1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
/* Integer matrix math routines
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
Contributed by Daniel Berlin <dberlin@dberlin.org>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "lambda.h"
static void lambda_matrix_get_column (lambda_matrix, int, int,
lambda_vector);
/* Allocate a matrix of M rows x N cols. */
lambda_matrix
lambda_matrix_new (int m, int n)
{
lambda_matrix mat;
int i;
mat = ggc_alloc (m * sizeof (lambda_vector));
for (i = 0; i < m; i++)
mat[i] = lambda_vector_new (n);
return mat;
}
/* Copy the elements of M x N matrix MAT1 to MAT2. */
void
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
int m, int n)
{
int i;
for (i = 0; i < m; i++)
lambda_vector_copy (mat1[i], mat2[i], n);
}
/* Store the N x N identity matrix in MAT. */
void
lambda_matrix_id (lambda_matrix mat, int size)
{
int i, j;
for (i = 0; i < size; i++)
for (j = 0; j < size; j++)
mat[i][j] = (i == j) ? 1 : 0;
}
/* Return true if MAT is the identity matrix of SIZE */
bool
lambda_matrix_id_p (lambda_matrix mat, int size)
{
int i, j;
for (i = 0; i < size; i++)
for (j = 0; j < size; j++)
{
if (i == j)
{
if (mat[i][j] != 1)
return false;
}
else
{
if (mat[i][j] != 0)
return false;
}
}
return true;
}
/* Negate the elements of the M x N matrix MAT1 and store it in MAT2. */
void
lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
{
int i;
for (i = 0; i < m; i++)
lambda_vector_negate (mat1[i], mat2[i], n);
}
/* Take the transpose of matrix MAT1 and store it in MAT2.
MAT1 is an M x N matrix, so MAT2 must be N x M. */
void
lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
{
int i, j;
for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
mat2[i][j] = mat1[j][i];
}
/* Add two M x N matrices together: MAT3 = MAT1+MAT2. */
void
lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
lambda_matrix mat3, int m, int n)
{
int i;
for (i = 0; i < m; i++)
lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
}
/* MAT3 = CONST1 * MAT1 + CONST2 * MAT2. All matrices are M x N. */
void
lambda_matrix_add_mc (lambda_matrix mat1, int const1,
lambda_matrix mat2, int const2,
lambda_matrix mat3, int m, int n)
{
int i;
for (i = 0; i < m; i++)
lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
}
/* Multiply two matrices: MAT3 = MAT1 * MAT2.
MAT1 is an M x R matrix, and MAT2 is R x N. The resulting MAT2
must therefore be M x N. */
void
lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
lambda_matrix mat3, int m, int r, int n)
{
int i, j, k;
for (i = 0; i < m; i++)
{
for (j = 0; j < n; j++)
{
mat3[i][j] = 0;
for (k = 0; k < r; k++)
mat3[i][j] += mat1[i][k] * mat2[k][j];
}
}
}
/* Get column COL from the matrix MAT and store it in VEC. MAT has
N rows, so the length of VEC must be N. */
static void
lambda_matrix_get_column (lambda_matrix mat, int n, int col,
lambda_vector vec)
{
int i;
for (i = 0; i < n; i++)
vec[i] = mat[i][col];
}
/* Delete rows r1 to r2 (not including r2). */
void
lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
{
int i;
int dist;
dist = to - from;
for (i = to; i < rows; i++)
mat[i - dist] = mat[i];
for (i = rows - dist; i < rows; i++)
mat[i] = NULL;
}
/* Swap rows R1 and R2 in matrix MAT. */
void
lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
{
lambda_vector row;
row = mat[r1];
mat[r1] = mat[r2];
mat[r2] = row;
}
/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
R2 = R2 + CONST1 * R1. */
void
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
{
int i;
if (const1 == 0)
return;
for (i = 0; i < n; i++)
mat[r2][i] += const1 * mat[r1][i];
}
/* Negate row R1 of matrix MAT which has N columns. */
void
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
{
lambda_vector_negate (mat[r1], mat[r1], n);
}
/* Multiply row R1 of matrix MAT with N columns by CONST1. */
void
lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
{
int i;
for (i = 0; i < n; i++)
mat[r1][i] *= const1;
}
/* Exchange COL1 and COL2 in matrix MAT. M is the number of rows. */
void
lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
{
int i;
int tmp;
for (i = 0; i < m; i++)
{
tmp = mat[i][col1];
mat[i][col1] = mat[i][col2];
mat[i][col2] = tmp;
}
}
/* Add a multiple of column C1 of matrix MAT with M rows to column C2:
C2 = C2 + CONST1 * C1. */
void
lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
{
int i;
if (const1 == 0)
return;
for (i = 0; i < m; i++)
mat[i][c2] += const1 * mat[i][c1];
}
/* Negate column C1 of matrix MAT which has M rows. */
void
lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
{
int i;
for (i = 0; i < m; i++)
mat[i][c1] *= -1;
}
/* Multiply column C1 of matrix MAT with M rows by CONST1. */
void
lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
{
int i;
for (i = 0; i < m; i++)
mat[i][c1] *= const1;
}
/* Compute the inverse of the N x N matrix MAT and store it in INV.
