = VEC_length (int, epilogue)) > 0)
{
last = 0, note = 0;
/* Scan from the end until we reach the first epilogue insn.
We apparently can't depend on basic_block_{head,end} after
reorg has run. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
if (NOTE_P (insn))
{
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
note = insn;
}
else if (contains (insn, &epilogue))
{
last = insn;
if (--len == 0)
break;
}
}
if (last)
{
/* Find the epilogue-begin note if we haven't already, and
move it to just before the first epilogue insn. */
if (note == 0)
{
for (note = insn; (note = PREV_INSN (note));)
if (NOTE_P (note)
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
break;
}
if (PREV_INSN (last) != note)
reorder_insns (note, note, PREV_INSN (last));
}
}
#endif /* HAVE_prologue or HAVE_epilogue */
}
/* Resets insn_block_boundaries array. */
void
reset_block_changes (void)
{
cfun->ib_boundaries_block = VEC_alloc (tree, gc, 100);
VEC_quick_push (tree, cfun->ib_boundaries_block, NULL_TREE);
}
/* Record the boundary for BLOCK. */
void
record_block_change (tree block)
{
int i, n;
tree last_block;
if (!block)
return;
if(!cfun->ib_boundaries_block)
return;
last_block = VEC_pop (tree, cfun->ib_boundaries_block);
n = get_max_uid ();
for (i = VEC_length (tree, cfun->ib_boundaries_block); i < n; i++)
VEC_safe_push (tree, gc, cfun->ib_boundaries_block, last_block);
VEC_safe_push (tree, gc, cfun->ib_boundaries_block, block);
}
/* Finishes record of boundaries. */
void
finalize_block_changes (void)
{
record_block_change (DECL_INITIAL (current_function_decl));
}
/* For INSN return the BLOCK it belongs to. */
void
check_block_change (rtx insn, tree *block)
{
unsigned uid = INSN_UID (insn);
if (uid >= VEC_length (tree, cfun->ib_boundaries_block))
return;
*block = VEC_index (tree, cfun->ib_boundaries_block, uid);
}
/* Releases the ib_boundaries_block records. */
void
free_block_changes (void)
{
VEC_free (tree, gc, cfun->ib_boundaries_block);
}
/* Returns the name of the current function. */
const char *
current_function_name (void)
{
return lang_hooks.decl_printable_name (cfun->decl, 2);
}
static unsigned int
rest_of_handle_check_leaf_regs (void)
{
#ifdef LEAF_REGISTERS
current_function_uses_only_leaf_regs
= optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
#endif
return 0;
}
/* Insert a TYPE into the used types hash table of CFUN. */
static void
used_types_insert_helper (tree type, struct function *func)
{
if (type != NULL && func != NULL)
{
void **slot;
if (func->used_types_hash == NULL)
func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
htab_eq_pointer, NULL);
slot = htab_find_slot (func->used_types_hash, type, INSERT);
if (*slot == NULL)
*slot = type;
}
}
/* Given a type, insert it into the used hash table in cfun. */
void
used_types_insert (tree t)
{
while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
t = TREE_TYPE (t);
t = TYPE_MAIN_VARIANT (t);
if (debug_info_level > DINFO_LEVEL_NONE)
used_types_insert_helper (t, cfun);
}
struct tree_opt_pass pass_leaf_regs =
{
NULL, /* name */
NULL, /* gate */
rest_of_handle_check_leaf_regs, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
0, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
0 /* letter */
};
#include "gt-function.h"
|