1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
|
/* "Bag-of-pages" zone garbage collector for the GNU compiler.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Richard Henderson (rth@redhat.com) and Daniel Berlin
(dberlin@dberlin.org). Rewritten by Daniel Jacobowitz
<dan@codesourcery.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "tm_p.h"
#include "toplev.h"
#include "varray.h"
#include "flags.h"
#include "ggc.h"
#include "timevar.h"
#include "params.h"
#include "bitmap.h"
#ifdef ENABLE_VALGRIND_CHECKING
# ifdef HAVE_VALGRIND_MEMCHECK_H
# include <valgrind/memcheck.h>
# elif defined HAVE_MEMCHECK_H
# include <memcheck.h>
# else
# include <valgrind.h>
# endif
#else
/* Avoid #ifdef:s when we can help it. */
#define VALGRIND_DISCARD(x)
#define VALGRIND_MALLOCLIKE_BLOCK(w,x,y,z)
#define VALGRIND_FREELIKE_BLOCK(x,y)
#endif
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
file open. Prefer either to valloc. */
#ifdef HAVE_MMAP_ANON
# undef HAVE_MMAP_DEV_ZERO
# include <sys/mman.h>
# ifndef MAP_FAILED
# define MAP_FAILED -1
# endif
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
# define MAP_ANONYMOUS MAP_ANON
# endif
# define USING_MMAP
#endif
#ifdef HAVE_MMAP_DEV_ZERO
# include <sys/mman.h>
# ifndef MAP_FAILED
# define MAP_FAILED -1
# endif
# define USING_MMAP
#endif
#ifndef USING_MMAP
#error Zone collector requires mmap
#endif
#if (GCC_VERSION < 3001)
#define prefetch(X) ((void) X)
#define prefetchw(X) ((void) X)
#else
#define prefetch(X) __builtin_prefetch (X)
#define prefetchw(X) __builtin_prefetch (X, 1, 3)
#endif
/* FUTURE NOTES:
If we track inter-zone pointers, we can mark single zones at a
time.
If we have a zone where we guarantee no inter-zone pointers, we
could mark that zone separately.
The garbage zone should not be marked, and we should return 1 in
ggc_set_mark for any object in the garbage zone, which cuts off
marking quickly. */
/* Strategy:
This garbage-collecting allocator segregates objects into zones.
It also segregates objects into "large" and "small" bins. Large
objects are greater than page size.
Pages for small objects are broken up into chunks. The page has
a bitmap which marks the start position of each chunk (whether
allocated or free). Free chunks are on one of the zone's free
lists and contain a pointer to the next free chunk. Chunks in
most of the free lists have a fixed size determined by the
free list. Chunks in the "other" sized free list have their size
stored right after their chain pointer.
Empty pages (of all sizes) are kept on a single page cache list,
and are considered first when new pages are required; they are
deallocated at the start of the next collection if they haven't
been recycled by then. The free page list is currently per-zone. */
/* Define GGC_DEBUG_LEVEL to print debugging information.
0: No debugging output.
1: GC statistics only.
2: Page-entry allocations/deallocations as well.
3: Object allocations as well.
4: Object marks as well. */
#define GGC_DEBUG_LEVEL (0)
#ifndef HOST_BITS_PER_PTR
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
#endif
/* This structure manages small free chunks. The SIZE field is only
initialized if the chunk is in the "other" sized free list. Large
chunks are allocated one at a time to their own page, and so don't
come in here. */
struct alloc_chunk {
struct alloc_chunk *next_free;
unsigned int size;
};
/* The size of the fixed-size portion of a small page descriptor. */
#define PAGE_OVERHEAD (offsetof (struct small_page_entry, alloc_bits))
/* The collector's idea of the page size. This must be a power of two
no larger than the system page size, because pages must be aligned
to this amount and are tracked at this granularity in the page
table. We choose a size at compile time for efficiency.
We could make a better guess at compile time if PAGE_SIZE is a
constant in system headers, and PAGE_SHIFT is defined... */
#define GGC_PAGE_SIZE 4096
#define GGC_PAGE_MASK (GGC_PAGE_SIZE - 1)
#define GGC_PAGE_SHIFT 12
#if 0
/* Alternative definitions which use the runtime page size. */
#define GGC_PAGE_SIZE G.pagesize
#define GGC_PAGE_MASK G.page_mask
#define GGC_PAGE_SHIFT G.lg_pagesize
#endif
/* The size of a small page managed by the garbage collector. This
must currently be GGC_PAGE_SIZE, but with a few changes could
be any multiple of it to reduce certain kinds of overhead. */
#define SMALL_PAGE_SIZE GGC_PAGE_SIZE
/* Free bin information. These numbers may be in need of re-tuning.
In general, decreasing the number of free bins would seem to
increase the time it takes to allocate... */
/* FIXME: We can't use anything but MAX_ALIGNMENT for the bin size
today. */
#define NUM_FREE_BINS 64
#define FREE_BIN_DELTA MAX_ALIGNMENT
#define SIZE_BIN_DOWN(SIZE) ((SIZE) / FREE_BIN_DELTA)
/* Allocation and marking parameters. */
/* The smallest allocatable unit to keep track of. */
#define BYTES_PER_ALLOC_BIT MAX_ALIGNMENT
/* The smallest markable unit. If we require each allocated object
to contain at least two allocatable units, we can use half as many
bits for the mark bitmap. But this adds considerable complexity
to sweeping. */
#define BYTES_PER_MARK_BIT BYTES_PER_ALLOC_BIT
#define BYTES_PER_MARK_WORD (8 * BYTES_PER_MARK_BIT * sizeof (mark_type))
/* We use this structure to determine the alignment required for
allocations.
There are several things wrong with this estimation of alignment.
The maximum alignment for a structure is often less than the
maximum alignment for a basic data type; for instance, on some
targets long long must be aligned to sizeof (int) in a structure
and sizeof (long long) in a variable. i386-linux is one example;
Darwin is another (sometimes, depending on the compiler in use).
Also, long double is not included. Nothing in GCC uses long
double, so we assume that this is OK. On powerpc-darwin, adding
long double would bring the maximum alignment up to 16 bytes,
and until we need long double (or to vectorize compiler operations)
that's painfully wasteful. This will need to change, some day. */
struct max_alignment {
char c;
union {
HOST_WIDEST_INT i;
double d;
} u;
};
/* The biggest alignment required. */
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
/* Compute the smallest multiple of F that is >= X. */
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
/* Types to use for the allocation and mark bitmaps. It might be
a good idea to add ffsl to libiberty and use unsigned long
instead; that could speed us up where long is wider than int. */
typedef unsigned int alloc_type;
typedef unsigned int mark_type;
#define alloc_ffs(x) ffs(x)
/* A page_entry records the status of an allocation page. This is the
common data between all three kinds of pages - small, large, and
PCH. */
typedef struct page_entry
{
/* The address at which the memory is allocated. */
char *page;
/* The zone that this page entry belongs to. */
struct alloc_zone *zone;
#ifdef GATHER_STATISTICS
/* How many collections we've survived. */
size_t survived;
#endif
/* Does this page contain small objects, or one large object? */
bool large_p;
/* Is this page part of the loaded PCH? */
bool pch_p;
} page_entry;
/* Additional data needed for small pages. */
struct small_page_entry
{
struct page_entry common;
/* The next small page entry, or NULL if this is the last. */
struct small_page_entry *next;
/* If currently marking this zone, a pointer to the mark bits
for this page. If we aren't currently marking this zone,
this pointer may be stale (pointing to freed memory). */
mark_type *mark_bits;
/* The allocation bitmap. This array extends far enough to have
one bit for every BYTES_PER_ALLOC_BIT bytes in the page. */
alloc_type alloc_bits[1];
};
/* Additional data needed for large pages. */
struct large_page_entry
{
struct page_entry common;
/* The next large page entry, or NULL if this is the last. */
struct large_page_entry *next;
/* The number of bytes allocated, not including the page entry. */
size_t bytes;
/* The previous page in the list, so that we can unlink this one. */
struct large_page_entry *prev;
/* During marking, is this object marked? */
bool mark_p;
};
/* A two-level tree is used to look up the page-entry for a given
pointer. Two chunks of the pointer's bits are extracted to index
the first and second levels of the tree, as follows:
HOST_PAGE_SIZE_BITS
32 | |
msb +----------------+----+------+------+ lsb
| | |
PAGE_L1_BITS |
| |
PAGE_L2_BITS
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
pages are aligned on system page boundaries. The next most
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
index values in the lookup table, respectively.