We don't _really_ compute the inverse of MAT. Instead we compute
det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
result. This is necessary to preserve accuracy, because we are dealing
with integer matrices here.
The algorithm used here is a column based Gauss-Jordan elimination on MAT
and the identity matrix in parallel. The inverse is the result of applying
the same operations on the identity matrix that reduce MAT to the identity
matrix.
When MAT is a 2 x 2 matrix, we don't go through the whole process, because
it is easily inverted by inspection and it is a very common case. */
static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);
int
lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
{
if (n == 2)
{
int a, b, c, d, det;
a = mat[0][0];
b = mat[1][0];
c = mat[0][1];
d = mat[1][1];
inv[0][0] = d;
inv[0][1] = -c;
inv[1][0] = -b;
inv[1][1] = a;
det = (a * d - b * c);
if (det < 0)
{
det *= -1;
inv[0][0] *= -1;
inv[1][0] *= -1;
inv[0][1] *= -1;
inv[1][1] *= -1;
}
return det;
}
else
return lambda_matrix_inverse_hard (mat, inv, n);
}
/* If MAT is not a special case, invert it the hard way. */
static int
lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
{
lambda_vector row;
lambda_matrix temp;
int i, j;
int determinant;
temp = lambda_matrix_new (n, n);
lambda_matrix_copy (mat, temp, n, n);
lambda_matrix_id (inv, n);
/* Reduce TEMP to a lower triangular form, applying the same operations on
INV which starts as the identity matrix. N is the number of rows and
columns. */
for (j = 0; j < n; j++)
{
row = temp[j];
/* Make every element in the current row positive. */
for (i = j; i < n; i++)
if (row[i] < 0)
{
lambda_matrix_col_negate (temp, n, i);
lambda_matrix_col_negate (inv, n, i);
}
/* Sweep the upper triangle. Stop when only the diagonal element in the
current row is nonzero. */
while (lambda_vector_first_nz (row, n, j + 1) < n)
{
int min_col = lambda_vector_min_nz (row, n, j);
lambda_matrix_col_exchange (temp, n, j, min_col);
lambda_matrix_col_exchange (inv, n, j, min_col);
for (i = j + 1; i < n; i++)
{
int factor;
factor = -1 * row[i];
if (row[j] != 1)
factor /= row[j];
lambda_matrix_col_add (temp, n, j, i, factor);
lambda_matrix_col_add (inv, n, j, i, factor);
}
}
}
/* Reduce TEMP from a lower triangular to the identity matrix. Also compute
the determinant, which now is simply the product of the elements on the
diagonal of TEMP. If one of these elements is 0, the matrix has 0 as an
eigenvalue so it is singular and hence not invertible. */
determinant = 1;
for (j = n - 1; j >= 0; j--)
{
int diagonal;
row = temp[j];
diagonal = row[j];
/* The matrix must not be singular. */
gcc_assert (diagonal);
determinant = determinant * diagonal;
/* If the diagonal is not 1, then multiply the each row by the
diagonal so that the middle number is now 1, rather than a
rational. */
if (diagonal != 1)
{
for (i = 0; i < j; i++)
lambda_matrix_col_mc (inv, n, i, diagonal);
for (i = j + 1; i < n; i++)
lambda_matrix_col_mc (inv, n, i, diagonal);
row[j] = diagonal = 1;
}
/* Sweep the lower triangle column wise. */
for (i = j - 1; i >= 0; i--)
{
if (row[i])
{
int factor = -row[i];
lambda_matrix_col_add (temp, n, j, i, factor);
lambda_matrix_col_add (inv, n, j, i, factor);
}
}
}
return determinant;
}
/* Decompose a N x N matrix MAT to a product of a lower triangular H
and a unimodular U matrix such that MAT = H.U. N is the size of
the rows of MAT. */
void
lambda_matrix_hermite (lambda_matrix mat, int n,
lambda_matrix H, lambda_matrix U)
{
lambda_vector row;
int i, j, factor, minimum_col;
lambda_matrix_copy (mat, H, n, n);
lambda_matrix_id (U, n);
for (j = 0; j < n; j++)
{
row = H[j];
/* Make every element of H[j][j..n] positive. */
for (i = j; i < n; i++)
{
if (row[i] < 0)
{
lambda_matrix_col_negate (H, n, i);
lambda_vector_negate (U[i], U[i], n);
}
}
/* Stop when only the diagonal element is nonzero. */
while (lambda_vector_first_nz (row, n, j + 1) < n)
{
minimum_col = lambda_vector_min_nz (row, n, j);
lambda_matrix_col_exchange (H, n, j, minimum_col);
lambda_matrix_row_exchange (U, j, minimum_col);
for (i = j + 1; i < n; i++)
{
factor = row[i] / row[j];
lambda_matrix_col_add (H, n, j, i, -1 * factor);
lambda_matrix_row_add (U, n, i, j, factor);
}
}
}
}
/* Given an M x N integer matrix A, this function determines an M x
M unimodular matrix U, and an M x N echelon matrix S such that
"U.A = S". This decomposition is also known as "right Hermite".