For 32-bit architectures and the settings below, there are no
leftover bits. For architectures with wider pointers, the lookup
tree points to a list of pages, which must be scanned to find the
correct one. */
#define PAGE_L1_BITS (8)
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - GGC_PAGE_SHIFT)
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
#define LOOKUP_L1(p) \
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
#define LOOKUP_L2(p) \
(((size_t) (p) >> GGC_PAGE_SHIFT) & ((1 << PAGE_L2_BITS) - 1))
#if HOST_BITS_PER_PTR <= 32
/* On 32-bit hosts, we use a two level page table, as pictured above. */
typedef page_entry **page_table[PAGE_L1_SIZE];
#else
/* On 64-bit hosts, we use the same two level page tables plus a linked
list that disambiguates the top 32-bits. There will almost always be
exactly one entry in the list. */
typedef struct page_table_chain
{
struct page_table_chain *next;
size_t high_bits;
page_entry **table[PAGE_L1_SIZE];
} *page_table;
#endif
/* The global variables. */
static struct globals
{
/* The linked list of zones. */
struct alloc_zone *zones;
/* Lookup table for associating allocation pages with object addresses. */
page_table lookup;
/* The system's page size, and related constants. */
size_t pagesize;
size_t lg_pagesize;
size_t page_mask;
/* The size to allocate for a small page entry. This includes
the size of the structure and the size of the allocation
bitmap. */
size_t small_page_overhead;
#if defined (HAVE_MMAP_DEV_ZERO)
/* A file descriptor open to /dev/zero for reading. */
int dev_zero_fd;
#endif
/* Allocate pages in chunks of this size, to throttle calls to memory
allocation routines. The first page is used, the rest go onto the
free list. */
size_t quire_size;
/* The file descriptor for debugging output. */
FILE *debug_file;
} G;
/* A zone allocation structure. There is one of these for every
distinct allocation zone. */
struct alloc_zone
{
/* The most recent free chunk is saved here, instead of in the linked
free list, to decrease list manipulation. It is most likely that we
will want this one. */
char *cached_free;
size_t cached_free_size;
/* Linked lists of free storage. Slots 1 ... NUM_FREE_BINS have chunks of size
FREE_BIN_DELTA. All other chunks are in slot 0. */
struct alloc_chunk *free_chunks[NUM_FREE_BINS + 1];
/* The highest bin index which might be non-empty. It may turn out
to be empty, in which case we have to search downwards. */
size_t high_free_bin;
/* Bytes currently allocated in this zone. */
size_t allocated;
/* Linked list of the small pages in this zone. */
struct small_page_entry *pages;
/* Doubly linked list of large pages in this zone. */
struct large_page_entry *large_pages;
/* If we are currently marking this zone, a pointer to the mark bits. */
mark_type *mark_bits;
/* Name of the zone. */
const char *name;
/* The number of small pages currently allocated in this zone. */
size_t n_small_pages;
/* Bytes allocated at the end of the last collection. */
size_t allocated_last_gc;
/* Total amount of memory mapped. */
size_t bytes_mapped;
/* A cache of free system pages. */
struct small_page_entry *free_pages;
/* Next zone in the linked list of zones. */
struct alloc_zone *next_zone;
/* True if this zone was collected during this collection. */
bool was_collected;
/* True if this zone should be destroyed after the next collection. */
bool dead;
#ifdef GATHER_STATISTICS
struct
{
/* Total memory allocated with ggc_alloc. */
unsigned long long total_allocated;
/* Total overhead for memory to be allocated with ggc_alloc. */
unsigned long long total_overhead;
/* Total allocations and overhead for sizes less than 32, 64 and 128.
These sizes are interesting because they are typical cache line
sizes. */
unsigned long long total_allocated_under32;
unsigned long long total_overhead_under32;
unsigned long long total_allocated_under64;
unsigned long long total_overhead_under64;
unsigned long long total_allocated_under128;
unsigned long long total_overhead_under128;
} stats;
#endif
} main_zone;
/* Some default zones. */
struct alloc_zone rtl_zone;
struct alloc_zone tree_zone;
struct alloc_zone tree_id_zone;
/* The PCH zone does not need a normal zone structure, and it does
not live on the linked list of zones. */
struct pch_zone
{
/* The start of the PCH zone. NULL if there is none. */
char *page;
/* The end of the PCH zone. NULL if there is none. */
char *end;
/* The size of the PCH zone. 0 if there is none. */
size_t bytes;
/* The allocation bitmap for the PCH zone. */
alloc_type *alloc_bits;
/* If we are currently marking, the mark bitmap for the PCH zone.
When it is first read in, we could avoid marking the PCH,
because it will not contain any pointers to GC memory outside
of the PCH; however, the PCH is currently mapped as writable,
so we must mark it in case new pointers are added. */
mark_type *mark_bits;
} pch_zone;
#ifdef USING_MMAP
static char *alloc_anon (char *, size_t, struct alloc_zone *);
#endif
static struct small_page_entry * alloc_small_page (struct alloc_zone *);
static struct large_page_entry * alloc_large_page (size_t, struct alloc_zone *);
static void free_chunk (char *, size_t, struct alloc_zone *);
static void free_small_page (struct small_page_entry *);
static void free_large_page (struct large_page_entry *);
static void release_pages (struct alloc_zone *);
static void sweep_pages (struct alloc_zone *);
static bool ggc_collect_1 (struct alloc_zone *, bool);
static void new_ggc_zone_1 (struct alloc_zone *, const char *);
/* Traverse the page table and find the entry for a page.
Die (probably) if the object wasn't allocated via GC. */
static inline page_entry *
lookup_page_table_entry (const void *p)
{
page_entry ***base;
size_t L1, L2;
#if HOST_BITS_PER_PTR <= 32
base = &G.lookup[0];
#else
page_table table = G.lookup;
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
while (table->high_bits != high_bits)
table = table->next;
base = &table->table[0];
#endif
/* Extract the level 1 and 2 indices. */
L1 = LOOKUP_L1 (p);
L2 = LOOKUP_L2 (p);
return base[L1][L2];
}
/* Set the page table entry for the page that starts at P. If ENTRY
is NULL, clear the entry. */
static void
set_page_table_entry (void *p, page_entry *entry)
{
page_entry ***base;
size_t L1, L2;
#if HOST_BITS_PER_PTR <= 32
base = &G.lookup[0];
#else
page_table table;
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
for (table = G.lookup; table; table = table->next)
if (table->high_bits == high_bits)
goto found;
/* Not found -- allocate a new table. */
table = xcalloc (1, sizeof(*table));
table->next = G.lookup;
table->high_bits = high_bits;
G.lookup = table;
found:
base = &table->table[0];
#endif
/* Extract the level 1 and 2 indices. */
L1 = LOOKUP_L1 (p);
L2 = LOOKUP_L2 (p);
if (base[L1] == NULL)
base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
base[L1][L2] = entry;
}
/* Find the page table entry associated with OBJECT. */
static inline struct page_entry *
zone_get_object_page (const void *object)
{
return lookup_page_table_entry (object);
}
/* Find which element of the alloc_bits array OBJECT should be
recorded in. */
static inline unsigned int
zone_get_object_alloc_word (const void *object)
{
return (((size_t) object & (GGC_PAGE_SIZE - 1))
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
}
/* Find which bit of the appropriate word in the alloc_bits array
OBJECT should be recorded in. */
static inline unsigned int
zone_get_object_alloc_bit (const void *object)
{
return (((size_t) object / BYTES_PER_ALLOC_BIT)
% (8 * sizeof (alloc_type)));
}
/* Find which element of the mark_bits array OBJECT should be recorded
in. */
static inline unsigned int
zone_get_object_mark_word (const void *object)
{
return (((size_t) object & (GGC_PAGE_SIZE - 1))
/ (8 * sizeof (mark_type) * BYTES_PER_MARK_BIT));
}
/* Find which bit of the appropriate word in the mark_bits array
OBJECT should be recorded in. */
static inline unsigned int
zone_get_object_mark_bit (const void *object)
{
return (((size_t) object / BYTES_PER_MARK_BIT)
% (8 * sizeof (mark_type)));
}
/* Set the allocation bit corresponding to OBJECT in its page's
bitmap. Used to split this object from the preceding one. */
static inline void
zone_set_object_alloc_bit (const void *object)
{
struct small_page_entry *page
= (struct small_page_entry *) zone_get_object_page (object);
unsigned int start_word = zone_get_object_alloc_word (object);
unsigned int start_bit = zone_get_object_alloc_bit (object);
page->alloc_bits[start_word] |= 1L << start_bit;
}
/* Clear the allocation bit corresponding to OBJECT in PAGE's
bitmap. Used to coalesce this object with the preceding
one. */
static inline void
zone_clear_object_alloc_bit (struct small_page_entry *page,
const void *object)
{
unsigned int start_word = zone_get_object_alloc_word (object);
unsigned int start_bit = zone_get_object_alloc_bit (object);
/* Would xor be quicker? */
page->alloc_bits[start_word] &= ~(1L << start_bit);
}
/* Find the size of the object which starts at START_WORD and
START_BIT in ALLOC_BITS, which is at most MAX_SIZE bytes.
Helper function for ggc_get_size and zone_find_object_size. */
static inline size_t
zone_object_size_1 (alloc_type *alloc_bits,
size_t start_word, size_t start_bit,
size_t max_size)
{
size_t size;
alloc_type alloc_word;
int indx;
/* Load the first word. */
alloc_word = alloc_bits[start_word++];
/* If that was the last bit in this word, we'll want to continue
with the next word. Otherwise, handle the rest of this word. */
if (start_bit)
{
indx = alloc_ffs (alloc_word >> start_bit);
if (indx)
/* indx is 1-based. We started at the bit after the object's
start, but we also ended at the bit after the object's end.
It cancels out. */
return indx * BYTES_PER_ALLOC_BIT;
/* The extra 1 accounts for the starting unit, before start_bit. */
size = (sizeof (alloc_type) * 8 - start_bit + 1) * BYTES_PER_ALLOC_BIT;
if (size >= max_size)
return max_size;
alloc_word = alloc_bits[start_word++];
}
else
size = BYTES_PER_ALLOC_BIT;
while (alloc_word == 0)
{
size += sizeof (alloc_type) * 8 * BYTES_PER_ALLOC_BIT;
if (size >= max_size)
return max_size;
alloc_word = alloc_bits[start_word++];
}
indx = alloc_ffs (alloc_word);
return size + (indx - 1) * BYTES_PER_ALLOC_BIT;
}
/* Find the size of OBJECT on small page PAGE. */
static inline size_t
zone_find_object_size (struct small_page_entry *page,
const void *object)
{
const char *object_midptr = (const char *) object + BYTES_PER_ALLOC_BIT;
unsigned int start_word = zone_get_object_alloc_word (object_midptr);
unsigned int start_bit = zone_get_object_alloc_bit (object_midptr);
size_t max_size = (page->common.page + SMALL_PAGE_SIZE
- (char *) object);
return zone_object_size_1 (page->alloc_bits, start_word, start_bit,
max_size);
}
/* Allocate the mark bits for every zone, and set the pointers on each
page. */
static void
zone_allocate_marks (void)
{
struct alloc_zone *zone;
for (zone = G.zones; zone; zone = zone->next_zone)
{
struct small_page_entry *page;
mark_type *cur_marks;
size_t mark_words, mark_words_per_page;
#ifdef ENABLE_CHECKING
size_t n = 0;
#endif
mark_words_per_page
= (GGC_PAGE_SIZE + BYTES_PER_MARK_WORD - 1) / BYTES_PER_MARK_WORD;
mark_words = zone->n_small_pages * mark_words_per_page;
zone->mark_bits = (mark_type *) xcalloc (sizeof (mark_type),
mark_words);
cur_marks = zone->mark_bits;
for (page = zone->pages; page; page = page->next)
{
page->mark_bits = cur_marks;
cur_marks += mark_words_per_page;
#ifdef ENABLE_CHECKING
n++;
#endif
}
#ifdef ENABLE_CHECKING
gcc_assert (n == zone->n_small_pages);
#endif
}
/* We don't collect the PCH zone, but we do have to mark it
(for now). */
if (pch_zone.bytes)
pch_zone.mark_bits
= (mark_type *) xcalloc (sizeof (mark_type),
CEIL (pch_zone.bytes, BYTES_PER_MARK_WORD));
}
/* After marking and sweeping, release the memory used for mark bits. */
static void
zone_free_marks (void)
{
struct alloc_zone *zone;
for (zone = G.zones; zone; zone = zone->next_zone)
if (zone->mark_bits)
{
free (zone->mark_bits);
zone->mark_bits = NULL;
}
if (pch_zone.bytes)
{
free (pch_zone.mark_bits);
pch_zone.mark_bits = NULL;
}
}
#ifdef USING_MMAP
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
(if non-null). The ifdef structure here is intended to cause a
compile error unless exactly one of the HAVE_* is defined. */
static inline char *
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, struct alloc_zone *zone)
{
#ifdef HAVE_MMAP_ANON
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#endif
#ifdef HAVE_MMAP_DEV_ZERO
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE, G.dev_zero_fd, 0);
#endif
if (page == (char *) MAP_FAILED)
{
perror ("virtual memory exhausted");
exit (FATAL_EXIT_CODE);
}
/* Remember that we allocated this memory. */
zone->bytes_mapped += size;
/* Pretend we don't have access to the allocated pages. We'll enable
access to smaller pieces of the area in ggc_alloc. Discard the
handle to avoid handle leak. */
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
return page;
}
#endif
/* Allocate a new page for allocating small objects in ZONE, and
return an entry for it. */
static struct small_page_entry *
alloc_small_page (struct alloc_zone *zone)
{
struct small_page_entry *entry;
/* Check the list of free pages for one we can use. */
entry = zone->free_pages;
if (entry != NULL)
{
/* Recycle the allocated memory from this page ... */
zone->free_pages = entry->next;
}
else
{
/* We want just one page. Allocate a bunch of them and put the
extras on the freelist. (Can only do this optimization with
mmap for backing store.) */
struct small_page_entry *e, *f = zone->free_pages;
int i;
char *page;
page = alloc_anon (NULL, GGC_PAGE_SIZE * G.quire_size, zone);
/* This loop counts down so that the chain will be in ascending
memory order. */
for (i = G.quire_size - 1; i >= 1; i--)
{
e = xcalloc (1, G.small_page_overhead);
e->common.page = page + (i << GGC_PAGE_SHIFT);
e->common.zone = zone;
e->next = f;
f = e;
set_page_table_entry (e->common.page, &e->common);
}
zone->free_pages = f;
entry = xcalloc (1, G.small_page_overhead);
entry->common.page = page;
entry->common.zone = zone;
set_page_table_entry (page, &entry->common);
}
zone->n_small_pages++;
if (GGC_DEBUG_LEVEL >= 2)
fprintf (G.debug_file,
"Allocating %s page at %p, data %p-%p\n",
entry->common.zone->name, (PTR) entry, entry->common.page,
entry->common.page + SMALL_PAGE_SIZE - 1);
return entry;
}
/* Allocate a large page of size SIZE in ZONE. */
static struct large_page_entry *
alloc_large_page (size_t size, struct alloc_zone *zone)
{
struct large_page_entry *entry;
char *page;
size_t needed_size;
needed_size = size + sizeof (struct large_page_entry);
page = xmalloc (needed_size);
entry = (struct large_page_entry *) page;
entry->next = NULL;
entry->common.page = page + sizeof (struct large_page_entry);
entry->common.large_p = true;
entry->common.pch_p = false;
entry->common.zone = zone;
#ifdef GATHER_STATISTICS
entry->common.survived = 0;
#endif
entry->mark_p = false;
entry->bytes = size;
entry->prev = NULL;
set_page_table_entry (entry->common.page, &entry->common);
if (GGC_DEBUG_LEVEL >= 2)
fprintf (G.debug_file,
"Allocating %s large page at %p, data %p-%p\n",
entry->common.zone->name, (PTR) entry, entry->common.page,
entry->common.page + SMALL_PAGE_SIZE - 1);
return entry;
}
/* For a page that is no longer needed, put it on the free page list. */
static inline void
free_small_page (struct small_page_entry *entry)
{
if (GGC_DEBUG_LEVEL >= 2)
fprintf (G.debug_file,
"Deallocating %s page at %p, data %p-%p\n",
entry->common.zone->name, (PTR) entry,
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
gcc_assert (!entry->common.large_p);
/* Mark the page as inaccessible. Discard the handle to
avoid handle leak. */
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->common.page,
SMALL_PAGE_SIZE));
entry->next = entry->common.zone->free_pages;
entry->common.zone->free_pages = entry;
entry->common.zone->n_small_pages--;
}
/* Release a large page that is no longer needed. */
static inline void
free_large_page (struct large_page_entry *entry)
{
if (GGC_DEBUG_LEVEL >= 2)
fprintf (G.debug_file,
"Deallocating %s page at %p, data %p-%p\n",
entry->common.zone->name, (PTR) entry,
entry->common.page, entry->common.page + SMALL_PAGE_SIZE - 1);
gcc_assert (entry->common.large_p);
set_page_table_entry (entry->common.page, NULL);
free (entry);
}
/* Release the free page cache to the system. */
static void
release_pages (struct alloc_zone *zone)
{
#ifdef USING_MMAP
struct small_page_entry *p, *next;
char *start;
size_t len;
/* Gather up adjacent pages so they are unmapped together. */
p = zone->free_pages;
while (p)
{
start = p->common.page;
next = p->next;