Ref: Algorithm 2.1 page 33 in "Loop Transformations for
Restructuring Compilers" Utpal Banerjee. */
void
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
lambda_matrix S, lambda_matrix U)
{
int i, j, i0 = 0;
lambda_matrix_copy (A, S, m, n);
lambda_matrix_id (U, m);
for (j = 0; j < n; j++)
{
if (lambda_vector_first_nz (S[j], m, i0) < m)
{
++i0;
for (i = m - 1; i >= i0; i--)
{
while (S[i][j] != 0)
{
int sigma, factor, a, b;
a = S[i-1][j];
b = S[i][j];
sigma = (a * b < 0) ? -1: 1;
a = abs (a);
b = abs (b);
factor = sigma * (a / b);
lambda_matrix_row_add (S, n, i, i-1, -factor);
lambda_matrix_row_exchange (S, i, i-1);
lambda_matrix_row_add (U, m, i, i-1, -factor);
lambda_matrix_row_exchange (U, i, i-1);
}
}
}
}
}
/* Given an M x N integer matrix A, this function determines an M x M
unimodular matrix V, and an M x N echelon matrix S such that "A =
V.S". This decomposition is also known as "left Hermite".
Ref: Algorithm 2.2 page 36 in "Loop Transformations for
Restructuring Compilers" Utpal Banerjee. */
void
lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
lambda_matrix S, lambda_matrix V)
{
int i, j, i0 = 0;
lambda_matrix_copy (A, S, m, n);
lambda_matrix_id (V, m);
for (j = 0; j < n; j++)
{
if (lambda_vector_first_nz (S[j], m, i0) < m)
{
++i0;
for (i = m - 1; i >= i0; i--)
{
while (S[i][j] != 0)
{
int sigma, factor, a, b;
a = S[i-1][j];
b = S[i][j];
sigma = (a * b < 0) ? -1: 1;
a = abs (a);
b = abs (b);
factor = sigma * (a / b);
lambda_matrix_row_add (S, n, i, i-1, -factor);
lambda_matrix_row_exchange (S, i, i-1);
lambda_matrix_col_add (V, m, i-1, i, factor);
lambda_matrix_col_exchange (V, m, i, i-1);
}
}
}
}
}
/* When it exists, return the first nonzero row in MAT after row
STARTROW. Otherwise return rowsize. */
int
lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
int startrow)
{
int j;
bool found = false;
for (j = startrow; (j < rowsize) && !found; j++)
{
if ((mat[j] != NULL)
&& (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
found = true;
}
if (found)
return j - 1;
return rowsize;
}
/* Calculate the projection of E sub k to the null space of B. */
void
lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
int colsize, int k, lambda_vector x)
{
lambda_matrix M1, M2, M3, I;
int determinant;
/* Compute c(I-B^T inv(B B^T) B) e sub k. */
/* M1 is the transpose of B. */
M1 = lambda_matrix_new (colsize, colsize);
lambda_matrix_transpose (B, M1, rowsize, colsize);
/* M2 = B * B^T */
M2 = lambda_matrix_new (colsize, colsize);
lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);
/* M3 = inv(M2) */
M3 = lambda_matrix_new (colsize, colsize);
determinant = lambda_matrix_inverse (M2, M3, rowsize);
/* M2 = B^T (inv(B B^T)) */
lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);
/* M1 = B^T (inv(B B^T)) B */
lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
lambda_matrix_negate (M1, M1, colsize, colsize);
I = lambda_matrix_new (colsize, colsize);
lambda_matrix_id (I, colsize);
lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);
lambda_matrix_get_column (M2, colsize, k - 1, x);
}
/* Multiply a vector VEC by a matrix MAT.
MAT is an M*N matrix, and VEC is a vector with length N. The result
is stored in DEST which must be a vector of length M. */
void
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
lambda_vector vec, lambda_vector dest)
{
int i, j;
lambda_vector_clear (dest, m);
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
dest[i] += matrix[i][j] * vec[j];
}
/* Print out an M x N matrix MAT to OUTFILE. */
void
print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
{
int i;
for (i = 0; i < m; i++)
print_lambda_vector (outfile, matrix[i], n);
fprintf (outfile, "\n");
}
|