len = SMALL_PAGE_SIZE;
set_page_table_entry (p->common.page, NULL);
p = next;
while (p && p->common.page == start + len)
{
next = p->next;
len += SMALL_PAGE_SIZE;
set_page_table_entry (p->common.page, NULL);
p = next;
}
munmap (start, len);
zone->bytes_mapped -= len;
}
zone->free_pages = NULL;
#endif
}
/* Place the block at PTR of size SIZE on the free list for ZONE. */
static inline void
free_chunk (char *ptr, size_t size, struct alloc_zone *zone)
{
struct alloc_chunk *chunk = (struct alloc_chunk *) ptr;
size_t bin = 0;
bin = SIZE_BIN_DOWN (size);
gcc_assert (bin != 0);
if (bin > NUM_FREE_BINS)
{
bin = 0;
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (chunk, sizeof (struct alloc_chunk)));
chunk->size = size;
chunk->next_free = zone->free_chunks[bin];
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (ptr + sizeof (struct alloc_chunk),
size - sizeof (struct alloc_chunk)));
}
else
{
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (chunk, sizeof (struct alloc_chunk *)));
chunk->next_free = zone->free_chunks[bin];
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (ptr + sizeof (struct alloc_chunk *),
size - sizeof (struct alloc_chunk *)));
}
zone->free_chunks[bin] = chunk;
if (bin > zone->high_free_bin)
zone->high_free_bin = bin;
if (GGC_DEBUG_LEVEL >= 3)
fprintf (G.debug_file, "Deallocating object, chunk=%p\n", (void *)chunk);
}
/* Allocate a chunk of memory of at least ORIG_SIZE bytes, in ZONE. */
void *
ggc_alloc_zone_stat (size_t orig_size, struct alloc_zone *zone
MEM_STAT_DECL)
{
size_t bin;
size_t csize;
struct small_page_entry *entry;
struct alloc_chunk *chunk, **pp;
void *result;
size_t size = orig_size;
/* Make sure that zero-sized allocations get a unique and freeable
pointer. */
if (size == 0)
size = MAX_ALIGNMENT;
else
size = (size + MAX_ALIGNMENT - 1) & -MAX_ALIGNMENT;
/* Try to allocate the object from several different sources. Each
of these cases is responsible for setting RESULT and SIZE to
describe the allocated block, before jumping to FOUND. If a
chunk is split, the allocate bit for the new chunk should also be
set.
Large objects are handled specially. However, they'll just fail
the next couple of conditions, so we can wait to check for them
below. The large object case is relatively rare (< 1%), so this
is a win. */
/* First try to split the last chunk we allocated. For best
fragmentation behavior it would be better to look for a
free bin of the appropriate size for a small object. However,
we're unlikely (1% - 7%) to find one, and this gives better
locality behavior anyway. This case handles the lion's share
of all calls to this function. */
if (size <= zone->cached_free_size)
{
result = zone->cached_free;
zone->cached_free_size -= size;
if (zone->cached_free_size)
{
zone->cached_free += size;
zone_set_object_alloc_bit (zone->cached_free);
}
goto found;
}
/* Next, try to find a free bin of the exactly correct size. */
/* We want to round SIZE up, rather than down, but we know it's
already aligned to at least FREE_BIN_DELTA, so we can just
shift. */
bin = SIZE_BIN_DOWN (size);
if (bin <= NUM_FREE_BINS
&& (chunk = zone->free_chunks[bin]) != NULL)
{
/* We have a chunk of the right size. Pull it off the free list
and use it. */
zone->free_chunks[bin] = chunk->next_free;
/* NOTE: SIZE is only guaranteed to be right if MAX_ALIGNMENT
== FREE_BIN_DELTA. */
result = chunk;
/* The allocation bits are already set correctly. HIGH_FREE_BIN
may now be wrong, if this was the last chunk in the high bin.
Rather than fixing it up now, wait until we need to search
the free bins. */
goto found;
}
/* Next, if there wasn't a chunk of the ideal size, look for a chunk
to split. We can find one in the too-big bin, or in the largest
sized bin with a chunk in it. Try the largest normal-sized bin
first. */
if (zone->high_free_bin > bin)
{
/* Find the highest numbered free bin. It will be at or below
the watermark. */
while (zone->high_free_bin > bin
&& zone->free_chunks[zone->high_free_bin] == NULL)
zone->high_free_bin--;
if (zone->high_free_bin > bin)
{
size_t tbin = zone->high_free_bin;
chunk = zone->free_chunks[tbin];
/* Remove the chunk from its previous bin. */
zone->free_chunks[tbin] = chunk->next_free;
result = (char *) chunk;
/* Save the rest of the chunk for future allocation. */
if (zone->cached_free_size)
free_chunk (zone->cached_free, zone->cached_free_size, zone);
chunk = (struct alloc_chunk *) ((char *) result + size);
zone->cached_free = (char *) chunk;
zone->cached_free_size = (tbin - bin) * FREE_BIN_DELTA;
/* Mark the new free chunk as an object, so that we can
find the size of the newly allocated object. */
zone_set_object_alloc_bit (chunk);
/* HIGH_FREE_BIN may now be wrong, if this was the last
chunk in the high bin. Rather than fixing it up now,
wait until we need to search the free bins. */
goto found;
}
}
/* Failing that, look through the "other" bucket for a chunk
that is large enough. */
pp = &(zone->free_chunks[0]);
chunk = *pp;
while (chunk && chunk->size < size)
{
pp = &chunk->next_free;
chunk = *pp;
}
if (chunk)
{
/* Remove the chunk from its previous bin. */
*pp = chunk->next_free;
result = (char *) chunk;
/* Save the rest of the chunk for future allocation, if there's any
left over. */
csize = chunk->size;
if (csize > size)
{
if (zone->cached_free_size)
free_chunk (zone->cached_free, zone->cached_free_size, zone);
chunk = (struct alloc_chunk *) ((char *) result + size);
zone->cached_free = (char *) chunk;
zone->cached_free_size = csize - size;
/* Mark the new free chunk as an object. */
zone_set_object_alloc_bit (chunk);
}
goto found;
}
/* Handle large allocations. We could choose any threshold between
GGC_PAGE_SIZE - sizeof (struct large_page_entry) and
GGC_PAGE_SIZE. It can't be smaller, because then it wouldn't
be guaranteed to have a unique entry in the lookup table. Large
allocations will always fall through to here. */
if (size > GGC_PAGE_SIZE)
{
struct large_page_entry *entry = alloc_large_page (size, zone);
#ifdef GATHER_STATISTICS
entry->common.survived = 0;
#endif
entry->next = zone->large_pages;
if (zone->large_pages)
zone->large_pages->prev = entry;
zone->large_pages = entry;
result = entry->common.page;
goto found;
}
/* Failing everything above, allocate a new small page. */
entry = alloc_small_page (zone);
entry->next = zone->pages;
zone->pages = entry;
/* Mark the first chunk in the new page. */
entry->alloc_bits[0] = 1;
result = entry->common.page;
if (size < SMALL_PAGE_SIZE)
{
if (zone->cached_free_size)
free_chunk (zone->cached_free, zone->cached_free_size, zone);
zone->cached_free = (char *) result + size;
zone->cached_free_size = SMALL_PAGE_SIZE - size;
/* Mark the new free chunk as an object. */
zone_set_object_alloc_bit (zone->cached_free);
}
found:
/* We could save TYPE in the chunk, but we don't use that for
anything yet. If we wanted to, we could do it by adding it
either before the beginning of the chunk or after its end,
and adjusting the size and pointer appropriately. */
/* We'll probably write to this after we return. */
prefetchw (result);
#ifdef ENABLE_GC_CHECKING
/* `Poison' the entire allocated object. */
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
memset (result, 0xaf, size);
VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (result + orig_size,
size - orig_size));
#endif
/* Tell Valgrind that the memory is there, but its content isn't
defined. The bytes at the end of the object are still marked
unaccessible. */
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, orig_size));
/* Keep track of how many bytes are being allocated. This
information is used in deciding when to collect. */
zone->allocated += size;
timevar_ggc_mem_total += size;
#ifdef GATHER_STATISTICS
ggc_record_overhead (orig_size, size - orig_size, result PASS_MEM_STAT);
{
size_t object_size = size;
size_t overhead = object_size - orig_size;
zone->stats.total_overhead += overhead;
zone->stats.total_allocated += object_size;
if (orig_size <= 32)
{
zone->stats.total_overhead_under32 += overhead;
zone->stats.total_allocated_under32 += object_size;
}
if (orig_size <= 64)
{
zone->stats.total_overhead_under64 += overhead;
zone->stats.total_allocated_under64 += object_size;
}
if (orig_size <= 128)
{
zone->stats.total_overhead_under128 += overhead;
zone->stats.total_allocated_under128 += object_size;
}
}
#endif
if (GGC_DEBUG_LEVEL >= 3)
fprintf (G.debug_file, "Allocating object, size=%lu at %p\n",
(unsigned long) size, result);
return result;
}
/* Allocate a SIZE of chunk memory of GTE type, into an appropriate zone
for that type. */
void *
ggc_alloc_typed_stat (enum gt_types_enum gte, size_t size
MEM_STAT_DECL)
{
switch (gte)
{
case gt_ggc_e_14lang_tree_node:
return ggc_alloc_zone_pass_stat (size, &tree_zone);
case gt_ggc_e_7rtx_def:
return ggc_alloc_zone_pass_stat (size, &rtl_zone);
case gt_ggc_e_9rtvec_def:
return ggc_alloc_zone_pass_stat (size, &rtl_zone);
default:
return ggc_alloc_zone_pass_stat (size, &main_zone);
}
}
/* Normal ggc_alloc simply allocates into the main zone. */
void *
ggc_alloc_stat (size_t size MEM_STAT_DECL)
{
return ggc_alloc_zone_pass_stat (size, &main_zone);
}
/* Poison the chunk. */
#ifdef ENABLE_GC_CHECKING
#define poison_region(PTR, SIZE) \
memset ((PTR), 0xa5, (SIZE))
#else
#define poison_region(PTR, SIZE)
#endif
/* Free the object at P. */
void
ggc_free (void *p)
{
struct page_entry *page;
#ifdef GATHER_STATISTICS
ggc_free_overhead (p);
#endif
poison_region (p, ggc_get_size (p));
page = zone_get_object_page (p);
if (page->large_p)
{
struct large_page_entry *large_page
= (struct large_page_entry *) page;
/* Remove the page from the linked list. */
if (large_page->prev)
large_page->prev->next = large_page->next;
else
{
gcc_assert (large_page->common.zone->large_pages == large_page);
large_page->common.zone->large_pages = large_page->next;
}
if (large_page->next)
large_page->next->prev = large_page->prev;
large_page->common.zone->allocated -= large_page->bytes;
/* Release the memory associated with this object. */
free_large_page (large_page);
}
else if (page->pch_p)
/* Don't do anything. We won't allocate a new object from the
PCH zone so there's no point in releasing anything. */
;
else
{
size_t size = ggc_get_size (p);
page->zone->allocated -= size;
/* Add the chunk to the free list. We don't bother with coalescing,
since we are likely to want a chunk of this size again. */
free_chunk (p, size, page->zone);
}
}
/* If P is not marked, mark it and return false. Otherwise return true.
P must have been allocated by the GC allocator; it mustn't point to
static objects, stack variables, or memory allocated with malloc. */
int
ggc_set_mark (const void *p)
{
struct page_entry *page;
const char *ptr = (const char *) p;
page = zone_get_object_page (p);
if (page->pch_p)
{
size_t mark_word, mark_bit, offset;
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
mark_word = offset / (8 * sizeof (mark_type));
mark_bit = offset % (8 * sizeof (mark_type));
if (pch_zone.mark_bits[mark_word] & (1 << mark_bit))
return 1;
pch_zone.mark_bits[mark_word] |= (1 << mark_bit);
}
else if (page->large_p)
{
struct large_page_entry *large_page
= (struct large_page_entry *) page;
if (large_page->mark_p)
return 1;
large_page->mark_p = true;
}
else
{
struct small_page_entry *small_page
= (struct small_page_entry *) page;
if (small_page->mark_bits[zone_get_object_mark_word (p)]
& (1 << zone_get_object_mark_bit (p)))
return 1;
small_page->mark_bits[zone_get_object_mark_word (p)]
|= (1 << zone_get_object_mark_bit (p));
}
if (GGC_DEBUG_LEVEL >= 4)
fprintf (G.debug_file, "Marking %p\n", p);
return 0;
}
/* Return 1 if P has been marked, zero otherwise.
P must have been allocated by the GC allocator; it mustn't point to
static objects, stack variables, or memory allocated with malloc. */
int
ggc_marked_p (const void *p)
{
struct page_entry *page;
const char *ptr = p;
page = zone_get_object_page (p);
if (page->pch_p)
{
size_t mark_word, mark_bit, offset;
offset = (ptr - pch_zone.page) / BYTES_PER_MARK_BIT;
mark_word = offset / (8 * sizeof (mark_type));
mark_bit = offset % (8 * sizeof (mark_type));
return (pch_zone.mark_bits[mark_word] & (1 << mark_bit)) != 0;
}
if (page->large_p)
{
struct large_page_entry *large_page
= (struct large_page_entry *) page;
return large_page->mark_p;
}
else
{
struct small_page_entry *small_page
= (struct small_page_entry *) page;
return 0 != (small_page->mark_bits[zone_get_object_mark_word (p)]
& (1 << zone_get_object_mark_bit (p)));
}
}
/* Return the size of the gc-able object P. */
size_t
ggc_get_size (const void *p)
{
struct page_entry *page;
const char *ptr = (const char *) p;
page = zone_get_object_page (p);
if (page->pch_p)
{
size_t alloc_word, alloc_bit, offset, max_size;
offset = (ptr - pch_zone.page) / BYTES_PER_ALLOC_BIT + 1;
alloc_word = offset / (8 * sizeof (alloc_type));
alloc_bit = offset % (8 * sizeof (alloc_type));
max_size = pch_zone.bytes - (ptr - pch_zone.page);
return zone_object_size_1 (pch_zone.alloc_bits, alloc_word, alloc_bit,
max_size);
}
if (page->large_p)
return ((struct large_page_entry *)page)->bytes;
else
return zone_find_object_size ((struct small_page_entry *) page, p);
}
/* Initialize the ggc-zone-mmap allocator. */
void
init_ggc (void)
{
/* The allocation size must be greater than BYTES_PER_MARK_BIT, and
a multiple of both BYTES_PER_ALLOC_BIT and FREE_BIN_DELTA, for
the current assumptions to hold. */
gcc_assert (FREE_BIN_DELTA == MAX_ALIGNMENT);
/* Set up the main zone by hand. */
main_zone.name = "Main zone";
G.zones = &main_zone;
/* Allocate the default zones. */
new_ggc_zone_1 (&rtl_zone, "RTL zone");
new_ggc_zone_1 (&tree_zone, "Tree zone");
new_ggc_zone_1 (&tree_id_zone, "Tree identifier zone");
G.pagesize = getpagesize();
G.lg_pagesize = exact_log2 (G.pagesize);
G.page_mask = ~(G.pagesize - 1);
/* Require the system page size to be a multiple of GGC_PAGE_SIZE. */
gcc_assert ((G.pagesize & (GGC_PAGE_SIZE - 1)) == 0);
/* Allocate 16 system pages at a time. */
G.quire_size = 16 * G.pagesize / GGC_PAGE_SIZE;
/* Calculate the size of the allocation bitmap and other overhead. */
/* Right now we allocate bits for the page header and bitmap. These
are wasted, but a little tricky to eliminate. */
G.small_page_overhead
= PAGE_OVERHEAD + (GGC_PAGE_SIZE / BYTES_PER_ALLOC_BIT / 8);
/* G.small_page_overhead = ROUND_UP (G.small_page_overhead, MAX_ALIGNMENT); */
#ifdef HAVE_MMAP_DEV_ZERO
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
gcc_assert (G.dev_zero_fd != -1);
#endif
#if 0
G.debug_file = fopen ("ggc-mmap.debug", "w");
setlinebuf (G.debug_file);
#else
G.debug_file = stdout;
#endif
#ifdef USING_MMAP
/* StunOS has an amazing off-by-one error for the first mmap allocation
after fiddling with RLIMIT_STACK. The result, as hard as it is to
believe, is an unaligned page allocation, which would cause us to
hork badly if we tried to use it. */
{
char *p = alloc_anon (NULL, G.pagesize, &main_zone);
struct small_page_entry *e;
if ((size_t)p & (G.pagesize - 1))
{
/* How losing. Discard this one and try another. If we still
can't get something useful, give up. */
p = alloc_anon (NULL, G.pagesize, &main_zone);
gcc_assert (!((size_t)p & (G.pagesize - 1)));
}
if (GGC_PAGE_SIZE == G.pagesize)
{
/* We have a good page, might as well hold onto it... */
e = xcalloc (1, G.small_page_overhead);
e->common.page = p;
e->common.zone = &main_zone;
e->next = main_zone.free_pages;
set_page_table_entry (e->common.page, &e->common);
main_zone.free_pages = e;
}
else
{
munmap (p, G.pagesize);
}
}
#endif
}
/* Start a new GGC zone. */
static void
new_ggc_zone_1 (struct alloc_zone *new_zone, const char * name)
{
new_zone->name = name;
new_zone->next_zone = G.zones->next_zone;
G.zones->next_zone = new_zone;
}
struct alloc_zone *
new_ggc_zone (const char * name)
{
struct alloc_zone *new_zone = xcalloc (1, sizeof (struct alloc_zone));
new_ggc_zone_1 (new_zone, name);
return new_zone;
}
/* Destroy a GGC zone. */
void
destroy_ggc_zone (struct alloc_zone * dead_zone)
{
struct alloc_zone *z;
for (z = G.zones; z && z->next_zone != dead_zone; z = z->next_zone)
/* Just find that zone. */
continue;
/* We should have found the zone in the list. Anything else is fatal. */
gcc_assert (z);
/* z is dead, baby. z is dead. */
z->dead = true;
}
/* Free all empty pages and objects within a page for a given zone */
static void
sweep_pages (struct alloc_zone *zone)
{
struct large_page_entry **lpp, *lp, *lnext;
struct small_page_entry **spp, *sp, *snext;
char *last_free;
size_t allocated = 0;
bool nomarksinpage;
/* First, reset the free_chunks lists, since we are going to
re-free free chunks in hopes of coalescing them into large chunks. */
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
zone->high_free_bin = 0;
zone->cached_free = NULL;
zone->cached_free_size = 0;
/* Large pages are all or none affairs. Either they are completely
empty, or they are completely full. */
lpp = &zone->large_pages;
for (lp = zone->large_pages; lp != NULL; lp = lnext)
{
gcc_assert (lp->common.large_p);
lnext = lp->next;
#ifdef GATHER_STATISTICS
/* This page has now survived another collection. */
lp->common.survived++;
#endif
if (lp->mark_p)
{
lp->mark_p = false;
allocated += lp->bytes;
lpp = &lp->next;
}
else
{
*lpp = lnext;
#ifdef ENABLE_GC_CHECKING
/* Poison the page. */
memset (lp->common.page, 0xb5, SMALL_PAGE_SIZE);
#endif
if (lp->prev)
lp->prev->next = lp->next;
if (lp->next)
lp->next->prev = lp->prev;
free_large_page (lp);
}
}
spp = &zone->pages;
for (sp = zone->pages; sp != NULL; sp = snext)
{
char *object, *last_object;
char *end;
alloc_type *alloc_word_p;
mark_type *mark_word_p;
gcc_assert (!sp->common.large_p);
snext = sp->next;
#ifdef GATHER_STATISTICS
/* This page has now survived another collection. */
sp->common.survived++;
#endif
/* Step through all chunks, consolidate those that are free and
insert them into the free lists. Note that consolidation
slows down collection slightly. */
last_object = object = sp->common.page;
end = sp->common.page + SMALL_PAGE_SIZE;
last_free = NULL;
nomarksinpage = true;
mark_word_p = sp->mark_bits;
alloc_word_p = sp->alloc_bits;
gcc_assert (BYTES_PER_ALLOC_BIT == BYTES_PER_MARK_BIT);
object = sp->common.page;
do
{
unsigned int i, n;
alloc_type alloc_word;
mark_type mark_word;
alloc_word = *alloc_word_p++;
mark_word = *mark_word_p++;
if (mark_word)
nomarksinpage = false;
/* There ought to be some way to do this without looping... */
i = 0;
while ((n = alloc_ffs (alloc_word)) != 0)
{
/* Extend the current state for n - 1 bits. We can't
shift alloc_word by n, even though it isn't used in the
loop, in case only the highest bit was set. */
alloc_word >>= n - 1;
mark_word >>= n - 1;
object += BYTES_PER_MARK_BIT * (n - 1);
if (mark_word & 1)
{
if (last_free)
{
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (last_free,
object
- last_free));
poison_region (last_free, object - last_free);
free_chunk (last_free, object - last_free, zone);
last_free = NULL;
}
else
allocated += object - last_object;
last_object = object;
}
else
{
if (last_free == NULL)
{
last_free = object;
allocated += object - last_object;
}
else
zone_clear_object_alloc_bit (sp, object);
}
/* Shift to just after the alloc bit we handled. */
alloc_word >>= 1;
mark_word >>= 1;
object += BYTES_PER_MARK_BIT;
i += n;
}
object += BYTES_PER_MARK_BIT * (8 * sizeof (alloc_type) - i);
}
while (object < end);
if (nomarksinpage)
{
*spp = snext;
#ifdef ENABLE_GC_CHECKING
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (sp->common.page, SMALL_PAGE_SIZE));
/* Poison the page. */
memset (sp->common.page, 0xb5, SMALL_PAGE_SIZE);
#endif
free_small_page (sp);
continue;
}
else if (last_free)
{
VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (last_free,
object - last_free));
poison_region (last_free, object - last_free);
free_chunk (last_free, object - last_free, zone);
}
else
allocated += object - last_object;
spp = &sp->next;
}
zone->allocated = allocated;
}
/* mark-and-sweep routine for collecting a single zone. NEED_MARKING
is true if we need to mark before sweeping, false if some other
zone collection has already performed marking for us. Returns true
if we collected, false otherwise. */
static bool
ggc_collect_1 (struct alloc_zone *zone, bool need_marking)
{
#if 0
/* */
{
int i;
for (i = 0; i < NUM_FREE_BINS + 1; i++)
{
struct alloc_chunk *chunk;
int n, tot;
n = 0;
tot = 0;
chunk = zone->free_chunks[i];
while (chunk)
{
n++;
tot += chunk->size;
chunk = chunk->next_free;
}
fprintf (stderr, "Bin %d: %d free chunks (%d bytes)\n",
i, n, tot);
}
}
/* */
#endif
if (!quiet_flag)
fprintf (stderr, " {%s GC %luk -> ",
zone->name, (unsigned long) zone->allocated / 1024);
/* Zero the total allocated bytes. This will be recalculated in the
sweep phase. */
zone->allocated = 0;
/* Release the pages we freed the last time we collected, but didn't
reuse in the interim. */
release_pages (zone);
if (need_marking)
{
zone_allocate_marks ();
ggc_mark_roots ();
#ifdef GATHER_STATISTICS
ggc_prune_overhead_list ();
#endif
}
sweep_pages (zone);
zone->was_collected = true;
zone->allocated_last_gc = zone->allocated;
if (!quiet_flag)
fprintf (stderr, "%luk}", (unsigned long) zone->allocated / 1024);
return true;
}
#ifdef GATHER_STATISTICS
/* Calculate the average page survival rate in terms of number of
collections. */
static float
calculate_average_page_survival (struct alloc_zone *zone)
{
float count = 0.0;
float survival = 0.0;
struct small_page_entry *p;
struct large_page_entry *lp;
for (p = zone->pages; p; p = p->next)
{
count += 1.0;
survival += p->common.survived;
}
for (lp = zone->large_pages; lp; lp = lp->next)
{
count += 1.0;
survival += lp->common.survived;
}
return survival/count;
}
#endif
/* Top level collection routine. */
void
ggc_collect (void)
{
struct alloc_zone *zone;
bool marked = false;
timevar_push (TV_GC);
if (!ggc_force_collect)
{
float allocated_last_gc = 0, allocated = 0, min_expand;
for (zone = G.zones; zone; zone = zone->next_zone)
{
allocated_last_gc += zone->allocated_last_gc;
allocated += zone->allocated;
}
allocated_last_gc =
MAX (allocated_last_gc,
(size_t) PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
if (allocated < allocated_last_gc + min_expand)
{
timevar_pop (TV_GC);
return;
}
}
/* Start by possibly collecting the main zone. */
main_zone.was_collected = false;
marked |= ggc_collect_1 (&main_zone, true);
/* In order to keep the number of collections down, we don't
collect other zones unless we are collecting the main zone. This
gives us roughly the same number of collections as we used to
have with the old gc. The number of collection is important
because our main slowdown (according to profiling) is now in
marking. So if we mark twice as often as we used to, we'll be
twice as slow. Hopefully we'll avoid this cost when we mark
zone-at-a-time. */
/* NOTE drow/2004-07-28: We now always collect the main zone, but
keep this code in case the heuristics are further refined. */
if (main_zone.was_collected)
{
struct alloc_zone *zone;
for (zone = main_zone.next_zone; zone; zone = zone->next_zone)
{
zone->was_collected = false;
marked |= ggc_collect_1 (zone, !marked);
}
}
#ifdef GATHER_STATISTICS
/* Print page survival stats, if someone wants them. */
if (GGC_DEBUG_LEVEL >= 2)
{
for (zone = G.zones; zone; zone = zone->next_zone)
{
if (zone->was_collected)
{
float f = calculate_average_page_survival (zone);
printf ("Average page survival in zone `%s' is %f\n",
zone->name, f);
}
}
}
#endif
if (marked)
zone_free_marks ();
/* Free dead zones. */
for (zone = G.zones; zone && zone->next_zone; zone = zone->next_zone)
{
if (zone->next_zone->dead)
{
struct alloc_zone *dead_zone = zone->next_zone;
printf ("Zone `%s' is dead and will be freed.\n", dead_zone->name);
/* The zone must be empty. */
gcc_assert (!dead_zone->allocated);
/* Unchain the dead zone, release all its pages and free it. */
zone->next_zone = zone->next_zone->next_zone;
release_pages (dead_zone);
free (dead_zone);
}
}
timevar_pop (TV_GC);
}
/* Print allocation statistics. */
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
? (x) \
: ((x) < 1024*1024*10 \
? (x) / 1024 \
: (x) / (1024*1024))))
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
void
ggc_print_statistics (void)
{
struct alloc_zone *zone;
struct ggc_statistics stats;
size_t total_overhead = 0, total_allocated = 0, total_bytes_mapped = 0;
size_t pte_overhead, i;
/* Clear the statistics. */
memset (&stats, 0, sizeof (stats));
/* Make sure collection will really occur. */
ggc_force_collect = true;
/* Collect and print the statistics common across collectors. */
ggc_print_common_statistics (stderr, &stats);
ggc_force_collect = false;
/* Release free pages so that we will not count the bytes allocated
there as part of the total allocated memory. */
for (zone = G.zones; zone; zone = zone->next_zone)
release_pages (zone);
/* Collect some information about the various sizes of
allocation. */
fprintf (stderr,
"Memory still allocated at the end of the compilation process\n");
fprintf (stderr, "%20s %10s %10s %10s\n",
"Zone", "Allocated", "Used", "Overhead");
for (zone = G.zones; zone; zone = zone->next_zone)
{
struct large_page_entry *large_page;
size_t overhead, allocated, in_use;
/* Skip empty zones. */
if (!zone->pages && !zone->large_pages)
continue;
allocated = in_use = 0;
overhead = sizeof (struct alloc_zone);
for (large_page = zone->large_pages; large_page != NULL;
large_page = large_page->next)
{
allocated += large_page->bytes;
in_use += large_page->bytes;
overhead += sizeof (struct large_page_entry);
}
/* There's no easy way to walk through the small pages finding
used and unused objects. Instead, add all the pages, and
subtract out the free list. */
allocated += GGC_PAGE_SIZE * zone->n_small_pages;
in_use += GGC_PAGE_SIZE * zone->n_small_pages;
overhead += G.small_page_overhead * zone->n_small_pages;
for (i = 0; i <= NUM_FREE_BINS; i++)
{
struct alloc_chunk *chunk = zone->free_chunks[i];
while (chunk)
{
in_use -= ggc_get_size (chunk);
chunk = chunk->next_free;
}
}
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n",
zone->name,
SCALE (allocated), LABEL (allocated),
SCALE (in_use), LABEL (in_use),
SCALE (overhead), LABEL (overhead));
gcc_assert (in_use == zone->allocated);
total_overhead += overhead;
total_allocated += zone->allocated;
total_bytes_mapped += zone->bytes_mapped;
}
/* Count the size of the page table as best we can. */
#if HOST_BITS_PER_PTR <= 32
pte_overhead = sizeof (G.lookup);
for (i = 0; i < PAGE_L1_SIZE; i++)
if (G.lookup[i])
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
#else
{
page_table table = G.lookup;
pte_overhead = 0;
while (table)
{
pte_overhead += sizeof (*table);
for (i = 0; i < PAGE_L1_SIZE; i++)
if (table->table[i])
pte_overhead += PAGE_L2_SIZE * sizeof (struct page_entry *);
table = table->next;
}
}
#endif
fprintf (stderr, "%20s %11s %11s %10lu%c\n", "Page Table",
"", "", SCALE (pte_overhead), LABEL (pte_overhead));
total_overhead += pte_overhead;
fprintf (stderr, "%20s %10lu%c %10lu%c %10lu%c\n", "Total",
SCALE (total_bytes_mapped), LABEL (total_bytes_mapped),
SCALE (total_allocated), LABEL(total_allocated),
SCALE (total_overhead), LABEL (total_overhead));
#ifdef GATHER_STATISTICS
{
unsigned long long all_overhead = 0, all_allocated = 0;
unsigned long long all_overhead_under32 = 0, all_allocated_under32 = 0;
unsigned long long all_overhead_under64 = 0, all_allocated_under64 = 0;
unsigned long long all_overhead_under128 = 0, all_allocated_under128 = 0;
fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
for (zone = G.zones; zone; zone = zone->next_zone)
{
all_overhead += zone->stats.total_overhead;
all_allocated += zone->stats.total_allocated;
all_allocated_under32 += zone->stats.total_allocated_under32;
all_overhead_under32 += zone->stats.total_overhead_under32;
all_allocated_under64 += zone->stats.total_allocated_under64;
all_overhead_under64 += zone->stats.total_overhead_under64;
all_allocated_under128 += zone->stats.total_allocated_under128;
all_overhead_under128 += zone->stats.total_overhead_under128;
fprintf (stderr, "%20s: %10lld\n",
zone->name, zone->stats.total_allocated);
}
fprintf (stderr, "\n");
fprintf (stderr, "Total Overhead: %10lld\n",
all_overhead);
fprintf (stderr, "Total Allocated: %10lld\n",
all_allocated);
fprintf (stderr, "Total Overhead under 32B: %10lld\n",
all_overhead_under32);
fprintf (stderr, "Total Allocated under 32B: %10lld\n",
all_allocated_under32);
fprintf (stderr, "Total Overhead under 64B: %10lld\n",
all_overhead_under64);
fprintf (stderr, "Total Allocated under 64B: %10lld\n",
all_allocated_under64);
fprintf (stderr, "Total Overhead under 128B: %10lld\n",
all_overhead_under128);
fprintf (stderr, "Total Allocated under 128B: %10lld\n",
all_allocated_under128);
}
#endif
}
/* Precompiled header support. */
/* For precompiled headers, we sort objects based on their type. We
also sort various objects into their own buckets; currently this
covers strings and IDENTIFIER_NODE trees. The choices of how
to sort buckets have not yet been tuned. */
#define NUM_PCH_BUCKETS (gt_types_enum_last + 3)
#define OTHER_BUCKET (gt_types_enum_last + 0)
#define IDENTIFIER_BUCKET (gt_types_enum_last + 1)
#define STRING_BUCKET (gt_types_enum_last + 2)
struct ggc_pch_ondisk
{
size_t total;
size_t type_totals[NUM_PCH_BUCKETS];
};
struct ggc_pch_data
{
struct ggc_pch_ondisk d;
size_t base;
size_t orig_base;
size_t alloc_size;
alloc_type *alloc_bits;
size_t type_bases[NUM_PCH_BUCKETS];
size_t start_offset;
};
/* Initialize the PCH data structure. */
struct ggc_pch_data *
init_ggc_pch (void)
{
return xcalloc (sizeof (struct ggc_pch_data), 1);
}
/* Return which of the page-aligned buckets the object at X, with type
TYPE, should be sorted into in the PCH. Strings will have
IS_STRING set and TYPE will be gt_types_enum_last. Other objects
of unknown type will also have TYPE equal to gt_types_enum_last. */
static int
pch_bucket (void *x, enum gt_types_enum type,
bool is_string)
{
/* Sort identifiers into their own bucket, to improve locality
when searching the identifier hash table. */
if (type == gt_ggc_e_14lang_tree_node
&& TREE_CODE ((tree) x) == IDENTIFIER_NODE)
return IDENTIFIER_BUCKET;
else if (type == gt_types_enum_last)
{
if (is_string)
return STRING_BUCKET;
return OTHER_BUCKET;
}
return type;
}
/* Add the size of object X to the size of the PCH data. */
void
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
size_t size, bool is_string, enum gt_types_enum type)
{
/* NOTE: Right now we don't need to align up the size of any objects.
Strings can be unaligned, and everything else is allocated to a
MAX_ALIGNMENT boundary already. */
d->d.type_totals[pch_bucket (x, type, is_string)] += size;
}
/* Return the total size of the PCH data. */
size_t
ggc_pch_total_size (struct ggc_pch_data *d)
{
enum gt_types_enum i;
size_t alloc_size, total_size;
total_size = 0;
for (i = 0; i < NUM_PCH_BUCKETS; i++)
{
d->d.type_totals[i] = ROUND_UP (d->d.type_totals[i], GGC_PAGE_SIZE);
total_size += d->d.type_totals[i];
}
d->d.total = total_size;
/* Include the size of the allocation bitmap. */
alloc_size = CEIL (d->d.total, BYTES_PER_ALLOC_BIT * 8);
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
d->alloc_size = alloc_size;
return d->d.total + alloc_size;
}
/* Set the base address for the objects in the PCH file. */
void
ggc_pch_this_base (struct ggc_pch_data *d, void *base_)
{
int i;
size_t base = (size_t) base_;
d->base = d->orig_base = base;
for (i = 0; i < NUM_PCH_BUCKETS; i++)
{
d->type_bases[i] = base;
base += d->d.type_totals[i];
}
if (d->alloc_bits == NULL)
d->alloc_bits = xcalloc (1, d->alloc_size);
}
/* Allocate a place for object X of size SIZE in the PCH file. */
char *
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x,
size_t size, bool is_string,
enum gt_types_enum type)
{
size_t alloc_word, alloc_bit;
char *result;
int bucket = pch_bucket (x, type, is_string);
/* Record the start of the object in the allocation bitmap. We
can't assert that the allocation bit is previously clear, because
strings may violate the invariant that they are at least
BYTES_PER_ALLOC_BIT long. This is harmless - ggc_get_size
should not be called for strings. */
alloc_word = ((d->type_bases[bucket] - d->orig_base)
/ (8 * sizeof (alloc_type) * BYTES_PER_ALLOC_BIT));
alloc_bit = ((d->type_bases[bucket] - d->orig_base)
/ BYTES_PER_ALLOC_BIT) % (8 * sizeof (alloc_type));
d->alloc_bits[alloc_word] |= 1L << alloc_bit;
/* Place the object at the current pointer for this bucket. */
result = (char *) d->type_bases[bucket];
d->type_bases[bucket] += size;
return result;
}
/* Prepare to write out the PCH data to file F. */
void
ggc_pch_prepare_write (struct ggc_pch_data *d,
FILE *f)
{
/* We seek around a lot while writing. Record where the end
of the padding in the PCH file is, so that we can
locate each object's offset. */
d->start_offset = ftell (f);
}
/* Write out object X of SIZE to file F. */
void
ggc_pch_write_object (struct ggc_pch_data *d,
FILE *f, void *x, void *newx,
size_t size, bool is_string ATTRIBUTE_UNUSED)
{
if (fseek (f, (size_t) newx - d->orig_base + d->start_offset, SEEK_SET) != 0)
fatal_error ("can't seek PCH file: %m");
if (fwrite (x, size, 1, f) != 1)
fatal_error ("can't write PCH file: %m");
}
void
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
{
/* Write out the allocation bitmap. */
if (fseek (f, d->start_offset + d->d.total, SEEK_SET) != 0)
fatal_error ("can't seek PCH file: %m");
if (fwrite (d->alloc_bits, d->alloc_size, 1, f) != 1)
fatal_error ("can't write PCH fle: %m");
/* Done with the PCH, so write out our footer. */
if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
fatal_error ("can't write PCH file: %m");
free (d->alloc_bits);
free (d);
}
/* The PCH file from F has been mapped at ADDR. Read in any
additional data from the file and set up the GC state. */
void
ggc_pch_read (FILE *f, void *addr)
{
struct ggc_pch_ondisk d;
size_t alloc_size;
struct alloc_zone *zone;
struct page_entry *pch_page;
char *p;
if (fread (&d, sizeof (d), 1, f) != 1)
fatal_error ("can't read PCH file: %m");
alloc_size = CEIL (d.total, BYTES_PER_ALLOC_BIT * 8);
alloc_size = ROUND_UP (alloc_size, MAX_ALIGNMENT);
pch_zone.bytes = d.total;
pch_zone.alloc_bits = (alloc_type *) ((char *) addr + pch_zone.bytes);
pch_zone.page = (char *) addr;
pch_zone.end = (char *) pch_zone.alloc_bits;
/* We've just read in a PCH file. So, every object that used to be
allocated is now free. */
for (zone = G.zones; zone; zone = zone->next_zone)
{
struct small_page_entry *page, *next_page;
struct large_page_entry *large_page, *next_large_page;
zone->allocated = 0;
/* Clear the zone's free chunk list. */
memset (zone->free_chunks, 0, sizeof (zone->free_chunks));
zone->high_free_bin = 0;
zone->cached_free = NULL;
zone->cached_free_size = 0;
/* Move all the small pages onto the free list. */
for (page = zone->pages; page != NULL; page = next_page)
{
next_page = page->next;
memset (page->alloc_bits, 0,
G.small_page_overhead - PAGE_OVERHEAD);
free_small_page (page);
}
/* Discard all the large pages. */
for (large_page = zone->large_pages; large_page != NULL;
large_page = next_large_page)
{
next_large_page = large_page->next;
free_large_page (large_page);
}
zone->pages = NULL;
zone->large_pages = NULL;
}
/* Allocate the dummy page entry for the PCH, and set all pages
mapped into the PCH to reference it. */
pch_page = xcalloc (1, sizeof (struct page_entry));
pch_page->page = pch_zone.page;
pch_page->pch_p = true;
for (p = pch_zone.page; p < pch_zone.end; p += GGC_PAGE_SIZE)
set_page_table_entry (p, pch_page);
}
|